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Abstract

We propose a new self-organizing algorithm for a feed-forward network inspired
to an electrostatic problem that turns out to have intimate relations with information
maximization.

Keywords: feed forward, mutual information, relaxation methods.

1 Introduction
In this paper we present a new self-organizing algorithm for a layer of h continuous
Perceptrons derived from the electrostatic problem of free electrical charges in a
conductor. The algorithm is general and maximizes information.

The idea is simple: we use a layer of continuous Perceptrons to map the inputs
to point-like electrical charges that we imagine free to move within an hypercube
in multi-dimensional space and we let them evolve, or better relax, under Coulomb
repulsion until they set in the minimal energy configuration. For this reason we
named this algorithm “Neural Relax”, NR in what follows.

We show that this is sufficient to obtain binary and statistically independent
data as a natural consequence of the algorithm itself, in addition, fixing the di-
mensions of the hypercube, one can freely adjust the rate of dimensional reduction.
From a theoretical point of view, we show that, in the simple one dimensional case,
this algorithm provides the maximum-information solution to the problem, and thus
the learning rules result equal to those obtained by Bell and Sejnowski from their
Independent Component Analysis (ICA) [4], exhibiting a completely different inter-
pretation of ICA algorithm. In the general multi-dimensional case, we show that
NR gives a pure Hebbian rule and is also well suited to inject some redundancy that
can be subsequently used to perform error correction on the processed patterns.

The paper is structured as follows: in Section 2 we briefly describe our network.
In Section 3 we present the real physical problem we refer to, namely a system of
point-like charges confined in a cube, and link it to our problem and to previous
works using Coulomb-like forces in neural networks. Then we present a theoretical
analysis for the one dimensional case (Section 4) and the general multi dimensional
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case (Section 5). We conclude with some preliminary computational results: to test
our algorithm we tackle the problem of preprocessing real world binary images to
make them unbiased, uncorrelated and binary.

2 A layer of Perceptrons
We consider a layer of h Perceptrons with n inputs and tanh() transfer function;
given an input ~x ∈ Rn each Perceptron gives the output

yi = tanh (~wi · ~x) = tanh

 n∑
j=0

wijxj

 i = 1, ..., h (1)

and figure 1 schematically illustrate the architecture of this network. We stretch a
bit the notation indicating the h equations (1) with the weight matrix W

~y = tanh (W~x) . (2)

This is a common, well studied, network that, among other things, can be used to
approximate any continuous function since the transfer function, tanh(x), is bounded
in (−1, 1), non constant, smooth and monotone [7]. We will assume that the inputs
follow a distribution p(~x) and that there is no noise around; usually we will consider
binary inputs ~x ∈ {±1}n. We will focus on the case of binary outputs ~y ∈ {±1}h
that is the limit of the continuous case (2) when the argument is large1.

Figure 1: Schematic illustration of the network: an input ~xν is fed to an input layer of
n neurons, connected to h neurons that produce the output ~yν . The weight matrix W
contains also the thresholds that appear as weights of a fictitious 0-th input clamped
at 1.

Nadal and Parga [13] studied this network when ~y = sgn (W~x) in the frame
of information theory. They showed that the information capacity C that can be
conveyed by h binary neurons is bounded by h, i.e.

C := max
p(~x)

I(~x; ~y) ≤ h

1given that limβ→∞ tanh(βx) = sgn(x)
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where I(~x; ~y) is the mutual information between the input ~x, of distribution p(~x),
and the output ~y. The limitation comes essentially from the architecture since h
binary neurons can possibly implement only Ch,n ≤ 2h of the theoretically possible
2h output states and they show that

C = log2 Ch,n =

{
h for h ≤ n
< h for h > n .

So assuming h ≤ n we see that the architecture doesn’t impose any limitation2

and, for these binary neurons without noise, the upper bound C can be reached if,
and only if, the distribution of the outputs q(~y) results fully factorized [13], namely

q(~y) =

h∏
i=1

q (yi) with q (yi = ±1) =
1

2
∀i . (3)

With the help of this analysis we can set up a list of the desirable characteristics
for the function f : Rn → Rh (2) implemented by our layer of h Perceptrons:

• the output patterns should be (essentially) binary i.e. 1− |yi| < ε;

• the map f : Rn → Rh should be injective and such that (3) holds;

• as consequence the produced data will be statistically independent:

E[yi1yi2 . . . yir ] = 0 ∀ i1 6= i2 6= · · · 6= ir, ∀ 1 ≤ r ≤ h

(and thus uncorrelated E[yiyj ] = 0 ∀ i 6= j);

• it should accomplish dimensionality reduction i.e. whenever possible h� n;

• it should be “learnable” i.e. it should be possible to find it by gradient descent
along an appropriate function of the weights.

