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Abstract

Divergence estimators based on direct approximation of density-ratios without going
through separate approximation of numerator and denominator densities have been success-
fully applied to machine learning tasks that involve distribution comparison such as outlier
detection, transfer learning, and two-sample homogeneity test. However, since density-ratio
functions often possess high fluctuation, divergence estimation is still a challenging task in
practice. In this paper, we propose to use relative divergences for distribution compari-
son, which involves approximation of relative density-ratios. Since relative density-ratios
are always smoother than corresponding ordinary density-ratios, our proposed method is
favorable in terms of the non-parametric convergence speed. Furthermore, we show that
the proposed divergence estimator has asymptotic variance independent of the model com-
plexity under a parametric setup, implying that the proposed estimator hardly overfits
even with complex models. Through experiments, we demonstrate the usefulness of the
proposed approach.

Keywords: Density ratio, Pearson divergence, Outlier detection, Two-sample homogene-
ity test, Unconstrained least-squares importance fitting.

1. Introduction

Comparing probability distributions is a fundamental task in statistical data processing.
It can be used for, e.g., outlier detection (Smola et al., 2009; Hido et al., 2011), two-
sample homogeneity test (Gretton et al., 2007; Sugiyama et al., 2011), and transfer learning
(Shimodaira, 2000; Sugiyama et al., 2007).
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A standard approach to comparing probability densities p(x) and p′(x) would be to
estimate a divergence from p(x) to p′(x), such as the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951):

KL[p(x), p′(x)] :=

∫
log

(
p(x)

p′(x)

)
p(x)dx.

A naive way to estimate the KL divergence is to separately approximate the densities p(x)
and p′(x) from data and plug the estimated densities in the above definition. However,
since density estimation is known to be a hard task (Vapnik, 1998), this approach does not
work well unless a good parametric model is available. Recently, a divergence estimation
approach which directly approximates the density ratio,

r(x) :=
p(x)

p′(x)
,

without going through separate approximation of densities p(x) and p′(x) has been proposed
(Sugiyama et al., 2008; Nguyen et al., 2010). Such density-ratio approximation methods
were proved to achieve the optimal non-parametric convergence rate in the mini-max sense.

However, the KL divergence estimation via density-ratio approximation is computation-
ally rather expensive due to the non-linearity introduced by the ‘log’ term. To cope with
this problem, another divergence called the Pearson (PE) divergence (Pearson, 1900) is
useful. The PE divergence from p(x) to p′(x) is defined as

PE[p(x), p′(x)] :=
1

2

∫ (
p(x)

p′(x)
− 1

)2

p′(x)dx.

The PE divergence is a squared-loss variant of the KL divergence, and they both belong
to the class of the Ali-Silvey-Csiszár divergences (which is also known as the f -divergences,
see Ali and Silvey, 1966; Csiszár, 1967). Thus, the PE and KL divergences share similar
properties, e.g., they are non-negative and vanish if and only if p(x) = p′(x).

Similarly to the KL divergence estimation, the PE divergence can also be accurately
estimated based on density-ratio approximation (Kanamori et al., 2009): the density-
ratio approximator called unconstrained least-squares importance fitting (uLSIF) gives the
PE divergence estimator analytically, which can be computed just by solving a system
of linear equations. The practical usefulness of the uLSIF-based PE divergence esti-
mator was demonstrated in various applications such as outlier detection (Hido et al.,
2011), two-sample homogeneity test (Sugiyama et al., 2011), and dimensionality reduction
(Suzuki and Sugiyama, 2010).

In this paper, we first establish the non-parametric convergence rate of the uLSIF-based
PE divergence estimator, which elucidates its superior theoretical properties. However, it
also reveals that its convergence rate is actually governed by the ‘sup’-norm of the true
density-ratio function: maxx r(x). This implies that, in the region where the denominator
density p′(x) takes small values, the density ratio r(x) = p(x)/p′(x) tends to take large
values and therefore the overall convergence speed becomes slow. More critically, density
ratios can even diverge to infinity under a rather simple setting, e.g., when the ratio of
two Gaussian functions is considered (Cortes et al., 2010). This makes the paradigm of
divergence estimation based on density-ratio approximation unreliable.
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In order to overcome this fundamental problem, we propose an alternative approach to
distribution comparison called α-relative divergence estimation. In the proposed approach,
we estimate the quantity called the α-relative divergence, which is the divergence from p(x)
to the α-mixture density αp(x) + (1 − α)p′(x) for 0 ≤ α < 1. For example, the α-relative
PE divergence is given by

PEα[p(x), p
′(x)] := PE[p(x), αp(x) + (1− α)p′(x)]

=
1

2

∫ (
p(x)

αp(x) + (1− α)p′(x)
− 1

)2 (
αp(x) + (1− α)p′(x)

)
dx.

We estimate the α-relative divergence by direct approximation of the α-relative density-
ratio:

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
.

A notable advantage of this approach is that the α-relative density-ratio is always
bounded above by 1/α when α > 0, even when the ordinary density-ratio is unbounded.
Based on this feature, we theoretically show that the α-relative PE divergence estima-
tor based on α-relative density-ratio approximation is more favorable than the ordinary
density-ratio approach in terms of the non-parametric convergence speed.

We further prove that, under a correctly-specified parametric setup, the asymptotic
variance of our α-relative PE divergence estimator does not depend on the model complexity.
This means that the proposed α-relative PE divergence estimator hardly overfits even with
complex models.

Through extensive experiments on outlier detection, two-sample homogeneity test, and
transfer learning, we demonstrate that our proposed α-relative PE divergence estimator
compares favorably with alternative approaches.

The rest of this paper is structured as follows. In Section 2, our proposed relative
PE divergence estimator is described. In Section 3, we provide non-parametric analysis
of the convergence rate and parametric analysis of the variance of the proposed PE diver-
gence estimator. In Section 4, we experimentally evaluate the performance of the proposed
method on various tasks. Finally, in Section 5, we conclude the paper by summarizing our
contributions and describing future prospects.

2. Estimation of Relative Pearson Divergence via Least-Squares Relative

Density-Ratio Approximation

In this section, we propose an estimator of the relative Pearson (PE) divergence based on
least-squares relative density-ratio approximation.

2.1 Problem Formulation

Suppose we are given independent and identically distributed (i.i.d.) samples {xi}ni=1 from
a d-dimensional distribution P with density p(x) and i.i.d. samples {x′

j}n
′

j=1 from another
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d-dimensional distribution P ′ with density p′(x):

{xi}ni=1
i.i.d.∼ P,

{x′
j}n

′

j=1
i.i.d.∼ P ′.

The goal of this paper is to compare the two underlying distributions P and P ′ only using
the two sets of samples {xi}ni=1 and {x′

j}n
′

j=1.

