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Abstract
The sparse coding hypothesis has generated significant interest in the computational and
theoretical neuroscience communities, but there remain open questions about the exact
quantitative form of the sparsity penalty and the implementation of such a coding rule in neurally
plausible architectures. The main contribution of this work is to show that a wide variety of
sparsity-based probabilistic inference problems proposed in the signal processing and statistics
literatures can be implemented exactly in the common network architecture known as the locally
competitive algorithm (LCA). Among the cost functions we examine are approximate ℓp norms (0
≤ p ≤ 2), modified ℓp-norms, block-ℓ1 norms, and reweighted algorithms. Of particular interest is
that we show significantly increased performance in reweighted ℓ1 algorithms by inferring all
parameters jointly in a dynamical system rather than using an iterative approach native to digital
computational architectures.

1 Introduction
New experimental approaches over the past decades have provided a closer look at how
sensory nervous systems such as the visual cortex process information about their
environment. Over this time, it has become increasingly evident that the canonical linear-
nonlinear model, where cells encode visual information via linear filtering followed by a
nonlinearity (e.g., thresholding and saturation), is inadequate to describe the complex
processing performed by the sensory cortex. For example, this type of linear-nonlinear
model does not capture the rich variety of nonlinear response properties and contextual
modulations observed in V1 (Seriès, Lorenceau, & Frégnac, 2003).

Many theoretical neuroscientists have postulated high-level coding and computational
principles for sensory cortex to extend our understanding of these systems. In many cases,
these proposals are based generally around probabilistic Bayesian inference (Doya, 2007)
due to the natural fit with ecological goals and evidence from perceptual tasks in humans
(Battaglia, Jacobs, & Aslin, 2003; Hürlimann, Kiper, & Carandini, 2002). Many other
researchers have postulated complementary models based on ideas of efficient coding,
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where information is encoded by removing redundant aspects of the stimulus. A wide
variety of interesting models have appeared related to this broad principle of efficient
coding, with selected examples including models using predictive coding (Rao & Ballard,
1999; Spratling, 2011), divisive normalization (Schwartz & Simoncelli, 2001), and directly
encoding statistical variations (Karklin & Lewicki, 2008; Coen-Cagli, Dayan, & Schwartz,
2012).

The sparse coding hypothesis is one interpretation of efficient coding that has generated
significant interest in the computational and theoretical neuroscience communities. In this
model, a population of cells performs Bayesian inference to determine the environmental
causes of a stimulus, with a goal of using as few simultaneously active units in the encoding
as possible. Distributed sparse neural codes have several potential benefits over dense linear
codes, including explicit information representation and easy decodability at higher
processing stages (Olshausen & Field, 2004), metabolic efficiency (due to the the significant
cost of producing and transmitting action potentials; Lennie, 2003), and increased capacity
of associative and sequence memory models (Baum, Moody, & Wilczek, 1988; Charles,
Yap, & Rozell, 2012). The interest in the sparse coding model was originally generated
when it was shown that this simple principle (combined with the statistics of natural images)
is sufficient to explain the emergence of V1 receptive field shapes both qualitatively
(Olshausen & Field, 1996) and quantitatively (Rehn & Sommer, 2007). More recently,
electrophysiology experiments report results consistent with sparse coding (Haider et al.,
2010; Vinje & Gallant, 2002), and simulation results have demonstrated that the sparse
coding model can account for a wide variety of nonlinear response properties (called
nonclassical receptive field effects) reported in single cells and population studies of V1
(Zhu & Rozell, 2012).