The most demanding goal is satisfying (3) but it’s not easy to find an algorithm
that does it directly. Several authors followed the equivalent path of maximizing the
mutual information I(~x; ~y), e.g. the ICA algorithm [4]; see also [16] and references
therein. Our algorithm starts from a physical problem that leads naturally towards
the fulfillment of these requests.

3 The Physical Problem
Let’s consider the problem of finding the stable equilibrium position of m, equal,
point-like, electric charges Qν within a cube of conductor. This is a problem very
similar to the Thomson problem [21] where the charges are in a sphere. Thomson
posed it in 1904 and is remarkably difficult to solve, exact solutions are known only
for few values of m; see [18]. From now on we will always consider our cube centered
at the origin and with side of length 2, i.e. the physical space available to the charges
is the 3−dimensional cube defined by

H3 = {~y ∈ R3 : |yi| < 1 i = 1, 2, 3}
2We just remind that this is different from the request that there is no information loss that depends

on the source entropy S(~x) and would require that h ≥ S(~x).
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the extension to the h-dimensional hypercube Hh being obvious. In an ideal con-
ductor the m charges are free to move and their stable rest positions ~yν minimize
the Coulomb potential3 [8]

U (~y1, ~y2, . . . , ~ym) =
∑
µ<ν

QµQν
|~yµ − ~yν |

µ, ν = 1, ...,m .

U (~y1, ~y2, . . . , ~ym) is a harmonic function [2] and thus doesn’t have minima in an
open, convex, set like H3, thus the rest positions of the charges are on the border,
namely on the surface of the cube. Moreover we conjecture that, if the charges are
equal and their number ism ≤ 23 = 8, the only stable positions of the charges are on
cube vertices as shown in Figure 2, that contains the minimum energy arrangements
for two, three, four and five charges4.

Figure 2: Stable equilibrium configurations of point-like charges in a cubic box: parti-
cles arrange in such a way to maximize their reciprocal distances while minimizing the
Coulomb potential energy. Since they occupy the vertices they have (almost) binary
coordinates in the defined set H3.

This problem easily generalizes from R3 to Rh provided that U (~y1, ~y2, . . . , ~ym)
remains harmonic and this happens iff the distance between charges generalizes to

|~yµ − ~yν | := [(~yµ − ~yν) · (~yµ − ~yν)]
h−2
2 . (4)

Also in this case the rest positions of the charges must be on the border of Hh and
we generalize our conjecture that charges have stable rest positions on the vertices
of Hh and consequently (almost) binary coordinates.

We take inspiration from this physical problem to propose a self-organizing al-
gorithm for a layer of continuous Perceptrons. We map our set of m inputs in Rn to
point-like charges in Rh and these charges are bound to remain in the h-dimensional
hypercube. Subsequently we let this system evolve under Coulomb repulsion in Rh

minimizing its energy until it reaches equilibrium. Provided that our conjecture is
true and if m ≤ 2h, the charges at rest will occupy the vertices of Hh and have
thus binary coordinates, which means that this approach allows us to get a binary
representation of the input data as a natural consequence and without any further
constraint. We will also show that this process maximizes information.

More in detail, given a set of m inputs ~xν ∈ Rn, ν = 1, 2, . . . ,m of distribution
p(~x), applying (2) we get m outputs ~yν ∈ Rh that the hyperbolic tangent constrains

3in Gaussian units: 1
4πε0

= 1
4Despite several attempts we haven’t been able to prove this formally but numerical simulations

support the conjecture.
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within the h-dimensional hypercube Hh. To treat inputs of different probability
p(~xν) we postulate that the probability of an output ~yν is proportional to the energy
of a charge Qν in the electric field, i.e.

q(~yν) ∝ E(Qν) = Qν

m∑
µ=1

µ6=ν

Qµ
|~yµ − ~yν |

(5)

and the total energy of the system is:

U (~y1, ~y2, . . . , ~ym) =

m∑
ν=1

E(Qν) =
∑
µ<ν

QµQν
|~yµ − ~yν |

. (6)

For the sake of simplicity most of the times we will assume that all inputs are
equiprobable p(~xν) = 1

m and thus we will feel free to put Qν = 1 for all m charges
and the function to minimize is the simplified Coulomb potential

U (~y1, ~y2, . . . , ~ym) =
∑
µ<ν

1

|~yµ − ~yν |
µ, ν = 1, ...,m . (7)

This “energy” is the function that NR learning algorithm minimizes modifying the
elements of the weight matrix W by gradient descent namely

w′ij = wij − ε
∂U (~y1, ~y2, . . . , ~ym)

∂wij
(8)

ε being a small positive constant.
Let us suppose that NR has been successfully applied and that the harmonic

function U has been minimized (more on this later). All the m charges have relaxed
in the minimum energy configuration and necessarily lie on Hh surface and, if m ≤
2h and our conjecture is true, they sit precisely on the vertices of the hypercube
Hh. It follows that all coordinates of their positions ~yν are binary and represent
satisfactorily the outputs of h binary neurons.