For 0 ≤ α < 1, let qα(x) be the α-mixture density of p(x) and p′(x):

qα(x) := αp(x) + (1− α)p′(x).

Let rα(x) be the α-relative density-ratio of p(x) and p′(x):

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
=

p(x)

qα(x)
. (1)

We define the α-relative PE divergence from p(x) to p′(x) as

PEα :=
1

2
Eqα(x)

[
(rα(x)− 1)2

]
, (2)

where Ep(x)[f(x)] denotes the expectation of f(x) under p(x):

Ep(x)[f(x)] =

∫
f(x)p(x)dx.

When α = 0, PEα is reduced to the ordinary PE divergence. Thus, the α-relative PE
divergence can be regarded as a ‘smoothed’ extension of the ordinary PE divergence.

Below, we give a method for estimating the α-relative PE divergence based on the
approximation of the α-relative density-ratio.

2.2 Direct Approximation of α-Relative Density-Ratios

Here, we describe a method for approximating the α-relative density-ratio (1).

Let us model the α-relative density-ratio rα(x) by the following kernel model:

g(x;θ) :=

n∑

ℓ=1

θℓK(x,xℓ),

where θ := (θ1, . . . , θn)
⊤ are parameters to be learned from data samples, ⊤ denotes the

transpose of a matrix or a vector, andK(x,x′) is a kernel basis function. In the experiments,
we use the Gaussian kernel:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
,

where σ (> 0) is the kernel width.
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The parameters θ in the model g(x;θ) are determined so that the following expected
squared-error J is minimized:

J(θ) :=
1

2
Eqα(x)

[
(g(x;θ)− rα(x))

2
]

=
α

2
Ep(x)

[
g(x;θ)2

]
+

(1− α)

2
Ep′(x)

[
g(x;θ)2

]
− Ep(x) [g(x;θ)] + Const.,

where we used rα(x)qα(x) = p(x) in the third term. Approximating the expectations by
empirical averages, we obtain the following optimization problem:

θ̂ := argmin
θ∈Rn

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

λ

2
θ⊤θ

]
, (3)

where a penalty term λθ⊤θ/2 is included for regularization purposes, and λ (≥ 0) denotes

the regularization parameter. Ĥ is the n× n matrix with the (ℓ, ℓ′)-th element

Ĥℓ,ℓ′ :=
α

n

n∑

i=1

K(xi,xℓ)K(xi,xℓ′) +
(1− α)

n′

n′∑

j=1

K(x′
j ,xℓ)K(x′

j ,xℓ′). (4)

ĥ is the n-dimensional vector with the ℓ-th element

ĥℓ :=
1

n

n∑

i=1

K(xi,xℓ).

It is easy to confirm that the solution of Eq.(3) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ,

where In denotes the n-dimensional identity matrix. Finally, a density-ratio estimator is
given as

r̂α(x) := g(x; θ̂) =

n∑

ℓ=1

θ̂ℓK(x,xℓ). (5)

When α = 0, the above method is reduced to a direct density-ratio estimator called
unconstrained least-squares importance fitting (uLSIF; Kanamori et al., 2009). Thus, the
above method can be regarded as an extension of uLSIF to the α-relative density-ratio. For
this reason, we refer to our method as relative uLSIF (RuLSIF).

The performance of RuLSIF depends on the choice of the kernel function (the kernel
width σ in the case of the Gaussian kernel) and the regularization parameter λ. Model
selection of RuLSIF is possible based on cross-validation with respect to the squared-error
criterion J , in the same way as the original uLSIF (Kanamori et al., 2009).

A MATLABR© implementation of RuLSIF is available from

(made public after acceptance)
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2.3 α-Relative PE Divergence Estimation Based on RuLSIF

Using an estimator of the α-relative density-ratio rα(x), we can construct estimators of
the α-relative PE divergence (2). After a few lines of calculation, we can show that the
α-relative PE divergence (2) is equivalently expressed as

PEα = −α

2
Ep(x)

[
rα(x)

2
]
− (1− α)

2
Ep′(x)

[
rα(x)

2
]
+ Ep(x) [rα(x)]−

1

2

=
1

2
Ep(x) [rα(x)]−

1

2
.

Note that the first line can also be obtained via Legendre-Fenchel convex duality of the
divergence functional (Rockafellar, 1970).

Based on these expressions, we consider the following two estimators:

P̂Eα := − α

2n

n∑

i=1

r̂(xi)
2 − (1− α)

2n′

n′∑

j=1

r̂(x′
j)

2 +
1

n

n∑

i=1

r̂(xi)−
1

2
, (6)

P̃Eα :=
1

2n

n∑

i=1

r̂(xi)−
1

2
. (7)

We note that the α-relative PE divergence (2) can have further different expressions than
the above ones, and corresponding estimators can also be constructed similarly. However,
the above two expressions will be particularly useful: the first estimator P̂Eα has superior
theoretical properties (see Section 3) and the second one P̃Eα is simple to compute.

2.4 Illustrative Examples

Here, we numerically illustrate the behavior of RuLSIF (5) using toy datasets. Let the
numerator distribution be P = N(0, 1), where N(µ, σ2) denotes the normal distribution
with mean µ and variance σ2. The denominator distribution P ′ is set as follows:

(a) P ′ = N(0, 1): P and P ′ are the same.

(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .

(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .

(d) P ′ = N(0.5, 1): P and P ′ have different means.

(e) P ′ = 0.95N(0, 1) + 0.05N(3, 1): P ′ contains an additional component to P .

We draw n = n′ = 300 samples from the above densities, and compute RuLSIF for α = 0,
0.5, and 0.95.

Figure 1 shows the true densities, true density-ratios, and their estimates by RuLSIF. As
can be seen from the graphs, the profiles of the true α-relative density-ratios get smoother
as α increases. In particular, in the datasets (b) and (d), the true density-ratios for α = 0
diverge to infinity, while those for α = 0.5 and 0.95 are bounded (by 1/α). Overall, as α
gets large, the estimation quality of RuLSIF tends to be improved since the complexity of
true density-ratio functions is reduced.
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(a) P ′ = N(0, 1): P and P ′ are the same.

(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .

(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .

(d) P ′ = N(0.5, 1): P and P ′ have different means.

(e) P ′ = 0.95N(0, 1) + 0.05N(3, 1): P ′ contains an additional component to P .

Figure 1: Illustrative examples of density-ratio approximation by RuLSIF. From left to
right: true densities (P = N(0, 1)), true density-ratios, and their estimates for
α = 0, 0.5, and 0.95.
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Note that, in the dataset (a) where p(x) = p′(x), the true density-ratio rα(x) does not
depend on α since rα(x) = 1 for any α. However, the estimated density-ratios still depend

on α through the matrix Ĥ (see Eq.(4)).

