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Experimental data have revealed that neuronal connection efficacy ex-
hibits two forms of short-term plasticity: short-term depression (STD)
and short-term facilitation (STF). They have time constants residing be-
tween fast neural signaling and rapid learning and may serve as sub-
strates for neural systems manipulating temporal information on relevant
timescales. This study investigates the impact of STD and STF on the dy-
namics of continuous attractor neural networks and their potential roles
in neural information processing. We find that STD endows the network
with slow-decaying plateau behaviors: the network that is initially being
stimulated to an active state decays to a silent state very slowly on the
timescale of STD rather than on that of neuralsignaling. This provides a
mechanism for neural systems to hold sensory memory easily and shut
off persistent activities gracefully. With STF, we find that the network can
hold a memory trace of external inputs in the facilitated neuronal interac-
tions, which provides a way to stabilize the network response to noisy in-
puts, leading to improved accuracy in population decoding. Furthermore,
we find that STD increases the mobility of the network states. The in-
creased mobility enhances the tracking performance of the network in re-
sponse to time-varying stimuli, leading to anticipative neural responses.
In general, we find that STD and STP tend to have opposite effects
on network dynamics and complementary computational advantages,
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suggesting that the brain may employ a strategy of weighting them dif-
ferentially depending on the computational purpose.

1 Introduction

Experimental data have consistently revealed that the neuronal connection
weight, which models the efficacy of the firing of a presynaptic neuron
in modulating the state of a postsynaptic one, varies on short timescales,
ranging from hundreds to thousands of milliseconds (Stevens & Wang, 1995;
Markram & Tsodyks, 1996; Dobrunz & Stevens, 1997; Markram, Wang, &
Tsodyks, 1999). This is called short-term plasticity (STP). Two types of STP,
with opposite effects on the connection efficacy, have been observed: short-
term depression (STD) and short-term facilitation (STF). STD is caused by
the depletion of available resources when neurotransmitters are released
from the axon terminal of the presynaptic neuron during signal transmis-
sion (Stevens & Wang, 1995; Markram & Tsodyks, 1996; Dayan & Abbott,
2001). STF is caused by the influx of calcium into the presynaptic terminal
after spike generation, which increases the probability of releasing neuro-
transmitters.

Computational studies on the impact of STP on network dynamics have
strongly suggested that STP can play many important roles in neural com-
putation. For instance, cortical neurons receive presynaptic signals with
firing rates ranging from less than 1 Hertz to more than 200 Hertz. It was
suggested that STD provides a dynamic gain control mechanism that allows
equal fractional changes on rapidly and slowly firing afferents to produce
postsynaptic responses, realizing Weber’s law (Tsodyks & Markram, 1997;
Abbott, Varela, Sen, & Nelson, 1997). Besides, computations can be per-
formed in recurrent networks by population spikes in response to external
inputs, which are enabled through STD by recurrent connections (Tsodyks,
Uziel, & Markram, 2000; Loebel & Tsodyks, 2002).

Another role played by synaptic depression was proposed by Levina,
Herrmann, and Giesel (2007). In neuronal systems, critical avalanches are
believed to bring about optimal computational capabilities and are ob-
served experimentally. Synaptic depression enables a feedback mechanism
so that the system can be maintained at a critical state, making the self-
organized critical behavior robust (Levina et al., 2007). Herding, a com-
putational algorithm reminiscent of the neuronal dynamics with synaptic
depression, was recently found to have a similar effect on the complexity
of information processing (Welling, 2009). STP was also recently thought
to play a role in the way a neuron estimates the membrane potential infor-
mation of the presynaptic neuron based on the spikes it receives (Pfister,
Dayan, & Lengyel, 2010).

Concerning the computational significance of STF, a recent work pro-
posed an interesting idea for achieving working memory in the prefrontal
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cortex (Mongillo, Barak, & Tsodyks, 2008). The residual calcium of STF is
used as a buffer to facilitate synaptic connections, so that inputs in a subse-
quent delay period can be used to retrieve the information encoded by the
facilitated synaptic connections. The STF-based memory mechanism has
the advantage of not having to rely on persistent neural firing during the
time the working memory is functioning, and hence is energetically more
efficient.

From the computational point of view, the timescale of STP resides be-
tween fast neural signaling (in the order of milliseconds) and rapid learning
(in the order of minutes or above), which is the timescale of many impor-
tant temporal processes occurring in our daily lives, such as the passive
holding of a temporal memory of objects coming into our visual field (the
so-called iconic sensory memory) or the active use of the memory trace of
recent events for motion control. Thus, STP may serve as a substrate for neu-
ral systems manipulating temporal information on the relevant timescales.
STP has been observed in many parts of the cortex and also exhibits large
diversity in different cortical areas, suggesting that the brain may employ
a strategy of weighting STD and STF differently depending on the compu-
tational purpose.

In this study, we explore the potential roles of STP in processing informa-
tion derived from external stimuli, an issue of fundamental importance yet
inadequately investigated so far. For ease of exposition, we use continuous
attractor neural networks (CANNs) as our working model, but our main
results are qualitatively applicable to general cases. CANNs are recurrent
networks that can hold a continuous family of localized active states (Amari,
1977). Neutral stability is a key property of CANNs, which enables neu-
ral systems to update memory states easily and track time-varying stimuli
smoothly. CANNs have been successfully applied to describe the genera-
tion of persistent neural activities (Wang, 2001), the encoding of continuous
stimuli such as the orientation, the head direction and the spatial loca-
tion of objects (Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995; Zhang, 1996;
Samsonovich & McNaughton, 1997), and a framework for implementing
efficient population decoding (Deneve, Latham, & Pouget, 1999).

When STP is included in a CANN, the dynamics of the network is gov-
erned by two timescales. The time constant of STP is much slower than that
of neural signaling (100–1000 ms versus 1–10 ms). The interplay between
the fast and the slow dynamics causes the network to exhibit rich dynam-
ical behaviors, laying the foundation for the neural system to implement
complicated functions.

In CANNs with STD, various intrinsic behaviors have been reported,
including damped oscillations (Tsodyks, Pawelzik, & Markram, 1998),
periodic and aperiodic dynamics (Tsodyks et al., 1998), state hopping
with transient population spikes (Holcman & Tsodyks, 2006), traveling
fronts and pulses (Pinto & Ermentrout, 2001; Bressloff, Folias, Prat, & Li,
2003; Folias & Bressloff, 2004; Kilpatrick & Bressloff, 2010), breathers and
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pulse-emitting breathers (Bressloff et al., 2003; Folias & Bressloff, 2004), spi-
ral waves (Kilpatrick & Bressloff, 2009), rotating bump states (York & van
Rossum, 2009; Igarashi, Oizumi, Otsubo, Nagata, & Okada, 2009), and self-
sustained non-periodic activities (Stratton & Wiles, 2010). Here, we focus
on those network states relevant to the processing of stimuli in CANNs,
including static, moving, and metastatic bumps (Wu & Amari, 2005; Fung,
Wong, & Wu, 2010). More significant, we find that with STD, the network
state can display slow-decaying plateau behaviors, that is, the network that
is initially being stimulated to an active state by a transient input decays to
the silent state very slowly on the timescale of STD relaxation rather than on
the timescale of neural signaling. This is a very interesting property. It im-
plies that STD can provide a way for the neural system to maintain sensory
memory for a duration unachievable by the signaling of single neurons and
shut off the network activity of sensory memory naturally. The latter has
been a challenging technical issue in the study of theoretical neuroscience
(Gutkin, Laing, Colby, Chow, & Ermentrout, 2001).

With STF, neuronal connections become strengthened during the pres-
ence of an external stimulus. This stimulus-specific facilitation lasts for a
period on the timescale of STF and provides a way for the neural system to
hold a memory trace of external inputs (Mongillo et al., 2008). This infor-
mation can be used by the neural system for various computational tasks.
To demonstrate this idea, we consider CANNs as a framework for imple-
menting population decoding (Deneve et al., 1999; Wu, Amari, & Nakahara,
2002). In the presence of STF, the network response is determined not only
by the instant input value but also by the history of external inputs (the latter
being mediated by the facilitated neuronal interactions). Therefore, tempo-
ral fluctuations in external inputs can be largely averaged out, leading to
improved decoding results.

In general, STD and STF tend to have opposite effects on network dynam-
ics (Torres, Cortes, Marro, & Kappen, 2007). The former increases the mobil-
ity of network states, whereas the latter increases their stability. Enhanced
mobility and stability can contribute positively to different computational
tasks. Enhanced stability mediated by STF can improve the computational
and behavioral stability of CANNs. To demonstrate that enhanced mobility
does have a positive role in information processing, we investigate a com-
putational task in which the network tracks time-varying stimuli. We find
that STD increases the tracking speed of a CANN. Interestingly, for strong
STD, the network state can even overtake the moving stimulus, reminis-
cent of the anticipative responses of head direction and place cells (Blair &
Sharp, 1995; O’Keefe & Recce, 1993; Romani & Tsodyks, in press).