With distance definition (4) we know that U is harmonic and Gauss theorem
holds. We use these properties to show that the positions of our charges satisfy (3)
in the limit n,m, h→∞ when we can neglect the granularity of the charges and we
can assume that the charge distribution becomes continuous. A similar approach is
usually taken for idealized physical conductors where one forgets the quantization of
electron charges since the single electron charge is considered negligible with respect
to the total charge on the conductor.

When the charges have relaxed in the minimum energy configuration we know
that there is no electric field within the conductors and that all charges lie on the
(hyper-)surface, moreover the spatial density of the charges must be constant in
the limit n,m, h → ∞. It follows, given the Hh structure5, that every hyperplane
through the origin of Rh and that doesn’t hit any vertex of Hh (to avoid compli-
cations) cuts Hh into two parts that contain the same number of vertices, since,
if vertex ~v belongs to one of the semi-spaces, vertex −~v must belong to the other
one. From the constancy of the spatial density of the charges it follows that the
two semi-spaces must also contain exactly the same charge, one half of the total
charge on Hh. Since this results is valid for any hyperplane through the origin of

5one can observe that if the charges sit on hypercube vertices they also lie on the hypersphere of
radius h

h−2
2 and continue the following proofs for the hypersphere
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Rh it is true also for the h hyperplanes yi = 0. This means that there are exactly
m
2 charges with yi = 1 (remember all coordinates are binary) and the same number
with yi = −1. In the language of our layer of Perceptrons and since m → ∞ this
means that the output distribution is such that

q (yi = ±1) =
1

2
∀i .

It’s also easy to prove by induction that q(~y) =
h∏
i=1

q (yi), we begin showing that

q(yi, yj) = q(yi)q(yj) for any couple of different coordinates yi and yj . Let’s suppose
we have cut our charge distribution into two equal parts by the hyperplane yi = 0
and we consider the orthogonal hyperplane yj = 0, it’s easy to use the previous
argument to show that in all 4 subspaces so defined the charges must be equal to m

4
and thus that for any choices of the values of yi and yj one gets q(yi, yj) = 1

4 and

thus q(yi, yj) = q(yi)q(yj). Let’s now suppose q(yi1 , yi2 , . . . , yik) =
k∏
j=1

q
(
yij
)

= 1
2k

for any choice of k variables yi1 , yi2 , . . . , yik , it’s easy to exploit the structure ofHh to
show that, if one adds a (k+ 1)-th coordinate, the hyperplane of equation yik+1

= 0
will cut all the previous charges into 2 halves and thus that q(yi1 , yi2 , . . . , yik , yik+1

) =
k+1∏
j=1

q
(
yij
)

= 1
2k+1 completing the proof by induction. A technical point: we note

that only for m = 2h one can continue the induction chain up to step k = h
giving q(~y) = 2−h for any ~y and complete factorization of the distribution q(~y); if
m < 2h one can only prove that all the moments of order k of q(~y) are zero up to
k = blog2mc.

We have thus proved that, if the m charges relax in the configuration of minimal
energy (that by the way it’s far from being unique given the many symmetries
of the system) the final positions of the charges satisfy all the requests set for a
layer of Perceptrons at the end of the previous Section, in particular that the final
distribution is fully factorized (3) that implies that the information produced at the
output is maximal.