3. Theoretical Analysis

In this section, we analyze theoretical properties of the proposed PE divergence estima-
tors. More specifically, we provide non-parametric analysis of the convergence rate in Sec-
tion 3.1, and parametric analysis of the estimation variance in Section 3.2. Since our
theoretical analysis is highly technical, we focus on explaining practical insights we can
gain from the theoretical results here; we describe all the mathematical details of the non-
parametric convergence-rate analysis in Appendix A and the parametric variance analysis
in Appendix B.

For theoretical analysis, let us consider a rather abstract form of our relative density-
ratio estimator described as

argmin
g∈G


 α

2n

n∑

i=1

g(xi)
2 +

(1− α)

2n′

n′∑

j=1

g(x′
j)

2 − 1

n

n∑

i=1

g(xi) +
λ

2
R(g)2


 , (8)

where G is some function space (i.e., a statistical model) and R(·) is some regularization
functional.

3.1 Non-Parametric Convergence Analysis

First, we elucidate the non-parametric convergence rate of the proposed PE estimators.
Here, we practically regard the function space G as an infinite-dimensional reproducing
kernel Hilbert space (RKHS; Aronszajn, 1950) such as the Gaussian kernel space, and R(·)
as the associated RKHS norm.

3.1.1 Theoretical Results

Let us represent the complexity of the function space G by γ (0 < γ < 2); the larger γ is,
the more complex the function class G is (see Appendix A for its precise definition). We
analyze the convergence rate of our PE divergence estimators as n̄ := min(n, n′) tends to
infinity for λ = λn̄ under

λn̄ → o(1) and λ−1
n̄ = o(n̄2/(2+γ)).

The first condition means that λn̄ tends to zero, but the second condition means that its
shrinking speed should not be too fast.

Under several technical assumptions detailed in Appendix A, we have the following
asymptotic convergence results for the two PE divergence estimators P̂Eα (6) and P̃Eα (7):

P̂Eα − PEα = Op(n̄
−1/2c‖rα‖∞ + λn̄max(1, R(rα)

2)), (9)

8
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and

P̃Eα − PEα = Op

(
λ
1/2
n̄ ‖rα‖1/2∞ max{1, R(rα)}

+ λn̄ max{1, ‖rα‖(1−γ/2)/2
∞ , R(rα)‖rα‖(1−γ/2)/2

∞ , R(rα)}
)
, (10)

where Op denotes the asymptotic order in probability,

c := (1 + α)
√

Vp(x)[rα(x)] + (1− α)
√

Vp′(x)[rα(x)], (11)

and Vp(x)[f(x)] denotes the variance of f(x) under p(x):

Vp(x)[f(x)] =

∫ (
f(x)−

∫
f(x)p(x)dx

)2

p(x)dx.

3.1.2 Interpretation

In both Eq.(9) and Eq.(10), the coefficients of the leading terms (i.e., the first terms) of the
asymptotic convergence rates become smaller as ‖rα‖∞ gets smaller. Since

‖rα‖∞ =
∥∥∥
(
α+ (1− α)/r(x)

)−1
∥∥∥
∞

< 1
α for α > 0,

larger α would be more preferable in terms of the asymptotic approximation error. Note
that when α = 0, ‖rα‖∞ can tend to infinity even under a simple setting that the ratio of
two Gaussian functions is considered (Cortes et al., 2010, see also the numerical examples
in Section 2.4 of this paper). Thus, our proposed approach of estimating the α-relative PE
divergence (with α > 0) would be more advantageous than the naive approach of estimating
the plain PE divergence (which corresponds to α = 0) in terms of the non-parametric
convergence rate.

The above results also show that P̂Eα and P̃Eα have different asymptotic convergence
rates. The leading term in Eq.(9) is of order n̄−1/2, while the leading term in Eq.(10) is of

order λ
1/2
n̄ , which is slightly slower (depending on the complexity γ) than n̄−1/2. Thus, P̂Eα

would be more accurate than P̃Eα in large sample cases. Furthermore, when p(x) = p′(x),
Vp(x)[rα(x)] = 0 holds and thus c = 0 holds (see Eq.(11)). Then the leading term in

Eq.(9) vanishes and therefore P̂Eα has the even faster convergence rate of order λn̄, which
is slightly slower (depending on the complexity γ) than n̄−1. Similarly, if α is close to 1,
rα(x) ≈ 1 and thus c ≈ 0 holds.

When n̄ is not large enough to be able to neglect the terms of o(n̄−1/2), the terms of
O(λn̄) matter. If ‖rα‖∞ and R(rα) are large (this can happen, e.g., when α is close to 0),

the coefficient of the O(λn̄)-term in Eq.(9) can be larger than that in Eq.(10). Then P̃Eα

would be more favorable than P̂Eα in terms of the approximation accuracy.

3.1.3 Numerical Illustration

Let us numerically investigate the above interpretation using the same artificial dataset as
Section 2.4.
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(a) P ′ = N(0, 1): P and P ′ are the same.

(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .

(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .

(d) P ′ = N(0.5, 1): P and P ′ have different means.

(e) P ′ = 0.95N(0, 1) + 0.05N(3, 1): P ′ contains an additional component to P .

Figure 2: Illustrative examples of divergence estimation by RuLSIF. From left to right: true
density-ratios for α = 0, 0.5, and 0.95 (P = N(0, 1)), and estimation error of PE
divergence for α = 0, 0.5, and 0.95.
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Figure 2 shows the mean and standard deviation of P̂Eα and P̃Eα over 100 runs for
α = 0, 0.5, and 0.95, as functions of n (= n′ in this experiment). The true PEα (which
was numerically computed) is also plotted in the graphs. The graphs show that both the

estimators P̂Eα and P̃Eα approach the true PEα as the number of samples increases, and
the approximation error tends to be smaller if α is larger.

When α is large, P̂Eα tends to perform slightly better than P̃Eα. On the other hand,
when α is small and the number of samples is small, P̃Eα slightly compares favorably with
P̂Eα. Overall, these numerical results well agree with our theory.

3.2 Parametric Variance Analysis

Next, we analyze the asymptotic variance of the PE divergence estimator P̂Eα (6) under a
parametric setup.

3.2.1 Theoretical Results

As the function space G in Eq.(8), we consider the following parametric model:

G = {g(x;θ) | θ ∈ Θ ⊂ R
b},

where b is a finite number. Here we assume that the above parametric model is correctly
specified, i.e., it includes the true relative density-ratio function rα(x): there exists θ∗ such
that

g(x;θ∗) = rα(x).

Here, we use RuLSIF without regularization, i.e., λ = 0 in Eq.(8).

