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ALTERNATING DIRECTION METHODS FOR LATENT VARIABLE GAUSSIAN

GRAPHICAL MODEL SELECTION

SHIQIAN MA ∗, LINGZHOU XUE † , AND HUI ZOU ‡

Abstract. Chandrasekaran, Parrilo and Willsky (2010) proposed a convex optimization problem to characterize graphical

model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance

matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization

problem is very challenging, especially for large problems. In this paper, we propose two alternating direction methods for solving

this problem. The first method is to apply the classical alternating direction method of multipliers to solve the problem as a

consensus problem. The second method is a proximal gradient based alternating direction method of multipliers. Our methods

exploit and take advantage of the special structure of the problem and thus can solve large problems very efficiently. Global

convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data

show that our methods usually solve problems with one million variables in one to two minutes, and are usually five to thirty

five times faster than a state-of-the-art Newton-CG proximal point algorithm.

Key words. Alternating Direction Method, Proximal Gradient, Global Convergence, Gaussian Graphical Models, Latent

Variables, Sparsity, Low-rank, Regularization.

1. Introduction. In this paper, we consider alternating direction methods with the theoretical guar-

antee of global convergence for computing the latent-variable graphical model selection [7]. Graphical model

selection is closely related to the inverse covariance matrix estimation problem, which is of fundamen-

tal importance in multivariate statistical inference. In particular, when data X = (X1, · · · , Xp)
′ follow

a p-dimensional joint normal distribution with some unknown variance matrix Σ, the precision matrix

Θ = Σ−1 can be directly translated into a Gaussian graphical model. The zero entries in the precision

matrix Θ =
(

θij
)

1≤i,j≤p
precisely capture the desired conditional independencies in the Gaussian graphical

model [31, 19], i.e. θij = 0 if and only if Xi ⊥⊥ Xj | X−(i,j). The Gaussian graphical model has been suc-

cessfully used to explore complex systems consisting of Gaussian random variables in many research fields,

including gene expression genomics [22, 55], image processing [33], macroeconomics determinants study [13],

and social study [1, 30].

Nowadays, massive high-dimensional data are being routinely generated with rapid advances of modern

high-throughput technology (e.g. microarray and functional magnetic resonance imaging). Estimation of a

sparse graphical model has become increasingly important in the high-dimensional regime, and some well-

developed penalization techniques have received considerable attention in the statistical literature. [40] was

the first to study the high-dimensional sparse graphical model selection problem, and they proposed the

neighborhood penalized regression scheme which performs the lasso [51] to fit each neighborhood regression

and summarizes the sparsity pattern by aggregation via union or intersection. [44] proposed the joint

sparse regression model to jointly estimate all neighborhood lasso penalized regressions. [58] considered the

Dantzig selector [6] as an alternative to the lasso in each neighborhood regression. [5] proposed a constrained

ℓ1 minimization estimator called CLIME for estimating sparse precision matrices, and established rates of

convergence under both the entrywise ℓ∞ norm and the Frobenius norm. Computationally CLIME can be

further decomposed into a series of vector minimization problems.
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The ℓ1-penalized maximum normal likelihood method is another popular method for graphical model

selection [59, 2, 21, 47]. [47] established its rate of convergence under the Frobenius norm. Under the

irrepresentable conditions, [46] obtained the convergence rates under the entrywise ℓ∞ norm and the spectral

norm. Define the entrywise ℓ1 norm of S as the sum of absolute values of the entries of S, i.e., ‖S‖1 :=
∑

ij |Sij |. For a given sample covariance matrix Σ̂ ∈ R
p×p, the ℓ1-penalized maximum normal likelihood

estimation can be formulated as the following convex optimization problem.

(1.1) min
S

〈S, Σ̂〉 − log detS + ρ‖S‖1,

where the first part 〈S, Σ̂〉− log detS gives the normal log-likelihood function of S, and the entrywise ℓ1 norm

‖S‖1 is used to promote the sparsity of the resulting matrix. Note that in the literature the ℓ1-penalized

maximum normal likelihood usually uses the so-called 1-off absolute penalty ‖S‖1,off :=
∑

i6=j |Sij |. However,

‖S‖1 and ‖S‖1,off cause no difference when using our algorithm. [7] have used ‖S‖1 in defining their convex

optimization problem and hence we follow their convention in the current paper.

The aforementioned Gaussian graphical model selection methods were proposed under the ideal setting

without missing variables. The recent paper by [7] considered a more realistic scenario where the full data

consist of both observed variables and missing (hidden) variables. Let Xp×1 be the observed variables.

Suppose that there are some hidden variables Yr×1 (r ≪ p) such that (X,Y ) jointly follow a multivariate

normal distribution. Denote the covariance matrix by Σ(X,Y ) and the precision matrix by Θ(X,Y ). Then we

can write Σ(X,Y ) = [ΣX ,ΣXY ; ΣYX ,ΣY ] and Θ(X,Y ) = [ΘX ,ΘXY ; ΘYX ,ΘY ]. Given the hidden variables

Y , the conditional concentration matrix of observed variables, ΘX , is sparse for a sparse graphical model.

However, the marginal concentration matrix of observed variables, Σ−1
X = ΘX − ΘXY Θ

−1
Y ΘYX , might not

be a sparse matrix but a difference between the sparse term ΘX and the low-rank term ΘXY Θ
−1
Y ΘYX .

The problem of interest is to recover the sparse conditional matrix ΘX based on observed variables X . [7]

accomplished this goal by solving a convex optimization problem under the assumption that Σ−1
X = S − L

for some sparse matrix S and low-rank matrix L. The low rank assumption on L holds naturally since r

is much less than p. Motivated by the success of the convex relaxation for rank-minimization problem, [7]

introduced a regularized maximum normal likelihood decomposition framework called the latent variable

graphical model selection (LVGLASSO) as follows.