There is one point we left behind that deserves attention: we saw that U (~y1, ~y2, . . . , ~ym)
is a function of the mh charges coordinates and is provably harmonic, but in our
case, with (1), we can change ~yi coordinates only through the (n+ 1)h weights wij .
It is simple to verify that U(wij) is no more harmonic:

∂U

∂wij
=

∂U

∂yi

∂yi
∂wij

∂2U

∂w2
ij

=
∂2U

∂y2i

(
∂yi
∂wij

)2

+
∂U

∂yi

∂2yi
∂w2

ij

and in general ∇2U(wij) =
∑
i,j

∂2U
∂w2

ij
6= 0. This means that the restrictions imposed

to the positions of the charges ~yν by the fact that they are defined by ~y = tanh (W~x)
— that, by the way, enforces also the constraints ~yν ∈ Hh — renders the energy no
more harmonic in the “free” coordinates wij . This implies that we cannot formally
prove that the function U(wij) is without local minima and that gradient descent
(8) will always bring the system to one of the solutions we just described essen-
tially because we cannot “move” freely the charge positions ~yν but only through the
variation of the weights wij .
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One could argue that it is reasonable to expect that the characteristics of the
found solution won’t change dramatically, especially if m� 2h, and the charges are
very far from each other on Hh, but still the strength of a formal proof is lost. This
argument surely deserves further investigations and will be the subject of future
work.

We conclude this section with a brief review of other appearances of Coulomb-like
forces in the context of neural networks. The series started in 1987 when Bachmann
et al. [3] proposed an associative memory that attached negative electrical charges
to the stored patterns and the memory played the role of a positive charge attracted
by the patterns. In this fashion they could store unlimited patterns and the memory
didn’t have any spurious state. This idea resurged 7 year later [15].

After some years Marques and Almeida [12] proposed a feed forward network
dedicated to the separation of nonlinear mixtures that minimized a function made of
three terms. The first term,W , was inspired to the idea of repulsion of equal charges
and produced a repulsive force. This force was non-physical since the repulsion had
a finite range and acted only in proximity of the patterns; the minimization of this
term tended to keep the patterns far apart producing an approximately uniform
distribution of the patterns. To this term they had to add a term B, enforcing the
constraints of the outputs in [−1, 1] not to have the patterns fly to infinity and a
regularizing term R. This work has been subsequently analyzed in a mathematical
setting [20] where it has been shown that, within certain approximations, a repulsive
force decreasing faster than the Coulomb force, tends to produce uniform probability
density of the outputs that in turn maximizes output entropy that in turn minimizes
mutual information and is thus amenable to ICA.

All of these works do not have a real, physical, Coulomb energy that is instead
central in our approach since it will allow us to define properly a positive definite
probability density (10) and will provide an energy that, at least in the ideal case,
is harmonic and thus gives important properties to the function to be minimized.
This kind of potential matches perfectly with the hypercube structure since charges
tend to put themselves on the hypercube vertices thus automatically satisfying the
other request of having binary coordinates. This produces a distribution of the
patterns that, microscopically, is highly non uniform, being the discrete sum of
point-like charges. On the other hand, from a larger distance, this distribution
appears uniform thanks to Gauss theorem (as happens in real conductors).

4 Analysis of the 1-dimensional Case
We start analyzing NR properties in a toy problem: a layer made of just one neuron
with one input; i.e. a purely one dimensional problem. This is a well studied case
[1, 14, 4] where theoretical analysis is simpler: here (1) becomes

y = tanh(wx+ w0) . (9)

Only for the analysis of this case we relax the condition of digital inputs since
this would restrict us to the too simple case x = ±1. So here we suppose to have
continuos inputs x with probability distribution p(x). Correspondingly we have
continuos y with an electrical charge density ρ(y) and the energy of the system (6)
becomes:

U =

¨
ρ (y) ρ (y′)

|y − y′|
dydy′

7



calling φ (y) :=
´ ρ(y′)
|y−y′| dy

′ the total potential of point y, we have

U =

ˆ
ρ (y)φ (y) dy :=

ˆ
q(y) dy (10)

where q(y) is the linear energy density that is by definition positive since it is pro-
portional to the squared electric field [8]. It is thus possible to extend (5) and to
interpret q(y) (suitably normalized) also as the probability density distribution of y.
Our problem is, given x and p(x), to determine the parameters w,w0 that minimize
U .

We can gain insight into the actual solution of this problem examining first the
corresponding physical problem: since our charges in y are to be imagined as free
charges in a conductor this is the physical problem of the charge distribution on a
finite (remember −1 < y < 1), infinitely thin, conductive wire.

It is a typical electrostatic problem: one has to find the charge distribution ρ (y)
that minimizes U . In this particular case we are in a conductor and thus, when the
energy is minimized, the potential is constant φ (y) = φ0 and so mathematically the
problem is to find the charge distribution ρ (y) that realizes this condition. This is
not an easy problem (it has been the subject of James Clerk Maxwell’s last scientific
paper, see in [10]) but is known [9] that, as the ratio of the physical dimensions of
the wire goes to zero, the distribution of the charges on the wire ρ (y) tends to a
uniform distribution, i.e. ρ (y)→ ρ0. So we can conclude that the physical solution
that minimizes (10) gives q(y) = ρ0φ0.