The rest of the letter is organized as follows. After introducing the models
and methods in section 2, we discuss the intrinsic properties of CANNs in
the absence of external stimuli by studying their phase diagram in section 3.
In sections 4 to 6, we study the network behavior in the presence of various
stimuli. In section 4, we consider the aftereffects of a transient stimulus



Dynamical Synapses Enhance Neural Information Processing 1151

and find that sensory memories can persist for a desirable duration and
then decay gracefully. In section 5, we consider the response of the network
to a noisy stimulus and find that the accuracy in population decoding
can be enhanced. In section 6, we consider the response of the network to a
moving stimulus and find that the tracking performance is improved by the
enhanced mobility of the network states. The letter ends with conclusions
and discussions in section 7. Our preliminary results on the effects of STD
have been reported in Fung et al. (2010).

2 Models and Methods

We consider a one-dimensional continuous stimulus x encoded by an en-
semble of neurons. For example, the stimulus may represent a moving di-
rection, an orientation, or a general continuous feature of objects extracted
by the neural system. We consider the case where the range of possible
values of the stimulus is much larger than the range of neuronal interac-
tions. We can thus effectively take x ∈ (−∞,∞) in our analysis. In simula-
tions, however, we set the stimulus range to be −L/2 < x ≤ L/2 and have
N neurons uniformly distributed in the range obeying a periodic boundary
condition.

Let u(x, t) be the current at time t in the neurons whose preferred stimulus
is x. The dynamics of u(x, t) is determined by the external input Iext(x, t),
the network input from other neurons, and its own relaxation. It is given by

τs
∂u(x, t)

∂t
= −u(x, t) + Iext(x, t)

+ρ

∫ ∞

−∞
dx′J(x, x′)p(x′, t)

[
1 + f (x′, t)

]
r(x′, t), (2.1)

where τs is the synaptic time constant, which is typically of the order of
2 to 5 ms, and ρ the neural density. r(x, t) is the firing rate of neurons,
which increases with the synaptic input but saturates in the presence of
global activity-dependent inhibition. A solvable model that captures these
features is given by Deneve et al. (1999) and Wu et al. (2002),

r(x, t) = Cru(x, t)2

1 + kρ
∫∞
−∞ dx′u(x′, t)2

, (2.2)

where k is a positive constant controlling the strength of global inhibition
and Cr is a constant whose dimension is r (x, t) u (x, t)−2. This type of global
inhibition can be achieved by shunting inhibition (Heeger, 1992; Hao, Wang,
Dan, Poo, & Zhang, 2009).
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J(x, x′) is the baseline neural interaction from x′ to x when no STP exists.
In our solvable model, we choose J(x, x′) to be of the gaussian form with an
interaction range a,

J(x, x′) = J0

a
√

2π
exp

[
− (x − x′)2

2a2

]
, (2.3)

where J0 is a constant. J(x, x′) is translationally invariant, in the sense that
it is a function of x − x′ rather than x or x′. This is the key to generating the
neutral stability of CANNs.

The variable p(x, t) represents the presynaptic STD effect, which has a
maximum value of 1 and decreases with the firing rate of the neurons
(Tsodyks et al., 1998; Zucker & Regehr, 2002). Its dynamics is given by

τd
∂ p(x, t)

∂t
= 1 − p(x, t) − τdβp(x, t)[1 + f (x, t)]r(x, t), (2.4)

where τd is the time constant for synaptic depression, and the parameter β

controls the depression effect due to neuronal firing.
The variable f(x, t) represents the presynaptic STF effect, which increases

with the firing rate of the neurons but saturates at a maximum value fmax.
Its dynamics is given by

τ f
∂ f (x, t)

∂t
= − f (x, t) + τ f α

[
fmax − f (x, t)

]
r(x, t), (2.5)

where τ f is the time constant for synaptic facilitation, and the parameter α

controls the facilitation effect due to neuronal firing.
Dynamical equations 2.4 and 2.5 are consistent with the phenomeno-

logical models of STD and STF fitted to experimental data (Tsodyks et al.,
1998; see appendix A). From equations 2.4 and 2.5, we can calculate the
steady-state values of p and f, which are

p= 1
1 + τdβ(1 + f )r

, (2.6)

f =
fmaxτ f αr

1 + τ f αr
. (2.7)

Hence, in the high-frequency limit, τ f αr � 1, we have f ≈ fmax, which
can be regarded as a constant, and p = 1/[1 + τdβ(1 + fmax)r]. In this
case, we have to consider only the effect of STD. In the low-frequency
limit, τdβ(1 + f )r 
 1, and so p ≈ 1, and we need to consider only the
effect of STF. Note, however, that the terms “high-frequency limit” and
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“low-frequency limit” are used figuratively. The actual limits should de-
pend on the other parameters mentioned above.

Our theoretical analysis of the network dynamics is based on the obser-
vations that the stationary states of the network, as well as the profile of STP
across all neurons, can be well approximated as gaussian-shaped bumps,
and the state change of the network, and hence the profile of STP, can be
well described by distortions of the gaussian bump in various forms. We
can therefore use a perturbation approach developed by Fung et al. (2010)
to solve the network dynamics analytically.

It is instructive for us to first review the network dynamics when no
STP is included. This is done by setting β = 0 in equation 2.4 and α = 0
in equation 2.5, so that p(x, t) = 1 and f (x, t) = 0 for all t. In this case, the
network can support a continuous family of stationary states when the
global inhibition is not too strong. These steady states are

ũ(x|z) = u0 exp
[
− (x − z)2

4a2

]
, (2.8)

r̃(x|z) = r0 exp
[
− (x − z)2

2a2

]
, (2.9)

where u0 = [1 + (1 − k/kc)
1/2]
(
CrJ0

)
/(4ak

√
π), r0 = [1 + (1 − k/kc)

1/2]/

(2akρ
√

2π), and kc = ρ
(
CrJ0

)2
/(8a

√
2π). These stationary states are trans-

lationally invariant among themselves and have the gaussian shape with
a free parameter z representing the peak position of the gaussian bumps.
They exist for 0 < k < kc, and kc is the critical inhibition strength above
which only silent states with u0 = 0 exist.

Because of the translational invariance of the neuronal interactions, the
dynamics of CANNs exhibits unique features. Fung et al. (2010) have shown
that the wave functions of the quantum harmonic oscillators can well de-
scribe the different distortion modes of a bump state. For instance, during
the process of tracking an external stimulus, the synaptic input u(x, t) can
be written as

u(x, t) =
∞∑

n=0

an(t)vn(x|z(t)), (2.10)

where vn(x|z(t)) are the wave functions of the quantum harmonic oscillator
(see Figure 1),

vn(x|z)= (−1)n(
√

2a)n−1/2

√
π1/2n!2n

exp
[

(x − z)2

4a2

](
d

dx

)n

exp
[
− (x − z)2

2a2

]
,

n = 0, 1, . . . (2.11)
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Figure 1: (a–d) The first distortion modes of the bump state. (e–h) Their ef-
fects of producing distortions, respectively, in the height, position, width, and
skewness of the gaussian bump. Solid and dashed lines represent distorted and
undistorted bumps, respectively.

These functions have clear physical meanings, corresponding to distortions
in the height, position, width, skewness and other higher-order features of
the gaussian bump (see Figure 1). We can use a perturbation approach to
solve the network dynamics effectively, with each distortion mode charac-
terized by an eigenvalue determining its rate of evolution in time. A key
property of CANNs is that the translational mode has a zero eigenvalue,
and all other distortion modes have negative eigenvalues for k < kc. This
implies that the gaussian bumps are able to track changes in the position
of the external stimuli by continuously shifting the position of the bumps,
with other distortion modes affecting the tracking process only in the tran-
sients. An example of the tracking process is shown in Figure 2, where we
consider an external stimulus with a gaussian profile given by

Iext(x, t) = A exp
[
− (x − z(t))2

4a2

]
. (2.12)

The stimulus is initially centered at z = 0, pinning the center of a gaussian
neuronal response at the same position. At time t = 0, the stimulus shifts
its center from z0 = 0 to z0 = 3a abruptly. The bump moves toward the new
stimulus position and catches up with the shift of the stimulus after a certain
time, referred to as the reaction time.

We can generalize the perturbation approach developed by Fung et al.
(2010) to study the dynamics of CANNs with dynamical synapses. We will
present the detailed analysis only for the case of STD. Extension to the case
of STF is straightforward.
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Figure 2: (a) The neural response profile tracks the change in position of the
external stimulus from z0/a = 0 to 3 at t = 0. Parameters: a = 0.5, k = 0.95, β =
0.0085, ρCrJ0A = 7.979. (b) The profile of u(x, t) at t/τ = 0, 1, 2, . . . , 10 during
the tracking process in panel a.

