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Abstract

Many networks of scientific interest naturally decompose into clusters or communi-

ties with comparatively fewer external than internal links; however, current Bayesian

models of network communities do not exert this intuitive notion of communities. We

formulate a non-parametric Bayesian model for community detection consistent with an

intuitive definition of communities, and present a Markov chain Monte Carlo procedure

for inferring the community structure. A Matlab toolbox with the proposed inference

procedure is available for download. On synthetic and real networks our model detects

communities consistent with ground truth, and on real networks it outperforms existing

approaches in predicting missing links. This suggests that community structure is an

important structural property of networks that should be explicitly modelled.



1 Introduction

The analysis of complex networks is an important challenge spurred by many types

of networked data arising in practically all fields of science, including biology, social

science, and technology [5, 25, 28]. Many networks naturally decompose into clusters

or communities characterized by [4]:

Definition 1 The organization of vertices in clusters, with many edges joining vertices

of the same cluster and comparatively few edges joining vertices of different clusters.

Such communities have been found to correspond to behavioral or functional units

[10, 7, 4]. For example, in networks of protein interaction, communities might com-

prise proteins with similar functions, and in social networks, communities are groups

of closely related people. This suggests that we might gain insight into networks

whose function is less well understood by discovering and examining their commu-

nities [10, 4]. A large variety of methods for community detection have been proposed

over the years; however, no standard have been agreed upon [7]. A widely used ap-

proach is to optimize some measure of cluster structure such as modularity [20] or

mutual information [23]. An alternative approach is to formulate a Bayesian generative

network model, with the advantage of making the definition of the model’s notion of a

community explicit. The most prominent generative model of network communities is

the stochastic blockmodel [21] and its extensions [11, 8, 16, 17]. Notably, the infinite

relational model (IRM) [12, 30] is a non-parametric extension that allows the number

of communities to be inferred from data. In these models, clusters are sets of nodes

with homogenous probabilities of linking within and to other clusters. However, this

is subtly different from the intuitive definition of communities above. For example, a

group of nodes which link consistently to other groups of nodes but have no internal

links between them will be identified as a cluster. This flexible notion of group struc-

ture makes it impossible to interpret clusters as communities in the sense conveyed in

def. 1.
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In this paper we propose a non-parametric Bayesian generative model of networks

with community structure, that operationalizes the intuitive definition of communities in

def. 1. We derive an efficient inference procedure based on Markov chain Monte Carlo

(MCMC). Our model includes a parameter that defines the extent to which a community

has comparatively less external than internal links. This parameter is learned from data,

giving an indication of the strength of the community structure. We compare our model

to the IRM and demonstrate how the communities detected by the two models differ

on synthetic and real data. Finally, we analyze 17 real networks and show that our

model outperforms competing approaches as measured by link prediction. Our results

demonstrate that community structure is an important property of networks that should

be modeled explicitly. A Matlab toolbox with our proposed method is available for

download [18].

2 Methods

Given a network, we address the problem of partitioning the nodes into clusters, consis-

tent with the notion of communities in def. 1. To simplify the presentation, we consider

an undirected network represented by a binary, strictly upper triangular adjacency ma-

trix A, where Aij = 1 indicates that a link between node i and j is present; however,

the ideas presented can trivially be extended to directed and weighted networks as well

as multi-graphs.

To initiate the discussion, we describe the infinite relational model (IRM) [12, 30]

which can be characterized by the following generative process: First, each node is

assigned to a cluster according to a Chinese restaurant process (CRP ). The Chinese

restaurant process is a metaphor for building a partition ground up by assigning the first

node (i.e. customer in a restaurant to a table) and subsequent nodes (customers arriving

at the restaurant) to an existing cluster with probability proportional to how many exist-

ing customers are placed at the table and at a new table with a probability proportional

to α. Customers thereby tend to sit at most popular tables making the popular tables
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even more popular - an effect noted as the rich gets richer. The partition of the nodes

induced by the CRP is exchangeable in that the order the customers arrive does not in-

fluence the probability of the partition[22]. Next, link probabilities are generated which

specify the probability of observing a link within and between each cluster; and finally,

the links in the network are generated according to these probabilities.

z ∼ CRP(α), Cluster assignment, (1)

η`m ∼ Beta(β, β), Link probability, (2)

Aij ∼ Bernoulli(ηzizj), Link. (3)

Inference in the IRM model, i.e. determining the posterior distribution of the cluster

assignments, entails marginalizing over the link probabilities, which can be done ana-

lytically. This is a major advantage of the IRM model, enabling inference by Markov

chain Monte Carlo (MCMC) sampling over the cluster assignments alone.