This is true for the physical problem where, since the charges in the wire are free
to move, the distribution of charges ρ (y) can take any shape. Viceversa it is clear
that in our case, where we can play only with the parameters w,w0 to modify ρ (y),
in general it will be impossible to find values of w,w0 that realize the condition
q(y) = ρ0φ0.

But let us suppose that we are in this lucky case; to understand what is the
meaning for our problem we use the well known relation for the transformation
of a distribution p(x) when the variable x is transformed to y = fw(x) where w
represent the parameters of the function f() that has to be invertible. In this case
the distribution q(y) of y is given by

q(y) =
p(x)

|∂fw(x)
∂x |

and this relation tells us that to get a constant q(y) necessarily |∂fw(x)
∂x | ∝ p(x)

and thus the function y = fw(x) needs to be proportional to the primitive of the
probability distribution of x, namely

fw(x) ∝
ˆ
p(x) dx (11)

and it’s well known that this represents the maximum entropy solution for our one-
neuron net [1]. So, if adjusting w and w0 we can obtain that indeed (11) holds, our
system minimizes energy (10) and this solution gives also the maximum information.
In our case (9) one obtains:

tanh′(wx+ w0)|w| ∝ p(x)

where we used the fact that tanh′(x) > 0, and this relation can also be interpreted
to give the only possible p(x) for which we get the optimal solution. As pointed out
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by one of the referees this can be a severe limitation to which one could put remedy
adapting not just the weights but, as done in [14], the transfer function itself fw(x).
This would produce a more powerful neuron but, following Bell and Sejnowski’s
ICA, we decided purposely not to open this Pandora’s jar at this stage.

Now we analyze what happens in the general case when (11) can’t be satisfied
exactly and the best one can do is to find the values of the parameters w that
minimize U , i.e. we study

∂U

∂w
=

∂

∂w

ˆ
q(y) dy =

ˆ
∂

∂w

p(x)

|∂fw(x)
∂x |

dx (12)

where we applied Leibnitz’s rule for differentiation under the integral since we are
dealing with continuous functions. We observe that the only term that depends on
w, and is thus affected by the derivative, is |∂fw(x)

∂x |.
We conclude this Section showing that the learning rules for our network (9),

obtained by (12), are equivalent to the Bell and Sejnowski’s ICA [4]. We start
performing the derivation with respect to w and w0

−∂U
∂w

=

ˆ
p(x)

[fw ′ (wx+ w0) |w|]2

[
fw
′′ (wx+ w0) |w|x+

|w|
w
fw
′ (wx+ w0)

]
dx

− ∂U

∂w0
=

ˆ
p(x)

[fw ′ (wx+ w0) |w|]2
[fw
′′ (wx+ w0) |w|] dx

with our choice y = fw (wx+ w0) = tanh (wx+ w0); then{
fw
′ (wx+ w0) = 1− y2 > 0

fw
′′ (wx+ w0) = −2y

(
1− y2

) (13)

that substituted in previous equations give

−∂U
∂w

=

ˆ
p(x)

[(1− y2) |w|]2

[
−2y

(
1− y2

)
|w|x+

|w|
w

(
1− y2

)]
dx =

=

ˆ
p(x)

(1− y2) |w|2

[
−2y|w|x+

|w|
w

]
dx =

=

ˆ
p(x)

(1− y2) |w|

[
1

w
− 2yx

]
dx

− ∂U

∂w0
=

ˆ
p(x)

[(1− y2) |w|]2
[
−2y

(
1− y2

)
|w|
]

dx =

=

ˆ
p(x)

(1− y2) |w|2
[−2y|w|] dx =

ˆ
p(x)

(1− y2) |w|
[−2y] dx .

Comparing these equations with (10) we note that the term
´ p(x)

(1−y2)|w| dx is
nothing but the Coulomb energy U integrated over x, and hence, as anticipated, it
is possible to interpret it as a distribution over which the terms in square brackets
can be considered averaged, so we can also write them as expectation values:{

−∂U∂w = EU
[
1
w − 2yx

]
− ∂U
∂w0

= EU [−2y]

and comparing these relations with ICA’s learning rules [4] (remembering that we use
slightly different transfer functions), we see that they are equal. This shows that
NR and ICA are intimately related and that, even if they start from completely
different starting points, essentially they both end up maximizing information.

