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Abstract
Computing sparse redundant representations is an important problem both in applied mathematics
and neuroscience. In many applications, this problem must be solved in an energy efficient way.
Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network
of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-
descent-like steps on analog internal variables and coordinate-descent-like steps via quantized
external variables communicated to each other. Interestingly, such operation is equivalent to a
network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural
computation. We compare the numerical performance of HDA with existing algorithms and show
that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show
that HDA is stable against time-varying noise, specifically, the representation error decays as

 for Gaussian white noise.

1 Introduction
Many natural signals can be represented as linear combinations of a few feature vectors (or
elements) chosen from a redundant (or overcomplete) dictionary. Such representations are
called sparse because most dictionary elements enter with zero coefficients. The importance
of sparse representations has been long recognized in applied mathematics (Chen et al.,
1998, Baraniuk, 2007) and in neuroscience, where electrophysiological recordings
(DeWeese et al., 2003) and theoretical arguments (Attwell and Laughlin, 2001, Lennie,
2003) demonstrate that most neurons are silent at any given moment (Olshausen and Field,
1996, Gallant and Vinje, 2000, Olshausen and Field, 2004).

In applied mathematics, sparse representations lie at the heart of many important
developments. In signal processing, such solutions serve as a foundation for basis pursuit
(Chen et al., 1998) de-noising, compressive sensing (Baraniuk, 2007) and object recognition
(Kavukcuoglu et al., 2010). In statistics, regularized multivariate regression algorithms, such
as the Lasso (Tibshirani, 1996) or the elastic net (Zou and Hastie, 2005), rely on sparse
representations to perform feature subset selection along with coefficient fitting. Given the
importance of finding sparse representations, it is not surprising that many algorithms have
been proposed for the task (Efron et al., 2004, Zou and Hastie, 2005, Friedman et al., 2007,
Yin et al., 2008, Cai et al., 2009a, b, Li and Osher, 2009, Xiao, 2010). However, most
algorithms are designed for CPU architectures and are computationally and energy
intensive.

Given the ubiquity of sparse representations in neuroscience, how can neural networks
generate sparse representations remains a central question. Building on the seminal work of
Olshausen and Field (Olshausen and Field, 1996), Rozell et al. have proposed an algorithm

Published as: Neural Comput. 2012 November ; 24(11): 2852–2872.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



for sparse representations by neural networks called Local Competitive Algorithm (LCA)
(Rozell et al., 2008). Such algorithm computes a sparse representation on a network of nodes
that communicate analog variables with each other. Although a step towards biological
realism, the LCA neglects the fact that most neurons communicate using action potentials
(or spikes) - quantized all-or-none electrical signals. Although spiking neurons can
communicate analog variables by firing rates, their punctuate nature leads to computational
inferiority relative to pure analog unless the limit of large number of spikes is taken (Deneve
and Boerlin, 2011, Shapero et al., 2011). However, this limit erases the advantage of spiking
in terms of energy efficiency, an important consideration in brain design (Attwell and
Laughlin, 2001, Laughlin and Sejnowski, 2003).

In this paper, we introduce an energy efficient algorithm called hybrid distributed algorithm
(HDA), which computes sparse redundant representations on the architecture of (Rozell et
al., 2008) but using neurons that spike. We demonstrate that such algorithm performs as well
as the analog one, thus suggesting that spikes may not detrimentally affect computational
capabilities of neural circuits. Moreover, HDA can serve as a plausible model of neural
computation because local operations are described by the biologically inspired integrate-
and-fire neurons (Koch, 1999, Dayan and Abbott, 2001). Other spiking neuron models have
been proposed for sensory integration, working memory (Boerlin and Deneve, 2011) and
implementing dynamical systems (Deneve and Boerlin, 2011, Shapero et al., 2011).