However, the notion of a cluster in the IRM model is not consistent with def. 1. A

cluster ` is defined by the probability η`` of observing a link between two nodes inside

the cluster, and the probabilities η`m for ` 6= m of observing links between nodes in

cluster ` and m. This is subtly different from the intuitive notion of communities with

more internal than external links.

2.1 Bayesian community detection

In this paper, we propose a non-parametric Bayesian model of network communities,

that strictly follows definition 1. Our model can be described by the following gener-

ative process: First, a cluster assignment is generated, partitioning the nodes into K

clusters. For each cluster, a within-cluster link probability, η``, is generated specifying

the probability of observing a link between two nodes in the cluster. Then, for each

cluster a cluster gap, γ`, between 0 and 1 is generated. The cluster gap multiplied by

the within-cluster link probability determines the maximum allowable between-cluster

link probability. Next, the probability of links between each pair of different clusters `

andm are considered. For each pair, a between-cluster link probability η`m is generated,
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such that it is strictly less than both clusters’ within-cluster link probability multiplied

by the gap. Finally, links between nodes in the same or in different clusters are gener-

ated according to the within- and between-cluster link probabilities.

z ∼ CRP(α), Cluster assignment,

η`` ∼ Beta(β, β), Within-cluster link probability,

γ` ∼ Beta(ϑ, ϑ), Cluster gap,

η`m ∼ BetaInc(β, β, xlm), Between-cluster link probability,

xlm = min[γ`η``, γmηmm]

Aij ∼ Bernoulli(ηzizj), Link,

where BetaInc(a, b, x) denotes a Beta distribution constrained to the interval [0, x], with

density

p(θ) =
1

Bx(a, b)
θa−1(1− θ)b−1,

where Bx(a, b) is the incomplete Beta function. The incomplete beta distribution has

previously been considered for binomial sampling in [29] and aspects regarding numer-

ical evaluation can be found in [3]. We denote the hyperparameters of the model by

ψ = {α, ϑ, β}.

We name this model Bayesian community detection (BCD). According to the BCD

model, clusters are groups of nodes where the probability of links between them are at

least γ` times less compared to the probability of links within them. In addition to the

model where each cluster has a separate γ`, we also consider the special case where all

clusters share a common γ1 = γ2 = · · ·= γ. Fig. 1 shows random networks generated

according to the IRM and the proposed BCD model with shared γ. As γ decreases,

the relative link densities between clusters drop and for γ = 0 no links are generated

between clusters. We note that we recover the IRM model for γ →∞ in the BCD but in

order for the BCD model to adhere to def. 1 we require γ ≤ 1.
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Figure 1: Examples of random graphs according to IRM and BCD for different values

of γ.

2.2 Inference in BCD

Let η̇ = {η`m|` = m} and η̈ = {η`m|` 6= m} denote the sets of link probabilities within

and between clusters respectively. Inference in BCD amounts to computing the marginal

posterior distribution of the cluster assignments, p(z|A), which entails integrating over

the joint distribution given by

p(A, z,η,γ|ψ) = p(A|z,η)p(η̈|η̇,γ, β)p(η̇|β)p(γ|ϑ)p(z|α)

=

[
N−1∏
i=1

N∏
j=i+1

ηAij
zizj

(1− ηzizj)1−Aij

]

×

[
L−1∏
`=1

L∏
m=`+1

ηβ−1`m (1− η`m)β−1

Bx`m(β, β)

]
×

[
L∏
`=1

ηβ−1`` (1− η``)β−1

B(β, β)

]

×

[
L∏
`=1

γϑ−1` (1−γ`)ϑ−1

B(ϑ, ϑ)

]
×

[
αLΓ(α)

Γ(N + α)

L∏
`=1

Γ(M`)

]
,

where L is the number of clusters, M` is the number of nodes in the `th cluster, and

N+
`m and N−`m are the number of links and non-links between nodes in cluster ` and m

such that

N−`m =

 M`Mm −N+
`m for l 6= m

M`(M` − 1)/2−N+
`` for l = m
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2.1 Between-cluster link probabilities

In the IRM model all link probabilities can be marginalized analytically. This is not

the case for BCD since within- and between-cluster link probabilities are dependent;

however, the vast majority of these parameters, namely the between-cluster link proba-

bilities (η̈ = {η`m|` 6= m}), can be marginalized analytically. I.e. we have

p(A, z, η̇,γ|ψ) =

∫
p(A, z,η,γ|ψ)dη̈

=

[
L∏
`=1

η
N+

``+β−1
`` (1− η``)N

−
``+β−1

B(β, β)

]

×

[
L−1∏
`=1

L∏
m=`+1

Bx`m(N+
`m+β,N−`m+β)

Bx`m(β, β)

]

×

[
L∏
`=1

γϑ−1` (1−γ`)ϑ−1

B(ϑ, ϑ)

]
×

[
αLΓ(α)

Γ(N + α)

L∏
`=1

Γ(M`)

]
.