(1.2) min
S,L

〈S − L, Σ̂X〉 − log det(S − L) + α‖S‖1 + βTr(L), s.t. S − L ≻ 0, L � 0,

where Σ̂X is the sample covariance matrix of X and Tr(L) denotes the trace of matrix L. In the high-

dimensional setting, [7] established the consistency theory for (1.2) concerning its recovery of the support

and sign pattern of S and the rank of L.

Solving the convex optimization problem (1.2) is very challenging, especially for large problems. [7]

considered (1.2) as a log-determinant semidefinite programming (SDP) problem, and used a Newton-CG

based proximal point algorithm (LogdetPPA) proposed by [52] to solve it. However, LogdetPPA does not

take advantage of the special structure of the problem, and we argue that it is inefficient for solving large-

scale problems. To illustrate our point, let us consider the special case of (1.2) with L = 0, and then the

latent variable graphical model selection (1.2) exactly reduces to the Gaussian graphical model selection
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(1.1). Note that (1.1) can be rewritten as

min
S

max
‖W‖∞≤ρ

− log detS + 〈Σ̂X +W,X〉,

where ‖W‖∞ is the largest absolute value of the entries of U . The dual problem of (1.1) can be obtained by

exchanging the order of max and min, i.e.,

max
‖W‖∞≤ρ

min
S

− log detX + 〈Σ̂X +W,S〉,

which is equivalent to

(1.3) max
W

{log detW + p : ‖W − Σ̂X‖∞ ≤ ρ}.

Both the primal and the dual graphical Lasso problems (1.1) and (1.3) can be viewed as semidefinite pro-

gramming problems and can be solved via interior point methods (IPMs) in polynomial time [4]. However,

the per-iteration computational cost and memory requirements of an IPM are prohibitively high for (1.1)

and (1.3), especially when the size of the matrix is large. Customized SDP based methods such as the ones

studied in [52] and [32] require a reformulation of the problem that increases the size of the problem and

thus makes them impractical for solving large-scale problems. Therefore, most of the methods developed for

solving (1.1) and (1.3) are first-order methods. These methods include block coordinate descent type meth-

ods [2, 21, 49, 56], projected gradient method [15] and variants of Nesterov’s accelerated method [11, 35].

Recently, alternating direction methods have been applied to solve (1.1) and shown to be very effective

[60, 48].

In this paper, we propose two alternating direction type methods to solve the latent variable graphical

model selection. The first method is to apply the alternating direction method of multipliers to solve this

problem. This is due to the fact that the latent variable graphical model selection can be seen as a special

case of the consensus problem discussed in [3]. The second method we propose is an alternating direction

method with proximal gradient steps. To apply the second method, we first group the variables into two

blocks and then apply the alternating direction method with one of the subproblems being solved inexactly

by taking a proximal gradient step. Our methods exploit and take advantage of the special structure of

the problem and thus can solve large problems very efficiently. Although the convergence results of the

proposed methods are not very different from the existing results for alternating direction type methods, we

still include the convergence proof for the second method in the appendix for completeness. We apply the

proposed methods to solving problems from both synthetic data and gene expression data and show that

our method outperform the state-of-the-art Newton-CG proximal point algorithm LogdetPPA significantly

on both accuracy and CPU times.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries on alternating

direction method of multipliers and proximal mappings. In Section 3, we propose solving LVGLASSO (1.2)

as a consensus problem using the classical alternating direction method of multipliers. We propose the

proximal gradient based alternating direction method for solving (1.2) in Section 4. In Section 5, we apply

our alternating direction method to solving (1.2) using both synthetic data and gene expression data. We

draw some conclusions in Section 6.
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2. Preliminaries. Problem (1.2) can be rewritten in the following equivalent form by introducing a

new variable R:

(2.1)
min 〈R, Σ̂X〉 − log detR+ α‖S‖1 + βTr(L)

s.t. R = S − L,R ≻ 0, L � 0,

which can be further reduced to

(2.2) min 〈R, Σ̂X〉 − log detR+ α‖S‖1 + βTr(L) + I(L � 0), s.t. R− S + L = 0,

where the indicator function I(L � 0) is defined as

(2.3) I(L � 0) :=

{

0, if L � 0

+∞, otherwise.

Note that we have dropped the constraint R ≻ 0 since it is already implicitly imposed by the log detR

function.

Now since the objective function involves three separable convex functions and the constraint is simply

linear, Problem (2.2) is suitable for alternating direction method of multipliers (ADMM). ADMM is closely

related to the Douglas-Rachford and Peaceman-Rachford operator-splitting methods for finding zero of the

sum of two monotone operators that have been studied extensively in [14, 43, 34, 16, 18, 9, 10]. ADMM

has been revisited recently due to its success in the emerging applications of structured convex optimization

problems arising from image processing, compressed sensing, machine learning, semidefinite programming

and statistics etc. (see e.g., [24, 23, 53, 57, 27, 45, 60, 48, 25, 26, 39, 54, 3, 42, 37]).

Problem (2.2) is suitable for alternating direction methods because the three convex functions involved

in the objective function, i.e.,

(2.4) f(R) := 〈R, Σ̂X〉 − log detR,

(2.5) g(S) := α‖S‖1,

and

(2.6) h(L) := βTr(L) + I(L � 0),

have easy proximal mappings. Note that the proximal mapping of function c : Rm×n → R
m×n for given

ξ > 0 and Z ∈ R
m×n is defined as

(2.7) prox(c, ξ, Z) := argminX∈Rm×n

1

2ξ
‖X − Z‖2F + c(X).