Let us denote the variance of P̂Eα (6) by V[P̂Eα], where randomness comes from the
draw of samples {xi}ni=1 and {x′

j}n
′

j=1. Then, under a standard regularity condition for the

asymptotic normality (see Section 3 of van der Vaart, 2000), V[P̂Eα] can be expressed and
upper-bounded as

V[P̂Eα] =
1

n
Vp(x)

[
rα − αrα(x)

2

2

]
+

1

n′
Vp′(x)

[
(1 − α)rα(x)

2

2

]
+ o

(
1

n
,
1

n′

)
(12)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1

n
,
1

n′

)
. (13)

Let us denote the variance of P̃Eα by V[P̃Eα]. Then, under a standard regularity
condition for the asymptotic normality (see Section 3 of van der Vaart, 2000), the variance

of P̃Eα is asymptotically expressed as

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]⊤U−1

α ∇g

2

]

+
1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]⊤U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
, (14)
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where ∇g is the gradient vector of g with respect to θ at θ = θ∗, i.e.,

(∇g(x;θ∗))j =
∂g(x;θ∗)

∂θj
.

The matrix Uα is defined by

Uα = αEp(x)[∇g∇g⊤] + (1− α)Ep′(x)[∇g∇g⊤].

3.2.2 Interpretation

Eq.(12) shows that, up to O
(
1
n ,

1
n′

)
, the variance of P̂Eα depends only on the true relative

density-ratio rα(x), not on the estimator of rα(x). This means that the model complexity
does not affect the asymptotic variance. Therefore, overfitting would hardly occur in the
estimation of the relative PE divergence even when complex models are used. We note
that the above superior property is applicable only to relative PE divergence estimation,
not to relative density-ratio estimation. This implies that overfitting occurs in relative
density-ratio estimation, but the approximation error cancels out in relative PE divergence
estimation.

On the other hand, Eq.(14) shows that the variance of P̃Eα is affected by the model G,
since the factor Ep(x)[∇g]⊤U−1

α ∇g depends on the model complexity in general. When the
equality

Ep(x)[∇g]⊤U−1
α ∇g(x;θ∗) = rα(x)

holds, the variances of P̃Eα and P̂Eα are asymptotically the same. However, in general, the
use of P̂Eα would be more recommended.

Eq.(13) shows that the variance V[P̂Eα] can be upper-bounded by the quantity depend-
ing on ‖rα‖∞, which is monotonically lowered if ‖rα‖∞ is reduced. Since ‖rα‖∞ mono-
tonically decreases as α increases, our proposed approach of estimating the α-relative PE
divergence (with α > 0) would be more advantageous than the naive approach of estimating
the plain PE divergence (which corresponds to α = 0) in terms of the parametric asymptotic
variance.

3.2.3 Numerical Illustration

Here, we show some numerical results for illustrating the above theoretical results using the
one-dimensional datasets (b) and (c) in Section 2.4. Let us define the parametric model as

Gk =

{
g(x;θ) =

r(x;θ)

αr(x;θ) + 1− α

∣∣∣∣ r(x;θ) = exp

(
k∑

ℓ=0

θℓx
ℓ

)
, θ ∈ R

k+1

}
. (15)

The dimension of the model Gk is equal to k+ 1. The α-relative density-ratio rα(x) can be
expressed using the ordinary density-ratio r(x) = p(x)/p′(x) as

rα(x) =
r(x)

αr(x) + 1− α
.
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Figure 3: Standard deviations of PE estimators for dataset (b) (i.e., P = N(0, 1) and
P ′ = N(0, 0.6)) as functions of the sample size n = n′.
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Figure 4: Standard deviations of PE estimators for dataset (c) (i.e., P = N(0, 1) and P ′ =
N(0, 2)) as functions of the sample size n = n′.
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Thus, when k > 1, the above model Gk includes the true relative density-ratio rα(x) of the
datasets (b) and (c). We test RuLSIF with α = 0.2 and 0.8 for the model (15) with degree
k = 1, 2, . . . , 8. The parameter θ is learned so that Eq.(8) is minimized by a quasi-Newton
method.

The standard deviations of P̂Eα and P̃Eα for the datasets (b) and (c) are depicted in
Figure 3 and Figure 4, respectively. The graphs show that the degree of models does not
significantly affect the standard deviation of P̂Eα (i.e., no overfitting), as long as the model
includes the true relative density-ratio (i.e., k > 1). On the other hand, bigger models tend

to produce larger standard deviations in P̃Eα. Thus, the standard deviation of P̃Eα more
strongly depends on the model complexity.

4. Experiments

In this section, we experimentally evaluate the performance of the proposed method in
two-sample homogeneity test, outlier detection, and transfer learning tasks.

4.1 Two-Sample Homogeneity Test

First, we apply the proposed divergence estimator to two-sample homogeneity test.

4.1.1 Divergence-Based Two-Sample Homogeneity Test

Given two sets of samples X = {xi}ni=1
i.i.d.∼ P and X ′ = {x′

j}n
′

j=1
i.i.d.∼ P ′, the goal of the

two-sample homogeneity test is to test the null hypothesis that the probability distributions
P and P ′ are the same against its complementary alternative (i.e., the distributions are
different).

By using an estimator D̂iv of some divergence between the two distributions P and P ′,
homogeneity of two distributions can be tested based on the permutation test procedure
(Efron and Tibshirani, 1993) as follows:

• Obtain a divergence estimate D̂iv using the original datasets X and X ′.

• Randomly permute the |X ∪ X ′| samples, and assign the first |X | samples to a set X̃
and the remaining |X ′| samples to another set X̃ ′.

• Obtain a divergence estimate D̃iv using the randomly shuffled datasets X̃ and X̃ ′ (note

that, since X̃ and X̃ ′ can be regarded as being drawn from the same distribution, D̃iv
tends to be close to zero).

• Repeat this random shuffling procedure many times, and construct the empirical
distribution of D̃iv under the null hypothesis that the two distributions are the same.

• Approximate the p-value by evaluating the relative ranking of the original D̂iv in the
distribution of D̃iv.

When an asymmetric divergence such as the KL divergence (Kullback and Leibler, 1951)
or the PE divergence (Pearson, 1900) is adopted for two-sample homogeneity test, the test
results depend on the choice of directions: a divergence from P to P ′ or from P ′ to P .

14
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Sugiyama et al. (2011) proposed to choose the direction that gives a smaller p-value—it
was experimentally shown that, when the uLSIF-based PE divergence estimator is used for
the two-sample homogeneity test (which is called the least-squares two-sample homogeneity
test ; LSTT), the heuristic of choosing the direction with a smaller p-value contributes to
reducing the type-II error (the probability of accepting incorrect null-hypotheses, i.e., two
distributions are judged to be the same when they are actually different), while the increase
of the type-I error (the probability of rejecting correct null-hypotheses, i.e., two distributions
are judged to be different when they are actually the same) is kept moderate.