As we can not integrate the posterior with respect to the remaining parameters, z,

η̇, and γ, we sample from their posterior distribution using MCMC.

2.2 Within-cluster link probabilities

Eliminating terms that do not depend on η``, the marginal posterior reduces to

p(η``|A, z, η̇\η``,γ,ψ) ∝ η
N+

``+β−1
`` (1− η``)N

−
``+β−1 ·

∏
m6=`

Bx`m(N+
`m+β,N−`m+β)

Bx`m(β, β)
.

We generate samples from this distribution using Metropolis-Hastings with the follow-

ing proposals,

q1(η
∗
``) = Beta(β, β), q2(η

∗
``) = Beta(N+

`` + β,N−`` + β),

q3(η
∗
``|η``) = Beta (η``C, (1− η``)C) .

The first is the prior, the second is the marginal distribution of η`` disregarding depen-

dencies to other clusters, and the third is a random walk centered on the current value

of η`` with concentration parameterized by C. Combining these proposals, we attain

acceptance rates around 50%, and to improve mixing we repeat the sampling 10 times

in each iteration.
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2.3 Cluster assignment variables

Regarding, z, the BCD model is similar to a Dirichlet process (DP) mixture model,

and it is thus possible to use standard MCMC methods for inference in DP mixtures.

As we are not able to analytically integrate η̇ we have to resort to non-conjugate sam-

pling approaches. We use two MCMC transition kernels: an auxiliary variable Gibbs

sampler [19, Algorithm 8], and a split-merge Metropolis-Hastings move [9], to sample

from p(z|A, η̇,γ,ψ). In the auxiliary variable Gibbs sampler T new within community

densities and gap parameters are drawn from their priors. These auxiliary variables rep-

resents possible values for the parameters of the within community density of nodes that

are not associated with any other observations. The node assignment is then updated by

Gibbs sampling with respect to the distribution that includes these auxiliary parameters,

see also [19, Algorithm 8] for details. Similarly, the split-merge Metropolis-Hastings

algorithm propose in a split move a new within community density and gap parame-

ter from the priors as part of defining the launch state for the restricted Gibbs sampler

described in [9].

The conditional distribution of the cluster assignment of a single node required for

the Gibbs sampler as well as the restricted Gibbs sweeps in the split-merge sampler is

given by

p(zi=`|A, z\zi, η̇,γ,ψ) ∝ η
n+
i`

`` (1−η``)n
−
i` αLM` ·

∏
m6=`

Bx`m
(N+

`m+n
+
im+β,N

−
`m+n

+
im+β)

Bx`m
(N+

`m+β,N
−
`m+β)

, (4)

where n+
i` and n−i` are the number of links and non-links from node i to nodes in cluster

`, and (by slight abuse of notation) N+
`m, N−`m, and M` are computed excluding links

involving node i.

2.4 Cluster gaps

Eliminating terms that do not depend on γ`, the posterior reduces to

p(γ`|A, z, η̇,γ\γ`,ψ) ∝ γϑ−1` (1− γ`)ϑ−1 ·
∏
m 6=`

Bx`m(N+
`m+β,N−`m+β)

Bx`m(β, β)
.
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To generate samples from γ, we use Metropolis-Hastings with the following proposal

densities,

q1(γ
∗
` ) = Beta(ϑ, ϑ), q2(γ

∗
` |γ`) = Beta (γ`C, (1− γ`)C) ,

where the first is the prior distribution, and the second is a random walk centered at

the current value of γ` with concentration parameterized by C. To improve mixing, we

repeat the sampling 10 times in each iteration.

2.3 Predicting missing links

Until now it has been assumed that the data is a fully observed network; however,

the model can easily be adapted to accommodate partially observed network. When it

is unknown whether there is a link or not between some set of pairs of nodes in the

network, these are simply not included in the evaluation of the likelihood (p(A|z,η)),

or equivalently excluded in the computation of the link- and nonlink-counts, N+
`m and

N−`m.

When the network is not fully observed, the model can be used to predict if there

should be a link between two nodes by computing the posterior predictive distribution,

p(Aij|A), where A denotes the observed part of the network. Based on R posterior

samples, the predictive distribution is approximated as

p(Aij|A) ≈ 1

R

R∑
r=1

p(Aij|A, z(r), η̇(r),γ(r)),

where

p(Aij = 1|A, z, η̇,γ) =


ηzizj , zi = zj,
Bxzizj

(N+
zizj

+β+1, N−zizj+β)

Bxzizj
(N+

zizj
+β,N−zizj+β)

, zi 6= zj.