Despite this interest, there are many open fundamental questions related to the sparse coding
model. First, what exactly is the proper notion of sparsity to use during inference? The
original work in the computational neuroscience literature proposed several potential
sparsity-inducing cost functions (Olshausen & Field, 1996), and recent work (motivated by
strong theoretical results in the signal processing and applied mathematics communities) has
seen people gravitate toward the ℓ1 norm. While the main qualitative results appear to be
relatively robust to the detailed choice of the sparsity-inducing cost function, the broader
signal processing and statistics communities have proposed several alternative cost functions
that have appealing computational or statistical properties and may be valuable alternatives.
Second, how would such a coding principle be implemented in biologically plausible
computational architectures? The computation necessary to implement an inference process
with a sparsity penalty amounts to solving a nonsmooth optimization problem that is
notoriously challenging to solve (e.g., many gradient-based methods are wildly inefficient
due to the nonsmooth nature of the objective). Recent theoretical work has demonstrated
several network architectures that can efficiently compute sparse coefficients (Rehn &
Sommer, 2007; Rozell, Johnson, Baraniuk, & Olshausen, 2010; Zylberberg, Murphy, &
DeWeese, 2011; Perrinet, Samuelides, & Thorpe, 2004). Interestingly, the sparse coding
problem has become very prominent in modern signal processing, for example, for use in
inverse problems (Elad, Figueiredo, & Ma, 2010) and computer vision (Wright et al., 2010).
There is also increasing interest in leveraging the computational benefits of analog
neuromorphic architectures for these problems (Shapero, Charles, Rozell, & Hasler, in press;
Shapero, Rozell, & Hasler, 2012).

The main contribution of this work is to show that a wide variety of sparsity-based
probabilistic inference problems can be implemented exactly in the common network
architecture known as the locally competitive algorithm (LCA) (Rozell et al., 2010). The
LCA is a type of Hopfield network specifically designed to incorporate nonlinear
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thresholding elements that make it particularly efficient for solving the nonsmooth
optimization problems necessary for sparse coding. In particular, we examine sparsity-based
approaches described in the recent statistics and signal processing literature to show that
many proposed signal models based on sparsity principles can be implemented efficiently in
this common neural architecture. Among the cost functions we examine are approximate ℓp
norms (0 ≤ p ≤ 1), modified ℓp-norms that combine the desirable properties of different
statistical models, block-ℓ1 norms for use in hierarchical models that impose correlations
among the active variables, and reweighted algorithms that use a hierarchical probabilistic
model to achieve more efficient encodings. Of particular interest is that we show
significantly increased performance in reweighted ℓ1 algorithms by inferring all parameters
jointly in a dynamical system rather than using an iterative approach native to digital
computational architectures. Preliminary results related to this work were reported in Rozell
and Garrigues (2010).

2 Background and Related Work
2.1 Sparse Coding

In the sparse coding problem, we use probabilistic inference to find the smallest number of
causes for an observed signal under a linear generative model,

(2.1)

where x ∈ ℝM is the observed signal, a ∈ ℝN is the coefficient vector, Φ ∈ ℝM×N is the
dictionary of causes, and ε is gaussian noise. The coefficient vector is said to be sparse as we
seek a solution with relatively few nonzero entries. The coefficients a are generally inferred
via MAP estimation, which results in solving a nonlinear optimization problem,

(2.2)

where C ̃(·) is a cost function penalizing a based on its fit with the signal model and λ is a
parameter denoting the relative trade-off between the data fidelity term (i.e., MSE, which
arises from the log likelihood of the gaussian noise) and the cost function. The cost function
is the nonlinear sparsity-inducing regularization term, corresponding to the log prior of the
data model. More details about the formulation of this problem in the Bayesian inference
framework can be found in Olshausen and Field (1997). Basic signal models frequently
assume independence among the elements of a, resulting in a cost function that separates
into a sum of individual costs (i.e., C̃(a) = Σk C(ak )). One common example is the ℓp norm,

defined as .

2.2 Dynamical Systems for ℓ1 Minimization
Recent work in computational neuroscience has shown that the LCA dynamical system
provably solves the optimization programs in equation 2.2 and is efficient for solving the
nonsmooth problems of interest in sparse approximation. The LCA (Rozell et al., 2010)
architecture comprises a network of analog nodes being driven by the signal to be
approximated. Each node competes with neighboring nodes for a chance to represent the
signal, and the steady-state response represents the solution to the optimization problem.

The LCA is a specific instance of the Hopfield neural network architecture that has a long
history of being used to solve optimization problems (Hopfield, 1982). It is a neurally
plausible architecture, consisting of a network of parallel nodes that use computational
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primitives well matched to individual neuron models. In particular, each node consists of a
leaky integrator and a nonlinear thresholding function, and it is driven by both feed-forward
and lateral (inhibitory and excitatory) recurrent connections. This architecture has been
implemented in neuromorphic hardware as a purely analog system (Shapero, Charles et al.,
in press) and by using integrate-and-fire spiking neurons for each node (Shapero, Rozell, et
al., 2012). We also note that other types of network structures have also been proposed
recently to approximately solve specific versions of the sparse approximation problem
(Rehn & Sommer, 2007; Perrinet et al., 2004; Zylberberg et al., 2011; Hu, Genkin, &
Chklovskii, 2012).