Below, we refer to LSTT with p(x)/p′(x) as the plain LSTT, LSTT with p′(x)/p(x) as
the reciprocal LSTT, and LSTT with heuristically choosing the one with a smaller p-value
as the adaptive LSTT.

4.1.2 Artificial Datasets

We illustrate how the proposed method behaves in two-sample homogeneity test scenarios
using the artificial datasets (a)–(d) described in Section 2.4. We test the plain LSTT,
reciprocal LSTT, and adaptive LSTT for α = 0, 0.5, and 0.95, with significance level 5%.

The experimental results are shown in Figure 5. For the dataset (a) where P = P ′ (i.e.,
the null hypothesis is correct), the plain LSTT and reciprocal LSTT correctly accept the
null hypothesis with probability approximately 95%. This means that the type-I error is
properly controlled in these methods. On the other hand, the adaptive LSTT tends to give
slightly lower acceptance rates than 95% for this toy dataset, but the adaptive LSTT with
α = 0.5 still works reasonably well. This implies that the heuristic of choosing the method
with a smaller p-value does not have critical influence on the type-I error.

In the datasets (b), (c), and (d), P is different from P ′ (i.e., the null hypothesis is not
correct), and thus we want to reduce the acceptance rate of the incorrect null-hypothesis
as much as possible. In the plain setup for the dataset (b) and the reciprocal setup for the
dataset (c), the true density-ratio functions with α = 0 diverge to infinity, and thus larger
α makes the density-ratio approximation more reliable. However, α = 0.95 does not work
well because it produces an overly-smoothed density-ratio function and thus it is hard to
be distinguished from the completely constant density-ratio function (which corresponds to
P = P ′). On the other hand, in the reciprocal setup for the dataset (b) and the plain setup
for the dataset (c), small α performs poorly since density-ratio functions with large α can
be more accurately approximated than those with small α (see Figure 1). In the adaptive
setup, large α tends to perform slightly better than small α for the datasets (b) and (c).

In the dataset (d), the true density-ratio function with α = 0 diverges to infinity for
both the plain and reciprocal setups. In this case, middle α performs the best, which well
balances the trade-off between high distinguishability from the completely constant density-
ratio function (which corresponds to P = P ′) and easy approximability. The same tendency
that middle α works well can also be mildly observed in the adaptive LSTT for the dataset
(d).

Overall, if the plain LSTT (or the reciprocal LSTT) is used, small α (or large α) some-
times works excellently. However, it performs poorly in other cases and thus the performance
is unstable depending on the true distributions. The plain LSTT (or the reciprocal LSTT)
with middle α tends to perform reasonably well for all datasets. On the other hand, the
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(a) P ′ = N(0, 1): P and P ′ are the same.
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(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .
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(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .
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(d) P ′ = N(0.5, 1): P and P ′ have different means.

Figure 5: Illustrative examples of two-sample homogeneity test based on relative divergence
estimation. From left to right: true densities (P = N(0, 1)), the acceptance rate
of the null hypothesis under the significance level 5% by plain LSTT, reciprocal
LSTT, and adaptive LSTT.
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adaptive LSTT was shown to nicely overcome the above instability problem when α is small
or large. However, when α is set to be a middle value, the plain LSTT and the reciprocal
LSTT both give similar results and thus the adaptive LSTT provides only a small amount
of improvement.

Our empirical finding is that, if we have prior knowledge that one distribution has a
wider support than the other distribution, assigning the distribution with a wider support
to P ′ and setting α to be a large value seem to work well. If there is no knowledge on the
true distributions or two distributions have less overlapped supports, using middle α in the
adaptive setup seems to be a reasonable choice.

We will systematically investigate this issue using more complex datasets below.

4.1.3 Benchmark Datasets

Here, we apply the proposed two-sample homogeneity test to the binary classification
datasets taken from the IDA repository (Rätsch et al., 2001).

We test the adaptive LSTT with the RuLSIF-based PE divergence estimator for α = 0,
0.5, and 0.95; we also test the maximum mean discrepancy (MMD; Borgwardt et al., 2006),
which is a kernel-based two-sample homogeneity test method. The performance of MMD
depends on the choice of the Gaussian kernel width. Here, we adopt a version proposed
by Sriperumbudur et al. (2009), which automatically optimizes the Gaussian kernel width.
The p-values of MMD are computed in the same way as LSTT based on the permutation
test procedure.

First, we investigate the rate of accepting the null hypothesis when the null hypothesis is
correct (i.e., the two distributions are the same). We split all the positive training samples
into two sets and perform two-sample homogeneity test for the two sets of samples. The
experimental results are summarized in Table 1, showing that the adaptive LSTT with
α = 0.5 compares favorably with that with α = 0 and 1. LSTT with α = 0.5 and MMD
are comparable to each other in terms of the type-I error.

Next, we consider the situation where the null hypothesis is not correct (i.e., the two
distributions are different). The numerator samples are generated in the same way as above,
but a half of denominator samples are replaced with negative training samples. Thus,
while the numerator sample set contains only positive training samples, the denominator
sample set includes both positive and negative training samples. The experimental results
are summarized in Table 2, showing that the adaptive LSTT with α = 0.5 again compares
favorably with that with α = 0 and 1. Furthermore, LSTT with α = 0.5 tends to outperform
MMD in terms of the type-II error.

Overall, LSTT with α = 0.5 is shown to be a useful method for two-sample homogeneity
test.

4.2 Inlier-Based Outlier Detection

Next, we apply the proposed method to outlier detection.

4.2.1 Density-Ratio Approach to Inlier-Based Outlier Detection

Let us consider an outlier detection problem of finding irregular samples in a dataset (called
an “evaluation dataset”) based on another dataset (called a “model dataset”) that only
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Table 1: Experimental results of two-sample homogeneity test for the IDA datasets. The
mean (and standard deviation in the bracket) rate of accepting the null hypoth-
esis (i.e., P = P ′) under the significance level 5% is reported. The two sets of
samples are both taken from the positive training set (i.e., the null hypothesis is
correct). The best method having the highest mean acceptance rate and compa-
rable methods according to the t-test at the significance level 5% are specified by
bold face.

