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Abstract
The role of inhibition is investigated in a multiclass support vector machine formalism inspired by
the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or
classification functions, that compete with each other to encode a particular input. Strongly active
output neurons depress or inhibit the remaining outputs without knowing which is correct or
incorrect. Accordingly, we propose to use a classification function that embodies unselective
inhibition and train it in the large margin classifier framework. Inhibition leads to more robust
classifiers in the sense that they perform better on larger areas of appropriate hyperparameters
when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a
tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems.
These properties make this approach useful for data sets with a limited number of labeled
examples. For larger data sets, there is no significant comparative advantage to other multiclass
SVM approaches.

1 Introduction
The question of what algorithms neural media use to solve challenging pattern recognition
problems remains one of the most fascinating and elusive problems in the neurosciences, as
well as in artificial intelligence. Perceptrons and artificial neural networks were originally
inspired by neural computation, but thereafter, a new generation of powerful algorithms for
pattern recognition returned to Fisher discriminant ideas and addressed the fundamental
question of minimizing the generalization error by using statistical principles. Kernel-based
methods, in particular support vector machines (SVMs), became prevalent due to the
convenience and simplicity of their algorithms. These methods became standard, and the
original inspiration from neural computation faded away. The heuristics of neural
integration, neural networks, plasticity in the form of Hebbian learning, and the regulatory
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effect of inhibitory neurons were less needed, and the bioinspiration from neuroscience and
AI fields grew increasingly distant from each other.

We seek to bridge this gap and identify the similarities and, in some cases, equivalence
between neural information processing and large margin classifiers. We use the large margin
classifier formalism and attempt to identify a correspondence to neural mechanisms for
pattern recognition, putting emphasis on the role of inhibition (Huerta, Nowotny, Garcia-
Sanchez, Abarbanel, & Rabinovich, 2004; Huerta & Nowotny, 2009; O’Reilly, 2001). We
use insect olfaction as our biological model system for two main reasons: (1) the simplicity
and consistency of the structural organization of the olfactory pathway in many species and
its similarity to the structure of a SVM and (2) the large body of knowledge concerning the
location of learning in insects during odor conditioning, which matches the location of
plasticity in SVMs.

The mushroom bodies in the brains of insects contain many classifiers that compete with
each other. The mechanism to organize this competition such that a single winner (class)
emerges is inhibition (Cassenaer & Laurent, 2012; Huerta et al., 2004; Nowotny, Huerta,
Abarbanel, & Rabinovich, 2005; Huerta et al., 2009; O’Reilly, 2001). Each individual
classifier exerts downward pressure on the rest, with a strength that has to be regulated. The
SVM formalism provides a framework in which to understand the consequences of
inhibition in multiclass classification problems.

The solution of the value of the inhibition using the SVM formalism leads to a unique
solution, it is robust to parameter variations, and it is a tight bound of probabilistic
exponential models. We also show simple sequential algorithms to solve the problem using
the sequential minimization algorithm (Platt, 1999a, 1999b; Keerthi, Shevade,
Bhattacharyya, & Murthy, 2001) and a stochastic gradient descent (Chapelle, 2007; Kivinen,
Smola, & Williamson, 2010). We provide efficient software for both algorithms written in
C/C++ for others to experiment with (http://inls.ucsd.edu/~huerta/ISVM.tar.gz).

We present extensive experimental results using a collection of easy and difficult data sets,
some with heavily unbalanced classes. The data sets are from the UCI repository except for
the MNIST digits data set. Results show that the inhibitory SVM framework generalizes
better than the leading alternative methods with a small number of training examples. The
mechanism of inhibition provides robustness. The inhibitory models, for a large sample of
meta parameters, outperform 1-versus-all SVMs and Weston-Watkins multiclass SVMs
(Weston & Watkins, 1999). For large data sets when there is sufficient data to estimate the
metaparameters by leave-one-out strategies, the ISVM does not provide a significant
advantage. Moreover, in terms of Bayes consistency (Tewari & Bartlett, 2007), the
inhibitory SVM is better than other methods with the exception of Lee, Lin, and Wahba
(2004).

This letter starts by explaining the notation and the insect-inspired formalism of the
inhibitory classifier, followed by a comparison to previous methods using the same notation.
Then we solve the formulation to write efficient and simple algorithms. We conclude with
experimental results.

2 Insect Brain Anatomy
The three areas of the insect brain involved in olfaction are the olfactory receptor cells or
sensors, the antennal lobe (AL) or feature extraction device, and the mushroom body (MB)
or classifier (see Figure 1). When a gas is present, olfactory receptor cells feed this
information into the AL, which extracts the features that will be classified by the MB.
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The input, and hence the evoked feature pattern x in the AL, can be associated with either a
reward +1 or with punishment −1 at the level of the output of the MB that we denote by y.
Given N inputs, the problem consists of training the MB to correctly match yi = f (xi) for i =
1, …, N.