9



5 The Multidimensional Case
We now proceed to examine the general multidimensional case: we start with m
binary inputs of n bits each (that in our numerical simulations will be binary images)

~xν ∈ {±1}n ν = 1, 2, . . . ,m

fed to a layer of h neurons thus producing, for each input,

~yν = tanh(W~xν) ∈ (−1, 1)h ν = 1, 2, . . . ,m

where the dimensionality of the output layer h is a quite arbitrary choice: it repre-
sents somehow the compression rate of the system6. To each output ~yν produced
we attach an arbitrary unitary electric charge. Then we calculate the Coulomb po-
tential (7) and apply gradient descent to it to obtain the learning rules. With the
standard distance definition (4) in h−dimensional space we get

|~yµ − ~yν | =

[
h∑
i=1

(yµi − yνi)2
]h−2

2

that gives the learning rule for h > 2

∆wij = − ∂U

∂wij
= − ∂

∂wij

∑
µ<ν

1

|~yµ − ~yν |
=

=
∑
µ<ν

2− h
|~yµ − ~yν |

h
h−2

(yνi − yµi)
[
xµj

(
1− y2µi

)
− xνj

(
1− y2νi

)]
(14)

where we used the properties (13) of the hyperbolic tangent.
We used the only possible definition of the distance |~yµ − ~yν | that renders the

energy U harmonic in the mh variables yνi but this is of little use for us since in
general U is not harmonic with respect to our “free” variables wij .

We have thus felt free to try another definition for the distance with the objec-
tive of obtaining a faster learning algorithm. For these reasons we considered the
expression

|~yµ − ~yν |H := [2 (h− ~yµ · ~yν)]
h−2
2 =

2h

1−

h∑
i=1

yµiyνi

h



h−2
2

that is a distance in mathematical sense; indeed it is a slightly modified version of
the so called Hamming distance, which is a measure of the difference between two
strings of equal length7. With this new distance plugged in (7) we define a slightly

6as proposed in [13] one can distinguish 3 cases:

- h < S(~x) here the net must “compress” the data with some information loss;

- h = S(~x) here the net is perfectly matched to the incoming information;

- h > S(~x) here the net is redundant but, as explained later, with NR this redundancy can be used
for error correction.

7in our notation the Hamming distance between binary vectors ~yµ, ~yν ∈ {±1}h is 1
2
(h− ~yµ · ~yν)

10



different energy function UH that still diverges when any two charges get too near
to each other. Minimizing UH the learning rule becomes

∆wij = −∂UH
∂wij

= − ∂

∂wij

∑
µ<ν

1

|~yµ − ~yν |H
=

=
∑
µ<ν

2− h

|~yµ − ~yν |
h
h−2

H

[
xµjyνi(1− y2µi) + xνjyµi(1− y2νi)

]
(15)

that is similar to previous rule (14) with the only difference that it contains only the
“crossed” Hebbian terms xµjyνi and xνjyµi without the subtraction of the “straight”
terms xµjyµi and xνjyνi and that in numerical simulation appears indeed to be
faster.

This modified Hamming distance can be easily related to the Euclidean distance
(4) observing that since the output of the hyperbolic tangent is in (−1, 1) it follows
that 0 ≤ ~y2 ≤ h and so

|~yµ − ~yν | = [(~yµ − ~yν) · (~yµ − ~yν)]
h−2
2 =

[
~y2µ + ~y2ν − 2~yµ · ~yν

]h−2
2

≤ [2(h− ~yµ · ~yν)]
h−2
2 = |~yµ − ~yν |H ∀~y ∈ Hh

and the Euclidean and the Hamming distances coincide if, and only if, each com-
ponent of each output vector is binary, which is basically what we hope to get at
equilibrium. In terms of the energy we can thus write

U (~y1, ~y2, . . . , ~ym) ≥ UH (~y1, ~y2, . . . , ~ym) ∀~y ∈ Hh (16)

and we see then that the energy defined with the Hamming distance is a lower
bound for the energy defined making use of the Euclidean one. In principle, thus,
at equilibrium we can expect the two energies to be equal.

Learning rules (14) and (15) share two characteristics: the first is that they are
Hebbian since they are perfectly local in the sense that the synapse wij connecting
neuron yi to input xj is updated only with the values taken by these neurons. At
the same time the value of the synapse is updated by the product xjyi referring only
to different patterns: in other words to update a synapse one needs the “history”
of the two neurons; one could say that the rule is local in space but non-local in
time. The second interesting characteristic is that in both rules appear the terms
(1− y2νi) that tend to kill the learning when |yνi| ' 1, i.e. when the coordinates are
substantially binary; this inhibits the weights from growing indefinitely.