Similar to the synaptic input u(x, t), the profile of STD can be expanded
in terms of the distortion modes,

p(x, t) = 1 −
∞∑

n=0

bn(t)wn(x|z(t)), (2.13)

where wn(x|z) is given by

wn(x|z) = (−1)nan−1/2

√
π1/2n!2n

exp
[

(x − z)2

2a2

](
d

dx

)n

exp
[
− (x − z)2

a2

]
. (2.14)

Note that the width of wn(x|z) is 1/
√

2 times that of vn(x|z) due to the
appearance of r(x, t) ∝ u(x, t)2 in equation 2.4.

Substituting equations 2.10 and 2.13 into equations 2.1 and 2.4, and using
the orthonormality and completeness of the distortion modes, we get the
dynamical equations for the coefficients an(t) and bn(t). The details are
presented in appendix B.

The peak position z(t) of the bump is determined from the self-consistent
condition,

z(t) =
∫∞
−∞ dxu(x, t)x∫∞
−∞ dxu(x, t)

. (2.15)

Truncating the perturbation expansion at increasingly high orders cor-
responds to the inclusion of increasingly complex distortions, and hence
provides increasingly accurate descriptions of the network dynamics. As
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confirmed in the subsequent sections, the perturbative approach is in ex-
cellent agreement with simulation results. The agreement is especially re-
markable when the STD strength is weak and the lowest few orders are
already sufficient to explain the dynamical features. The agreement is less
satisfactory when STD is strong, and the perturbative approach typically
overestimates the stability of the moving bump. This is probably due to the
considerable distortion of the gaussian profile of the synaptic depression
when STD is strong.

3 Phase Diagrams of CANNs with STP

We first study the impact of STP on the stationary states of CANNs when
no external input is applied. For convenience of analysis, we explore the
effects of STD and STF separately. This corresponds to the limits of high
or low neuronal firing frequencies or the cases where only one type of STP
dynamics is significant.

3.1 The Phase Diagram of CANNs with STD. We set α = 0 in equa-
tion 2.5 to turn off STF. In the presence of STD, CANNs exhibit new and
interesting dynamical behaviors. Apart from the static bump state, the net-
work also supports spontaneously moving bump states. Examining the
steady-state solutions of equations 2.1 and 2.4, we find that u0 has the same
dimension as ρCrJ0u2

0, and 1 − p(x, t) scales as τdβu2
0. Hence we introduce

the dimensionless parameters k ≡ k/kc and β ≡ τdβ/(ρ2(CrJ0)
2). The phase

diagram obtained by numerical solutions to the network dynamics is shown
in Figure 3.

We first note that the synaptic depression and global inhibition play the
same role in reducing the amplitude of the bump states. This can be seen
from the steady-state solution of u(x, t):

u(x) =
∫

dx′ ρJ(x − x′)u(x′)2

1 + kρ
∫

dx′′u(x′′)2 + τdβu(x′)2
. (3.1)

The third term in the denominator of the integrand arises from STD and
plays the role of a local inhibition that is strongest where the neurons are
most active. Hence we see that the silent state with u(x, t) = 0 is the only
stable state when either k or β is large.

When STD is weak, the network behaves similarly to CANNs without
STD, that is, the static bump state is present up to k near 1. However, when
β increases, a state with the bump spontaneously moving at a constant
velocity comes into existence. Such moving states have been predicted in
CANNs (York & van Rossum, 2009; Kilpatrick & Bressloff, 2010), and may
be associated with the traveling wave behaviors widely observed in the
neocortex (Wu, Huang, & Zhang, 2008). At an intermediate range of β, the
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Figure 3: Phase diagram of the network states with STD. Symbols: numerical
solutions. Dashed line: equation 3.6. Dotted line: equation 3.9. Solid line: gaus-
sian approximation using the 11th-order perturbation of the STD coefficient.
Point P: the working point for Figurs 6 and 7. Parameters: τd/τs = 50, a = 0.5/6,
range of the network x ∈ [−π, π ).

static and moving states coexist, and the final state of the network depends
on the initial condition. As β increases further, static bumps disappear. In
the limit of high β, only the silent state is present. Below, we will use the
perturbation approach to analyze the network dynamical behaviors.

3.1.1 Zeroth Order: The Static Bump. The zeroth-order perturbation is ap-
plicable to the solution of the static bump, since the profile of the bump
remains effectively gaussian in the presence of synaptic depression. Hence,
when STD is weak and for a 
 L, we propose the following gaussian ap-
proximations:

u(x, t)= u0(t) exp
[
− (x − z)2

4a2

]
, (3.2)

p(x, t)= 1 − p0(t) exp
[
− (x − z)2

2a2

]
. (3.3)

As derived in appendix C, the dynamical equations for u0 and p0 are given
by

τs
du(t)

dt
= u(t)2

√
2(1 + ku(t)2/8)

[
1 −

√
4
7

p0(t)

]
− u(t) + A, (3.4)

τd
dp0(t)

dt
= βu(t)2

1 + ku(t)2/8

[
1 −

√
2
3

p0(t)

]
− p0(t), (3.5)
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Figure 4: Neuronal input u(x, t) and the STD coefficient p(x, t) in (a) the static
state at (k, β) = (0.9, 0.005) and (b) the moving state at (k, β) = (0.5, 0.015).
Parameter: τd/τs = 50.

where u ≡ ρCrJ0u0 is the dimensionless bump height and A ≡ ρCrJ0A is the
dimensionless stimulus strength. For A = 0, the steady-state solution of u
and p0 and its stability against fluctuations of u and p0 are described in
appendix C. We find that stable solutions exist when

β ≤ p0(1 −√4/7p0)
2

4(1 −√2/3p0)

[
1 + τs

τd(1 −√2/3p0)

]
, (3.6)

when p0 is the steady-state solution of equations 3.4 and 3.5. The boundary
of this region is shown as a dashed line in Figure 3. Unfortunately, this line is
not easily observed in numerical solutions since the static bump is unstable
against fluctuations that are asymmetric with respect to its central position.
Although the bump is stable against symmetric fluctuations, asymmetric
fluctuations can displace its position and eventually convert it to a moving
bump. This will be considered in the first-order perturbation in the section
3.1.2.

3.1.2 First Order: The Moving Bump. When the network bump is moving,
the profile of STD lags behind due to its slow dynamics, and this induces an
asymmetric distortion in the profile of STD. Figure 4 illustrates this behavior.
Comparing the static and moving bumps shown in Figures 4a and 4b, one
can see that the profile of a moving bump is characterized by the synaptic
depression lagging behind the moving bump. This is because neurons tend
to be less active in the locations of low values of p(x, t), causing the bump
to move away from the locations of strong synaptic depression. In turn,
the region of synaptic depression tends to follow the bump. However, if
the timescale of synaptic depression is large, the recovery of the synaptic
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depressed region will be slowed down, and the region will be unable to catch
up with the bump motion. Thus, the bump will start moving spontaneously.
This is the same cause attributed to anticipative nonlocal events modeled
in neural systems (Blair, & Sharp, 1995; O’Keefe & Recce, 1993; Romani &
Tsodyks, in press).

To incorporate this asymmetry into the network dynamics, we consider
the first-order perturbation. However, to facilitate our analysis, we make a
further simplification as follows:

u(x, t)= u0(t) exp
[
− (x − vt)2

4a2

]
, (3.7)

p(x, t)= 1 − p0(t) exp
[
− (x − vt)2

2a2

]

+ p1(t) exp
[
− (x − vt)2

2a2

](
x − vt

a

)
. (3.8)

This means that we have restricted the bump profile to the zeroth order.
Comparison with the full first-order perturbation shows that the discrep-
ancy is not significant. This is because the synaptic interactions among the
neurons effectively maintain the bump profile in a gaussian shape, whereas
the STD profile is much more susceptible to asymmetric perturbations.

As described in appendix D, we obtain four steady-state equations for
u/B, p0, p1, and vτs/a in terms of the parameters βu2

/B and τs/τd, where
B ≡ 1 + ku2

/8 is the global inhibition factor. It is easy to first check if the
static bump obtained in appendix D is also a valid solution by setting v and
p1 to 0. We can then study the stability of the static bump against asymmetric
fluctuations. This is done by introducing small values of p1 and vτs/a into
the static bump solution and considering how they evolve. As shown in
appendix D, the static bump becomes unstable when

βu2

1 + ku2
/8

≤ Q

⎡
⎣τd

τs
− R +

√(
τd

τs
− R

)2

− S

⎤
⎦

−1

, (3.9)

where Q = 7
√

7/4, R = (7/4)[(5/2)
√

7/6 − 1], and S = (343/36)(1 −√6/7).
This means that in the region bounded by equations 3.6 and 3.9, the static
bump is unstable to asymmetric fluctuations. It is stable (or more precisely,
metastable) when it is static, but once it is pushed to one side, it will continue
to move along that direction. We call this behavior metastatic. As we shall see,
this metastatic behavior is the cause of the enhanced tracking performance.