The MB function consists of two phases (Heisemberg, 2003; Laurent, 2002): (1) a projection
into an explicit high-dimensional space Φ(x) named calyx and consisting of hundreds of
thousands of Kenyon cell neurons (KC) and (2) a perceptron-like layer in the MB lobes
(Huerta & Nowotny, 2009) where the classification function of each output neuron is
implemented, fk (x) = 〈wkj, Φ(x)〉 = Σjwkj Φj (x).1 The inner product reflects the synaptic
integration of KC outputs in MB lobe neurons. Huerta and Nowotny (2009) and Huerta et al.
(2004) showed that simple Hebbian rules can solve discrimination and classification
problems because they closely resemble the learning obtained by calculating the subgradient
in an SVM framework. In particular, it can be shown that the change in the synaptic
connections, Δw, is proportional to Φj (x). These rules are also equivalent to the perceptron
algorithm, as Freund and Schapire (1999) showed.

In addition, the MB lobes contain hundreds of neurons that operate in parallel and compete
via synaptic inhibition that they receive from each other, in addition to the input Φ(x) from
the calyx. The output neurons can, in principle, code for different stimulus classes. They can
be situated in different MB lobes specializing in different functions, and they are modulated
by neuromodulators like dopamine, octopamine, and others that are the focus of intense
research in neuroscience.

The concept of inhibition does not directly appear in the SVM literature, although a fairly
large body of research on multiclass SVMs uses similar concepts. Our goal here is to
directly integrate the concept of inhibition into the SVM formalism in order to provide a
simple algorithm for multiclass classification.

3 The Inhibitory Classifier
Consider a training set of data points xi for i = 1,…, N where N is the number of data points.
Each point i belongs to a known class ŷi whose value is an integer in the range [1, L]. We
first make a change of variables from the vector ŷ to the N × L matrix y (called a coding
matrix by Diettrich & Bakiri, 1995) defined by

(3.1)

that is, yij is 1 if the data point xi belongs to the class j; otherwise the entry is −1.2

Next, we create a vector χi as L concatenations of xi, that is,

(3.2)

1Note the distinction to the standard kernel trick with an implicit mapping of inputs. Explicit mapping of inputs into a high-
dimensional feature space was recently considered in Chang, Hsieh, Chang, Ringgaard, and Lin (2010) to speed up the training of
nonlinear SVMs.
2There is a proposed generalization of the coding matrix (Allwein, Schapire, & Singer, 2000). For simplicity, we prefer to solve the
problem of inhibitory classifiers in the framework of Diettrich and Bakiri (1995). The extension proposed by Allwein et al. (2000) is a
possible generalization for the future.
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If xi ∈ ℜM, then the number of components of χi is L · M. More generally, given an
arbitrary data point x ∈ ℜM, define (ℜM) ⊂ ℜLM to be the subspace of intrinsic dimension
M built by vectors of the form χ = (x, x, …, x) (x repeated L times). We say sometimes that
χ = (χ1, …, χLM) is the embedding of x into (ℜM). The inverse relation is given by x =
(χkL+1, χkL+2, …, χ(k+1)L) for any k = 0, 1, …, M − 1.

When discussing SVMs, it is common to assume a nonlinear transformation Φ : ℜM → 
from the original data space ℜM to a feature vector space  in order to facilitate the
separability of data points. Moreover, we assume that  is endowed with a dot product 〈·,
·〉 :  ×  → ℜ. The inhibitory SVM proposed here uses a feature space that is the
Cartesian product =  ×···×  (L times). Correspondingly, we extend Φ to a nonlinear
transformation Ψ : (ℜM) → ( ), where ( ) ⊂ is the subspace of dimension dim 
built analogously as before, by repeated concatenation of the first dim  components, and

(3.3)

where χ is the embedding of x into (ℜM). Furthermore, let Ψj : (ℜM) →  be the
composition of Ψ with the projection operator onto the jth coordinate subspace of 
corresponding to the class j, that is,

(3.4)

To ease the notation, the indices i, i′ will refer henceforth to data points in ℜM, while the
indices j, j′ will refer to the classification classes. Their ranges are thus i, i′ ∈ {1, …, N}
and j, j′ ∈ {1, …, L}.

The new inhibitory classifier for a data point xi and class j, fj : (ℜM) → ℜ, has the form

(3.5)

where w ∈ , w ≠ 0, is a hyperplane. Here 〈·, ·〉 is the dot product in , defined as the sum
of the dot products of corresponding projections onto each factor space . The scalar μ is
the inhibitory factor and is the key novelty compared to other multiclass SVM methods
because it is directly used in the evaluation of the classification function. As we will show,
the value of the inhibitory factor μ can be derived directly from the minimization of the
Lagrangian form and is data set independent. Note that

(3.6)

for all i = 1, …, N.

The transformations Ψ and Ψj inherit many properties from the transformation function of
standard SVMs, Φ : ℜM → . In particular (see equations 3.3 and 3.4),

(3.7)
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(3.8)

(3.9)

where the dot product 〈·, ·〉 on the left-hand side of equations 3.7 to 3.9 is taken in the
product space , while the dot product on the right-hand side is taken in , and the
indicator function I(j = j′) is 1 if j = j′ and 0 otherwise. The dot product 〈Φ(xi), Φ(xi′)〉 can
be computed effectively by a standard SVM kernel evaluation Kii′ = K(xi, xi′) = 〈Φ(xi),
Φ(xi′)〉. Thus, we can develop the inhibitory multiclass SVM formulation using the standard
kernel trick.