Datasets d n = n′ MMD
LSTT LSTT LSTT

(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.98(0.14) 0.93(0.26) 0.92(0.27) 0.92(0.27)
thyroid 5 19 0.98(0.14) 0.95(0.22) 0.95(0.22) 0.88 (0.33)

titanic 5 21 0.92(0.27) 0.86(0.35) 0.92(0.27) 0.89(0.31)
diabetes 8 85 0.95(0.22) 0.87 (0.34) 0.91(0.29) 0.82 (0.39)

breast-cancer 9 29 0.98(0.14) 0.91 (0.29) 0.94(0.24) 0.92(0.27)
flare-solar 9 100 0.93(0.26) 0.91(0.29) 0.95(0.22) 0.93(0.26)

heart 13 38 0.96(0.20) 0.85 (0.36) 0.91(0.29) 0.93(0.26)
german 20 100 0.93(0.26) 0.91(0.29) 0.92(0.27) 0.89(0.31)

ringnorm 20 100 0.95(0.22) 0.93(0.26) 0.91(0.29) 0.85 (0.36)
waveform 21 66 0.93(0.26) 0.92(0.27) 0.93(0.26) 0.88(0.33)

Table 2: Experimental results of two-sample homogeneity test for the IDA datasets. The
mean (and standard deviation in the bracket) rate of accepting the null hypothesis
(i.e., P = P ′) under the significance level 5% is reported. The set of samples
corresponding to the numerator of the density ratio is taken from the positive
training set and the set of samples corresponding to the denominator of the density
ratio is taken from the positive training set and the negative training set (i.e.,
the null hypothesis is not correct). The best method having the lowest mean
acceptance rate and comparable methods according to the t-test at the significance
level 5% are specified by bold face.

Datasets d n = n′ MMD
LSTT LSTT LSTT

(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.80 (0.40) 0.10(0.30) 0.02(0.14) 0.17(0.38)
thyroid 5 19 0.72 (0.45) 0.81 (0.39) 0.65(0.48) 0.80 (0.40)

titanic 5 21 0.79(0.41) 0.86(0.35) 0.87(0.34) 0.88(0.33)
diabetes 8 85 0.38(0.49) 0.42(0.50) 0.47 (0.50) 0.57 (0.50)

breast-cancer 9 29 0.91 (0.29) 0.75(0.44) 0.80(0.40) 0.79(0.41)
flare-solar 9 100 0.59(0.49) 0.81 (0.39) 0.55(0.50) 0.66(0.48)

heart 13 38 0.47(0.50) 0.28(0.45) 0.40(0.49) 0.62 (0.49)
german 20 100 0.59 (0.49) 0.55 (0.50) 0.44(0.50) 0.68 (0.47)

ringnorm 20 100 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.14)
waveform 21 66 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.00(0.00)
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Table 3: Mean AUC score (and the standard deviation in the bracket) over 1000 trials for
the artificial outlier-detection dataset. The best method in terms of the mean
AUC score and comparable methods according to the t-test at the significance
level 5% are specified by bold face.

Input
dimensionality d

RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

1 .933(.089) .926(.100) .896 (.124)

5 .882(.099) .891(.091) .894(.086)

10 .842 (.107) .850(.103) .859(.092)

contains regular samples. Defining the density ratio over the two sets of samples, we can
see that the density-ratio values for regular samples are close to one, while those for outliers
tend to be significantly deviated from one. Thus, density-ratio values could be used as an
index of the degree of outlyingness (Smola et al., 2009; Hido et al., 2011).

Since the evaluation dataset usually has a wider support than the model dataset, we
regard the evaluation dataset as samples corresponding to the denominator density p′(x),
and the model dataset as samples corresponding to the numerator density p(x). Then,
outliers tend to have smaller density-ratio values (i.e., close to zero). As such, density-ratio
approximators can be used for outlier detection.

When evaluating the performance of outlier detection methods, it is important to take
into account both the detection rate (i.e., the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (i.e., the amount of true inliers an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric (Bradley, 1997).

4.2.2 Artificial Datasets

First, we illustrate how the proposed method behaves in outlier detection scenarios using
artificial datasets.

Let

P = N(0, Id),

P ′ = 0.95N(0, Id) + 0.05N(3d−1/21d, Id),

where d is the dimensionality of x and 1d is the d-dimensional vector with all one. Note
that this setup is the same as the dataset (e) described in Section 2.4 when d = 1. Here,
the samples drawn from N(0, Id) are regarded as inliers, while the samples drawn from
N(d−1/21d, Id) are regarded as outliers. We use n = n′ = 100 samples.

Table 3 describes the AUC values for input dimensionality d = 1, 5, and 10 for RuLSIF
with α = 0, 0.5, and 0.95. This shows that, as the input dimensionality d increases, the
AUC values overall get smaller. Thus, outlier detection becomes more challenging in high-
dimensional cases.
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The result also shows that RuLSIF with small α tends to work well when the input
dimensionality is low, and RuLSIF with large α works better as the input dimensionality
increases. This tendency can be interpreted as follows: If α is small, the density-ratio func-
tion tends to have sharp ‘hollow’ for outlier points (see the leftmost graph in Figure 2(e)).
Thus, as long as the true density-ratio function can be accurately estimated, small α would
be preferable in outlier detection. When the data dimensionality is low, density-ratio ap-
proximation is rather easy and thus small α tends to perform well. However, as the data
dimensionality increases, density-ratio approximation gets harder, and thus large α which
produces a smoother density-ratio function is more favorable since such a smoother function
can be more easily approximated than a ‘bumpy’ one produced by small α.

4.2.3 Real-World Datasets

Next, we evaluate the proposed outlier detection method using various real-world datasets:

IDA repository: The IDA repository (Rätsch et al., 2001) contains various binary classi-
fication tasks. Each dataset consists of positive/negative and training/test samples.
We use positive training samples as inliers in the “model” set. In the “evaluation” set,
we use at most 100 positive test samples as inliers and the first 5% of negative test
samples as outliers. Thus, the positive samples are treated as inliers and the negative
samples are treated as outliers.

Speech dataset: An in-house speech dataset, which contains short utterance samples
recorded from 2 male subjects speaking in French with sampling rate 44.1kHz. From
each utterance sample, we extracted a 50-dimensional line spectral frequencies vector
(Kain and Macon, 1998). We randomly take 200 samples from one class and assign
them to the model dataset. Then we randomly take 200 samples from the same class
and 10 samples from the other class.

20 Newsgroup dataset: The 20-Newsgroups dataset1 contains 20000 newsgroup docu-
ments, which contains the following 4 top-level categories: ‘comp’, ‘rec’, ‘sci’, and
‘talk’. Each document is expressed by a 100-dimensional bag-of-words vector of term-
frequencies. We randomly take 200 samples from the ‘comp’ class and assign them to
the model dataset. Then we randomly take 200 samples from the same class and 10
samples from one of the other classes for the evaluation dataset.