The proximal mapping of f(R) defined in (2.4) is

(2.8) prox(f, ξ, Z) := argminR
1

2ξ
‖R− Z‖2F + 〈R, Σ̂X〉 − log detR.
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The first-order optimality conditions of (2.8) are given by

(2.9) R+ ξΣ̂X − Z − ξR−1 = 0.

It is easy to verify that

(2.10) R := U diag(γ)U⊤,

satisfies (2.9) and thus gives the optimal solution of (2.8), where U diag(σ)U⊤ is the eigenvalue decomposition

of matrix ξΣ̂X − Z and

(2.11) γi =

(

−σi +
√

σ2
i + 4ξ

)

/2, ∀i = 1, . . . , p.

Note that (2.11) guarantees that the solution of (2.8) given by (2.10) is a positive definite matrix. The

proximal mapping of g(S) defined in (2.5) is

(2.12) prox(g, ξ, Z) := argminS
1

2ξ
‖S − Z‖2F + α‖S‖1.

It is well known that (2.12) has a closed-form solution that is given by the ℓ1 shrinkage operation

Sk+1 := Shrink(Z, αξ),

where Shrink(·, ·) is defined as

(2.13) [Shrink(Z, τ)]ij :=











Zij − τ, if Zij > τ

Zij + τ, if Zij < −τ

0, if − τ ≤ Zij ≤ τ.

The proximal mapping of h(L) defined in (2.6) is

(2.14) prox(h, ξ, Z) := argminL
1

2ξ
‖L− Z‖2F + βTr(L) + I(L � 0).

It is easy to verify that the solution of (2.14) is given by

(2.15) L := U diag(γ)U⊤,

where Z = U diag(σ)U⊤ is the eigenvalue decomposition of Z and γ is given by

(2.16) γi := max{σi − ξβ, 0}, i = 1, . . . , p.

Note that (2.16) guarantees that L given in (2.15) is a positive semidefinite matrix.
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The discussions above suggest the following natural ADMM for solving (2.2) be efficient.

(2.17)























Rk+1 := argminR Lµ(R,S
k, Lk; Λk)

Sk+1 := argminS Lµ(R
k+1, S, Lk; Λk)

Lk+1 := argminL Lµ(R
k+1, Sk+1, L; Λk)

Λk+1 := Λk − (Rk+1 − Sk+1 + Lk+1)/µ,

where the augmented Lagrangian function is defined as

(2.18) Lµ(R,S, L; Λ) := 〈R, Σ̂X〉−log detR+α‖S‖1+βTr(L)+I(L � 0)−〈Λ, R−S+L〉+
1

2µ
‖R−S+L‖2F ,

Λ is the Lagrange multiplier and µ > 0 is the penalty parameter. Note that the three subproblems in (2.17)

correspond to the proximal mappings of f , g and h defined in (2.4), (2.5) and (2.6), respectively. Thus they

are all easy to solve. However, the global convergence of ADMM (2.17) with three blocks of variables was

ambiguous. Only until very recently, was it shown that (2.17) globally converges under certain conditions

(see [36]). It should be noted, however, that the error bound condition required in [36] is strong and only a

few classes of convex function are known that satisfy this condition.

3. ADMM for Solving (2.2) as a Consensus Problem. Problem (2.2) can be rewritten as a convex

minimization problem with two blocks of variables and two separable functions as follows:

(3.1)
min φ(X) + ψ(Z),

s.t. X − Z = 0,

where X = (R,S, L), Z = (R̃, S̃, L̃), and

φ(X) := f(R) + g(S) + h(L), ψ(Z) = I(R̃ − S̃ + L̃ = 0),

with f, g and h defined in (2.4), (2.5) and (2.6), respectively. The ADMM applied to solving (3.1) can be

described as follows:

(3.2)











Xk+1 := argminX φ(X)− 〈Λk, X − Zk〉+ 1
2µ‖X − Zk‖2F ,

Zk+1 := argminZ ψ(Z)− 〈Λk, Xk+1 − Z〉+ 1
2µ‖X

k+1 − Z‖2F ,

Λk+1 := Λk − (Xk+1 − Zk+1)/µ,

where Λ is the Lagrange multiplier associated with the equality constraint. The two subproblems in (3.2)

are both easy to solve. In fact, the solution of the first subproblem in (3.2) corresponds to the proximal

mappings of f , g and h. Partitioning the matrix T k := Xk+1 − µΛk into three blocks in the same form as

Z = (R̃, S̃, L̃), The second subproblem can be reduced to:

(3.3)
min 1

2‖(R̃, S̃, L̃)− (T k
R, T

k
S , T

k
L)‖

2
F

s.t. R̃− S̃ + L̃ = 0.

The first-order optimality conditions of (3.3) are given by

(3.4) (R̃, S̃, L̃)− (T k
R, T

k
S , T

k
L)− (Γ,−Γ,Γ) = 0,

6



where Γ is the Lagrange multiplier associated with (3.3). Thus we get,

R̃ = T k
R + Γ, S̃ = T k

S − Γ, L̃ = T k
L + Γ.

Substituting them into the equality constraint in (3.3), we get

(3.5) Γ = −(T k
R − T k

S + T k
L)/3.

By substituting (3.5) into (3.4) we get the solution to (3.3).

The ADMM (3.2) solves Problem (3.1) with two blocks of variables. It can be seen as a special case of

the consensus problem discussed in [3]. The global convergence result of (3.2) has also been well studied in

the literature (see e.g., [16, 18]).