Next, we consider solutions with nonvanishing p1 and v. We find that
real solutions exist only if condition 3.9 is satisfied. This means that as
soon as the static bump becomes unstable, the moving bump comes into
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Figure 5: Phase diagram of CANNs in the presence of STF. As the synap-
tic facilitation is present, the range allowed to support a stationary bump is
broadened. Dashed line: Prediction by zeroth-order approximation. Solid line:
Prediction by second-order approximation. Symbols: Simulations. Parameters:
N/L = 80/(2π), a/L = 0.5/(2π), τ f /τs = 50 and fmax = 1.

existence. As shown in Figure 3, the boundary of this region effectively
coincides with the numerical solution of the line separating the static and
moving phases. In the entire region bounded by equations 3.6 and 3.9, the
moving and (meta)static bumps coexist.

We also find that when τd/τs increases, the moving phase expands at
the expense of the (pure) static phase. This is because the recovery of the
synaptic depressed region becomes increasingly slow, making it harder
for the region to catch up with the changes in the bump motion, hence
sustaining the bump motion.

3.2 The Phase Diagram of CANNs with STF. We set β = 0 in equation
2.4 to turn off STD. Compared with STD, STF has qualitatively the opposite
effect on the network dynamics. When an external perturbation is applied,
the dynamical synapses will not push the neural bump away. Instead they
will try to pull the bump back to its original position. The phase diagram in
the space of k and the rescaled STF parameter α ≡ τ f α/(ρ2(CrJ0)

2) is shown
in Figure 5. When α increases, the range of inhibitory strength k allowing
for a bump state is enlarged. Note that since STF tends to stabilize the
bump states against asymmetric fluctuations, no moving bumps exist. The
phase boundary of the static bump is well predicted by the second-order
perturbation.

Concerning the timescale of neural information processing, it should be
noted that it takes time of the order of τ f for neuronal interactions to be fully
facilitated. In the parameter range of k > 1, where the facilitated neuronal
interaction is necessary for holding a bump state, we need to present an
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Figure 6: The height of the bump decays over time for two initial conditions of
types A and B in Figure 7 at (k, β) = (0.95, 0.0085) (point P in Figure 3). Symbols:
numerical solutions. Dashed lines: First-order perturbation using equations 3.4
and 3.5. Solid lines: second-order perturbation. Other parameters: τd/τs = 50,
a = 0.5, and x ∈ [−π, π ).

external input for a time up to the order of τ f before a bump state can be
sustained.

4 Memories with Graceful Degradation in CANNs with STD

We consider the response of the network to a transient stimulus given by

Iext (x, t) = A (t) exp

[
−
(
x − z0

)2
4a2

]
. (4.1)

Here A (t) is nonzero for some duration before t = 0, so that a bump is
rapidly formed, but A (t) vanishes after t = 0.

The network dynamics displays a very interesting behavior in the
marginally unstable region of the static bump. In this regime, the static
bump solution barely loses its stability. The bump is stable if the level
of synaptic depression is low but unstable at high levels. Since the STD
timescale is much longer than the synaptic timescale, a bump can exist be-
fore the synaptic depression becomes effective. This maintains the bump in
the plateau state with a slowly decaying amplitude, as shown in Figure 6a.
After a time duration of the order of τd, the STD strength becomes suffi-
ciently significant, as shown in Figure 6b, and the bump state eventually
decays to the silent state.

4.1 First Order: Trajectory Analysis. It is instructive to analyze the
plateau behavior first by using the first-order perturbation. We select a
point in the marginally unstable regime of the silent phase, that is, in the
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Figure 7: Trajectories of network dynamics starting from various initial con-
ditions at (k, β) = (0.95, 0.0085) (point P in Figure 3). Solid line: u-nullcline.
Dashed line: p0-nullcline. Symbols are data points spaced at time intervals of
2τs. Parameter: τd/τs = 50.

vicinity of the static phase. As shown in Figure 7, the nullclines of u and
p0 (du/dt = 0 and dp0/dt = 0, respectively) do not have any intersections
as they do in the static phase where the bump state exists. Yet they are still
close enough to create a region with very slow dynamics near the apex of the
u-nullcline at (u, p0) = [(8/k)1/2,

√
7/4(1 −

√
k)]. Then, in Figure 7, we plot

the trajectories of the dynamics starting from different initial conditions.
The most interesting family of trajectories is represented by B and C in

Figure 7. Due to the much faster dynamics of u, trajectories starting from
a wide range of initial conditions converge rapidly, in a time of the order
of τs, to a common trajectory in the vicinity of the u-nullcline. Along this
common trajectory, u is effectively the steady-state solution of equation 3.4
at the instantaneous value of p0(t), which evolves with the much longer
timescale of τd. This gives rise to the plateau region of u, which can survive
for a duration of the order of τd. The plateau ends after the trajectory has
passed the slow region near the apex of the u-nullcline. This dynamics is in
clear contrast with trajectory D, in which the bump height decays to zero
in a time of the order of τs.

Trajectory A represents another family of trajectories having rather simi-
lar behaviors, although the lifetimes of their plateaus are not so long. These
trajectories start from more depleted initial conditions, and hence do not
have a chance to get close to the u-nullcline. Nevertheless, they converge
rapidly, in a time of the order of τs, to the band u ≈ (8/k)1/2, where the
dynamics of u is slow. The trajectories then rely mainly on the dynamics of
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Figure 8: Contours of plateau lifetimes in the space of k and β. The lines are the
two top-most phase boundaries in Figure 3. In the initial condition, A = 7.9788.

p0 to carry them out of this slow region, and hence plateaus with lifetimes
of the order of τd are created.

Following similar arguments, the plateau behavior also exists in the
stable region of the static states. This happens when the initial condition of
the network lies outside the basin of attraction of the static states but still
in the vicinity of the basin boundary.

When one goes deeper into the silent phase, the region of slow dynam-
ics between the u- and p0-nullclines broadens. Hence, plateau lifetimes are
longest near the phase boundary between the bump and silent state, and be-
come shorter when one goes deeper into the silent phase. This is confirmed
by the contours of plateau lifetimes in the phase diagram shown in Figure 8
obtained numerically. The initial condition is uniformly set by introducing
an external stimulus Iext (x|z0) = A exp[−x2/(4a2)] to the right-hand side
of equation 2.1, where A is the stimulus strength. After the network has
reached a steady state, the stimulus is removed at t = 0, leaving the net-
work to relax. It is observed in Figure 8 that the plateau behavior can be
found in an extensive region of the parameter space.

4.2 Second Order: Lifetime Analysis. As shown in Figure 6, the first-
order perturbation overestimates the stability of the plateau state, yielding
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lifetimes longer than the simulation results. The main reason is that the
width of the synaptic depression profile is constrained to be a constant
in the first-order perturbation. However, the synaptic depression profile is
broader than the bump. This can be seen from equation 2.4, rewritten as

τd
∂ p(x, t)

∂t
= [1 + τdβr (x, t)

] [
1 − p(x, t) − τdβr(x, t)

1 + τdβr(x, t)

]
. (4.2)

This shows that the neurotransmitter loss, 1 − p(x, t), relaxes toward an
expression consisting of the gaussian r(x, t), normalized by the factor 1 +
τdβr(x, t). This normalization factor is smaller where the firing rate is low,
so that the profile of 1 − p(x, t) is broader than the firing rate profile r(x, t).

To incorporate the effects of a broadened STD profile, we introduce the
second-order perturbation. Dynamical equations are obtained by truncat-
ing the equations beyond the second order. As shown in Figure 6, the
second-order perturbation yields a much more satisfactory agreement with
simulation results than do lower-order perturbations.

5 Decoding with Enhanced Accuracy in CANNs with STF

CANNs have been interpreted as an efficient framework for neural systems
implementing population decoding (Deneve et al., 1999; Wu et al., 2002).
Consider the reading out of an external feature z0 from noisy inputs by
CANNs. For example, z0 may represent the moving direction of an object.
In the decoding paradigm, a CANN responds to an external input Iext(x)

with a bump state r(x|ẑ), where the peak position of the bump hatz is
interpreted as the decoding result of the network.

In the presence of STF, neuronal connections are facilitated around the
area where neurons are most active. With this additional feature, the net-
work decoding will be determined not only by the instantaneous input but
also by the recent history of external inputs. Consequently, temporal fluc-
tuations in external inputs are largely averaged out, leading to improved
decoding accuracies.