Because spiking communication requires smaller bandwidth, HDA may also be useful for
sensor networks, which must discover sparse causes in distributed signals. In particular,
large networks of small autonomous nodes are commonly deployed both for civilian and
military applications, such as monitoring the motion of tornado or forest fires, tracking
traffic conditions, security surveillance in shopping malls and parking facilities, locating and
tracking enemy movements, detection of terrorist threats and attacks, (Tubaishat and
Madria, 2003). The nodes of such networks use finite-life or slowly charging batteries and,
hence, must operate under limited energy budget. Therefore, low-energy computations and
limited bandwidth communication are two central design principles of such networks.
Because correlations are often present among distributed sensor nodes, computing sparse
redundant representations is an important task.

The paper is organized as follows. In §2 we describe the Bregman iteration method for
computing sparse representations and briefly introduce two other distributed methods. We
then consider a refined Bregman iteration method with coordinate descent modifications
(§3) and continue in §4 by deriving our hybrid distributed algorithm. In §5 we prove the
asymptotic performance guarantee of HDA, and demonstrate its numerical performance in
§6. Finally, we conclude with the discussion of the advantages of HDA (§7).

2 Problem statement and existing distributed algorithms
A sparse solution u ∈ ℝn of the equation Au = f, where f ∈ ℝm, and wide matrix A ∈ ℝm×n

(n > m) can be found by solving the following constrained optimization problem:

(1)

which is known as basis pursuit (Chen et al., 1998). In practical applications, where f
contains noise, one typically formulates the problem differently, in terms of an
unconstrained optimization problem known as the Lasso (Tibshirani, 1996):

(2)
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where λ is the regularization parameter which controls the trade-off between representation
error and sparsity. The choice of regularization by l1-norm assures that the problem both
remains convex (Boyd and Vandenberghe, 2004, Dattorro, 2008, Bertsekas, 2009) and
favors sparse solutions (Tibshirani, 1996, Chen et al., 1998). In this paper we introduce an
energy efficient algorithm that searches for a solution to the constrained optimization
problem (1) by taking steps towards solving a small number of unconstrained optimization
problems (2). Our algorithm is closest to the family of algorithms called Bregman iterations
(Yin et al., 2008, Cai et al., 2009a, b, Osher et al., 2010), which take their name from the
replacement of the l1-norm by its Bregman divergence (Bregman, 1967), D(u, uk) = λ‖u‖1 −
λ‖uk‖1 − 〈pk, u − uk〉, where p is a sub-gradient of λ‖u‖1 (Boyd and Vandenberghe, 2004)..
The iterations start with u0=p0=0 and consist of two steps:

(3)

(4)

Throughout the paper, we assume that A is column normalized, i.e. if Ai is the i-th column of

A, . Note that, because n > m, A defines a (redundant) frame. Moreover, we assume

that  for any i ≠ j.

A practical algorithm for solving (1) called linearized Bregman iterations (LBI) is derived
by solving the optimization problem (3) approximately (Yin et al., 2008, Cai et al., 2009a,
b). The square error term in Eq. (3) is replaced by its linear approximation 〈AT (Au − f), u −

uk〉 around uk and a proximity term  is added to reflect the limited range of
validity of the linear approximation. After some algebra the steps (3) and (4) reduce to the
following two-step LBI (Yin et al., 2008, Cai et al., 2009a, b):

(5)

(6)

where νk = pk + uk/δ and the component wise operation

 (Elad et al., 2007).

The LBI can be naturally implemented by a network of n parallel nodes, Figure 1, an
architecture previously proposed to implement LCA (Rozell et al., 2008). Such a network
combines feedforward projections, AT, and inhibitory lateral connections, −ATA, which
implement “explaining away” (Pearl, 1988). At every step, each node updates its component
of the internal variable, ν, by adding the corresponding components of the feedforward
signal, ATf, and the broadcast external variable, −ATAu. Then, each node computes the new
value of its component in u by shrinking its component in ν. Another distributed algorithm
called RDA (Xiao, 2010) can also be implemented by such a network.