2.4 Extensions of the BCD model

BCD can trivially be extended to handle self-links, in which case the adjacency matrix

is non-zero on the diagonal, as well as directed networks, where the adjacency matrix

is a full binary matrix. Extension to integer weighted networks is also trivial, replacing
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the Bernoulli likelihood and Beta priors by Poisson and Gamma distributions. Fur-

thermore, BCD can trivially be extended to handle multiple types of links by sharing the

cluster assignments across links types and introducing different link probability and gap

parameters for each link type. The details of all these possible extensions are described

below.

2.1 Extension to weighted graphs

For the modeling of weighted graphs based on integer count co-occurrences we have

the following generative process for the IRM model

z ∼ CRP(α), Cluster assignment, (5)

η`m ∼ Gamma(β, β), Link probability, (6)

Aij ∼ Poisson(ηzizj), Link. (7)

and for the BCD

z ∼ CRP(α), Cluster assignment,

η`` ∼ Gamma(β, β), With.-clust. link prob.,

γ` ∼ Beta(ϑ, ϑ), Cluster gap,

η`m ∼ GammaInc(β, β, xlm), Betw.-clust. link prob.,

xlm = min(γ`η``, γmηmm)

Aij ∼ Poisson(ηzizj), Link,

Let Gx(a, b) denote the normalization constant of the incomplete Gamma distribution

(GammaInc(a, b, x)) (i.e., constrained to the interval [0, x]). Marginalizing the between
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cluster rate ηlm we obtain

p(A, z, η̇,γ|ψ) =

∫
p(A, z,η,γ|ψ)dη̈

=

[
L∏
`=1

η
N+

``+β−1
`` exp [−η``(N tot

`` + β)]

G(β, β)

]

×

[
L−1∏
`=1

L∏
m=`+1

Gx`m(N+
`m+β,N tot

`m+β)

Gx`m(β, β)

]

×

[
L∏
`=1

γϑ−1` (1−γ`)ϑ−1

B(ϑ, ϑ)

]
×

[
αLΓ(α)

Γ(N + α)

L∏
`=1

Γ(M`)

]
.

2.2 Extension to directed graphs

For directed graphs we have for the marginalized likelihood given above for integer

weighted graphs

p(A, z, η̇,γ|ψ) =

∫
p(A, z,η,γ|ψ)dη̈

=

[
L∏
`=1

η
N+

``+β−1
`` exp [−η``(N tot

`` + β)]

G(β, β)

]

×

[
L∏
`=1

L∏
m6=`

Gx`m(N+
`m+β,N tot

`m+β)

Gx`m(β, β)

]

×

[
L∏
`=1

γϑ−1` (1−γ`)ϑ−1

B(ϑ, ϑ)

]
×

[
αLΓ(α)

Γ(N + α)

L∏
`=1

Γ(M`)

]
.

2.3 Extension to multi-graphs

We model multi-graphs by sharing the cluster assignments z across links types but

introducing link type specific probabilities/rates η and gap parameters γ, i.e.

p({A(1),A(2), . . . ,A(K)}, z, {η̇(1), η̇(1), . . . , η̇(K)}, {γ(1),γ(2), . . . ,γ(K)}|ψ) =

[
∏
k

p(A(k)|z,η(k))p(η̈(k)|η̇(k),γ(k), β)p(η̇(k)|β)p(γ(k)|ϑ)]p(z|α)
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3 Results and Discussion

We analyzed the proposed BCD model on a variety of synthetic and real networks.

Unless otherwise stated we set β = ϑ = 1, used T = 3 auxiliary components in the

Gibbs sampler [19, Algorithm 8], set α = logN , and used 3 rounds of restricted Gibbs

sampling in the split-merge sampler. We ran the MCMC sampler for 500 iterations

and discarded the first 400 samples for burn-in. The displayed solutions are the highest

likelihood sample obtained by the sampler across the 100 samples. By definition, MAP

estimation involves taking the modal or most commonly-occurring sample. However, it

is practically certain that every sample will be unique, i.e. every sample has frequency

1 and therefore the highest likelihood sample is used as a proxy for the MAP solution.

The displayed graphs are sorted according to the sizes of the extracted clusters.

3.1 Synthetic data

To examine the properties of BCD we studied the performance of the model on two

synthetic datasets, chosen to highlight key properties of the model also found on real

networks.