We consider an external input given by

Iext(x, t) = A exp

[
−
(
x − z0 − η(t)

)
4a2

2]
, (5.1)

where z0 represents the true stimulus value, and η(t) white noise of zero
mean, and satisfies 〈η(t)η(t′)〉 = 2Ta2τsδ(t − t′), with T denoting the noise
strength.

In the presence of weak noise, the position of the bump state is found to
be centered at z0 + s(t), where s(t) is the deviation of the center of mass of
the bump from the position of stimulus z0, as derived in appendix E. Hence,
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the decoding error of the network is measured by the variance of the bump
position over time, namely, 〈s(t)2〉. Figure 9 shows the typical decoding
performance of the network with and without STF. We see that with STF,
the fluctuation of the bump position is reduced significantly. Figure 10
compares the theoretical and measured decoding errors in different noise
strengths (see appendix E).



1166 C. Fung, K. Wong, H. Wang, and S. Wu

0 10 20
t/τ

s

0

1

2

3

4

z(
t)

/a
^

k = 0.5, β = 0
k = 0.5, β = 0.05
k = 0.5, β = 0.2

Figure 11: The response of CANNs with STD to a stimulus that changed
abruptly from z0/a = 0 to z0/a = 3.0 at t = 0. Symbols: numerical solutions.
Lines: gaussian approximation using 11th-order perturbation of the STD coef-
ficient. Parameters: τd/τs = 50, A = 7.9788, N = 80, a = 0.5, and x ∈ [−π, π ).

6 Tracking with Enhanced Mobility in CANNs with STD

A key property of CANNs is their capacity to track time-varying stimuli,
which lays the foundation for CANNs to implement spatial navigation and
population decoding and to update head-direction memory. To investigate
the tracking performance of CANNs, we consider

Iext = A exp
[
− (x − z0(t))

2

4a2

]
, (6.1)

where the stimulus position z0 (t) is time dependent.
We first investigate the impact of STD and consider a tracking task in

which the z0 (t) abruptly changes from 0 at t = 0 to a new value at t = 0.
Figure 11 shows the network responses during the tracking process. Com-
pared with the case without STD, we find that the bump shifts to the new
position faster. When β is too strong, the bump may overshoot the target
before eventually approaching it. This is due to the metastatic behavior of
the bumps, which enhances their readiness to move from the static state
when a small push is exerted.

We also study the tracking of an external stimulus moving with a constant
velocity v, that is, z0 (t) changes from 0 to vt at t = 0. As shown in Figure 12a,
when STD is weak, the initial speed of the bump is almost zero. Then, when
the stimulus is moving away, the bump accelerates in an attempt to catch
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Figure 12: Tracking of a neuronal bump with a continuously moving stimu-
lus. Symbols: the peak of the bump from simulation. Dashed line: 11th-order
perturbation prediction. Solid line: a continuously moving stimulus with speed
τsv/a = 0.06. Parameters: A = 1.5958, k = 0.5. (a) β = 0.01. (b) β = 0.05. Other
parameters are the same as those in Figure 11.

up with the stimulus. After some time, the separation between the bump
and the stimulus converges to a constant. This tracking behavior is similar
to the case without STD. The tracking behavior in the case of strong STD
is more interesting. As shown in Figure 12b, the bump position eventually
overtakes the stimulus, displaying an anticipative behavior. This can be
attributed to the metastatic property of STD.

We further explore how STF affects the tracking performance of CANNs.
In general, there is a trade-off between the stability of network states and
the capacity of the network to track time-varying stimuli. Since STD and
STF have opposite effects on the mobility of the network states, we expect
that they will also have opposite impacts on the tracking performance of
CANNs. Indeed, STF degrades the tracking performance of CANNs (see
Figure 13). The larger the STF strength, the slower the tracking speed of
the network.

7 Discussion and Conclusion

In this study, we have investigated the impact of STD and STF on the dynam-
ics of CANNs and their potential roles in neural information processing.
We have analyzed the dynamics using successive orders of perturbation.
The perturbation analysis works well when STD is not too strong, although
it overestimates the stability of the bumps when STD is strong. The zeroth-
order analysis accounts for the gaussian shape of the bump, and hence can
predict the boundary of the static phase satisfactory. The first-order analysis
includes the displacement mode and asymmetry with respect to the bump
peak, and hence can describe the onset of the moving phase. Furthermore,
it provides insights into the metastatic nature of the bumps and its relation
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Figure 13: The response of CANNs with STD to a stimulus that changed
abruptly from z0/a = 0 to z0/a = 3.0 at t = 0. Parameters: A = 7.9788, τd/τs =
50, and τ f /τs = 50.

with the enhanced tracking performance. The second-order analysis fur-
ther includes the width distortions, and hence improves the prediction of
the boundary of the moving phase, as well as the lifetimes of the plateau
states. Higher-order perturbations are required to yield more accurate de-
scriptions of results such as the overshooting in the tracking process. We
anticipate that the perturbation analysis will also be useful in many other
population decoding problems, such as in quantifying the deformation of
tuning curves due to neural adaptation (Cortes et al., in press).

More important, our work reveals a number of interesting behaviors that
may have far-reaching implications in neural computation.

First, STD endows CANNs with slow-decaying behaviors. When a net-
work is initially stimulated to an active state by an external input, it will
decay to the silent state very slowly after the input is removed. The duration
of the plateau is of the timescale of STD rather than of neural signaling. This
provides a way for the network to hold the stimulus information for up to
hundreds of millisecond if the network operates in the parameter regime
where the bumps are marginally unstable. This property is, on the other
hand, extremely difficult to implement in attractor networks without STD.
In a CANN without STD, an active state of the network will either decay to
the silent state exponentially fast or be retained forever, depending on the
initial activity level of the network. Indeed, how to shut off the activity of a
CANN gracefully has been a challenging issue that has received wide atten-
tion in theoretical neuroscience, with researchers suggesting that a strong
external input in the form of either inhibition or excitation must be applied
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(see Gutkin et al., 2001). Here, we have shown that in certain circumstances,
STD can provide a mechanism for closing down network activities natu-
rally and after a desirable duration. Taking into account the timescale of
STD (in the order of 100 ms) and the passive nature of its dynamics, the
STD-based memory is most likely associated with the sensory memory of
the brain, for example, the iconic and the echoic memories (Baddeley, 1999).

Second, with STD, CANNs can support both static and moving bumps.
Static bumps exist only when the synaptic depression is sufficiently weak.
A consequence of synaptic depression is that static bumps are placed in
the metastatic state, so that its response to changing stimuli is speeded
up, enhancing its tracking performance. The states of moving bumps may
be associated with the traveling wave behaviors widely observed in the
neurocortex. We have also observed that for strong STD, the network state
can even overtake the moving stimulus, reminiscent of the anticipative
responses of head direction and place cells (Blair & Sharp, 1995; O’Keefe &
Recce, 1993). It is interesting to note that this occurs in the parameter range
where the network holds spontaneous moving bump solutions, suggesting
that traveling wave phenomena may be closely related to the predicting
capacity of neural systems.

Third, STF improves the decoding accuracy of CANNs. When an exter-
nal stimulus is presented, STF strengthens the interactions among neurons
that are tuned to the stimulus. This stimulus-specific facilitation provides
a mechanism for the network to hold a memory trace of external inputs
up to the timescale of STF, and this information can be used by the neural
system for executing various memory-based operations, such as operating
the working memory. We have tested this idea in a population decod-
ing task and found that the error is indeed decreased. This is due to the
determination of the network response by both the instantaneous value
and the history of external inputs, which effectively averages out temporal
fluctuations.

These computational advantages of dynamical synapses lead to the fol-
lowing implications for the modeling of neural systems. First, it sheds some
light on the long-standing debate in the field about the instability of CANNs
in the presence of noise. Two aspects of instability have been identified (Wu
& Amari, 2005; Seung, Lee, Reis, & Tank, 2000). One is the structural in-
stability, which refers to the argument that network components in reality,
such as the neuronal synapses, are unlikely to be as perfect as mathemat-
ically required in CANNs. A small amount of discrepancy in the network
structure can destroy the state space considerably, destabilizing the bump
state after the stimulus is removed. The other instability refers to the com-
putational sensitivity of the network to input noises. Because of neutral
stability, the bump position is very susceptible to fluctuations in external
inputs, rendering the network decoding unreliable. We have shown that STF
can largely improve the computational robustness of CANNs by averaging
out the temporal fluctuations in inputs. Similarly, STF can overcome the
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structural susceptibility of CANNs. With STF, the neuronal connections
around the bump area are strengthened temporally, which effectively stabi-
lizes the bump on the timescale of STF (M. Tsodyks & D. Hansel, personal
communication, 2011). Another mechanism in a similar spirit is the re-
duction of the inhibition strength around the bump area (Carter & Wang,
2007).