The basic idea behind equation 3.5 is to train fj classifiers that inhibit each other by a factor
μ, which is data set independent. In the current form, we seek a single winner by virtue of
the matrix yij. However, the approach can be used with data points assigned to multiple
classes. All the subclassifiers fj must adjust, using the inhibitory factor, to classify the whole
training set as well as possible. The conditions to have all the training points properly
classified are

where ηi j = 0 are N · L slack variables.

Inhibition is not a new concept in machine learning. In particular, it has already been
proposed in the context of energy-based learning via the so-called generalized margin loss
(GML) function (LeCun, Chopra, Hadshell, Ranzato, & Jie, 2006). The word inhibition is
not used explicitly in LeCun et al., but there are manifest similarities. The GML function
represents the distance between the correct answer and the most offending incorrect answer.
GML learning algorithms must change parameter values in order to make this distance be
above a margin m. One can express the GML using our notation as

The goal of training is to achieve  for all yi j = 1, where m is an arbitrary
margin value. The inhibitory formulation that we propose replaces the max operation by a
summation and a multiplicative factor μ. Thus, we retain differentiability, which is
advantageous for subsequent developments. A second difference is that the SVM
formulation requires margin constraints to be satisfied for yi j = −1. As we will see in the
next few sections, these modifications allow us to create an effective, straightforward
version of inhibition for SVMs.

Regular SVMs have been related to probabilistic exponential models (Canu & Smola, 2005;
Pletscher, Soon Ong, & Buhmann, 2010). The inhibitory SVM can remarkably also be
connected to log-linear models. Using our notation in a log-linear model, the probability of
the label j given the data point χ and parameters w is
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where the indices j and k run over the classes 1 to L. Taking the logarithm of the previous
expression gives

Lemma 1
Given f = (f1, …, fL) ∈ ℜL, then

(3.10)

for f1, = ··· = fL only

The proof can be found in appendix A. By applying lemma 1, one can write

(3.11)

which is an equality if and only if fj := 〈w, Ψj (χ)〉 = 〈w, Ψk(χ)〉=: fk, for all 1 ≤ j, k ≤ L.

Note that most of the values of 〈w, Ψj(χ)〉 will be in the range [−1, 1] due to the large
margin optimization of yi j fj (χi) ≥ 1 − ηi j. That means that the equality is a close bound to
p(j|χ; w) for most of the χi. This approximation to log p(j|χ; w) is similar to equation 3.5,
where μ is in this case 1/L, as shown below in the derivation. The universality of the
inhibitory factor is prevalent. The idea of inhibition can thus be expressed by a
normalization factor that depends on the outcome of all classifiers.

4 The Primal Problem
The primal objective function is the sum of the loss on each training example and a
regularization term that reduces the complexity of the solution (Vapnik, 1995; Muller, Mika,
Ratsch, Tsuda, & Schölkopf, 2001). The relative weight of the regularization term is
controlled by a constant C > 0. The primal optimization problem can be expressed as

(4.1)

Thus, we have L · dim  + 1 variables (w ∈ \{0} and μ ∈ ℜ) and 2NL constraints. This
problem is not convex in general due to the dependence of ηi j on w and μ. Observe that fj
(χi) also depends on w and μ (see equation 3.5). If dom η = ∩i j dom ηi j denotes the
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common domain of the maps ηi j, then the domain of the problem, equation 4.1, is  = ( 
\{0} × ℜ)∩ dom η. Moreover, we assume that all ηi j are continuously differentiable. For
practical purposes, the latter codition can be relaxed to hold except on a zero-measure set.

Consider the Lagrangian associated with equation 4.1:

(4.2)

(4.3)

where α = (αi j) ∈ ℜNL, β = (βi j) ∈ ℜNL are the Lagrange multipliers. The Lagrange dual
function (Boyd & Vandenberghe, 2004),

(4.4)

then yields a lower bound on the optimal value p* of the primal problem, equation 4.1, for
all αi j ≥ 0 and βi j ≥ 0.

Thus, (α, β) is determined by the critical points of  (w, μ, α, β) for each value of α and
β. Since  is a C1 function of all its variables, we take the partial derivatives of  with
respect to w and μ and equate to zero in order to get its critical points:

(4.5)

(4.6)

According to the implicit function theorem, the solutions of equations 4.5 and 4.6 provide
local functions w = wcrit (α, β) and μ = μcrit (α, β), except possibly for a zero measure set
(actually a manifold) comprising those αi j, βi j values that make the Jacobian determinant
vanish:

(4.7)

Moreover, these functions are continuously differentiable on account of all functional
dependencies in equations 4.5 and 4.6 being continuously differentiable. Note that the
infimum in equation 4.4 is taken over points (w, μ) ∈ , but (wcrit (α, β), μcrit (α, β)) need
not be in  for all values of α and β that parameterize the implicit solutions. This being the
case, we have that

(4.8)

for all α, β such that det J(w, μ, α, β) ≠ 0 and (wcrit (α, β), μcrit (α, β)) ∈ .
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For our purposes, it will suffice to study the critical points on the NL-dimensional plane α +
β − C = 0 (intersection of the NL hyperplanes αi j + βi j = C), where C = (Ci j) ∈ ℜNL with
Ci j = C > 0 for all i, j.