4. A Proximal Gradient based Alternating Direction Method. In this section, we propose

another alternating direction type method to solve (2.2). In Section 3, we managed to reduce the original

problem with three blocks of variables (2.2) to a new problem with two blocks of variables (3.1). As a

result, we can use ADMM for solving problems with two blocks of variables, whose convergence has been

well studied. Another way to reduce the problem (2.2) into a problem with two blocks of variables is to

group two variables (say S and L) as one variable. This leads to the new equivalent form of (2.2):

(4.1)
min f(R) + ϕ(W )

s.t. R − [I,−I]W = 0,

where W = [S;L] and ϕ(W ) = g(S) + h(L). Now the ADMM for solving (3.1) can be described as

(4.2)











Rk+1 := argminR f(R)− 〈Λk, R− [I,−I]W k〉+ 1
2µ‖R− [I,−I]W k‖2F

W k+1 := argminW ϕ(W ) − 〈Λk, Rk+1 − [I,−I]W 〉+ 1
2µ‖R

k+1 − [I,−I]W‖2F
Λk+1 := Λk − (Rk+1 − [I,−I]W k+1)/µ,

where Λ is the Lagrange multiplier associated with the equality constraint and µ > 0 is a penalty parameter.

The first subproblem in (4.2) is still easy and it corresponds to the proximal mapping of function f . However,

the second subproblem in (4.2) is not easy, because the two parts ofW are coupled together in the quadratic

penalty term. To overcome this difficulty, we solve the second subproblem in (4.2) inexactly by one step of

a proximal gradient method. Note that the second subproblem in (4.2) can be reduced to

(4.3) W k+1 := argminW ϕ(W ) +
1

2µ
‖Rk+1 − [I,−I]W − µΛk‖2F .

One step of proximal gradient method solves the following problem

(4.4) min
W

ϕ(W ) +
1

2µτ
‖W − (W k + τ

(

I

−I

)

(Rk+1 − [I,−I]W k − µΛk))‖2F .

Since the two parts of W = [S;L] are separable in the quadratic part now, (4.4) reduces to two problems

(4.5) min
S

g(S) +
1

2µτ
‖S − (Sk + τGk

R)‖
2
F ,
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and

(4.6) min
L

h(L) +
1

2µτ
‖L− (Lk − τGk

R)‖
2
F ,

where Gk
R = Rk+1−Sk+Lk−µΛk. Both (4.5) and (4.6) are easy to solve as they correspond to the proximal

mappings of functions g and h, respectively. Thus, our proximal gradient based alternating direction method

(PGADM) can be summarized as

Algorithm 1 A Proximal Gradient based Alternating Direction Method

1: for k=0,1,. . . do

2: Rk+1 := argminR f(R)− 〈Λk, R− Sk + Lk〉+ 1

2µ
‖R − Sk + Lk‖2F

3: Sk+1 := argminS g(S) + 1

2µτ
‖S − (Sk + τGk

R)‖
2
F

4: Lk+1 := argminL h(L) + 1

2µτ
‖L− (Lk − τGk

R)‖
2
F

5: Λk+1 := Λk − (Rk+1 − Sk+1 + Lk+1)/µ
6: end for

Remark 4.1. The idea of incorporating proximal step into the alternating direction method of multipliers

has been suggested by [17] and [8]. This idea has then been generalized by [28] to allow varying penalty and

proximal parameters. Recently, this technique has been used for sparse and low-rank optimization problems

(see [57] and [50]). More recently, some convergence properties of alternating direction methods with proximal

gradient steps have been studied by [12], [36], [20] and [38]. However, for the seek of completeness, we include

a global convergence proof for Algorithm 1 in the Appendix.

Remark 4.2. In Algorithm 1, we grouped S and L as one block of variable. We also implemented the

other two ways of grouping the variables, i.e., group R and S as one block, and group R and L as one block.

We found from the numerical experiments that these two alternatives yielded similar practical performance

as Algorithm 1.

Remark 4.3. If we use the 1-off absolute penalty ‖S‖1,off :=
∑

i6=j |Sij | to replace ‖S‖1, our algorithm

basically remains the same except that we modify Shrink(·, ·) as follows

(4.7) [Shrink(Z, τ)]ij :=























Zii, if i = j

Zij − τ, if i 6= j and Zij > τ

Zij + τ, if i 6= j and Zij < −τ

0, if i 6= j and − τ ≤ Zij ≤ τ.

5. Numerical experiments. In this section, we present numerical results on both synthetic and real

data to demonstrate the efficiency of the proposed methods: ADMM (3.2) and PGADM (Algorithm 1). Our

codes were written in MATLAB. All numerical experiments were run in MATLAB 7.12.0 on a laptop with

Intel Core I5 2.5 GHz CPU and 4GB of RAM.

We first compared ADMM (3.2) with PGADM (Algorithm 1) on some synthetic problems. We compared

ADMM and PGADM using two different ways of choosing µ. One set of comparisons used a fixed µ = 10,

and the other set of comparisons used a continuation scheme to dynamically change µ. The continuation

scheme we used was to set the initial value of µ as the size of the matrix p, and then multiply µ by 1/4 after

every 10 iterations.

We then compared the performance of PGADM (with continuation on µ) with LogdetPPA proposed by

[52] and used in [7] for solving (2.2).
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5.1. Comparison of ADMM and PGADM on Synthetic Data. We observed form the numerical

experiments that the step size τ of the proximal gradient step in PGADM (Algorithm 1) can be slightly

larger than 1/2 and the algorithm produced very good results. We thus chose the step size τ to be 0.6 in

our experiments.