The first dataset was formed by two groups each containing 20 nodes. Within each

of the two groups half of the nodes were fully connected to each other while the re-

maining nodes were completely disconnected from each other but linked to the fully

connected core of nodes with a link density of 0.5. These nodes thereby formed so-

called satellite communities [20] to the main community. Two links were further placed

between the core nodes of the two groups bridging the two main groups. Fig. 2 shows

the result of the analysis for fixed γ = 0.01 and γ = 1 in the BCD model as well as

the results of analysis by IRM. IRM extracts four communities: the two strongly con-

nected core groups as well the two satellite communities. The clusters found by IRM

are not communities in the sense described in def. 1, because the clusters of satellite

do not constitute a community with more internal than external links — in fact, they

have no internal links whatsoever. In BCD the satellites are grouped together with the
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Figure 2: Left: IRM and BCD analysis of a synthetically generated network of 40 nodes

with two groups of 20 nodes each subdivided into ten nodes forming a core and ten

nodes defining the periphery (i.e. satellite communities). Right: IRM and BCD analysis

of synthetically generated network with five smaller and three larger communities.

core nodes of each community (γ = 0.01) or when the prior is chosen to strongly favor

many communities with a small gap (γ = 1, α = 250) each satellite node is assigned to

its own community.

Subsequently, we analyzed the performance of IRM and BCD on a network consist-

ing of eight communities, five smaller and three larger, all with an internal link density

of 0.6. The five smaller communities have a link probability between them of 0.3 and

identical link probability to the remaining three communities (0.1, 0.55 and 0.2). Fig. 2

shows the results for IRM and BCD. Although there are eight communities in the data,

the IRM finds only four communities, grouping the five smaller communities together.

The reason is that the five smaller communities have identical link probabilities towards

the rest of the network. The BCD model correctly identifies the eight communities, since

this solution leads to larger within-cluster than between-cluster link probabilities.
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3.2 Zachary’s Karate Club and the Bottlenose Dolphin networks

Zachary’s Karate Club and the bottlenose dolphins of Doubtful Sound [14] are often-

used benchmark networks for community detection [20, 4]. The karate network de-

scribes social interactions between members of a karate club which eventually split in

two due to a dispute, and the dolphin network consist of relations between 62 dolphins

that were observed to split into two large groups. We compare the community structure

identified by the BCD, IRM, MODULARITY [20] and normalized graph cut of [24]. The

normalized graph cut (NORMCUT) was based on clustering the values of the second

smallest eigenvalue of the normalized graph Laplacian into two clusters using k-means.

The results of analyzing the networks using IRM, BCD, MODULARITY and NORMCUT

are shown in fig. 3.

In the karate network, IRM assigns central persons to individual clusters and finds

two large clusters of satellites, BCD detects one large community (with one misclassi-

fied person) and subdivides the other community into two groups and four satellites,

MODULARITY splits each of the two communities into two sub-communities, and the

NORMCUT of [24] incorrectly assigns one node to a wrong community.

In the dolphins network, IRM finds two densely connected core clusters but assigns

all other nodes to one big satellite cluster, BCD detects one of the communities (ex-

cept for one node that is given a cluster of its own) and splits the other into four

sub-communities plus some satellite communities. MODULARITY gives a similar re-

sult, correctly identifying one community (except for one node assigned a different

community) and splitting the other into four sub-communities whereas the NORMCUT

correctly splits the Bottlenose dolphin network while the methods

For both considered networks the NORMCUT works well. We note however that it is

in general an open problem for spectral approaches such as the considered NORMCUT

to define how many eigenvectors to include in the analysis as well as the number of

clusters to be extracted by k-means [27]. A benefit of the IRM, BCD and MODULARITY

is that the models automatically determine the model orders.
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Figure 3: Analysis of the karate and dolphin networks by IRM, BCD, MODULARITY and

NORMCUT.

Comparing the discovered clusters with the true communities, it appears that IRM

has a tendency to assign a densely connected core and its satellite nodes into separate

clusters, whereas the BCD model has a tendency to assign some satellite nodes to sep-

arate clusters. Both these issues can be explained as an unwarranted subdivision of

communities containing nodes with largely varying degrees, suggesting that the models

could be improved by taking node degree into account. For example, in the BCD analy-

sis of the karate network, one node is incorrectly assigned to the top cluster (red circles)

although it has more links to the bottom cluster: This happens because the node has a
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substantially lower degree than the other nodes in the bottom cluster.

3.3 Link prediction in real networks

Link prediction as measured by the area under curve (AUC) of the receiver operator

characteristic has become a standard for the evaluation of network models [2, 16]. We

compared the performance of the proposed BCD model with prominent variants of the

stochastic block model [21, 12, 30, 8, 17]. IHW denotes a non-parametric extension of

the model in [8] where the relational matrix η is defined by two parameters, a within

community parameter ρ1 and a between community parameter ρ0; IDW is a model with

separate within community parameters ρk and a shared between community density

ρ0 as discussed in [17]; and IRMCB corresponds to the IRM model where the prior is

modified to favor communities, η`m ∼

 Beta(10, 1) ifl = m

Beta(1, 10) otherwise
.