Lemma 2
From equations 4.5 and 4.6, it follows that

(4.9)

and

(4.10)

for all α=(αi j) ∈ ℜNL such that Σi j αi j yi j Ψ (χi) ≠ 0.

The proof can be found in appendix B. Note that C in equation 4.9 is fixed but arbitrary. If
follows that μcrit (α, β) does not depend on either α or β; hence,

(4.11)

Theorem 1
Let E(w*, μ *) be the optimal value of the primal problem, equation 4.1. Then

The proof can be found in appendix C. The optimal solution  renders the average output

of all subclassifiers to be . The inhibitory factor turns out to be
data set independent. Furthermore, from equation 3.6, it follows that Σj fj (χi) = 0.

The next step consists of putting all the constraints back into the classifier given by equation
3.5 to obtain

(4.12)

where χ = (x, x, …, x) ∈ (ℜM). To decide which class to choose for a given data point x,
one uses the same decision function as in Weston and Watkins (1999) and Crammer and
Singer (2001):

(4.13)
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It is important to note that during classification, all of the fj (x) can be simplified because
they are shifted by the same amount, that is,

(4.14)

We can simplify the evaluation on the test set by just calculating

(4.15)

and selecting the class as

(4.16)

5 Previous Integrated Multiclass Formulations
This section places the new inhibitory SVM in the context of previous work. As described in
section 1, the most common approach to multiclass classification is to combine models
trained for a set of separate binary problems. A few previous approaches have integrated all
classes into a single formulation. Generally, for class j, the output of the integrated
approaches uses the classification function

where bj is a bias term, with decision function 4.13. Weston and Watkins (1999) were the
first to put multiclass SVM classification into a single formulation. Using our notation, they
solved the problem

(5.1)

but with different constraints,

for all j such that yi j = 1 and for all j′ such that yi j = −1, where bj, bj′ are bias terms and ηi j
≥ 0. The constraints imply that the SVM scores of all data points belonging to a given class
need to be greater than the margin (see appendix E for details).

The large number of constraints hinders solving the quadratic programming problem.
Crammer and Singer (2001) proposed to reduce the number of slack variables by solving
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(5.2)

with constraints

for all j such that yi j = 1, j′ ≠ j and for all data points i. The main differences with respect to
Weston and Watkins (1999) are the reduced number of slack variables (see appendix F for
details).

Tsochantaridis, Joachims, Hofmann, and Altun (2005) propose solving a similar problem as
in equation 5.2 by rescaling the slack as

for all j such that yi j = 1. The function Δ(yi j, yi j′) allows the loss to be penalized in a
flexible manner, with Δ(1, 1) = 0. A second version proposes rescaling the margin as

Both approaches lead to similar accuracies on test sets, as shown in Tsochantaridis et al.
(2005).

A remarkable approach is the formalism proposed by Lee et al. (2004) where the authors
rewrite the constraints to match the Bayes decision rule (see section 10 for details) such that
the most probable class of a particular example χ is the same as the one obtained by
minimizing the primal problem. Lee and coauthors solve constraints as

such that j is chosen from the set {j ∈ {1, L}, s.t.yi j ≠ 1} with the additional constraint 〈w,
Ψ(χi)〉 = 0. These constraints pose a cumbersome optimization problem but yield Bayes
consistency (Tewari & Bartlett, 2007).

Table 1 presents a summary of the constraints used in each of the described methods. The
main difference between our inhibitory multiclass method and the methods just described is
in the way the classifier for class j is compared to the other classifiers. The inhibitory
method essentially compares to the average of the outputs of all classifiers, while the
previous methods perform pairwise comparisons. The second important difference of the
inhibitory method is that inhibition is incorporated directly into the classification function
itself.
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6 The Dual Problem of the Inhibitory Multiclass Problem
The dual problem is obtained by replacing all the constraints given by equations 4.9 and
4.10 with the solution μ = 1/L in the Lagrangian, equations 4.2 and 4.3, which yields the
dual cost function, W. This cost function has to be maximized with respect to the Lagrange
multipliers, αi j, as follows:

The double index notation in αi j and elsewhere is inconvenient to compare with previous
published work and with the primal formulation explained in the following sections. Thus,
we change the notation from i, j to a new index k running from 1 to N · L. Thus, we order
the αi j ’s lexicographically: α1,1, …, α1,L, α2,1, …, α(N−1),L, αN,1, …, αN,L. With the new
notation, we can write the dual problem as

(6.1)

(6.2)

where k, k′ = 1, …, N · L and

(6.3)

If one uses C-language type indexing with i = 0, …, N − 1, j = 0, …, N − 1, and k = 0, …, N
L − 1, then the following kernel call is suggested:

(6.4)

The Karush-Kuhn-Tucker (KKT) conditions for this problem can be calculated by
constructing the Lagrangian from the dual as in Keerthi et al. (2001):

which leads to
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where Ei = fi − yi and fi = Σk αkykGki. We obtain the standard KKT conditions for the SVM
training problem:

(6.5)

(6.6)

(6.7)

It is useful to define a new variable Vi = yiEi that indicates the proximity to the margin and
saves computation time.