We randomly created test problems using a procedure proposed by [49] and [48] for the classical graphical

lasso problems. Similar procedures were used by [52] and [32]. For a given number of observed variables

p and a given number of latent variables ph, we first created a sparse matrix U ∈ R
(p+ph)×(p+ph) with

sparsity around 10%, i.e., 10% of the entries are nonzeros. The nonzero entries were set to -1 or 1 with

equal probability. Then we computed K := (U ∗ U⊤)−1 as the true covariance matrix. We then chose

the submatrix of K, Ŝ := K(1 : p, 1 : p) as the ground truth matrix of the sparse matrix S and chose

L̂ := K(1 : p, p+1 : p+ph)K(p+1 : p+ph, p+1 : p+ph)
−1K(p+1 : p+ph, 1 : p) as the ground truth matrix

of the low rank matrix L. We then drew N = 5p iid vectors, Y1, . . . , YN , from the Gaussian distribution

N (0, (Ŝ − L̂)−1) by using the mvnrnd function in MATLAB, and computed a sample covariance matrix of

the observed variables ΣX := 1
N

∑N

i=1 YiY
⊤
i .

We computed the relative infeasibility of the sequence (Rk, Sk, Lk) generated by inexact ADMM using

(5.1) infeas :=
‖Rk − Sk + Lk‖F

max{1, ‖Rk‖F , ‖Sk‖F , ‖Lk‖F }
.

In the comparison of ADMM and PGADM, the size of all problems was chosen as p = 1000. For fixed

µ = 10, we first ran the ADMM for 100 iterations, and recorded the objective function value and infeas. We

then ran PGADM until it achieves an objective function value within relative error 10−5 compared with the

objective function value given by ADMM, or it achieves an infeas within relative error 10−5 compared with

the infeas given by ADMM. The number of iterations, CPU times, infeas and objective function values

for both ADMM and PGADM were reported in Table 5.1. From Table 5.1, we see that for fixed µ = 10,

ADMM was faster than PGADM when α and β are both small, and PGADM was faster than ADMM when

α and β are both large.

Table 5.1

Comparison of ADMM with PGADM (for fixed µ) on synthetic data

PGADM ADMM
α β obj iter cpu infeas obj iter cpu infeas

0.005 0.025 -1.6987e+002 135 224.1 7.6e-005 -1.7098e+002 100 172.9 6.6e-005
0.005 0.05 -9.3385e+001 146 243.7 3.8e-005 -9.3476e+001 100 173.7 2.9e-005
0.01 0.05 -4.4748e+001 132 214.7 1.7e-005 -4.4761e+001 100 180.1 7.0e-006
0.01 0.1 5.4571e+001 111 177.4 9.8e-006 5.4567e+001 100 166.9 2.8e-007
0.02 0.1 1.1881e+002 83 136.8 9.7e-006 1.1881e+002 100 170.1 1.9e-007
0.02 0.2 2.3717e+002 56 91.5 9.3e-006 2.3717e+002 100 174.0 1.6e-007
0.04 0.2 3.2417e+002 44 67.0 9.2e-006 3.2417e+002 100 165.2 1.6e-007
0.04 0.4 4.5701e+002 19 29.4 3.1e-004 4.5700e+002 100 168.4 1.7e-007

We then further compare ADMM and PGADM on synthetic data with the continuation scheme for µ

discussed above. We terminated both ADMM and PGADM when infeas < 10−5. We reported the results

in Table 5.2.

From Table 5.2, we see that the continuation scheme used really helped to speed up the convergence and

produced much better results. Also, using this continuation scheme, PGADM was faster than ADMM with
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comparable residuals and objective function values. However, we should remark that PGADM was faster

than ADMM using the specific continuation scheme. If other continuation schemes were adopted, the results

could be quite different. In the comparison with LogdetPPA in the following sections, we only compare

LogdetPPA with PGADM with this continuation scheme.

Table 5.2

Comparison of ADMM with PGADM (with continuation for µ) on synthetic data

PGADM ADMM
α β obj iter cpu resid obj iter cpu resid

0.005 0.025 -1.711329e+002 32 51.5 5.7e-006 -1.711334e+002 61 103.7 6.7e-006
0.005 0.05 -9.348245e+001 41 65.8 4.2e-006 -9.348589e+001 62 103.2 6.6e-006
0.010 0.05 -4.476323e+001 41 67.8 2.8e-006 -4.476499e+001 62 105.7 9.8e-006
0.010 0.10 5.456790e+001 41 65.7 5.1e-006 5.456724e+001 71 119.6 6.0e-006
0.020 0.10 1.188077e+002 41 64.9 3.4e-006 1.188054e+002 71 115.1 8.1e-006
0.020 0.20 2.371659e+002 45 76.4 8.7e-006 2.371687e+002 75 125.6 7.0e-006
0.040 0.20 3.241688e+002 44 72.7 8.3e-006 3.241684e+002 75 126.6 8.5e-006
0.040 0.40 4.570019e+002 50 77.5 7.5e-006 4.570058e+002 78 126.5 9.7e-006

5.2. Comparison of PGADM and LogdetPPA on Synthetic Data. In this section, we compare

PGADM with LogdetPPA on synthetic data created the same way as in the last section. LogdetPPA,

proposed by Wang et al. in [52], is a proximal point algorithm for solving semidefinite programming problems

with log det(·) function. The specialized MATLAB codes of LogdetPPA for solving (2.2) were downloaded

from http://ssg.mit.edu/∼venkatc/latent-variable-code.html.

We compared PGADM (with continuation on µ) with LogdetPPA with different α and β. We reported

the comparison results on objective function value, CPU time, sparsity of S and infeas in Table 5.3. The

sparsity of S is denoted as

sp :=
#{(i, j) : Sij 6= 0}

p2
,

i.e., the percentage of nonzero entries. Since matrix S generated by LogdetPPA is always dense but with

many small entries, we also measure its sparsity by truncating small entries that less than 10−4 to zeros, i.e.,

sp1 :=
#{(i, j) : |Sij | > 10−4}

p2
.

All CPU times reported are in seconds. We report the speed up of PGADM over LogdetPPA in Table 5.4.