We conclude this Section observing that the outputs produced by this network
are suited to implement error detection and correction, in other words the injective
map f : Rn → Rh (2) implemented by our network de facto acts as an encoder that
realizes a block (m,h) code, see e.g. [5]. Let’s suppose thatm < 2h, i.e. there are less
patterns ~yν then hypercube vertices to park them and that U has been minimized.
Given the form of the energy minimized by learning (7) we know that each charge
~yν will be on a hypercube vertex and as far as possible from all other charges. Let us
suppose that the minimum Hamming distance between different charges ~yν is d, it’s
well known that in this case one can detect up to d− 1 errors on the patterns ~y and
correct up to bd−12 c errors. For example in the numerical simulations of the next
Section, for m = 7 and h = 64, the minimum Hamming distance between different
patterns is larger than d = 36.
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This means that if one is given a noisy version ~y′ν of the pattern ~yν (for example
as returned by an associative memory) one can try to restore the original pattern.
By the way the restoration could be done by minimizing again the potential energy
U that it’s no more minimal when the correct pattern ~yν is replaced by its noisy
version ~y′ν that results “out of place”.

6 Preliminary Numerical Results
We start introducing the problem we tackled to test NR namely the preprocessing
of real world data to build a binary, uncorrelated representation. We had in mind
the preprocessing of binary images for an associative memory but this task is by no
means limited to this particular problem.

Associative memories have been one of the first applications of the neural net-
works paradigm: introduced in 1969 by David Willshaw et al. [22] have produced
many offsprings: see e.g. the classical book [6] and references therein, or, for a more
recent review, see [11] that embeds all flavours of associative memories in a unique
Bayesian frame. We focus on the (classical) family of associative memories made of
a network of nMcCulloch and Pitts neurons each of them updating its state Si → S′i
with the standard rule

S′i = t

 n∑
j=1

wijSj

 (17)

where the transfer function t(x) can be either smooth, e.g. t(x) = tanh(x), or binary,
t(x) = sgn(x). Different kinds of associative memories sport different connection
schemes and different rules for the synapses wij but all models agree on the fact that
the information is stored in synapses. An associative memory storing m patterns
~ξν , ν = 1, . . . ,m should be able to find any of the stored patterns starting from
a partial or noisy cue. More precisely if the network is initially in state ~S0 the
(repeated) application of (17) should bring the network in one of the stored states
i.e. ~S0 → ~S = ~ξν .

A common simplification easing analytical calculations is that of assuming the
distribution of the stored patterns to be fully factorized and unbiased:

P
(
~ξ
)

=

n∏
i=1

p (ξi) with p (ξi = ±1) =
1

2
∀i (18)

that implies that the patterns are statistically independent and binary. This request
is exacting and, if it’s strictly respected, rules out immediately all real world data
like for example binary images or sparse coded data.

So to deal with these data one needs to transform them first in data that ful-
fills these requirements. The simplest transformations are the linear ones and if
one contents himself with uncorrelated data (and not independent) than the linear
transformation known as Principal Component Analysis can do the job. Unfortu-
nately the transformed patterns are no more binary and it is an open problem to
find a linear transformation that produces uncorrelated and binary data (see e.g. [19]
or [17], an exact solution being in general impossible8). So to end up with binary
data one must give up to one of the constraints: uncorrelation or linearity of the
transformation.

8the covariance matrix has integer elements but this is not true for its eigenvectors.
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Here we abandon the request of a linear transformation but doing that we can at
the same time soar our other goal: we will produce data that is not just uncorrelated
but independent, while at the same time remaining binary. More precisely, given m,
n-dimensional, binary images ~ξν , we look for

f : Rn → Rh ~yν = f(~ξν) with h ≤ n

and the outputs ~yν represent the preprocessed patterns that should be statistically
independent and thus ready to be stored in an associative memory of h neurons. At
this point it’s clear that (2) obtained by NR, that satisfies (3), it’s tailored for the
job.

Before presenting numerical results we just mention an additional complication
due to the fact that associative memories usually do not recall exactly the stored
patterns ~yν but return the pattern ~S = ~y′ν with ~y′ν ' ~yν the difference being typically
a few percent of the bits. If one wants to be able to get back the original image ~ξν
from ~y′ν this imposes further requirements to the characteristics of the preprocessing
while, at the same time, rules out standard algorithms for binary compression that
produce statistically fragile data. As explained in previous Section NR, providing
data that are as much farther apart as possible in Rh, can fulfill also this request.