7 Stochastic Sequential Minimal Optimization
Prior to the first sequential minimal optimization (SMO) methods (Platt, 1999a, 1999b), the
quadratic programming algorithms available at the time made SVMs unfeasible for large-
scale problems. The straightforward implementation of SMO enabled a significant thrust of
developments and improvements (Keerthi et al., 2001). The multiclass problem investigated
in equations 6.1 and 6.2 has an advantage due to the absence of the constraint Σk αkyk = 0,
which is typical in the dual SVM formulation. This constraint appears after solving the
primal problem for the bias b of the classifier. It is avoidable in the multiclass problem due
to the mutual competition among the classifiers by means of the inhibitory factor μ.

The idea of optimizing the quadratic function for a pair of multipliers is needed because one
cannot modify the values of a single multiplier without violating the constraint Σk αkyk = 0
(Platt, 1999a, 1999b). In the inhibitory SVM, a single multiplier can be modified at a time.
The analytical solution for a single multiplier i is derived from

whose solution is obtained from  to yield

This can be rewritten as

(7.1)
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where  is the value of the multiplier in the previous iteration. Every time an αi is

updated, each error updates according to . In terms of the
margin variable Vi, one can write

(7.2)

The randomized SMO algorithm is given in algorithm 1. One can improve the performance
of the algorithm by remembering the indices of the multipliers that violate the KKT
conditions. Then, instead of choosing among all possible multipliers, one chooses among
those that need to be changed. The KKT distance function in algorithm 1 is

Above, T is the resolution of the proximity to the KKT condition, which we typically fix to
10−3 as originally proposed by Platt, and ε is the numerical resolution that depends on the
machine precision that we typically set to 10−6. Generally, for all data sets tested, one can
stop the algorithm early without impairing accuracy significantly.

8 Stochastic Gradient Descent in Hilbert Space
Synaptic changes do not occur in a deterministic manner (Harvey & Svoboda, 2007; Abbott
& Regehr, 2004). Axons are believed to make additional connections to dendrites of other
neurons in a stochastic manner, suggesting that the formation or removal of synapses to
strengthen or weaken a connection between two neurons is best described as a stochastic
process (Seung, 2003; Abbott & Regehr, 2004). On the other hand, in recent times, variants
of stochastic gradient descent (SGD) have been used to solve the SVM problem in the
primal formulation (Bottou & Bousquet, 2008; Zhang, 2004; Shalev-Shwartz, Singer, &
Srebro, 2007). The algorithms obtained for the modification of the synaptic weights w
resemble closely Hebbian learning or perceptron rules. We are primarily dealing with
nonlinear kernels, so let us bridge the dual formulation with stochastic gradient descent
using a Hilbert space.

Let us rewrite the primal formulation in equation 4.1 using a reproducing kernel Hilbert
space (RKHS) as proposed in Chapelle (2007) and Kivinen et al. (2010). Let S be the
training data set. For our specific problem, the RKHS  = {f : S→ ℜ} has a kernel G : S ×
S → ℜ with a dot product 〈·, ·〉  such that 〈G(·, χ), f〉  = f (χ), with χ ∈ S and f ∈ . The
primal formulation then can be expressed as

(8.1)

The formal expression of f is a linear combination of the kernel functions such that

. In appendix D we show how the updating rule is derived as
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(8.2)

with

(8.3)

and η is the learning rate. For the evaluation of ft (χ) we use the kernel derived from the
Lagrange multipliers function given by equation 6.3 because we know from the
minimization of the Lagrangian that μ = 1/L. The corresponding i index of χ is the one that
verifies χ= χi in the training set. For stochastic updating, it is convenient to track the
evolution of the margin proximity variable Vi = yi ft (χi) − 1 every time a coefficient α̂i is
changed:

which is very similar to equation 7.2 obtained in the dual form.

Many approaches using stochastic gradient descent use a scaling factor in the learning rate
proportional to (1/iteration number) in order to guarantee convergence (Zhang, 2004;
Shalev-Shwartz et al., 2007). We propose here a different approach that leads to an
algorithm that is almost equivalent to the stochastic SMO method. As in that method, we
make use of the KKT conditions, which requires computing the current state of training at
each iteration. Note that the variable Vi provides guidance concerning distance to the
margin.

If the algorithm chooses the index k, then the change α̂k (t + 1) − α̂k (t) = Δk is derived from

so

(8.4)

assuming that G(χk, χk) ≠ 0. We combine equations 8.4 and 8.2 to obtain the learning rate η
that would take the data point k exactly to the margin as

To avoid the computation inherent in the previous formula one can change Δk to
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(8.5)

When ηeff = 1, the update takes data point x to the margin.