We analyzed 14 networks, summarized in tab. 1 which also shows the number of

parameters found by IRM and BCD, the inferred cluster gap, as well as AUC scores of

link-prediction. AUC scores were computed by treating 2.5% of all the links and an

equivalent number of non-links as missing for prediction. The shown values are for 5

random initialization each with different random sets of link and non-links left out for

prediction. This framework is in line with sampling a fixed fraction of dyads in the

graph for prediction [13, 16, 15] as the AUC is invariant to the relative sizes of the link

and non-link classes. However, An issue with these frameworks for sampling links is

that they tends to de-weight errors on the periphery as this regions of the graph does not

contain many edges relative to its size. This potential bias is the same for the considered

models and we therefore use the applied link prediction approach primarily to evaluate

the relative performance of the considered models.

In none of the experiments IHW, IDM, or IRMCB performed best (quantitative results

of these analyses are included in tab. 2). The proposed BCD model outperformed all

other models for the majority of the considered networks. We also estimated models

with community specific parameters (separate values of γ), however this gave similar
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Table 1: Network properties (number of nodes and links and whether network is

weighted and directed, standard deviation on last digit given in parenthesis.) and results

of analysis (number of clusters, value of the shared gap parameter γ, and area under

curve (AUC) link prediction scores [%]). All networks except the NIPS and NIPSCW

networks were obtained from http://www.cise.ufl.edu/research/sparse/mat/.

NETWORK PROPERTIES CLUSTERS γ AUC [%]

N N+ WGH. DIR. IRM BCD IRM BCD

USAir97 332 2126 15.4(5) 18.6(5) 1.00(0) 95.7(10) 95.9(5)

USPowerGrid 4941 6594 7.2(3) 34.2(17) 0.04(0) 52.0(16) 77.0(36)

Football 115 613 10.8(2) 13.0(0) 0.09(0) 88.2(22) 89.3(24)

Celegans 306 2345 √ √ 23.2(6) 30.0(4) 1.00(0) 76.2(25) 80.4(82)

yeast 2361 6646 21.8(7) 32.4(6) 1.00(0) 88.9(4) 88.7(7)

lesmis 77 254 √ 13.0(3) 15.0(8) 0.97(1) 95.5(8) 94.7(14)

Geom 7343 11898 √ 59.4(8) 76.2(17) 0.99(0) 86.3(3) 89.4(8)

netscience 1589 2742 √ 6.4(4) 10.8(13) 0.91(4) 55.5(24) 67.1(20)

cond-mat 16726 47594 √ 34.0(4) 44.4(6) 1.00(0) 69.6(9) 72.8(6)

SciMet 3084 10413 √ 12.2(2) 24.0(6) 1.00(0) 55.3(15) 89.9(6)

smaGri 1059 4919 √ 7.4(2) 20.0(3) 1.00(0) 54.0(3) 88.7(5)

smallW 396 994 √ 8.0(0) 12.0(4) 1.00(0) 91.7(24) 97.1(11)

NIPS 234 598 7.8(3) 30.6(2) 0.02(0) 85.6(45) 94.1(33)

NIPSCW 2865 4733 √ 19.8(4) 111.1(38) 0.15(13) 87.1(11) 90.0(6)
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Table 2: Area under curve (AUC) [%] link prediction score (standard deviation on last

digit given in parenthesis).

IHW IDM IRM IRMCB BCD shared γ BCD separate γ

USAir97 75.0(23) 82.4(16) 95.7(10) 95.1(9) 95.9(5) 95.4(4)

USPowerGrid 76.9(17) 61.9(13) 52.0(16) 51.5(15) 77.0(36) 80.9(18)

Football 83.7(31) 83.3(31) 88.2(22) 88.7(21) 89.3(24) 89.4(25)

Celegans 57.7(17) 54.9(9) 76.2(25) 74.8(15) 80.4(82) 73.6(94)

yeast 68.0(3) 82.5(7) 88.9(4) 88.7(4) 88.7(7) 87.3(4)

lesmis 70.1(55) 82.4(27) 95.5(8) 92.2(23) 94.7(14) 93.8(16)

Geom 66.8(16) 71.1(7) 86.3(3) 86.6(3) 89.4(8) 89.3(4)

netscience 58.7(34) 57.3(14) 55.5(24) 49.4(24) 67.1(20) 65.3(27)

cond-mat 58.9(9) 61.5(8) 69.6(9) 66.5(5) 72.8(6) 73.4(8)

SciMet 75.1(12) 82.8(9) 55.3(15) 63.4(16) 89.9(6) 89.2(4)

smaGri 75.2(16) 83.4(8) 54.0(3) 65.4(17) 88.7(5) 88.2(7)

smallW 84.7(9) 92.4(18) 91.7(24) 90.9(25) 97.1(11) 97.5(8)

NIPS 83.5(39) 87.4(46) 85.6(45) 88.0(34) 94.1(33) 94.0(19)

NIPSCW 81.7(25) 85.2(13) 87.1(11) 86.0(10) 90.0(6) 91.3(2)

results to using a shared γ parameter (see also table 2).