Specifically, the kth node of the LCA is associated with φk, the kth column of Φ. Without
loss of generality, we assume that each column has unit norm. This node is described at a
given time t by an internal state variable uk(t). The coefficients a are related to the internal
states u via an activation (thresholding) function a(t) = T̃λ(u(t)) that is parameterized by λ.
In the important special case when the cost function is separable, the output of each node k
can be calculated independently of all other nodes by a pointwise activation function ak(t) =
Tλ(uk(t)). Individual nodes are leaky integrators driven by an input proportional to 〈φk, x〉,
and competition between nodes occurs by lateral connections that allow highly active nodes
to suppress nodes with less activity. The dynamics for node k are given by

(2.3)

where τ is the system time constant. In vector form, the dynamics for the whole network are
given by

(2.4)

Rozell et al. (2010) showed that for the energy surface E given in equation 2.2 with a
separable, continuous, and piecewise differentiable cost function, the path induced by the
LCA (using the outputs ak(t) as the optimization variable) ensures  when the cost
function satisfies

(2.5)

where Tλ(uk ) is nondecreasing. We use the notation  for convenience when the
activation function is invertible, but this invertibility is not strictly required (i.e., the
relationship in equation 2.5 involving just Tλ(uk ) is sufficient). The same arguments also
extend to the more general case of nonseparable cost functions, ensuring  when

(2.6)

Recent follow-up work (Balavoine, Romberg, & Rozell, 2012) establishes stronger
guarantees on the LCA, specifically showing that this system is globally convergent to the
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minimum of E (which may be a local minima if C (·) is not convex) and proving that the
system converges exponentially fast with an analytically bounded convergence rate.

The relationship in equation 2.5 requires cost functions that are differentiable and activation
functions that are invertible. However, the cost function for BPDN (the ℓ1 norm) is
nonsmooth at the origin, and the most effective sparsity-promoting activation functions will
likely have noninvertible thresholding properties. In these cases, one can start with a smooth
cost function that is a relaxed version of the desired cost and calculate the corresponding
activation function. Taking the limit of the relaxation parameter in the activation function
yields a formula for Tλ(·) that can be used to solve the desired problem. Specifically, in the
appendix, we use the log-barrier relaxation (Boyd & Vandenberghe, 2004) to show that the
LCA solves BPDN when the activation function is the well-known soft thresholding
function:

Similarly, the LCA can find a local minima to the nonconvex optimization program that
minimizes the ℓ0 “norm” of the coefficients (i.e., number of nonzeros) by using the hard
thresholding activation function (Rozell et al., 2010):

where I(·) is the standard indicator function.

3 Alternate Inference Problems in the LCA Architecture
Using the basic relationships described in equations 2.5 and 2.6, we can optimize a variety
of cost functions in the same basic LCA structure by analytically determining the
corresponding activation function.1 These optimization programs include approximate ℓp
norms, modified ℓp norms that attempt to achieve better statistical properties than BPDN, the
group/block ℓ1 norm that induces coactivation structure on the nonzero coefficients,
reweighted ℓ1 and ℓ2 algorithms that represent hierarchical statistical models on the
coefficients, and classic Tikhonov regularization.

Before exploring specific alternate cost functions in the remainder of this section, it is
worthwhile to offer a technical note regarding the optimization programs that are possible to
implement in the LCA architecture. The strong theoretical convergence guarantees
established for the LCA (Balavoine et al., 2012) apply to a wide variety of possible systems,
but they do impose some conditions on the permissible activation functions. We will rely on
these same conditions to analytically determine the relationship between the cost and
activation functions for the examples in this section. Translated to conditions on the cost
functions, the convergence results for the LCA (Balavoine et al., 2012) require that the cost
functions be positive (C̃(a) ≥ 0), and symmetric (C̃(−a) = C̃(a)) and satisfy the condition that

the matrix ( ) is positive definite (i.e.,  for separable cost
functions). This last condition can intuitively be viewed as requiring that the activation
function resulting from equation 2.6 has only a single output for a given input.