When we use ηeff = 1, we recover the SMO solution given in equation 7.1. The
corresponding SGD algorithm is presented in algorithm 2. Algorithms 1 and 2 are almost
identical. C++ implementations of both algorithms can be found in the software package
ISVM.

When making a prediction for a test example using , we replace G(χi,
χ) by K(xi′, x)(I(j = j′) −1/L) ≡ fj(x), which means that we need to make L evaluations for
each data point from j = 1, …, L and select the one with the largest margin. This procedure
is equivalent to equations 4.12 and 4.13.

The primal and the dual formalism lead to an almost identical algorithm for the inhibitory
multiclass problem. A major appealing feature of the algorithms is the simplicity of their
implementation.

9 Experimental Robustness
In this section we show experimentally that the inhibitory SVM (ISVM) method generally
achieves better generalization than other multiclass SVM methods for small training set
sizes. With large training sets, all methods converge to similar levels of accuracy, and it is
not possible to obtain a clear distinction between methods. Rifkin and Klautau (2004) and
Hsu and Lin (2002) showed that the performance of one-versus-all and one-versus-one
approaches is good on many occasions with faster training times than the rest.

For this investigation, we use a gaussian kernel as exp (− γ||x − x′||2/M). Then we have a
pair of metaparameters C > 0 and γ> 0 to investigate. The key issue, in terms of robustness,
is to determine whether the inhibitory SVM leads to better average performance than 1-
versus-all and Weston-Watkins multiclass approaches for any pair (C, γ). It is obviously not
possible to cover the whole space of metaparameters, but one can sample it and get
estimates. Our sampling methodology picks the best models at different percentile cuts—
10%, 25%, and 50%—because one expects to explore parameter areas with a higher
likelihood of achieving better performance. Thus, we ran an empirical leave-one-out
verification strategy scanning the three hyperparameter values γ= 5, 10 and varying C from
0.1 to 100 at steps of 0.5. The lower bound C = 0.1 is set because for small data sets, the
SVM evaluation functions hardly reach the margin, and the performance drops considerably
for all the methods. Note also that since we discard all solutions below the 50%
performance, we do not explore these solutions. We used the same stochastic SMO
algorithms and the same C++ implementation for 1-versus-all, Weston-Watkins, and ISVM.
Note that the only difference in the methods is the factors multiplying the kernel: K(xi, xi′)
(I(j = j′) − 1/L) for ISVM, K(xi, xi′)I(j = j′) for SVM, and

 for Weston-Watkins.

In order to demonstrate the higher robustness of inhibition in a systematic manner we ran
comparisons in 14 datasets for several different sizes of the training set Ns = 50, 100, 150,
200, 500 (see Table 2). Then we took an average of 100 random samples of each data set of
size Ns. In Table 3, we report the results of pooling the leave-one-out performances for a
grid of metaparameters using the gaussian kernel, exp(−γ ||x − x′||2/M)). The 10% best
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models were pooled and the average calculated. The same procedure is carried out for the
25% and 50% best to illustrate the drop of performance as we increased the area of the
parameter set.

The main conclusion from this assessment is that the average performance for areas of
parameter values that provide a near-optimal performance is higher for the ISVM than for
the 1-versus-all and Weston-Watkins. In general, one can see that for small data sets, the
performance of the ISVM is better, although it curves down for a higher number of
examples. The Weston-Watkins method is competitive for small data sets but then loses
performance for a higher number of samples. In general, the ISVM demonstrates better
overall robustness and performance for small data sets. To summarize the results and add
interpretation to the table, we tested the null hypotheses  that either the SVM or WW
method has average performance better than or equal to the ISVM method. We performed a
maximum likelihood ratio test (Dempster, 1997; Rodriguez & Huerta, 2009) as it has,
according to the Neyman-Pearson lemma, optimal power for a given significance niveau
(Neyman & Pearson, 1933). For the 14-trial (data set) test,  can be rejected at significance
niveau 5% if the likelihood ratio L is larger than c = 3.77. Table 4 summarizes the results by
showing that most of the time we can reject the  hypothesis. If, on the other hand, one runs
the test against the alternative hypothesis  “ISVM is better than or equal to SVM or WW,”
it cannot be rejected in any of the cases.

In terms of training time, the Weston-Watkins algorithm is the fastest of all the methods and
runs eight times faster than the ISVM on the leave-one-out error task from C = 0.1 to 50 for
all the data sets and two times faster than the 1-versus-all. The three methods were
implemented using the same code and the same stochastic SMO, so the better performance
and robustness come with a cost in training, although there is not significant time difference
in execution.