From Table 5.3 we see that the solutions produced by PGADM always have comparable objective

function values compared to the solutions produced by LogdetPPA. However, our PGADM is always much

faster than LogdetPPA, as shown in both Tables 5.3 and 5.4. In fact, PGADM is usually ten times faster

than LogdetPPA, and sometimes more than thirty five times faster. For example, for the four large problems

with matrices size 2000× 2000, LogdetPPA needs 1 hour 23 minutes, 1 hour 26 minutes, 1 hour 47 minutes

and 1 hour 20 minutes, respectively, to solve them, while our PGADM needs about 7 minutes, 7 minutes, 8

minutes and 9 minutes respectively to solve them. We also notice that the matrix S generated by PGADM

is always a sparse matrix with many entries exactly equal to zero, but S generated by LogdetPPA is always

a dense matrix, and only when we truncate the entries that are smaller than 10−4 to zeros, it becomes a

sparse matrix with similar level of sparsity. This is because in our PGADM, S is updated by the ℓ1 shrinkage

10

http://ssg.mit.edu/~venkatc/latent-variable-code.html


Table 5.3

Results of PGADM and LogdetPPA on synthetic data

dim LogdetPPA PGADM
p obj cpu sp (%) sp1 (%) obj cpu sp (%) infeas

α = 0.005, β = 0.025
200 1.914315e+2 7.2 100.00 19.17 1.910379e+2 1.0 18.90 4.3e-6
500 1.898418e+2 235.2 100.00 5.78 1.898275e+2 7.3 5.63 7.2e-6
1000 -1.711293e+2 1706.0 100.00 0.52 -1.711329e+2 48.2 0.49 5.7e-6
2000 -1.430010e+3 5001.2 100.00 0.06 -1.435605e+3 427.2 0.05 4.9e-6

α = 0.005, β = 0.05
200 1.926376e+2 29.1 100.00 43.63 1.924829e+2 2.5 48.66 6.6e-6
500 2.051884e+2 358.3 100.00 12.04 2.051425e+2 10.5 11.42 8.8e-6
1000 -9.347297e+1 1076.4 100.00 4.88 -9.348245e+1 71.6 4.72 4.2e-6
2000 -1.229323e+3 5191.5 100.00 0.21 -1.230238e+3 445.0 0.15 9.5e-6

α = 0.01, β = 0.05
200 2.030390e+2 20.8 100.00 20.46 2.026586e+2 2.6 11.06 9.0e-6
500 2.394720e+2 146.0 100.00 4.25 2.394631e+2 10.7 4.14 3.7e-6
1000 -4.476078e+1 740.6 100.00 0.24 -4.476323e+1 72.8 0.23 2.8e-6
2000 -1.101454e+3 6433.4 100.00 0.05 -1.111504e+3 453.7 0.05 6.4e-6

α = 0.01, β = 0.1
200 2.050879e+2 29.1 100.00 42.16 2.048359e+2 1.6 35.83 7.0e-6
500 2.639548e+2 235.2 100.00 8.62 2.638565e+2 11.6 8.19 5.8e-6
1000 5.456825e+1 932.1 100.00 2.26 5.456790e+1 74.9 2.26 5.1e-6
2000 -8.541802e+2 4813.6 100.00 0.14 -8.712916e+2 516.6 0.07 8.6e-6

operation, which truncates the small entries to zeros, while LogdetPPA needs to replace ‖S‖1 with smooth

linear function which does not preserve sparsity.

Table 5.4

Speed up of PGADM over LogdetPPA on synthetic data.

p α = 0.005, β = 0.025 α = 0.005, β = 0.05 α = 0.01, β = 0.05 α = 0.01, β = 0.1
200 7.1 11.7 7.9 18.7
500 32.0 34.2 13.6 20.3
1000 35.4 15.0 10.2 12.4
2000 11.7 11.7 14.2 9.3

5.3. Comparison of PGADM and LogdetPPA on Gene expression data. To further demon-

strate the efficacy of PGADM, we applied PGADM to solving (2.2) with two gene expression data sets. One

data set is the Rosetta Inpharmatics Compendium of gene expression data (denoted as Rosetta) [29] profiles

which contains 301 samples with 6316 variables (genes). The other data set is the Iconix microarray data

set (denoted as Iconix) from drug treated rat livers [41] which contains 255 samples with 10455 variables.

For a given number of observed variables p, we created the sample covariance matrix ΣX by the following

procedure. We first computed the variances of all of variables using all the sample data. We then selected the

p variables with the highest variances and computed the sample covariance matrix ΣX of these p variables

using all the sample data. We reported the comparison results of PGADM and LogdetPPA in Tables 5.5

and 5.6 for the Rosetta and Iconix data sets, respectively. Table 5.7 summarizes the speed up of PGADM

over LogdetPPA.
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Table 5.5

Results of PGADM and LogdetPPA on Rosetta data set

dim LogdetPPA PGADM
p obj cpu sp (%) sp1 (%) obj cpu sp (%) infeas
200 -2.726188e+2 5.6 100.00 0.58 -2.726184e+2 0.7 0.58 7.1e-6
500 -8.662116e+2 68.0 100.00 0.20 -8.662113e+2 7.9 0.20 3.7e-6
1000 -1.970974e+3 490.9 100.00 0.10 -1.970973e+3 52.2 0.10 7.7e-6
2000 -4.288406e+3 4597.9 100.00 0.05 -4.288406e+3 422.3 0.05 5.4e-6

Table 5.6

Results of PGADM and LogdetPPA on Iconix data set

dim LogdetPPA PGADM
p obj cpu sp (%) sp1 (%) obj cpu sp (%) infeas
200 1.232884e+3 38.5 100.00 36.10 1.232744e+3 2.5 41.62 7.2e-6
500 1.842623e+3 98.8 100.00 2.27 1.839838e+3 17.0 0.77 1.0e-5
1000 1.439052e+3 1341.9 100.00 1.45 1.435425e+3 94.6 0.14 6.3e-6
2000 1.242966e+2 13207.2 100.00 0.07 1.168757e+2 738.2 0.06 8.5e-6

From Table 5.5, we again see that PGADM always generates solutions with comparable objective function

values in much less time. For example, for p = 2000, LogdetPPA needs 1 hour 16 minutes to solve it while

PGADM takes just 7 minutes. From Table 5.6, we see that the advantage of PGADM is more obvious.