The USPS hand-written digit dataset: The USPS hand-written digit dataset2 con-
tains 9298 digit images. Each image consists of 256 (= 16× 16) pixels and each pixel
takes an integer value between 0 and 255 as the intensity level. We regard samples
in one class as inliers and samples in other classes as outliers. We randomly take
200 samples from the inlier class and assign them to the model dataset. Then we
randomly take 200 samples from the same inlier class and 10 samples from one of the
other classes for the evaluation dataset.

We compare the AUC scores of RuLSIF with α = 0, 0.5, and 0.95, and one-class sup-
port vector machine (OSVM) with the Gaussian kernel (Schölkopf et al., 2001). We used

1. http://people.csail.mit.edu/jrennie/20Newsgroups/

2. http://www.gaussianprocess.org/gpml/data/
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the LIBSVM implementation of OSVM (Chang and Lin, 2001). The Gaussian width is
set to the median distance between samples, which has been shown to be a useful heuris-
tic (Schölkopf et al., 2001). Since there is no systematic method to determine the tuning
parameter ν in OSVM, we report the results for ν = 0.05 and 0.1.

The mean and standard deviation of the AUC scores over 100 runs with random sample
choice are summarized in Table 4, showing that RuLSIF overall compares favorably with
OSVM. Among the RuLSIF methods, small α tends to perform well for low-dimensional
datasets, and large α tends to work well for high-dimensional datasets. This tendency well
agrees with that for the artificial datasets (see Section 4.2.2).

4.3 Transfer Learning

Finally, we apply the proposed method to outlier detection.

4.3.1 Transductive Transfer Learning by Importance Sampling

Let us consider a problem of semi-supervised learning (Chapelle et al., 2006) from labeled
training samples {(xtr

j , y
tr
j )}ntr

j=1 and unlabeled test samples {xte
i }nte

i=1. The goal is to predict a

test output value yte for a test input point xte. Here, we consider the setup where the labeled
training samples {(xtr

j , y
tr
j )}ntr

j=1 are drawn i.i.d. from p(y|x)ptr(x), while the unlabeled test

samples {xte
i }nte

i=1 are drawn i.i.d. from pte(x), which is generally different from ptr(x); the
(unknown) test sample (xte, yte) follows p(y|x)pte(x). This setup means that the conditional
probability p(y|x) is common to training and test samples, but the marginal densities ptr(x)
and pte(x) are generally different for training and test input points. Such a problem is called
transductive transfer learning (Pan and Yang, 2010), domain adaptation (Jiang and Zhai,
2007), or covariate shift (Shimodaira, 2000; Sugiyama and Kawanabe, 2011).

Let loss(y, ŷ) be a point-wise loss function that measures a discrepancy between y and
ŷ (at input x). Then the generalization error which we would like to ultimately minimize
is defined as

Ep(y|x)pte(x) [loss(y, f(x))] ,

where f(x) is a function model. Since the generalization error is inaccessible because the
true probability p(y|x)pte(x) is unknown, empirical-error minimization is often used in
practice (Vapnik, 1998):

min
f∈F


 1

ntr

ntr∑

j=1

loss(ytrj , f(x
tr
j ))


 .

However, under the covariate shift setup, plain empirical-error minimization is not consistent
(i.e., it does not converge to the optimal function) if the model F is misspecified (i.e., the
true function is not included in the model; see Shimodaira, 2000). Instead, the following
importance-weighted empirical-error minimization is consistent under covariate shift:

min
f∈F


 1

ntr

ntr∑

j=1

r(xtr
j )loss(y

tr
j , f(x

tr
j ))


 ,
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Table 4: Experimental results of outlier detection for various for real-world datasets. Mean
AUC score (and standard deviation in the bracket) over 100 trials is reported.
The best method having the highest mean AUC score and comparable methods
according to the t-test at the significance level 5% are specified by bold face. The
datasets are sorted in the ascending order of the input dimensionality d.

Datasets d
OSVM

(ν = 0.05)
OSVM
(ν = 0.1)

RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

IDA:banana 2 .668(.105) .676(.120) .597 (.097) .619 (.101) .623 (.115)

IDA:thyroid 5 .760 (.148) .782(.165) .804(.148) .796(.178) .722 (.153)

IDA:titanic 5 .757(.205) .752(.191) .750(.182) .701 (.184) .712 (.185)

IDA:diabetes 8 .636(.099) .610 (.090) .594 (.105) .575 (.105) .663(.112)

IDA:b-cancer 9 .741(.160) .691 (.147) .707(.148) .737(.159) .733(.160)

IDA:f-solar 9 .594 (.087) .590 (.083) .626(.102) .612(.100) .584 (.114)

IDA:heart 13 .714 (.140) .694 (.148) .748(.149) .769(.134) .726 (.127)

IDA:german 20 .612(.069) .604(.084) .605(.092) .597(.101) .605(.095)

IDA:ringnorm 20 .991(.012) .993(.007) .944 (.091) .971 (.062) .992(.010)

IDA:waveform 21 .812 (.107) .843 (.123) .879(.122) .875(.117) .885(.102)

Speech 50 .788 (.068) .830(.060) .804 (.101) .821(.076) .836(.083)

20News (‘rec’) 100 .598 (.063) .593 (.061) .628 (.105) .614 (.093) .767(.100)

20News (‘sci’) 100 .592 (.069) .589 (.071) .620 (.094) .609 (.087) .704(.093)

20News (‘talk’) 100 .661 (.084) .658 (.084) .672 (.117) .670 (.102) .823(.078)

USPS (1 vs. 2) 256 .889 (.052) .926(.037) .848 (.081) .878 (.088) .898 (.051)

USPS (2 vs. 3) 256 .823 (.053) .835 (.050) .803 (.093) .818 (.085) .879(.074)

USPS (3 vs. 4) 256 .901 (.044) .939 (.031) .950 (.056) .961 (.041) .984(.016)

USPS (4 vs. 5) 256 .871 (.041) .890 (.036) .857 (.099) .874 (.082) .941(.031)

USPS (5 vs. 6) 256 .825 (.058) .859 (.052) .863 (.078) .867 (.068) .901(.049)

USPS (6 vs. 7) 256 .910 (.034) .950 (.025) .972 (.038) .984 (.018) .994(.010)

USPS (7 vs. 8) 256 .938 (.030) .967 (.021) .941 (.053) .951 (.039) .980(.015)

USPS (8 vs. 9) 256 .721 (.072) .728 (.073) .721 (.084) .728 (.083) .761(.096)

USPS (9 vs. 0) 256 .920 (.037) .966 (.023) .982 (.048) .989 (.022) .994(.011)
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where r(x) is called the importance (Fishman, 1996) in the context of covariate shift adap-
tation:

r(x) :=
pte(x)

ptr(x)
.