Although LBI, LCA or RDA achieve sparse approximation of the incoming signal,
implementing these algorithms in man-made or biological hardware using the network
architecture of Fig. 1 would be challenging in practice. The reason is that all these
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algorithms require real-time communication of analog variables, thus placing high demands
on the energy consumption and bandwidth of lateral connections. Considering that the
potential number of lateral connections is O(n2), and both volume and energy are often a
limited resource in the brain (Attwell and Laughlin, 2001, Chklovskii et al., 2002, Laughlin
and Sejnowski, 2003) and in sensor networks (Tubaishat and Madria, 2003) we search for a
more efficient solution.

3 Bregman coordinate descent
In an attempt to find a distributed algorithm for solving (1) under bandwidth limitations, we
explore a different strategy, called coordinate descent, where only one component of u is
updated at a given iteration (Friedman et al., 2007). Inspired by (Li and Osher, 2009) we
derive a novel Bregman coordinate descent algorithm. We start from (3) and rewrite the
energy function on the right hand side by substituting matrix notation with explicit
summation over vector components:

(7)

Assuming that in the (k+1)-th iteration, the i-th component of u is to be updated, and the

values of all other components of u remain unchanged, then the updated value  is obtained
from

(8)

where we denote the i-th component of u to be updated as x. In iteration (8) we drop terms
independent of ui and do not keep track of the iteration number k. The condition for the
minimum in (8) is

(9)

where ∂ [․] designates a subdifferential (Boyd and Vandenberghe, 2004). Noticing 

and , we rewrite (9) as

(10)

From the optimality condition (10), we get the update formula of pi (Yin et al., 2008),

(11)

where . By defining νi = pi + ui, we get:

(12)

Then we derive the update formula of ui. Noticing
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(13)

we rewrite (8) as

(14)

By substituting Eqns. (11) and (12) into (14), we get:

(15)

These iterations appear similar to that in LBI (5, 6), but are performed in a component-wise
manner resulting in the following algorithm.

Algorithm 1

Bregman coordinate descent

Initialize: ν=0, u=0

while "  not converge" do

“choose i ∈ {1: n}”

νi ← νi − Ai
T (Au − f ), (16)

ui ← shrink(νi, λ). (17)

end while
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In addition to specifying component-wise iterations in Algorithm 1, we must also specify the
order in which the components of u are updated. Previous proposal include updating
components sequentially based on the index i (Friedman et al., 2007, Genkin et al., 2007),
randomly, or based on the gradient of the objective function (Li and Osher, 2009). In
general, choosing i in a distributed architecture requires additional communication between
nodes and, therefore, places additional demands on energy consumption and communication
bandwidth.

4 Derivation of the Hybrid Distributed Algorithm (HDA)
Here, we present our central contribution, a distributed algorithm for solving (1), which has
lower communication bandwidth requirements than the existing ones and does not require
additional communication for determining the update order. We name our algorithm Hybrid
Distributed Algorithm (HDA) because it combines a gradient-descent-like update of ν, as in
Eq. (5), and a coordinate-descent-like update of ui, as in Eq. (17). The key to this
combination is the quantization of the external variable, arising from replacing the shrinkage
operation with thresholding. As a result:

1. Due to quantization of the external variable, communication between nodes
requires only low bandwidth and is kept to a minimum.

2. The choice of a component of u to be updated, in the sense of coordinate descent, is
computed autonomously by each node.

To reduce bandwidth requirements, instead of communicating the analog variable u, HDA
nodes communicate a quantized variable s ∈ {−1,0,1}n to each other. The variable u, which

solves (1) is obtained from s by averaging it over time: .

In HDA, components of s are obtained from the internal variable ν:

(18)

where threshold function is component wise, .

An update for the internal variable ν is similar to (5) but with substitution of u by λs:

(19)

Note that in HDA there is no need to explicitly specify the order in which the components of
u are updated because the threshold operation (18) automatically updates the components in
the order they reach threshold. Updates (18, 19) lead to the following computer algorithm.