For p = 200, 500, 1000 and 2000, PGADM always generates solutions with much smaller objective function

values and it is always much faster than LogdetPPA. For example, for p = 2000, LogdetPPA takes 3 hours

40 minutes to solve it while PGADM just takes about 12 minutes.

Table 5.7

Speed up of PGADM over LogdetPPA on Rosetta and Iconix data sets.

dim Rosetta data Iconix data
200 8.0 15.4
500 8.6 5.8
1000 9.4 14.2
2000 10.9 17.9

6. Conclusion. In this paper, we proposed alternating direction methods for solving latent variable

Gaussian graphical model selection. The global convergence results of our methods were established. We

applied the proposed methods for solving large problems from both synthetic data and gene expression data.

The numerical results indicated that our methods were five to thirty five times faster than a state-of-the-art

Newton-CG proximal point algorithm.
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Appendix A. Global Convergence Analysis of PGADM.

In this section, we establish the global convergence result of PGADM (Algorithm 1). This convergence

proof is not much different with the one given by [57] for compressed sensing problems. We include the proof

here just for completeness.

We introduce some notation first. We define W =

(

S

L

)

. We define functions F (·) and G(·) as

F (R) := 〈R, Σ̂X〉 − log detR,

and

G(W ) := α‖S‖1 + βTr(L) + I(L � 0).

Note that both F and G are convex functions. We also define matrix A as A = [−Ip×p, Ip×p] ∈ R
p×2p. Now

Problem (2.2) can be rewritten as

(A.1) min F (R) +G(W ), s.t. R +AW = 0,

and our PGADM (Algorithm 1) can be rewritten as

(A.2)











Rk+1 := argminR F (R) +G(W k)− 〈Λk, R+AW k〉+ 1
2µ‖R+AW k‖2F

W k+1 := argminW F (Rk+1) +G(W ) + 1
2τµ‖W −

(

W k − τA⊤(Rk+1 +AW k − µΛk)
)

‖2F
Λk+1 := Λk − (Rk+1 +AW k+1)/µ.

Before we prove the global convergence result, we need to prove the following lemma.

Lemma A.1. Assume that (R∗,W ∗) is an optimal solution of (A.1) and Λ∗ is the corresponding optimal

dual variable associated with the equality constraint R + AW = 0. Assume the step size τ of the proximal

gradient step satisfies 0 < τ < 1/2. Then there exists η > 0 such that the sequence (Rk,W k,Λk) produced

by (A.2) satisfies

(A.3) ‖Uk − U∗‖2H − ‖Uk+1 − U∗‖2H ≥ η‖Uk − Uk+1‖2H ,

where U∗ =

(

W ∗

Λ∗

)

, Uk =

(

W k

Λk

)

and H =

(

1
µτ
Ip×p 0

0 µIp×p

)

, and the norm ‖ · ‖2H is defined as ‖U‖2H =

〈U,HU〉 and the corresponding inner product 〈·, ·〉H is defined as 〈U, V 〉H = 〈U,HV 〉.

Proof. Since (R∗,W ∗,Λ∗) is optimal to (A.1), it follows from the KKT conditions that the followings

hold:

(A.4) 0 ∈ ∂F (R∗)− Λ∗,

(A.5) 0 ∈ ∂G(W ∗)−A⊤Λ∗,
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and

(A.6) 0 = R∗ +AW ∗.

Note that the first-order optimality conditions for the first subproblem (i.e., the subproblem with respect

to R) in (A.2) are given by

(A.7) 0 ∈ ∂F (Rk+1)− Λk +
1

µ
(Rk+1 +AW k − 0).

By using the updating formula for Λk, i.e.,

(A.8) Λk+1 = Λk − (Rk+1 +AW k+1)/µ,

(A.7) can be reduced to

(A.9) 0 ∈ ∂F (Rk+1)− Λk+1 −
1

µ
(AW k+1 −AW k).

Combining (A.4) and (A.9) and using the fact that ∂F (·) is a monotone operator, we get

(A.10) 〈Rk+1 −R∗,Λk+1 − Λ∗ +
1

µ
(AW k+1 −AW k)〉 ≥ 0.

The first-order optimality conditions for the second subproblem (i.e., the subproblem with respect to

W ) in (A.2) are given by

(A.11) 0 ∈ ∂G(W k+1) +
1

µτ
(W k+1 − (W k − τA⊤(AW k +Rk+1 − µΛk))).

Using (A.8), (A.11) can be reduced to

(A.12) 0 ∈ ∂G(W k+1) +
1

µτ
(W k+1 −W k + τA⊤(AW k −AW k+1 − µΛk+1)).

Combining (A.5) and (A.12) and using the fact that ∂G(·) is a monotone operator, we get

(A.13) 〈W k+1 −W ∗,
1

µτ
(W k −W k+1)−

1

µ
A⊤(AW k −AW k+1) +A⊤Λk+1 −A⊤Λ∗〉 ≥ 0.

Summing (A.10) and (A.13), and using R∗ = −AW ∗ and Rk+1 = µ(Λk − Λk+1)−AW k+1, we obtain,

(A.14)
1

µτ
〈W k+1 −W ∗,W k −W k+1〉+ µ〈Λk+1 − Λ∗,Λk − Λk+1〉 ≥ 〈Λk − Λk+1, AW k −AW k+1〉.