In tab. 1 the performance of the IRM and BCD model with shared γ parameter is

given. Of the 14 considered networks the USPowerGrid, Football, NIPS and NIPSCW

had a large comparative difference in within community and between community link

density, (i.e. γ < 0.2). The NIPS network is a binary graph of the top 234 collaborating

NIPS authors in NIPS 1-17 also considered in [16]. The NIPSCW network is the com-

plete integer weighted network of all NIPS 1-17 authors compiled by [6] where weights

indicate the number of papers authors have collaborated on. Interestingly, the analysis

indicates that of all the networks considered, the NIPS author collaboration exhibits the

strongest comparative gap between internal and external link densities, i.e. γ = 0.02 for

NIPS while a substantial gap of γ = 0.15 is found for NIPSCW. Fig. 4 gives an example
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Figure 4: Result of an IRM and BCD analysis of the small binary NIPS network of the

234 most collaborating authors and the complete weighted NIPS network including all

authors as well as the number of articles authors have collaborated on.

of the results obtained when analyzing the small sized and full NIPS author collabora-

tion networks. From the figure it can be seen that the IRM model extracts a large low

density community whereas the BCD model subdivides this large group into smaller

community structured groups similar to the effect demonstrated on the synthetic net-

work example in fig. 2. Inspecting the communities the extracted communities of BCD

correspond well with known machine learning research communities (see Appendix A).

While the IRM model defines a large periphery class the BCD account for the network

structure in terms of communities. Both are valid accounts and explain different types

of network structure. If the aim is to account for structure the model of choice should be

the model that perform the best in terms of link prediction, if the aim is to separate the

nodes into strict communities the BCD model is more appropriate than the IRM whereas

if the aim is a flexible model that use few parameters the IRM model is in general more

favorable than the proposed BCD.

For all the 14 considered networks in tab. 1 it can be seen that the BCD model ex-

tracts a larger number of communities than the IRM. To investigate if this is a general

property of the BCD we generated three datasets; the first according to the IRM model

without community structure, the second according to the BCD model, and the third

according to an Erdős-Rényi random graph (corresponding to the IRM and BCD model
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Table 3: Average pr. iteration cpu-time (standard deviation on last digit given in paren-

thesis).
IHW IDM IRM IRMCB BCD shared γ BCD separate γ

USAir97 0.33(5) 0.43(2) 0.35(3) 0.39(3) 2.69(18) 3.44(24)

USPowerGrid 2.18(14) 6.85(56) 6.32(8) 7.43(55) 69.38(526) 70.73(288)

Football 0.05(0) 0.06(0) 0.07(0) 0.08(0) 0.78(5) 1.22(9)

Celegans 0.14(0) 0.18(0) 0.27(0) 0.4(3) 4.89(33) 5.82(38)

yeast 1.45(15) 3.16(27) 3.95(25) 6.72(62) 35.13(116) 41.03(150)

lesmis 0.04(0) 0.05(0) 0.06(0) 0.06(0) 0.58(4) 0.82(6)

Geom 14.23(263) 11.61(152) 22.75(322) 27.85(318) 304.42(832) 407.61(3582)

netscience 1.07(30) 2.28(15) 2.09(12) 2.41(7) 16.62(391) 24.23(219)

cond-mat 48.94(1360) 47.2(1413) 34.27(46) 57.68(1079) 422.49(5737) 901.53(7856)

SciMet 3.89(84) 3.35(5) 4.34(38) 6.04(46) 67.91(363) 79.97(362)

smaGri 1.26(22) 1.46(6) 1.89(14) 2.07(16) 15.71(108) 17.14(132)

smallW 0.41(7) 0.57(5) 0.58(4) 0.64(3) 4.52(28) 4.86(41)

NIPS 0.09(1) 0.14(1) 0.21(0) 0.25(1) 1.96(10) 2.93(17)