Algorithm 2

Discrete-time HDA

Initialize: ν=0, u=0, s=0, t=0.

while “  not converge” do

t ← t + 1
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ν ←ν − AT (λAs − f),

s ← threshold (ν, λ),

u ← ((t − 1)u + λs)/t.

end while

Although not necessary, precomputing ATA and ATf may speed up algorithm execution.

To gain some intuition for Algorithm 2 consider an example, where f is chosen to coincide
with some column of A, i.e. f=Ai. Then the solution of problem (1) must be ui=1, uj≠i=0.
Now, let us see how the algorithm computes this solution.

The algorithm starts with ν=0, u=0, s=0. Initially, each component νj changes at a rate of

 and, while the i-th component is below the threshold, u stays at 0. Assuming λ ≫ 1,

after  iterations, νi reaches the threshold λ and si switches from 0 to 1. At that

time, the other components of ν are still below threshold, 
and, therefore the components sj≠i stay at 0. Note that choosing large λ guarantees that no
more than one component reaches the threshold at any iteration.

Knowing s, we can compute the next iteration for ν (19), which is ν = λATf − AT (λAisi − f)
= λATAi − ATλAi + ATf = ATf. Note that the first and the second terms cancelled because the
change in ν accumulated over previous λ iterations is canceled by receiving broadcast si.
Because si switches back to 0, ui=λs̄i = λ/λ =1 as required. From this point on, the above
sequence repeats itself. The above cancellation maintains sj≠i= 0 and ensures sparsity of the
solution, uj≠i=0.

The HDA updates (18, 19) can be immediately translated into the continuous-time evolution
of the physical variables s(t) and ν(t) in a hardware implementation.

Continuous-time evolution:

(20)

(21)

where the spike function is component wise,  and
δt stands for a Dirac delta function centered at time t.

In this continuous-time evolution, the solution to (1) is given by the scaled temporal average

.

The HDA can be naturally implemented on a neuronal network, Fig 1. Unlike the LCA
(Rozell et al., 2008) and the LBI (Yin et al., 2008, Cai et al., 2009a, b), which require
neurons continuously communicating graded potentials, the HDA uses perfect, or non-leaky,
integrate-and-fire neurons (Koch, 1999, Dayan and Abbott, 2001). Ideal, or non-leaky,
integrate-and-fire neurons integrate inputs over time in their membrane voltage, ν, (20) and
fire a unitary action potential (or spike) when the membrane voltage reaches the threshold,
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λ, (21). The inputs come from the stimulus, ATf, and from other neurons, via the off-
diagonal elements of −ATA. After the spike is emitted, the membrane voltage is reset to zero
due to the unitary diagonal elements of ATA. We emphasize that, in discrete-time
simulations, the membrane potential of HDA integrate-and-fire neurons after spiking is reset
by subtracting the threshold magnitude rather than by setting it to zero (Brette et al., 2007).

Unlike thresholding in the HDA nodes (21), in biological neurons, thresholding is one-sided
(Koch, 1999, Dayan and Abbott, 2001). Such discrepancy is easily resolved by substituting
each node with two opposing (on- and off-) nodes. In fact, neurons in some brain areas are
known to come in two types (on- and off-) (Masland, 2001).

Therefore, the HDA can be used as a model of computation with integrate-and-fire neurons.
In the next section, we prove that u, a time-average of s, which can be viewed as a firing
rate, converges to a solution of f= Au.

Finally, for the sake of completeness, we propose the following “hopping” version of the
HDA, which does not reduce energy consumption of communication bandwidth, yet is
convenient for fast implementation on the CPU architecture for the sake of modeling.

Algorithm 3

hopping HDA

Initialize: ν=0, u=0, s=0, t=0.