10 Bayes Consistency
Our overall goal is to find a classification function f with a minimal probability of
misclassification R(f) (Lugosi & Vayatis, 2004). In a multiclass setting (Tewari & Bartlett,
2007), given the posterior probabilities pj ≡ p(o = yj |x) with j labeling all L output classes

and given the outputs  after training,  must match arg maxj pj. In other
words, the classifier function, f = {f1, …, fL} must select the most probable class (or the
most probable classes if several classes have equal probability). This condition is called
classification calibration, and theorem 2 in Tewari and Bartlett (2007) asserts that
classification calibration is necessary and sufficient for convergence to the optimal Bayes
risk. Tewari and Bartlett use

(10.1)

where h(fj) is the cost function without the regularization term. The inhibitory SVM has
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where  and fj ∈ ℜ. The problem, equation 10.1 is thus equivalent to solving a
linear problem with infz Σj pj zj, where z takes all the admissible values induced by f ∈ ℜL.
The consistency condition is

Tewari and Bartlett (2007) analyze the consistency of several multiclass classifiers, which
requires characterizing the induced sets of z by f. Because the proofs can be cumbersome
due to the topological complexity of the intersecting hyperplanes induced by f, Monte Carlo
simulations are a viable alternative to quickly evaluate the consistency of a classifier.
Algorithm 3 is a straightforward algorithm.

Table 5 lists the consistency risks observed. An advantage of the ISVM is its consistency for
3-class problems and a lower probability of reaching inconsistencies for L > 3.

11 Conclusion
In this letter, we have developed a new variation on the support vector machine theme using
the concept of inhibition that is widespread in animal neural systems (Cassenaer, & Laurent,
2012). The main engineering advantage of inhibition is the ability to achieve better average
accuracy for a broad metaparameter space with a small number of training examples, shown
across multiple learning tasks. This success of the inhibitory SVM method is reminiscent of
the low number of examples that insects need to learn odor recognition (Smith, Abramson,
& Tobin, 1991; Smith, Wright, & Daly, 2005).

The underlying reason that ISVMs perform better in the cases reported here appears to be
that the inhibition provides a wider area of the hyperparameters C and γ that are close to the
optimum, making finding good hyperparameters easier. Consistency analysis shows that
ISVM are still consistent for 3-class problems and show a smaller percentage of
inconsistencies overall. The ISVM can be made consistent by eliminating the positive
examples yi j = 1 from the primal function, but this point is left for further analysis. Finally,
it is important to emphasize that by using lemma 1, we show that log-linear models are
almost equivalent to the inhibitory SVM framework, reflecting the universality of inhibition
in different classification formalisms.
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Appendix A: Proof of Lemma 1
a. Jensen’s inequality for convex functions applied to the exponential map reads (see

section 3.1.8 of Boyd & Vandenberghe, 2004)

(A.1)

for all f1, …, fL ∈ ℜ. Use the increasing monotonicity of the logarithm function to
derive

which is equation 3.10.

b. From the graphical interpretation of Jensen’s inequality, it is plain that the equality
in equation A.1 holds if and only if f1 = ···= fL, that is, if all the components of f are
equal.
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Appendix B: Proof of Lemma 2
Since αi j and βi j are arbitrary in equations 4.5 and 4.6, set βi j = C − αi j to get the
simplified expressions

(B.1)

(B.2)

Next solve for w in equation B.1 and replace in equation B.2 to obtain

(B.3)

where we employed equations 3.7 to 3.9. Hence  if Σi j αi j yi j Φ(χi) ≠ 0. Finally, note
that the latter inequality holds true if and only if Σi j αi j yi j Ψ(χi) ≠ 0 in virtue of equation
3.3.

Appendix C: Proof of Theorem 1
Let E(w*, μ *) be the optimal value of the primal problem, equation 4.1.

i. In the generic case, det J(w*, μ*, α*, β*) ≠ 0. Then w* = wcrit (α*, β*) and

because μcrit (α, β) is the constant , equation 4.11.

ii. If, otherwise, det J(w*, μ*, α*, β*) = 0, then an argument based on the continuity of
the Jacobian determinant with respect to all of its variables leads to the same

conclusion. Indeed, let  and  be sequences such that det
, and . (This is always possible because the

solutions of det J(w, μ, α, β) = 0 build an (L dim F + 2NL)-dimensional manifold
in an (L dim F + 2NL + 1) -dimensional domain.) Then  and

. Since  for all n ≥ 1, it follows that .

Huerta et al. Page 20

Neural Comput. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix D: Stochastic Gradient Descent on the RKHS
Let us calculate the minimum by taking the gradient of E in equation 8.1 with respect to f.
To this end, note that the partial derivative of max{0, 1 − yi f (χi)} for yi f (χi) = 1 does not
exist uniquely but is bounded between 0 and 1. If 1̄(·) is the function defined as

(D.1)

then

(D.2)

We are looking for a solution of the form  such that ∂f E = 0.
Therefore, we insert f (χ) into equation D.2 to obtain

which leads to

for 1 ≤ i ≤ NL. From the previous equation, we distinguish three types of solution:

which are identical to the KKT conditions obtained in the dual problem and shown in
equations 6.5 to 6.7. The gradient rule for the whole system ft+1 = ft − η∂f E is then

which leads to the updating rule,

Huerta et al. Page 21

Neural Comput. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(D.3)

Appendix E: Weston-Watkins Method
The Weston-Watkins can be written using our notation as

(E.1)

Note that in Weston-Watkins, the margin value is 2 but we replaced it by 1 for consistency
with other methods. After building the Lagrangian and taking all the necessary steps, one
can express the solution as

(E.2)