We run a preliminary numerical test on a set of m = 7 binary images of 33 ×
33 pixels; we had a network of h = 64 neurons with n = 33 × 33 + 1 = 1,090
inputs totalling 69,760 weights. We run two different learning runs with the two
gradient descent rules (14) and (15) of previous Section. The program stopped
when max

i,j
{∆wij} ≤ 10−5 that required of the order of 107 steps. Each simulation

took several days of an Intel Core Duo 2.93 GHz processor indicating that there is
ample space for improvements, e.g. by taking advantage from standard electrostatics
relaxing algorithms.

Figure 3 show the energy decrease during learning for both the Euclidean U
and the Hamming distance UH : the first impression is that, as one could expect,
the decrease is compatible with a typical electrostatic potential; also U ≥ UH as
foreseen. In this first run the expected convergence of U → UH was not observed
but there are indications that U minimization was not terminated.

Our aim was to obtain both statistically independent and binary data. To check
this last properties is easier since we have just to check if the patterns ~yν rest on
hypercube vertices. This can be seen from Figure 4 that shows an histogram of the
values of coordinates yνi (obtained minimizing UH) that shows that this is true as
expected.

-1.0 -0.5 0.5 1.0

50

100

150

Figure 4: Histogram of the values of yνi coordinates showing that most of them are on
hypercube vertices.
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Figure 3: Behaviour of the energy during the run for both the Euclidean, U , and the
Hamming distance UH : as can be seen, the latter is smaller than the first, as predicted
by (16). The x axis represent the running step in unit of 105 elementary steps.

To verify the independence of data (3) with the reduced statistics of this simula-
tion is a challenging task. A necessary condition is that the marginal distributions
p (yi = ±1) = 1

2 i.e. that each neuron cuts the input data set {~xν} exactly in 2 parts.
In our simulation this is perfectly achieved, since we got m×h

2 = 7×64
2 = 224 positive

coordinates, and 224 negative ones. Moreover each of the h = 64 output neurons
has for the m = 7 inputs exactly 3 positive and 4 negative coordinates (or viceversa)
suggesting that if we had a larger (and even) number of initial examples, we would
get that each neuron would have m/2 positive and negative coordinates.

To investigate the quality of the solution we analyzed the relative distances of
the output data ~yν since one can expect, once (7) has been minimized, that all
relative distances should be equal indicating a roughly constant hypersurface charge
distribution. We did this calculating the m × m matrix of elements ~yν · ~yµ, that,
when ~yν sit on hypercube vertices, represents substantially the distance. In order
to make it easier to understand we converted these values to a grayscale (−h →
white, h→ black) and the result is shown in Figure 5. We can conclude that the m
outputs are substantially equally spaced particularly in the second case.

7 Conclusions
We presented a new approach to the problem of data preprocessing by a layer of
Perceptrons: we treat each data vector as a point-like electric charge confined in
a h-dimensional hypercube, subject to simple Coulomb repulsive forces. We then
let the system evolve as it were a real physical system, that is, until it reaches the
minimum of the electrostatic energy. At this point, we expect that the charges will
occupy the hypercube’s vertices and will be as far as possible from each other.

The potential energy function to minimize is continuos (since such is the transfer
function tanh(x)), well shaped and, as far as we know, without the relative minima
that plague so many cases in neural networks. For these reasons in this case it’s sen-
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(a) (b)

Figure 5: Matrices of scalar products ~yν · ~yµ (converted to grayscale) for the systems
defined by the Euclidean (a) and the Hamming (b) distance; the outputs are substan-
tially equally spaced in both cases. From a computational point of view it turned out
that the NR version that made use of the Hamming distance converged faster than the
other: this may suggest, as expected, that it succeeds in providing a greater gradient.

sible to implement a simple gradient descent that produces a strictly local learning
rule that is very similar to a Hebb rule with the difference that to update a synapse
one needs all the data and not just the last seen one.

In our tests this learning algorithm doesn’t shine for its speed but one can spec-
ulate that for actual calculations one could use more refined minimization of the
potential U exploiting the relaxation techniques used routinely for similar electro-
static problems.

Even with a continuous transfer function at the end one obtains binary and
statistically independent data that in turn guarantee that the entropy of the output
is maximized.

Another characteristics of this network is that one can freely choose the number
h of output neurons without any adjustment of the learning algorithm. For small
values of h the network implements compression of the incoming data, for larger h
just a dimensional reduction without any information loss. For even larger values of
h one introduces redundancy in the data useful for subsequent error correction.

Despite some encouraging results we feel that there still is ample space for further
theoretical and computational developments.
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