While “  not converge” do

r = max|νi|,

j = argmaxi|νi|,

if r<λ then

,

,

t ← t + tw,

ν ← ν + twATf − λsjATAj,

uj ← ((t − 1)uj + sj)/t,

else

sj ← sign(νj)

ν ← ν − λATAjsj,

uj ← ((t − 1)uj + λsj)/t,

end if

end while

As before, precomputing ATA and ATf may speed up algorithm execution.

The name “hopping HDA” comes from the fact that, instead of waiting for many iterations
to reach the threshold, λ, the algorithm directly determines the component of ν which will be
the next to reach the threshold and computes the required integration time in tw. Thus, the
idea of hopping is similar to the ideas behind LARS (Efron et al., 2004) and “kicking”
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(Osher et al., 2010). When that component of ν reaches the threshold, it broadcasts −ATA to
other neurons instantaneously. We note that in practice, several nodes may exceed the
threshold at the same time. In this case, we update super-threshold components based on the
magnitude of νi starting with the largest.

5 Asymptotic performance guarantees
In this section, we analyze the asymptotic performance of the HDA by proving three
theorems. Theorem 1 demonstrates that the HDA can be viewed as taking steps towards the
solutions of a sequence of the Lasso problems whose regularizer coefficient decays in the
course of iterations. Theorem 2 demonstrates that the representation error decays as 1/t in
the asymptotic limit. Theorem 3 demonstrates that, in the presence of time-varying noise,
the representation error in the asymptotic limit decays also as a power of t. All the results are
proven for the evolution described by Eqns. (20, 21), but can be easily adapted for the
discrete-time case.

Importantly, Theorems 1 and 2 together suggest an intuition for why HDA finds a sparse
solution. As the solution of a Lasso problem is known to be sparse (Tibshirani, 1996), it may
seem possible that solving a sequence of the Lasso problems, as shown in Theorem 1, would
yield a sparse solution. Yet, one may argue that, according to Theorem 1, the regularizer
coefficient decays in the course of iterations and, because smaller regularization coefficients
should yield less sparse solutions, the final outcome may not be sparse. Note, however, that
the driving force for the growth of components of u is given by the representation error,
which itself shrinks in the course of iterations according to Theorem 2. Because the error
decays with the same asymptotic rate as the regularization coefficient we may still expect
that the ultimate solution remains sparse. Indeed, such intuition is born out by numerical
simulations as will be demonstrated in Section 6.

Theorem 1: Define average external variable at time t as . Then,

provided ‖s¯(t)‖1 ≠ 0, the energy function  generated
by (20,21) decreases monotonically.

Proof: To prove this theorem, we consider separately the change in E(t) during the interval

between spikes and the change in E(t) during a spike. We define , which
does not change during the interval between spikes. Then we replace s¯(t) in E(t) by w/t and
obtain after simple algebra:

(22)

The second equality follows from Eq. (20). Since |ν(t)i| < λ, if ‖w‖1 ≠ 0, dE(t)/dt < 0.
Therefore, during the interval between spikes, E(t) decreases.

If the i-th neuron fires a spike at t, |s(t)i| = 1 and s(t)j≠i = 0, then the difference between E(t),
just after the spike, and E(t−), just before the spike is given by (notation t− means arbitrarily
close to t from below),
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(23)

In the above equation, we used the relation s¯(t) = s̄(t−) + s(t)/t, which can be written
separately for each component as s̄(t)i = s¯(t−)i + s(t)i/t and s̄(t)j≠i = s¯(t−)j≠i (because s(t)j≠i =

0). Since s(t)iν(t−)i → λ, , E(t) − E(t−) → 0 when sign(s¯(t−)is(t)i) = 1 and
E(t) − E(t−) < 0 when sign(s¯(t−)is(t)i) = −1. Therefore, at spike time, E(t) does not increase.
Combining (22) and (23) concludes the proof.

Similarly, for the discrete-time HDA, Algorithm 2, it is easy to show that, for sufficiently

large λ, if , the sequence

 generated by Algorithm 2 decreases
monotonically.