Using property 3.9, one obtains the dual problem for Weston-Watkins as

(E.3)

where the kernel is expressed as

with j ∈ j*(i), j′ ∈ j′* (i′), and the KKT conditions are

On defining the margin variables as: Vi j = −1 + ·i′, j′* (i′) Gi ji′ j′ αi′ j′, we can directly apply
the stochastic SMO algorithm described in the main text.
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Appendix F: Crammer-Singer Method
The Crammer-Singer multiclass problem can be written as

(F.1)

Note the similarity with the Weston-Watkins method except for the number of constraints
and slack variables. Since the constraints in (ii) are always verified for yi j = 1, we can loop
the j index for the set j*(i) as defined in equation E.1. The problem can be expressed as the
Lagrangian,

(F.2)

By calculating the gradient respect to w and ηm,

(F.3)

replacing the two previous equations back into the Lagrangian and using the property 3.9,
one obtains the dual problem

(F.4)

where the multiclass kernel is exactly the same as Watson-Watkins:

This problem is nearly identical to the Weston-Watkins approach but with minor differences
in the constraints of the Lagrange multipliers due to the use of a lower number of slack
variables. Note also that constraint F.4 is different from the one used in Crammer and Singer
(2001), where ηi ≥ 0 was not enforced in the Lagrangian (see Tsochantaridis et al., 2005, for
an appropriate derivation).
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Figure 1.
Illustration of the correspondence between the insect brain and kernel classification. (Left)
Anatomical picture of the honeybee brain (courtesy of Robert Brandt, Paul Szyszka, and
Giovanni Galizia). The antennal lobe is circled in dashed yellow, and the MB is circled in
red. The projection neurons (in green) send direct synapses to the Kenyon cells in the calyx.
The Kenyon cells carry the connections w that are the equivalent to the SVM hyperplane.
(Right) Equivalent circuit representation in SVM language.
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Table 2

Summary of the Data Sets Used for Robustness Calculation.

Data Set Number of Examples Number of Classes Base Performance

Abalone 4,177 6 (age/5)a 36%

DNA 3,186 3 52

E. coli 332 6b 43

Glass Identification 214 7 35

Iris 150 3 33.33

Image Segmentation 330 7 14

Landsat Satellite 6,435 6 23.8

Letter 20,000 26 4

MNIST 60,000 10 10

Shuttle 58,000 7 78

Vehicle 946 4 25.7

Vowel Recognition 528 11 9

Wine recognition 178 3 40

Yeast 1,462 10 30

Notes: We indicate the number of examples, the number of classes, and the worst possible performance by choosing as the default answer the most
probable class in the data sets.

a
This data set predicts age from 1 to 29. It is more of a regression problem. Thus, we predict age bands dividing age by 5.

b
imL and imS classes removed because they have two examples each.
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Table 5

Monte Carlo Simulation of Consistency Using 100,000 Runs.

L Regular SVM ISVM Weston-Watkins

2 0% 0% 0%

3 5 0 15

4 25 10 39

5 37 17 48

Notes: We found 0% consistency errors, not surprisingly, for binary problems. The ISVM is also consistent for L = 3, and then it becomes
inconsistent. Note that the probability of having a harder problem increases with the number of classes.
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Algorithm 1

Stochastic SMO Algorithm.

t := 1

αi:= 0 and Vi := −1 for i = 1, …, N L

do {

 Choose one index from k ∈ [1, …, N L].

  ,

 αnew = max{0, αnew} and αnew = min{C, αnew}

 Initialize the KKT distance: KKT := 0

 loop over all i = 1, …, N L

  Vi := Vi + (αnew − αk) yiykGik

  KKT := KKT + KKT distance(Vi, αi)

 end loop

 αk = αnew

 KKT := KKT/(N L)

 t := t + 1

 } while (KKT >θ)

Note: N is the number of data points, L is the number of classes, and θ is the termination threshold, which we generally set to the same value as the

tolerance T (10−3).
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Algorithm 2

Stochastic Gradient Descent (SGD) with Endogenous Learning Rate.

t := 1

αi:= 0 and Vi:= −1 for i = 1, …, N L

do {

 Choose one index from k ∈ [1, …, N L].

  

 αnew = max{C, αnew} and αnew = min{−C, αnew}

 Initialize the KKT distance: KKT := 0

 loop over all i = 1, …, N L

  Vi := Vi + yi(αnew − α̂k)Gik

  KKT := KKT + KKT distance(Vi, yiα̂i)

 end loop

 KKT := KKT/(N L)

 α̂k = αnew

 t:= t + 1

 } while (KKT > θ)

Note: N is the number of data points, L is the number of classes, ηeff is the learning rate, and θ is the stopping criterion. Note that this algorithm

needs to compute the Vi values.
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Algorithm 3

Monte Carlo Algorithm to Check Bayes Consistency.

c := 1, N := 1, L := L*

do {

 Choose p ∈ (ℜ+)L and normalize pi := pi/Σj pj

 Find the infimum of Σi pih(fi)

 if arg mini h(fi) = arg maxi pi then c := c + 1

 N := N + 1

} while (N ≤ Nmax)
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