NIPSCW 1.98(29) 2.13(20) 3.05(14) 3.6(18) 72.89(1046) 45.23(261)

with one giant community). In the analysis of all three datasets the IRM model resulted

in substantial fewer clusters than the proposed BCD model. For the dataset generated

according to the IRM model without community structure the BCD generated a large

number of small clusters that combined nodes from IRM clusters with strong between

cluster link density or split existing clusters into smaller components. From these results

it is evident when inspecting the permuted graphs that the clusters extracted by BCD do

not form valid communities according to def. 1. For the data generated according to

the BCD model the IRM merged many of the relatively small or low density commu-

nities together. In the analysis of the Erdős-Rényi random graph the BCD model was

able to identify community structure emerging at random. When evaluating the models

performance in terms of their ability to predict links it was observed that the model that

generated the data outperformed the alternative model while both models performed no

better than random guessing on the Erdős-Rényi random graph. This indicates that link-

prediction can be used to quantify the better model (the three experiments are given in

demo3.m, demo4.m and demo5 in the accompanying Matlab toolbox [18]).
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Table 4: Area under curve (AUC) [%] link prediction results from [16] for the non-

parametric latent feature relational model (LFRM) [16], infinite relational model (IRM)

[12], mixed membership stochastic blockmodel (MMSB) [1], and the proposed infinite

community model (BCD). (Standard deviation on last digit given in parenthesis).

LFRM IRM MMSB BCD

IRM init. Random init. Shared gap Separate gap

Countries (global) 87.1(10) 70.7(53) 85.0(3) 86.4(8) 83.7(7) 78.2(7)

Alyawarra (global) 91.8(11) 71.3(30) 89.4(30) 91.4(10) 93.7(2) 93.5(1)

NIPS 95.1(13) 94.7(13) 89.1(13) 87.1(13) 91.2(6) 93.8(5)

In tab. 3 is given the average pr. iteration cpu-time for each of the methods. A

benefit of the IHW,IDM, IRM and BCD are that they scale in the number of edges rather

than the size of the network. I.e. all the methods rely on the sufficient statistics N+
`m

and N−`m that can be efficiently computed considering only the edge list of the graph

rather than the full adjacency matrix of size N2. From the cpu-times it can be seen

that the BCD in general is about 10 times slower than the other approaches. Part of

this additional computational cost can be attributed to the evaluation of the log of the

normalized incomplete beta and gamma functions based on Matlab’s betainc.m and

gammainc.m functions that invokes about twice the cost of the regular betaln.m and

gammaln.m functions. The remaining additional cost we attribute to the computational

cost invoked by non-conjugate split merge sampling of Z, as well as sampling of η̇ and

γ.

We finally compared the proposed BCD model to the mixed membership stochastic

block-model (MMSB) [1] and latent feature relational model (LFRM) [16] on the same

datasets and link-prediction setup considered in [16] (see tab. 4.) The number of com-

ponents in the MMSB model can be estimated based on maximizing the likelihood on

hold out data [1]. BCD is the best performing model on the Alyawarra dataset while

being on par with the best performing LFRM model for the NIPS data. It is also bet-

ter performing than the Baysian clustered tensor factorization model of [26] having an

AUC of 0.90 and the Multiple Relational Clusterings MRC of [13] resulting in an AUC
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score of approximately 0.85. However, the model does not perform well on the Coun-

tries data. We attribute this to the data not being well described by community structure,

since some relations are positive (e.g. military alliance with and exports to) while other

are negative (e.g. protests and negative communications) [12] which does not comply

with the notion of community structure assumed in BCD.

4 Conclusions

Many networks of scientific interest naturally decompose into clusters or communities.

In this paper we proposed the BCD model to explicitly model community structure

in networks and demonstrated that modeling community structure improves on link

prediction compared to the IRM and related non-parametric models of networks. Our

analysis support the observation that community structure is an important structural

property of networks [4] that as currently demonstrated can be incorporated into the

non-parametric Bayesian modeling of networks. The proposed BCD model trivially

extends to other Bayesian generative models such as the multiple-membership modeling

of [16, 17] as well as the degree corrected stochastic block model of [11]. A Matlab

toolbox with the proposed inference procedure is available for download [18].

Appendix A: NIPS author communities

In tab. 5 is given the extracted groups by the IRM and BCD for the small binary NIPS

network of the 234 top collaborating NIPS authors. From the extracted groups it can be

seen that the large first cluster of the IRM model has been split into several clusters by the

BCD (i.e. cluster 2, 3, 9, 10, 15-28) representing dense sub communities of authors that

collaborate closely. The remaining smaller clusters extracted by IRM are very similar to

the clusters defined by BCD, i.e. IRM cluster 2 ∼ BCD cluster 1, IRM cluster 3 ∼ BCD

cluster 4, IRM cluster 4 ∼ BCD cluster 7, IRM cluster 5 ∼ BCD cluster 8, IRM cluster 6

∼ BCD cluster 11, IRM cluster 7 ∼ BCD cluster 13 and IRM cluster 8 ∼ BCD cluster 12.
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When generating synthetic data according to the BCD model a similar effect is observed;

the IRM merges some of the small or low density communities into large low density

clusterswhereas the BCD model correctly identifies the generated communities (see also

demo.4 in the accompanying Matlab toolbox [18]).
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