Second, STD and STF should be dominant in different areas of the brain.
We have investigated the impact of STD and STF on the tracking perfor-
mance of CANNs. There is, in general, a trade-off between the stability of
bump states and the tracking performance of the network. STD increases
the mobility of bump states and, hence, the tracking speed of the network,
whereas STF has the opposite effect. These differences predict that in cor-
tical areas where time-varying stimuli, such as the head direction and the
moving direction of objects, are encoded, STD should have a stronger effect
than STF. On the other hand, in cortical areas where the robustness of bump
states (i.e., the decoding accuracy of stimuli) is preferred, STF should have
a stronger effect.

Third, STD and STF consume different levels of energy and operate on
different timescales. We have shown that both STD and STF can generate
temporal memories, but their ways of achieving it are quite different. In
STD, the memory is held in the prolonged neural activities, whereas in STF,
it is in the facilitated neuronal connections. Mongillo et al. (2008) proposed
that with STF, neurons may not even have to be active after the stimulus
is removed. The facilitated neuronal connections, mediated by the elevated
calcium residue, are sufficient to carry out the memory retrieval. In our
model, this is equivalent to setting the network in the parameter regime
without static bump solutions or in the regime with static bump solutions
but with the external stimulus presented for such a short time that neu-
ronal interactions cannot be fully facilitated. Thus, taking into account the
energy consumption associated with neural firing, the STF-based mech-
anism for short-term memory has the advantage of being economically
efficient. However, the STD-based one also has the desirable property of
enabling the stimulus information to be propagated to other cortical areas,
since neural firing is necessary for signal transmission, and this is critical in
the early information pathways. Furthermore, the time durations required
for eliciting STF- and STD-based memory are significantly different. The
former needs a stimulus to be presented for an amount of time up to τ f
to facilitate neuronal interactions sufficiently, whereas the latter simply re-
quires a transient appearance of a stimulus. This difference implies that the
two memory mechanisms may have potentially different applications in
neural systems.

In summary, we have revealed that STP can play very valuable roles
in neural information processing, including achieving temporal memory,
improving decoding accuracy, enhancing tracking performance, and stabi-
lizing CANNs. We have also shown that STD and STF tend to have different
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impacts on the network dynamics. These results, together with the fact that
STP displays large diversity in the neural cortex, suggest that the brain may
employ a strategy of weighting STD and STF differentially depending on
the computational task. In this study, for simplicity of analysis, we have
explored the effects of STD and STP separately. In practice, a proper combi-
nation of STD and STP can make the network exhibit new and interesting
behaviors and implement new and computationally desirable properties.
For instance, a CANN with both STD and STF, and with the timescale of
the former shorter than that of the latter, can hold bump states for a pe-
riod of time before shifting the memory to facilitated neural connections.
This enables the network to achieve both goals of conveying the stimulus
information to other cortical areas and holding the memory cheaply. Al-
ternatively, the network may have the timescale of STD longer than that
of STF, so that the network can produce improved encoding results for ex-
ternal stimuli and also close down bump activities easily. We will explore
these interesting issues in the future.

Appendix A: Consistency with the Model of Tsodyks,
Pawelzik, and Markram

Our modeling of the dynamics of STP is consistent with the phenomeno-
logical model proposed by Tsodyks et al. (1998). They modeled STD by
considering p as the fraction of usable neurotransmitters, and STF by intro-
ducing U0 as the release probability of the neurotransmitters. The release
probability U0 relaxes to a nonzero constant, urest, but is enhanced at the
arrival of a spike by an amount equal to u0(1 − U0). Hence, the dynamics
of p and U0 are given by

τs
∂u
∂t

= Iext − u + ρ

∫
dx′J(x − x′)p(x′)U1(x

′)r(x′), (A.1)

τd
∂ p
∂t

= 1 − p − U1τd pr, (A.2)

τ f
∂U0

∂t
= urest − U0 + u0(1 − U0)τ f r, (A.3)

where U1 ≡ u0 + U0(1 − u0) is the release probability of the neurotransmit-
ters after the arrival of a spike. The x and t dependence of u, p, r, and U0 are
omitted in the above equations for convenience. Eliminating U0, we obtain
from equation A.3

∂U1

∂t
= u0 + (1 − u0

)
urest − U1

τ f
+ u0

(
1 − U1

)
r. (A.4)
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Substituting α, β and f via α = u0, β = u0 + (1 − u0)urest, U1 = [u0 + (1 −
u0)urest](1 + f ), fmax = (1 − β)/β, we obtain equations 2.4 and 2.5. Rescal-
ing βJ to J, we obtain equation 2.1. α and β are the STF and STD parameters,
respectively, subject to β ≥ α.

Appendix B: The Perturbation Approach for Solving
the Dynamics of CANNs with STD

We use the perturbation approach to solve the network dynamics. Sub-
stituting equations 2.10 and 2.13 into equation 2.1, the right-hand side of
equation 2.1 becomes

ρ

B

[∑
nm

anam

∫
dx′J(x, x′)vn(x′, t)vm(x′, t)

−
∑
nml

anambl

∫
dx′J(x, x′)vn(x′, t)vm(x′, t)wl (x

′, t)

]

−
∑

n

an(t)vn(x, t) + Iext(x, t). (B.1)

This expression can be resolved into a linear combination of the distortion
modes vk(x, t). The coefficients of these modes are obtained by multiply-
ing the expression with vk(x, t) and integrating x. Using the orthonormal
property of the distortion modes, we have

∑
k

vk(x, t)

[
ρCrJ0

B

(∑
nm

Ck
nmanam −

∑
nml

Dk
nmlanambl

)
− ak + Ik

]
, (B.2)

where

Ck
nm ≡

∫
dx′′

∫
dx′J(x′′, x′)vk(x

′′, t)vn(x′, t)vm(x′, t), (B.3)

Dk
nml ≡

∫
dx′′

∫
dx′J(x′′, x′)vk(x

′′, t)vn(x′, t)vm(x′, t)wl (x
′, t), (B.4)

and Ik(t) is the kth component of Iext(x, t).
Similarly, the right-hand side of equation 2.4 becomes

−
∑

k

wk(x, t)

[
−bk + τdβ

B

(∑
nm

Ek
nmanam −

∑
nml

Fk
nmlanambl

)]
, (B.5)
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where

Ek
nm ≡

∫
dx′wk(x

′, t)vn(x′, t)vm(x′, t), (B.6)

Fk
nml ≡

∫
dx′wk(x

′, t)vn(x′, t)vm(x′, t)wl (x
′, t). (B.7)

We choose vn(x, t) = vn(x − z(t)) and wn(x, t) = wn(x − z(t)). Using the fol-
lowing relationship of Hermite polynomials,

Hn+1(x)= 2xHn(x) − 2nHn−1(x), (B.8)

H′
n(x)= 2nHn−1(x), (B.9)

we have v̇n = (ż/(2a))(
√

nvn−1 − √
n + 1vn+1) and ẇn = (ż/(

√
2a))

(
√

nwn−1 − √
n + 1wn+1). Making use of the orthonormality of vn’s

and wn’s, we have

τs

[
ȧk − ż

2a

(√
k + 1ak+1 −

√
kak−1

)]

= −ak + ρCrJ0

B

(∑
nm

Ck
nmanam −

∑
nml

Dk
nmlanambl

)
, (B.10)

τd

[
ḃk − ż√

2a

(√
k + 1bk+1 −

√
kbk−1

)]

= −bk + τdβ

B

(∑
nm

Ek
nmanam −

∑
nml

Fk
nmlanambl

)
. (B.11)

The values of Ck
nm, Dk

nml , Ek
nm, and Fk

nml can be obtained from recurrence
relations derived using integration by parts and the relationships B.8 and
B.9, which are given by

Ck
nm = 1

2

(√
n
k
C

k1
n1m +

√
m
k

C
k1
nm1

)
, (B.12)

Ck
nm =−1

4

√
n1

n
Ck

n2m + 3
4

√
m
n

Ck
n1m1

+ 1
2

√
k
n

C
k1
n1m, (B.13)

Ck
nm =−1

4

√
m1

m
Ck

nm2
+ 3

4

√
n
m

Ck
n1m1

+ 1
2

√
k
m

C
k1
nm1

, (B.14)
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where n1 ≡ n − 1 and m2 ≡ m − 2, and so on, in the indices. Similarly,

Dk
nml =

2
7

(√
n
k
D

k1
n1ml +

√
m
k

D
k1
nm1l +

√
2

√
l
k
D

k1
nml1

)
− 1

7

√
k1

k
D

k2
nml, (B.15)