1We also note that a cost function might be easily implementable even in the absence of an analytical formula for the activation
function simply by using numerical integration to find a solution and fitting the resulting curve.
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Some of the cost functions considered here have nonzero derivatives at the origin, leading to
a range of values around the origin where Tλ(uk ) is not defined according to the relationship
in equation 2.5. In these cases, the smallest value for which the threshold function is defined
results in a zero-valued output (i.e., Tλ(uk ) = 0 at uk = limak→0+ λ∂C(ak )/∂ak). Since the
second derivative condition on the cost function constrains the activation function to be
nondecreasing, we can infer that the only allowable value of the activation function must be
zero for the regions that are not wellcharacterized by the relationship in equation 2.5.
Finally, we note that in most cases, we will consider the behavior of the activation function
only for uk ≥ 0 because the behavior for uk < 0 is implied by the symmetry condition.

3.1 Approximate ℓp Norms (0 ≤ p ≤ 2)

Perhaps the most widely used family of cost functions are the ℓp norms . These
separable cost functions include ideal sparse approximation (i.e., counting nonzeros),
BPDN, and Tikhonov regularization (Tikhonov, 1963) as special cases (p = 0, 1, and 2,
respectively) and are convex for p ≥ 1. Furthermore, recent research has shown some
benefits of using nonconvex ℓp norms (p < 1) for inverse problems with sparse signal models
(Saab, Chartrand, & Yilmaz, 2008; Elad, Matalon, & Zibulevsky, 2007). While the ideal
activation functions can be determined exactly for the three special cases mentioned above
(p = 0, 1, and 2), it is not possible to analytically determine the activation function for
arbitrary values of 0 ≤ p ≤ 2. Elad et al. (2007) introduced several parameterized
approximations to the ℓp cost functions that are more amenable to analysis. In this section,
we use these same approximations to determine activation functions for minimizing
approximate ℓp norms for 0 ≤ p ≤ 2.

3.1.1 Approximate ℓp for 1 ≤ p ≤ 2—For 1 ≤ p ≤ 2, Elad et al. (2007) propose the
approximate cost function

as a good match for the true ℓp norm for some value of parameters s and c. In the limiting
cases, c = 1 with s → 0 yields the ℓ1 norm and c = 2s with s → ∞ yields the ℓ2 norm. Three
intermediate examples for p = 1.25, 1.5, and 1.75 are shown in Figure 1. For any specific
value of p, we find the best values of c and s by using standard numerical optimization
techniques to minimize the squared error to the true cost function over the interval [0,2].
From this cost function, we can differentiate to obtain the relationship between each uk and
ak as

We see from this relationship that with c = 1 and s → 0, we obtain ak = uk − λ for uk > λ
(i.e., the soft-thresholding function for BPDN), while with c = 2s and s → ∞, we obtain

 (i.e., a linear amplifier for Tikhonov regularization). Solving for ak in terms of uk
(restricting the solution to be positive and increasing) yields a general relationship for the
activation function
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This solution is shown in Figure 1 for p = 1.25, 1.5, and 1.75 for λ = 0.5.

3.1.2 Approximate ℓp for 0 ≤ p ≤ 1—For 0 ≤ p ≤ 1, Elad et al. (2007) also propose the
following approximate cost function as a good match for the true ℓp norm for some value of
parameters s and c:

where the parameters c > 0 and s > 0 can be optimized as above to approximate different
values of p. Three approximations for p = 0.5, 0.75, and 0.9 are shown in Figure 1. To
determine the activation function, we again differentiate and find the appropriate
relationship to be

Solving for ak reduces to solving a quadratic equation, which leads to two possible solutions.
As above, we restrict the activation function to include only the solution that is positive and
increasing, resulting in the activation function

This activation function is valid only over the range where the output is a positive real
number. If cλ ≤ s, this condition reduces to uk ≥ cλ. More generally, this condition reduces

to .

3.2 Modified ℓp Norms
While the general ℓp norms have historically been very popular cost functions, many people
have noted that this approach can have undesirable statistical properties in some instances
(e.g., BPDN can result in biased estimates of large coefficients, Zou, 2006). To address
these issues, many researchers in signal processing and statistics have proposed modified
cost functions that attempt to alleviate these statistical concerns. For example, hybrid ℓp
norms smoothly morph between different norms to capture the most desirable characteristics
over different regions. In this section, we demonstrate that many of these modified ℓp norms
can also be implemented in the basic LCA architecture.