Theorem 2 : There exists an upper bound on the representation error, ‖f − λAs¯(t)‖2, which
decays as O(1/t).
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Proof: In the continuous-time evolution, . Because of the
threshold operation, |ν(t)i| ≤ λ and, therefore,

(24)

Then, assuming that A has full row rank,  must be also bounded from
above. Then, the representation error can be expressed as:

(25)

Therefore, , which concludes the proof.

Similar proof can be given for the discrete-time HDA, although with a different constant.

Theorem 3 : Assume the signal f is subject to time varying noise, i.e. f(t) = f0 + ε(t). If

, then limt→∞‖f0 − λAs̄(t)‖2 = 0 and there exist some upper bound of
‖f0 − λAs¯(t)‖2, which decays as t−min(1,1−α).

Proof: Because of the threshold operation, ν is bounded from above:

(26)

Using again the fact that  is bounded from above, we
obtain

(27)

This concludes the proof. Next, we consider several examples of noise.

In the case of f contaminated by the white noise, , and the representation

error converges as .

In the case of static noise where ε(t)= ε, we obtain:
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(28)

which can be used as a stopping criterion in a de-noising application to prevent over-fitting.

6 Numerical results
In this section, we report the results of numerical experiments. In the first experiment, we
search for sparse representation (1) of synthesized data using HDA. The elements of the
matrix A ∈ ℝ64×128 are chosen from a normal distribution and column-normalized by
dividing each element by the l2 norm of its column. For the noiseless case, we construct
vector f as Au0, where u0 ∈ ℝ128 is generated by randomly selecting nz = 10 locations for
non-zero entries sampled from a flat distribution between −0.5 and 0.5. Then, we apply the
discrete-time HDA (Algorithm 2) using the network (Fig. 1) with 128 nodes. We set the
spiking threshold λ=10 and obtain a solution, u = λs¯, which is compared with u0, Fig. 2.

As hardware implementations of HDA or neural circuits must operate on the incoming
signal f contaminated by noise, which varies during the iterative computation, we analyze
the performance of HDA in the presence of noise. To model such a situation we add time
varying Gaussian white noise to the original signal f0 = Au0. On each iteration step, we set

each component , where the noise  is independently picked from a
normal distribution, N(0,1). We found that, despite such a low signal-to-noise ratio, the
HDA yields u, which is close to the original u0, Fig. 3a. The relative residual decays as

, Fig. 4b, as expected from .

Next we explore the performance of HDA relative to that of the LBI for a wide range of
parameters. We present the results as a function of two variables: system indeterminacy α =
m/n and system sparsity β = nz/n (Charles et al., 2011), Fig. 4. We pick n = 200 and vary (α,
β) in the range between 0.1 and 0.9. For each pair (α, β), we calculate the corresponding (m,
nz) and sample 50 different realizations of the over-complete dictionary A ∈ ℝm×n and the
sparse signal u0 ∈ ℝ200 satisfying ‖u0‖0 = nz. We then use HDA and LBI to calculate the
corresponding sparse solutions uHDA and uLBI. We compare the solution of each algorithm

to u0 and plot the relative mean square error  in Fig. 4a and b.
When the system is sufficiently sparse (small β) and determinate (large α), upper left corners
of Fig. 4a and b, the solution to the basis pursuit problem (1) is unique and u0 is perfectly
recovered (Chen et al., 1998). Under such condition, the solution of HDA is essentially
identical to that of LBI as demonstrated in Fig. 4c, which shows the relative mean square

difference between the HDA and the LBI solutions . When β gets
larger and α gets smaller, the recovery is poor for both algorithms because the predefined u0
is not necessarily the solution with minimum l1-norm and the solution to (1) is not unique
(Chen et al., 1998). Therefore the sparse solutions found by HDA and LBI can be very
different as revealed by the large difference in the bottom right corner of Fig. 3c, but they
still have near identical l1-norms, Fig. 4d. We calculate the relative mean difference between
the l1-norms as abs(‖uLBI‖1 − ‖uHDA‖1)/‖uLB‖1 and find that the difference averaged over all
points in Fig. 4d is only 5 × 10−3.