Dk
nml =

6
7

(√
1
2

√
n
l
Dk

n1ml1
+ 1

2

√
m
l

Dk
nm1l1

+
√

2
3

√
k
l
D

k1
nml1

)
− 1

7

√
l1
l
Dk

nml2
,

(B.16)

Dk
nml =−4

7

√
n1

n
Dk

n2ml + 3
7

√
m
n

Dk
n1m1l + 3

√
2

7

√
l
n

Dk
n1ml1

+ 2
7

√
k
n

D
k1
n1ml,

(B.17)

Dk
nml =−4

7

√
m1

m
Dk

nm2l + 3
7

√
n
m

Dk
n1m1l + 3

√
2

7

√
l
m

Dk
nm1l1

+ 2
7

√
k
m

D
k1
nm1l,

(B.18)

Ek
nm = 1√

2

(√
n
k
E

k1
n1m +

√
m
k

E
k1
nm1

)
, (B.19)

Ek
nm = −1

2

√
n1

n
Ek

n2m + 1
2

√
m
n

Ek
n1m1

+ 1√
2

√
k
n

E
k1
n1m, (B.20)

Ek
nm = −1

2

√
m1

m
Ek

nm2
+ 1

2

√
n
m

Ek
n1m1

+ 1√
2

√
k
m

E
k1
nm1

, (B.21)

Fk
nml =

√
2

3

(√
n
k
F

k1
n1ml +

√
m
k

F
k1
nm1l +

√
2

√
l
k
F

k1
nml1

)
− 1

3

√
k1

k
F

k2
nml, (B.22)

Fk
nml=

√
2

3

(√
n
l
Fk

n1ml1
+
√

m
l

Fk
nm1l1

+
√

2

√
k
l
F

k1
nml1

)
− 1

3

√
l1
l
Fk

nml2
, (B.23)

Fk
nml = −2

3

√
n1

n
Fk

n2ml + 1
3

√
m
n

Fk
n1m1l +

√
2

3

(√
l
n

Fk
n1ml1

+
√

k
n

F
k1
n1ml

)
,

(B.24)

Fk
nml = −2

3

√
m1

m
Fk

nm2l + 1
3

√
n
m

Fk
n1m1l +

√
2

3

(√
l
m

Fk
nm1l1

+
√

k
m

F
k1
nm1l

)
.

(B.25)
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Since C0
00, D0

000, E0
00, and F0

000 can be calculated explicitly, all other Ck
nm, Dk

nml ,
Ek

nm, and Fk
nml can be deduced.

Below, we analyze the dynamics of the bump in successive orders of per-
turbation, where the perturbation order is defined by the highest integer
value of index k involved in the approximation. We start with the zeroth-
order perturbation to describe the behavior of the static bumps, since their
profile is effectively gaussian. We then move on to the first-order perturba-
tion, which includes asymmetric distortions. Since spontaneous movements
of the bumps are induced by asymmetric profiles of the synaptic depres-
sion, we demonstrate that the first-order perturbation is able to provide the
solution of the moving bump. Proceeding to the second-order perturbation,
we allow for the flexibility of varying the width of the bump and demon-
strate that this is important in explaining the lifetime of the plateau state.
Tracking behaviors are predicted by the 11th-order perturbation.

Appendix C: Static Bump: Lowest-Order Perturbation

Without loss of generality, we let z = 0. Substituting equations 3.2 and 3.3
into equation 2.1, we get

τse
− x2

4a2
du0

dt
= ρCrJ0u2

0√
2
(

1 + √
2πakρu2

0

)
[

e− x2

4a2 − p0

√
2
3

e− x2

3a2

]

−u0e− x2

4a2 + Ae− x2

4a2 . (C.1)

Using the projection onto v0, we find that exp
(−x2/3a2

) ≈ √6/7
exp

(−x2/4a2
)
. This reduces the equation to

τs
du0

dt
= −u0 + ρCrJ0u2

0√
2
(
1 + √

2πakρu2
0

)
[

1 −
√

4
7

p0

]
+ A. (C.2)

Introducing the rescaled variables u and k, we get equation 3.4.
Similarly, substituting equations 3.3 and 3.4 into equation 2.4 gives

τde− x2

2a2
dp0

dt
= −p0e− x2

2a2 + τdβu2
0

1 + √
2πakρu2

0

(
e− x2

2a2 − p0e− x2

a2
)
. (C.3)

Making use of the projection exp
(−x2/a2

) ≈ √2/3 exp
(−x2/2a2

)
, the equa-

tion simplifies to

τd
dp0

dt
= −p0 + τdβu2

0

1 + √
2πakρu2

0

(
1 −

√
2
3

p0

)
. (C.4)

Rescaling the variables u, k, β, and A, we get equation 3.5.
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The steady-state solution is obtained by setting the time derivatives in
equations 3.4 and 3.5 to zero, yielding

u = 1√
2

u2

B

(
1 −

√
4
7

p0

)
, (C.5)

p0 = βu2

B

(
1 −

√
2
3

p0

)
, (C.6)

where B ≡ 1 + ku2
/8 is the divisive inhibition.

Dividing equation C.5 by C.6, we eliminate B and get

u = 1√
2 β

(
1 −√4/7p0

1 −√2/3p0

)
p0. (C.7)

We can eliminate u from equation C.6. This gives rise to an equation for p0:

1
2β

(
1 −

√
4
7

p0

)2 [
1 −

(√
2
3

+ k

8β

)
p0

]
p0 −

(
1 −

√
2
3

p0

)2

= 0. (C.8)

Rearranging the terms, we have

k = 8
p0

(
1 −

√
2
3

p0

)
β − 16

p2
0

(
1 −√2/3p0

1 −√4/7p0

)2

β
2
. (C.9)

Therefore, for each fixed p0, we can plot a parabolic curve in the space of
β versus k. The dashed lines in Figure 14 are parabolas for different values
of p0. The family of all parabolas maps out the region of existence of static
bumps.

C.1 Stability of the Static Bump. To analyze the stability of the static
bump, we consider the time evolution of ε = ut(t) − u∗ and δ = p0(t) − p∗

0,
where (u∗

, p∗
0) is the fixed-point solution of equations C.5 and C.6. Then we

have

d
dt

(
ε

δ

)
=
(

Aεε Aεδ

Aδε Aδδ

)(
ε

δ

)
, (C.10)

where Aεε = −1/τs + √
2u(1 −√4/7p0)/τsB

2, Aεδ = −u2√2/3/τsB, Aδε =
2βu(1 −√2/3p0)/τdB2, Aδδ = −1/τd − βu2√2/3/τdB. The stability condition
is determined by the eigenvalues of the stability matrix, (T ± √

T2 − 4D)/2,
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β

Figure 14: The region of existence of static bump solutions. Solid line: the
boundary of existence of static bump solutions. Dashed lines: the parabolic
curves for different constant values of p0.

where D and T are the determinant and the trace of the matrix, respectively.
Using equations C.5 and C.6, we can simplify the determinant and the trace
to

D = 1
τsτdB

(
2
√

4/7p0

1 −√4/7p0

− 2 − B

1 −√2/3p0

)
, (C.11)

T = 1
τs

⎡
⎣ 2

B
− τs

τd

(
1 −√2/3p0

) − 1

⎤
⎦ . (C.12)

The static bump is stable if the real parts of the eigenvalues are negative.
The eigenvalues are real when T2 ≥ 4D. This corresponds to nonoscillating
solutions. After some algebra, we obtain the boundary T2 = 4D given by

⎡
⎢⎣β −

p0

(
1 −√4/7p0

)2

4
(

1 −√2/3p0

) + τs

τd

p0

(
1 −√4/7p0

)2

4
(

1 −√2/3p0

)2

⎤
⎥⎦

2

= τs

τd

√
4
7
β

p2
0

(
1 −√4/7p0

)
1 −√2/3p0

. (C.13)
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No stationary bump can be stable here

Oscillating

Non-oscillating

Figure 15: The region of stable solutions of the static bump for τd/τs = 50.
Solid line: the boundary of stable static bumps. Dashed line: the boundary
separating the oscillating and nonoscillating convergence. Dotted lines: the
curves for different constant values of p0.

This boundary is shown in Figure 15. Below this boundary, the stability
condition can be obtained as

β ≤
p0

(
1 −√4/7p0

)3

4
(

1 −√2/3p0

) (
1 − 2

√
4/7p0 +√8/21p2

0

) . (C.14)

This upper bound is identical to the existence condition of equation C.9,
which is above the boundary of nonoscillating solutions. This implies that
all nonoscillating solutions are stable.

Above the boundary, C.13, the convergence to the steady state becomes
oscillating, and the stability condition reduces to T ≤ 0, yielding equation
3.6. This condition narrows the region of static bump considerably, as shown
in Figure 15.