3.2.1 Smoothly Clipped Absolute Deviations—A common goal for modified ℓp
norms is to retain the continuity of the cost function near the origin demonstrated by the ℓ1
norm, while using a constant cost function for larger coefficients (similar to the ℓ0 norm) to
avoid statistical biases. One approach to achieving these competing goals is the smoothly
clipped absolute deviations (SCAD) penalty (Fan, 1997; Antoniadis & Fan, 2001). The
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SCAD approach directly concatenates the ℓ1 and ℓ0 norms with a quadratic transition region,
resulting in the cost function given by

for κ ≥ 1 (κ defines the width of the transition region). An example of this cost function with
λ = 0.5 and κ = 3.7 is shown in Figure 2.

To obtain the activation function, we again solve  for ak as a function of uk. For
SCAD (and all of the piecewise cost functions we consider), the activation function can be
determined individually for each region, paying careful attention to the ranges of the inputs
uk and outputs ak to ensure consistency. For 0 < ak ≤ λ, we have λ + ak = uk, implying that ak
= 0 for uk < λ and ak = uk − λ over the interval λ < uk < 2λ. For λ < ak ≤ κλ, we have

over the interval 2λ < uk < κλ. Finally, for κλ < ak, we have ak = uk, giving the full
activation function

which is shown in Figure 2 for λ = 0.5 and κ = 3.7. Note that this activation function
requires κ ≥ 2 (Antoniadis & Fan, 2001, recommend a value of κ = 3.7). While this is
apparent from consistency arguments once the thresholding function has been derived, this

restriction on κ can also be deduced from the condition .

3.2.2 Transformed ℓ1—Similar to the SCAD cost function, the transformed ℓ1 cost
(Antoniadis & Fan, 2001; Nikolova, 2000) attempts to capture something close to the ℓ1
norm for small coefficients while reducing the penalty on larger coefficients. Specifically,
transformed ℓ1 uses the fractional cost function given by

for some β > 0. An example of this cost with β = 2 and λ = 0.5 is shown in Figure 2. After
calculating the derivative of the cost function, the activation function can be found by
solving
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for ak. Inverting this equation reduces to solving a cubic equation in ak. The three roots can
be calculated analytically, but only one root generates a viable thresholding function by
being both positive and increasing for positive uk. That root is given by

This solution is viable only when ak is real valued, which corresponds to the range

. Outside this range, no viable nonzero solution exists, and so ak = 0. The
full thresholding function is shown in Figure 2 for λ = 0.5 and β = 2.

3.2.3 Huber Function—The Huber cost function (Huber, 1973) aims to modify standard
ℓ2 optimization to improve the robustness to outliers. This cost function consists of a
quadratic cost function on smaller values and a smooth transition to an ℓ1 cost on larger
values, given by

An example of the Huber cost is shown in Figure 2 for λ = 0.5 and ε = 0.3. As in the case of
other piecewise cost functions, we calculate the activation function separately over each
interval of interest by calculating the derivative of the cost function in each region. For the
first interval, the relationship is given by , which obviously gives the activation

function  for |uk| ≤ ε + λ. For the second interval, we have , which

yields the activation function  for |uk| > ε + λ. Putting the pieces together,
the full activation function (as expected) is a mixture of the Tikhonov regularization and the
soft thresholding used for ℓ1 optimization given by

which is shown in Figure 2 for λ = 0.5 and ε = 0.3. We can see that as ε → 0, the cost
function converges to the ℓ1 norm and the thresholding function correctly converges back to
the soft-threshold function derived earlier using the log-barrier method.
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3.2.4 Amplitude Scale-Invariant Bayes Estimation—A known problem with using
the ℓ1 norm as a cost function is that it is not scale invariant, meaning that the results can be
poor if the amplitude of the input signals changes significantly (assuming a constant value of
λ). Many cost functions (including the ones presented above) are heuristically motivated,
drawing on intuition and trade-offs between the behavior of various ℓp norms. In contrast,
Figueiredo and Nowak (2001) approach the problem from the perspective of Bayesian
inference with a Jeffreys prior to determine a cost function with more invariance to
amplitude scaling, similar to the nonnegative Garrote (Gao, 2001). We consider here the
cost function

which is proportional to the one given by Figueiredo and Nowak (2001) and is shown in
Figure 2 for λ = 0.5.