Using the notation of Uk, U∗ and H , (A.14) can be rewritten as

(A.15) 〈Uk+1 − U∗, Uk − Uk+1〉H ≥ 〈Λk − Λk+1, AW k −AW k+1〉,

which can be further written as

(A.16) 〈Uk − U∗, Uk − Uk+1〉H ≥ ‖Uk − Uk+1‖H + 〈Λk − Λk+1, AW k −AW k+1〉.
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Combining (A.16) with the identity

‖Uk+1 − U∗‖2H = ‖Uk+1 − Uk‖2H − 2〈Uk − Uk+1, Uk − U∗〉H + ‖Uk − U∗‖2H ,

we get

(A.17)

‖Uk − U∗‖2H − ‖Uk+1 − U∗‖2H
= 2〈Uk − Uk+1, Uk − U∗〉H − ‖Uk+1 − Uk‖2H
≥ ‖Uk+1 − Uk‖2H + 2〈Λk − Λk+1, AW k −AW k+1〉.

Let ξ := τ + 1/2, then we know that 2τ < ξ < 1 since 0 < τ < 1/2. Let ρ := µξ. Then from

Cauchy-Schwartz inequality we have

(A.18)

2〈Λk − Λk+1, AW k −AW k+1〉 ≥ −ρ‖Λk − Λk+1‖2 − 1
ρ
‖AW k −AW k+1‖2

≥ −ρ‖Λk − Λk+1‖2 − 1
ρ
λmax(A

⊤A)‖W k −W k+1‖2

= −ρ‖Λk − Λk+1‖2 − 2
ρ
‖W k −W k+1‖2,

where the λmax(A
⊤A) denotes the largest eigenvalue of matrix A⊤A and the equality is due to the fact that

λmax(A
⊤A) = 2. Combining (A.17) and (A.18) we get

(A.19)
‖Uk − U∗‖2H − ‖Uk+1 − U∗‖2H ≥ ( 1

µτ
− 2

ρ
)‖W k −W k+1‖2 + (µ− ρ)‖Λk − Λk+1‖2

≥ η‖Uk − Uk+1‖2H ,

where η := min{1− 2µτ
ρ
, 1− ρ

µ
} = min{1− 2τ

ξ
, 1− ξ} > 0. This completes the proof.

We are now ready to give the main convergence result of Algorithm (A.2).

Theorem A.2. The sequence {(Rk,W k,Λk)} produced by Algorithm (A.2) from any starting point

converges to an optimal solution to Problem (A.1).

Proof. From Lemma A.1 we can easily get that

• (i) ‖Uk − Uk+1‖H → 0;

• (ii) {Uk} lies in a compact region;

• (iii) ‖Uk − U∗‖2H is monotonically non-increasing and thus converges.

It follows from (i) that Λk − Λk+1 → 0 and W k −W k+1 → 0. Then (A.8) implies that Rk −Rk+1 → 0 and

Rk +AW k → 0. From (ii) we obtain that, Uk has a subsequence {Ukj} that converges to Û = (Ŵ , Λ̂), i.e.,

Λkj → Λ̂ and W kj → Ŵ . From Rk + AW k → 0 we also get that Rkj → R̂ := −AŴ . Therefore, (R̂, Ŵ , Λ̂)

is a limit point of {(Rk,W k,Λk)}.

Note that (A.9) implies that

(A.20) 0 ∈ ∂F (R̂)− Λ̂.

Note also that (A.12) implies that

(A.21) 0 ∈ ∂G(Ŵ )−A⊤Λ̂.

(A.20), (A.21) and R̂ + AŴ = 0 imply that (R̂, Ŵ , Λ̂) satisfies the KKT conditions for (A.1) and thus is

an optimal solution to (A.1). Therefore, we showed that any limit point of {(Rk,W k,Λk)} is an optimal

solution to (A.1).
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To complete the proof, we need to show that the limit point is unique. Let {(R̂1, Ŵ1, Λ̂1)} and

{(R̂2, Ŵ2, Λ̂2)} be any two limit points of {(Rk,W k,Λk)}. As we have shown, both {(R̂1, Ŵ1, Λ̂1)} and

{(R̂2, Ŵ2, Λ̂2)} are optimal solutions to (A.1). Thus, U∗ in (A.19) can be replaced by Û1 := (R̂1, Ŵ1, Λ̂1)

and Û2 := (R̂2, Ŵ2, Λ̂2). This results in

‖Uk+1 − Ûi‖
2
H ≤ ‖Uk − Ûi‖

2
H , i = 1, 2,

and we thus get the existence of the limits

lim
k→∞

‖Uk − Ûi‖H = ηi < +∞, i = 1, 2.

Now using the identity

‖Uk − Û1‖
2
H − ‖Uk − Û2‖

2
H = −2〈Uk, Û1 − Û2〉H + ‖Û1‖

2
H − ‖Û2‖

2
H

and passing the limit we get

η21 − η22 = −2〈Û1, Û1 − Û2〉H + ‖Û1‖
2
H − ‖Û2‖

2
H = −‖Û1 − Û2‖

2
H

and

η21 − η22 = −2〈Û2, Û1 − Û2〉H + ‖Û1‖
2
H − ‖Û2‖

2
H = ‖Û1 − Û2‖

2
H .

Thus we must have ‖Û1 − Û2‖2H = 0 and hence the limit point of {(Rk,W k,Λk)} is unique.

We now immediately have the global convergence result for Algorithm 1 for solving Problem (2.2).

Corollary A.3. The sequence {(Rk, Sk, Lk,Λk)} produced by Algorithm 1 from any starting point

converges to an optimal solution to Problem (2.2).
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