To demonstrate that HDA also serves as model of neural computation, we test it with
biologically relevant inputs and dictionary. We use SPAMS (Mairal et al., 2010) to train a
four times over complete dictionary with 1024 elements from 16×16 image patches
randomly sampled form whitened natural images (Olshausen and Field, 1996). These image
patches are further processed by subtracting the mean and normalizing contrast by setting
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variance to unity. The resulting dictionary elements have spatial properties resembling those
of V1 receptive fields, Fig. 5a, (Olshausen and Field, 1996). Then we create a test data set
containing 1000 image patches prepared in the same fashion as training image patches. We
decompose these image patches using HDA over the learned dictionary and record the mean
l1-arc length of the representation coefficients ‖u‖1 at various stopping relative residual. As a
comparison we also simulate the decompositions using LBI, LCA and RDA. We found that
HDA achieves similar representation error – sparsity tradeoff, Fig. 5b and c.

7 Summary
In this paper, we propose an algorithm called HDA, which computes sparse redundant
representation using a network of simple nodes communicating using punctuate spikes.
Compared to the existing distributed algorithms such as LCA and RDA, the HDA has lower
energy consumption and demands on the communication bandwidth. Also, HDA is robust to
noise in the input signal. Therefore, HDA is a highly promising algorithm for hardware
implementations for energy constrained applications.

We propose three implementations of the HDA: a discrete-time HDA (Algorithm 2), a
continuous-time evolution of the physical variable in a hardware implementation, and a
hopping HDA (Algorithm 3) for fast computation on a CPU architecture.

Finally, HDA operation combines analog and digital steps (Sarpeshkar, 1998) and is
equivalent to a network of non-leaky integrate-and-fire neurons suggesting that it can be
used as a model for neural computation.
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Figure 1.
A network architecture for LCA, RDA, LBI, or HDA. Feedforward projections multiply the
input f by a matrix AT, while lateral connections update internal node activity ν by a product
of matrix −ATA and external activity u.
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Figure 2.
Computing sparse representation, u, from noiseless f = Au0 using HDA. (a) The
reconstructed u = λs¯ (stemmed red dots) at t = 10000 coincides with the original u0 (blue
circles). (b) The relative residual ‖f − λAs̄‖2/‖f‖2 decays as 1/t (note log-scale axes) in
agreement with the upper bound (Theorem 2). The wiggles are due to the discreteness of s.
(c) Energy, Et, as defined in Theorem 5.1 decays monotonically. (d) Representative
evolution of internal variable, ν, of a broadcasting node (blue) and a silent node (black). Red
arrows indicate time points when the component of s corresponding to the broadcasting node
is non-zero. The firing thresholds (for λ=10) are shown by dashed red lines.
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Figure 3.
The HDA is robust to noise in the input. Computing sparse representation on the same
dataset as Figure 2 but contaminated by strong time-varying noise.
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Figure 4.
For a wide range of parameters the HDA solution, uHDA, is on par with that of the LBI,
uLBI. The relative mean square difference between uHDA and the predefined sparse signal u0

(a) and the relative mean square difference between uLBI and u0 (b) demonstrate both HDA
and LBI both find the unique solution to the basis pursuit problem (1) when it exists (upper
left corner). Indeed, the solutions uHDA and uLBI are essentially identical (c) and have the
same l1-norms ‖uHDA‖1 and ‖uLBI‖1 (d).
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Figure 5.
HDA achieves error – sparsity tradeoff comparable with LBI, LCA and RDA. (a)
Representative dictionary elements learned from whitened natural image patches. (b)
Tradeoff for a typical natural image patch and (c) Mean tradeoff for an ensemble of 1000
contrast normalized image patches.
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