Taking the derivative of this cost function, we end up with the relationship between uk and
ak:

Solving for ak as a function of uk yields the following activation function,

matching the results from Figueiredo and Nowak (2001). This activation function is shown
in Figure 2 for λ = 0.5.

3.3 Block ℓ1

While all cost functions discussed earlier in this section have been separable, there is
increasing interest in nonseparable cost functions that capture structure (i.e., statistical
dependencies) between the nonzero coefficients. For example, this structure would be
important in performing inference in a complex cell energy model where the energies (i.e.,
magnitudes) are sparse in a complex-valued signal decomposition (e.g., Cadieu &
Olshausen, 2012). Perhaps the most widely cited cost function discussed in this regard is the
block ℓ1 norm (also called the group ℓ1 norm), which assumes that the coefficients
representing x are active in known groups. In this framework, the coefficients are divided
into blocks,  ⊂ {ak}, and each block of coefficients  is represented as a vector al. For our
purposes, we assume the blocks are non-overlapping but may have different cardinalities.
The block ℓ1 norm (Eldar, Kuppinger, & Bolcskei, 2010) is defined as the ℓ1 norm over the
ℓ2 norms of the groups,
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essentially encouraging sparsity between the blocks (i.e., requiring only a few groups to be
active) with no individual penalty on the coefficient values within a block. Because this cost
is not separable, the activation function will no longer be a pointwise nonlinearity and will
instead have multiple inputs and outputs.

Following the same general approach as above, we calculate the gradient of the cost function
for each block,

yielding the following relationship between the activation function inputs and outputs

(3.1)

While directly solving this relationship for al appears difficult, we note that we can simplify
the equation by expressing ||al||2 in terms of ||ul||2. To see this, take the norm of both sides of
equation 3.1 to get ||ul||2 = ||al||2 + λ. In substituting back into equation 3.1, the relationship
simplifies to

over the range 0 ≤ ||al||2 = ||ul||2 − λ, implying λ ≤ ||ul||2.

This relationship yields the block-wise thresholding function

This activation function can be thought of as a type of shrinkage operation applied to an
entire group of coefficients, with a threshold that depends on the norm of the group inputs.
For the case of groups of two elements (with λ = 0.5), Figure 3 shows the nonlinearities for
each of the two states as a function of the value of the other state.

3.4 Reweighted ℓ1 and ℓ2

Recent work has also demonstrated that reweighted ℓp norms can achieve better sparsity by
iteratively solving a series of tractable convex programs (Wipf & Nagarajan, 2010;
Chartrand & Yin, 2008; Candès, Wakin, & Boyd, 2008; Garrigues & Olshausen, 2010). For
example, reweighted ℓ1 (Candès et al., 2008) is an iterative algorithm where a single
iteration consists of solving a weighted ℓ1 minimization (C̃(a) = Σkλk|ak|), followed by a
weight update according to the rule
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(3.2)

where γ is a small parameter. By having λk approximately equal to the inverse of the ℓ1
norm of the coefficient from the previous iteration, this algorithm is more aggressive than
BPDN at driving small coefficients to zero and increasing sparsity in the solutions.
Similarly, reweighted ℓ2 algorithms (Wipf & Nagarajan, 2010) have also been used to
approximate different p-norms with weights updated as

Such schemes have shown many empirical benefits over ℓp norm minimization, and recent
work on reweighted ℓ1 has established theoretical performance guarantees (Khajehnejad,
Xu, Avestimehr, & Hassibi, 2010) and interpretations as Bayesian inference in a
probabilistic model (Garrigues & Olshausen, 2010).

One of the main drawbacks to reweighted algorithms in digital architectures is the time
required for solving the weighted ℓp program multiple times. Of course, it is also not clear
that a discrete iterative approach such as this could be mapped to an asynchronous analog
computational architecture. Because we have established that the LCA architecture can
solve the ℓp norm optimizations (and weighted norms are a straightforward extension to
those results), it would immediately follow that a dynamical system could be used to
perform the optimization necessary for each iteration of the algorithm. While this would be a
viable strategy, we show here that even more advantages can be gained by performing the
entire reweighted ℓ1 algorithm in the context of a dynamical system. Specifically, we
consider a modified version of the LCA where an additional set of dynamics is placed on λ
in order to simultaneously optimize the coefficients and coefficient weights in an analog
system. While the ideas here are expandable to the general reweighted case, we focus on
results involving the reweighted ℓ1 as presented in Garrigues and Olshausen (2010).