Appendix D: Moving Bump: Lowest-Order Perturbation

We substitute equations 3.7 and 3.8 into equations 2.1 and 2.4. Equation
2.1 becomes an equation containing exp[−(x − vt)2/4a2] and exp[−(x −
vt)2/4a2](x − vt)/a, after making use of the projections exp[−(x −
vt)2/3a2] ≈ √6/7 exp[−(x − vt)2/4a2], and exp[−(x − vt)2/3a2](x − vt)/a ≈
(
√

6/7)3 exp[−(x − vt)2/4a2](x − vt)/a.
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Equating the coefficients of exp[−(x − vt)2/4a2] and exp[−(x −
vt)2/4a2](x − vt)/a, and rescaling the variables, we arrive at

u = u2

√
2B

(
1 −

√
4
7

p0

)
,

vτ0

2a
= u

B

(
2
7

) 3
2

p1. (D.1)

Similarly, making use of the projections exp[−(x − vt)2/a2] ≈ √2/3
exp[−(x − vt)2/2a2], exp[−(x − vt)2/a2](x − vt)/a ≈ (

√
2/3)3 exp[−(x −

vt)2/2a2](x − vt)/a, we find that equation 2.4 gives rise to

− vτd

2a
p1 = p0 − βu2

B

(
1 −

√
2
3

p0

)
, (D.2)

vτd

a
p0 =

[
1 + βu2

B

(
2
3

) 3
2

]
p1. (D.3)

The solution can be parameterized by ξ ≡ βu2
/B,

p0 =
τs
τd

[
1 + ( 2

3

) 3
2 ξ

]
G(ξ )

,
u
B

=
√

2
(

7
4

) 3
2

G(ξ ),

vτs

a
=
√

2
τs

τd
F(ξ ), p1 =

√
4

τs
τd

F(ξ )

G(ξ )
, (D.4)

where F(ξ ) = (4/7)3/2ξ − (τs/τd)[1 + (2/3)3/2ξ ][1 − (
√

2/3 −√4/7)ξ ], and
G(ξ ) = (4/7)3/2 + (4/7)1/2(τs/τd)[1 + (2/3)3/2ξ ]. A real solution exists only
if equation 3.9 is satisfied. The solution enables us to plot the contours of
constant ξ in the space of k and β. Using the definition of ξ , we can write

k = 8
ξ
β − 8

ξ 2

(
u
B

)2

β
2
, (D.5)

where the quadratic coefficient can be obtained from equation D.4. Figure 16
shows the family of curves with constant ξ , each with a constant bump
velocity. The lowest curve saturates the inequality in equation 2.13, and
yields the boundary between the static and metastatic or moving regions in
Figure 3. Considering the stability condition in section D.2, only the stable
branches of the parabolas are shown.
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Figure 16: The stable branches of the family of the curves with constant values
of ξ at τd/τs = 50. The dashed line is the phase boundary of the static bump.

D.1 Stability of the Moving Bump. To study the stability of the mov-
ing bump, we consider fluctuations around the moving bump solution.
Suppose

u (x, t)= (u∗
0 + u1

)
e− (x−vt−s)2

4a2 , (D.6)

p (x, t)= 1 − (p∗
0 + ε0

)
e− (x−vt−s)2

2a2 + (p∗
1 + ε1

) (x − vt − s
a

)
e− (x−vt−s)2

2a2 .

(D.7)

These expressions are substituted into the dynamical equations. The result
is

τs
du1

dt
=

√
2u

B2

(
1 −

√
4
7

p0

)
u1 − u2

B

√
2
7
ε0 − u1, (D.8)

τs

a
ds
dt

= −vτs

au
u1 + 4p1

B2

(
2
7

) 3
2

u1 + 2u
B

(
2
7

) 3
2

ε1, (D.9)

τd
dε0

dt
= 2βu

B2

(
1 −

√
2
3

p0

)
u1 −

(
1 +

√
2
3
ξ

)
ε0 − vτd

2a
ε1 − τd p1

2a
ds
dt

,

(D.10)
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τd
dε1

dt
=−2βup1

B2

(
2
3

) 3
2

u1 + vτd

a
ε0 −

[
1 +

(
2
3

) 3
2

ξ

]
ε1 + τd p0

a
ds
dt

.

(D.11)

We first revisit the stability of the static bump. By setting v and p1 to 0,
considering the asymmetric fluctuations s and ε1 in equations D.9 and D.11
and eliminating ds/dt, we have

τs
dε1

dt
=
{

2u
B

(
2
7

) 3
2

p0 − τs

τd

[
1 +

(
2
3

) 3
2

ξ

]}
ε1. (D.12)

Hence the static bump remains stable when the coefficient of ε1 on the right-
hand side is nonpositive. Using equation D.4 to eliminate p0 and u/B, we
recover the condition in equation 3.9. This shows that the bump becomes a
moving one as soon as it becomes unstable against asymmetric fluctuations,
as described in the main text.

Now we consider the stability of the moving bump. Eliminating ds/dt
and summarizing the equations into matrix form,

τs
d
dt

⎛
⎜⎜⎝

u1

ε0

ε1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2
B − 1 − u2

B

√
2
7 0

P0u P00 − vτs
a

P1u
vτs
a 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

u1

ε0

ε1

⎞
⎟⎟⎠ , (D.13)

where P0u = 2p0τs/Buτd + vτs p1/2au, P00 = vτs p1/2ap0 − βu2
τs/Bp0τd, and

P1u = 2p1τs/Buτd − vτs p0/au. For the moving bump to be stable, the real
parts of the eigenvalues of the stability matrix should be nonpositive. The
stable branches of the family of curves are shown in Figure 16. The re-
sults show that the boundary of stability of the moving bumps is almost
indistinguishable from the envelope of the family of curves. Higher-order
perturbations produce phase boundaries that agree more with simulation
results, as shown in Figure 3.

We compare the dynamical stability of the ansatz in equations 3.7 and
3.8 with simulation results. As shown in Figure 17, the region of stability
is overestimated by the ansatz. The major cause of this is that the width
of the synaptic depression profile is restricted to be a. While this provides
a self-consistent solution when STD is weak, this is no longer valid when
STD is strong. Due to the slow recovery of synaptic depression, its profile
leaves a long, partially recovered tail behind the moving bump, thus reduc-
ing the stability of the bump. This requires us to consider the second-order
perturbation, which takes into account variation of the width of the STD
profile. As shown in Figure 17, the second-order perturbation yields a phase
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Figure 17: The boundary of the moving phase. Symbols: simulation results.
Dashed line: first-order perturbation. Solid line: second-order perturbation. In-
set: The boundary of the moving phase in a broader range of β. Parameters:
N/L = 80/(2π), a/L = 0.5/(2π).

boundary much closer to the simulation results when STD is weak. How-
ever, as shown in the inset of Figure 17, the discrepancy increases when
STD is stronger and higher-order corrections are required.

Appendix E: Decoding in CANNs with STF

We start by considering bumps and STF profiles of the form

u(x, t)= u0 exp
[
− (x − z0 − s(t))2

4a2

]
, (E.1)

f (x, t)= f0 exp
[
− (x − z0 − s(t))2

2a2

]

+ f1

(
x − z0 − s(t)

a

)
exp

[
− (x − z0 − s(t))2

4a2

]
. (E.2)

Note that since the noise occurs in the position of the bump, we can neglect
changes in the height. Substituting equations E.1 and E.2 into equation 2.1,
and removing terms orthogonal to the position distortion mode, we have

τs
d
dt

⎛
⎝ s

a

f1
f0

⎞
⎠ ≡ M

⎛
⎝ s

a

f1
f0

⎞
⎠+ A

u0a
η(t)

(
1

−1

)
, (E.3)
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where

M =

⎛
⎜⎜⎝

− A
u0

2u0 f0
B

(
2
7

) 3
2

A
u0

−
{

2u0 f0
B

( 2
7

) 3
2 + τs

τ f

[
1 + αu2

0
B

( 2
3

) 3
2
]}
⎞
⎟⎟⎠ . (E.4)

This differential equation can be solved by first diagonalizing M. Let −λ±
be the eigenvalues of M and (Us±U f±)T be the corresponding eigenvectors.
Then the solution becomes⎛

⎝
s
a

f1
f0

⎞
⎠ = A

u0a

∫ t

−∞

dt1

τs
η(t1)U

(
E+ 0

0 E−

)
U−1

(
1

−1

)
, (E.5)

where E± = exp[−λ±(t − t1)]. Squaring the expression of s/a, averaging
over noise, and integrating, we get

〈( s
a

)2
〉
= 2T

(
A
u0

)2 ∑
a,b=±

[
Usa

(
U−1

as − U−1
a f

)]

× 1
(λa + λb)τs

[
Usb

(
U−1

bs − U−1
b f

)]
. (E.6)
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