The modified LCA is given by the system equations

At steady state, λ̇ = 0, which shows that λk(∞) abides by equation 3.2 with ν representing
the proportionality constant. While the complete analysis of this expanded analog system is
beyond the scope of this letter, we show in Figure 4a simulations demonstrating that this
system reaches a solution of comparable quality to digital iterative methods. Figure 4a plots
the relative MSE from a compressed sensing recovery problem with length 1000 vectors
from 500 noisy measurements with varying levels of sparsity. We sweep the parameter ρ =
S/M from zero to one and set the noise variance to 10−4, with each plot representing the
relative MSE averaged over 15 randomly chosen signals. Figure 4a plots the recovery
quality for three systems: iterative reweighted ℓ1 (using GPSR to solve the ℓ1 iterations:
Figueiredo, Nowak, & Wright, 2007), iterative reweighted ℓ1 (using the LCA to solve the ℓ1
iterations), and dynamic reweighted ℓ1, which uses the modified LCA described above. It is
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clear that the three systems are achieving nearly the same quality in their signal recovery.
Figure 4b plots the convergence of the recovery as a function of time (in terms of system
time constants τ) for the iterative and dynamic reweighted approaches using the LCA. The
dynamically reweighted system clearly converges more quickly, achieving its final solution
in approximately the time it takes to perform two iterations of the traditional reweighting
scheme using the standard LCA.

4 Conclusion
Sparsity-based signal models have played a significant role in many theories of neural
coding across multiple sensory modalities. Despite the interest in the sparse coding
hypothesis from the computational and theoretical neuroscience communities, the qualitative
nature of much of the supporting evidence leaves significant ambiguity about the ideal form
for a sparsity-inducing cost function. While recent trends favor the ℓ1 norm due the
emergence of guarantees in the signal processing literature, there are many sparsity-inducing
signal models that may have benefits for neural computation and should be candidate
models for neural coding. We have shown here that many of the sparsity-inducing cost
functions proposed in the signal processing and statistics literatures can be implemented in a
single unified dynamical system.

From the results presented here, we conclude that neurally plausible computational
architectures can support a wide variety of sparsity-based signal models, and it is therefore
reasonable to consider this broad family of models as reasonable candidates for theories of
sensory neural coding. Furthermore, we have shown that even a relatively complex
hierarchical probabilistic model resulting in a reweighted ℓ1 inference scheme can be
implemented efficiently in a purely analog system. This observation is particularly
interesting because it illustrates a fundamental potential advantage of analog computation
over digital systems. Specifically, the analog approach to this problem is able to
continuously infer two sets of variables jointly rather than take an iterative approach that
fundamentally must wait for the computations in each iteration for one variable to fully
converge before inferring the other variable.

Beyond the applicability of these results to theories of neural computation, the recent shift
toward optimization as a fundamental computational tool in the modern signal processing
toolbox has made it difficult to implement many of these algorithms in applications with
significant power constraints or real-time processing requirements. The results of this letter
broaden the scope of problems that could potentially be approached through efficient
neuromorphic architectures. The design and implementation of analog circuits have
traditionally been difficult, but recent advances in reconfigurable analog circuits (Twigg &
Hasler, 2009) have improved many of the issues related to the design of these systems. In
fact, the re-configurable platform described in Twigg and Hasler has been used to
implement a small version of the LCA for solving BPDN (Shapero, Charles et al., in press;
Shapero, Rozell et al., 2012), and preliminary tests of this implementation are consistent
with simulations of the idealized LCA. These results lend encouragement to the idea that
efficient analog circuits could be implemented for the variety of cost functions described in
this letter.
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Appendix: Soft-Threshold Activation for BPDN Using the Log-Barrier
Relaxation

We first rewrite the desired BPDN problem, equation 2.2, with the ℓ1 cost function, in an
extended formulation to make the variables nonnegative. Define a new M × 2N matrix

through the concatenation operation Φ̃ = [Φ, −Φ]. Similarly, define a vector  of
length 2N such that zi ≥ 0 and a = z+ − z−. Essentially z represents the original variables a by
separating them into two subvectors depending on their sign. We can then write a
constrained optimization program that is equivalent to BPDN:

(A.1)

This reformulation is a standard way to show that ℓ1 cost penalties are equivalent to a linear
function in a constrained optimization program. One can then apply the standard log-barrier
relaxation to convert the program in equation A.1 to an approximately equivalent
unconstrained program:

(A.2)

As γ → ∞, this program approaches the desired program, equation A.2. This relaxation
strategy underlies an interior point algorithm (called the barrier method) for solving convex
optimization programs, where equation A.2 is repeatedly solved with increasing values of γ
(Boyd & Vandenberghe, 2004).

Note that the relaxed problem in equation A.2 fits the form of the general optimization

program stated in equation 2.2 with the differentiable cost function . For a
fixed value of γ, this cost function can be differentiated and used in the relationship given in
equation 2.5 to solve for zk in terms of uk to find the corresponding invertible activation
function:

Finally it is straightforward to show that in the relaxation limit (γ → ∞) where the program
in equation A.2 approaches BPDN, the desired activation function becomes the soft-
thresholding function:
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To illustrate the convergence of this relaxation to the desired ℓ1 cost function and the
corresponding soft-threshold activation function, Figure 5 plots C(·) and Tλ(·) in this relaxed
problem for several values of γ. Note that in the extended formulation of BPDN given in
equation A.1, the variables occur in pairs where only one of them can be nonzero at a time.
Because the activation function is zero for all state values with a magnitude less than
threshold, it is possible to represent each of these pairs of variables in one LCA node that
can take on positive and negative values and where the activation function is a two-sided
soft-thresholding function (thereby reducing the number of nodes back down to N).
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Figure 1.
Approximate ℓp cost functions and their corresponding thresholding functions. (Left) The
cost functions are approximated over the parameters c, s for values of p ranging from 0 to 1
(top) and 1 to 2 (bottom). The true ℓp costs are shown as dotted lines in the same shades.
Using these values of c and s, a nonlinear activation function that can be used in the LCA to
solve the optimization is plotted (right) using the thresholding equations for 0 < p < 1 (top)
and 1 < p < 2 (bottom). The thresholding functions clearly span the ranges between soft and
hard thresholding for the lower range of p and between soft thresholding and linear
amplification for the upper range of p.
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Figure 2.
Cost functions and their corresponding thresholding functions. (Left) The cost functions are
compared for the (top) ℓ1 with λ = 0.5, scale-invariant Bayes with λ = 0.5, the Huber cost
with λ = 0.5 and ε = 0.3 and (bottom) ℓ0 with λ = 0.5, SCAD with λ = 0.5 and λ = 3.7, and
transformed ℓ1 with λ = 0.5 and β = 2. (Right) The corresponding nonlinear activation
function, which can be used in the LCA to solve the regularized optimization program for
each cost function.
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Figure 3.
The nonlinear activation function used in the LCA to optimize the nonoverlapping group
LASSO cost function has multiple inputs and multiple outputs. The plot shows an example
thresholding function for both elements in a group of size 2 (λ = 0.5), with each line
illustrating the nonlinear effect on a1 while u2 is held constant.
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Figure 4.
Reweighted ℓ1 optimization in digital algorithms and in a modified LCA. (a) Reweighted ℓ1
optimization for a signal with N = 1000 and δ = 0.5, with ρ swept from 0 to 1. The
traditional iterative reweighting scheme is performed with both a standard digital algorithm
(GPSR) and the LCA. For comparison, a dynamic reweighting scheme where the LCA is
modified to have continuous dynamics on the regularization parameter (rather than discrete
iterations) is also shown. Each method is clearly achieving similar solutions. (b) The
temporal evolution of the recovery relative MSE for a problem with N = 1000, δ = 0.6, and ρ
= 0.45. Solutions are shown for the amount of simulated time (in terms of number of time
constants). The dynamically reweighted system converges in approximately the time it takes
to use the LCA to solve two iterations of the traditional reweighted ℓ1 algorithm.
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Figure 5.
Log-barrier relaxations of BPDN. (a) The cost function approaches the ideal ℓ1 norm as the
relaxation parameter is increased. (b) In a similar way, the nonlinear activation function
derived for the LCA approaches the ideal soft-thresholding operator as the relaxation
parameter is increased.
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