However, since importance-weighted learning is not statistically efficient (i.e., it tends
to have larger variance), slightly flattening the importance weights is practically useful for
stabilizing the estimator. Shimodaira (2000) proposed to use the exponentially-flattened
importance weights as

min
f∈F


 1

ntr

ntr∑

j=1

r(xtr
j )

τ loss(ytrj , f(x
tr
j ))


 ,

where 0 ≤ τ ≤ 1 is called the exponential flattening parameter. τ = 0 corresponds to plain
empirical-error minimization, while τ = 1 corresponds to importance-weighted empirical-
error minimization; 0 < τ < 1 will give an intermediate estimator that balances the trade-off
between statistical efficiency and consistency. The exponential flattening parameter τ can be
optimized by model selection criteria such as the importance-weighted Akaike information
criterion for regular models (Shimodaira, 2000), the importance-weighted subspace infor-
mation criterion for linear models (Sugiyama and Müller, 2005), and importance-weighted
cross-validation for arbitrary models (Sugiyama et al., 2007).

One of the potential drawbacks of the above exponential flattering approach is that
estimation of r(x) (i.e., τ = 1) is rather hard, as shown in this paper. Thus, when r(x)
is estimated poorly, all flattened weights r(x)τ are also unreliable and then covariate shift
adaptation does not work well in practice. To cope with this problem, we propose to use
relative importance weights alternatively:

min
f∈F


 1

ntr

ntr∑

j=1

rα(x
tr
j )loss(y

tr
j , f(x

tr
j ))


 ,

where rα(x) (0 ≤ α ≤ 1) is the α-relative importance weight defined by

rα(x) :=
pte(x)

(1− α)pte(x) + αptr(x)
.

Note that, compared with the definition of the α-relative density-ratio (1), α and (1 − α)
are swapped in order to be consistent with exponential flattening. Indeed, the relative
importance weights play a similar role to exponentially-flattened importance weights; α = 0
corresponds to plain empirical-error minimization, while α = 1 corresponds to importance-
weighted empirical-error minimization; 0 < α < 1 will give an intermediate estimator
that balances the trade-off between efficiency and consistency. We note that the relative
importance weights and exponentially flattened importance weights agree only when α =
τ = 0 and α = τ = 1; for 0 < α = τ < 1, they are generally different.

A possible advantage of the above relative importance weights is that its estimation for
0 < α < 1 does not depend on that for α = 1, unlike exponentially-flattened importance
weights. Since α-relative importance weights for 0 < α < 1 can be reliably estimated by
RuLSIF proposed in this paper, the performance of covariate shift adaptation is expected
to be improved. Below, we experimentally investigate this effect.
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4.3.2 Artificial Datasets

First, we illustrate how the proposed method behaves in covariate shift adaptation using
one-dimensional artificial datasets.

In this experiment, we employ the following kernel regression model:

f(x;β) =

nte∑

i=1

βi exp

(
−(x− xtei )

2

2ρ2

)
,

where β = (β1, . . . , βnte
)⊤ is the parameter to be learned and ρ is the Gaussian width. The

parameter β is learned by relative importance-weighted least-squares (RIW-LS):

β̂RIW−LS = argmin
β


 1

ntr

ntr∑

j=1

r̂α(x
tr
j )
(
f(xtrj ;β)− ytrj

)2

 ,

or exponentially-flattened importance-weighted least-squares (EIW-LS):

β̂EIW−LS = argmin
β


 1

ntr

ntr∑

j=1

r̂(xtrj )
τ
(
f(xtrj ;β)− ytrj

)2

 .

The relative importance weight r̂α(x
tr
j ) is estimated by RuLSIF, and the exponentially-

flattened importance weight r̂(xtrj )
τ is estimated by uLSIF (i.e., RuLSIF with α = 1). The

Gaussian width ρ is chosen by 5-fold importance-weighted cross-validation (Sugiyama et al.,
2007).

First, we consider the case where input distributions do not change:

Ptr = Pte = N(1, 0.25).

The densities and their ratios are plotted in Figure 6(a). The training output samples
{ytrj }ntr

j=1 are generated as

ytrj = sinc(xtrj ) + ǫtrj ,

where {ǫtrj }ntr

j=1 is additive noise following N(0, 0.01). We set ntr = 100 and nte = 200.
Figure 6(b) shows a realization of training and test samples as well as learned functions
obtained by RIW-LS with α = 0.5 and EIW-LS with τ = 0.5. This shows that RIW-LS
with α = 0.5 and EIW-LS with τ = 0.5 give almost the same functions, and both functions
fit the true function well in the test region. Figure 6(c) shows the mean and standard
deviation of the test error under the squared loss over 200 runs, as functions of the relative
flattening parameter α in RIW-LS and the exponential flattening parameter τ in EIW-
LS. The method having a lower mean test error and another method that is comparable
according to the t-test at the significance level 5% are specified by ‘◦’. As can be observed,
the proposed RIW-LS compares favorably with EIW-LS.

Next, we consider the situation where input distribution changes (Figure 7(a)):

Ptr = N(1, 0.25),

Pte = N(2, 0.1).
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Figure 6: Illustrative example of transfer learning under no distribution change.
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Figure 7: Illustrative example of transfer learning under covariate shift.

The output values are created in the same way as the previous case. Figure 7(b) shows a
realization of training and test samples as well as learned functions obtained by RIW-LS
with α = 0.5 and EIW-LS with τ = 0.5. This shows that RIW-LS with α = 0.5 fits the true
function slightly better than EIW-LS with τ = 0.5 in the test region. Figure 7(c) shows that
the proposed RIW-LS tends to outperform EIW-LS, and the standard deviation of the test
error for RIW-LS is much smaller than EIW-LS. This is because EIW-LS with 0 < τ < 1 is
based on an importance estimate with τ = 1, which tends to have high fluctuation. Overall,
the stabilization effect of relative importance estimation was shown to improve the test
accuracy.

4.3.3 Real-World Datasets

Finally, we evaluate the proposed transfer learning method on a real-world transfer learning
task.

We consider the problem of human activity recognition from accelerometer data col-
lected by iPod touch3. In the data collection procedure, subjects were asked to perform a
specific action such as walking, running, and bicycle riding. The duration of each task was
arbitrary and the sampling rate was 20Hz with small variations. An example of three-axis
accelerometer data for “walking” is plotted in Figure 8.

3. http://alkan.mns.kyutech.ac.jp/web/data.html
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Figure 8: An example of three-axis accelerometer data for “walking” collected by iPod
touch.

To extract features from the accelerometer data, each data stream was segmented in a
sliding window manner with window width 5 seconds and sliding step 1 second. Depending
on subjects, the position and orientation of iPod touch was arbitrary—held by hand or kept
in a pocket or a bag. For this reason, we decided to take the ℓ2-norm of the 3-dimensional
acceleration vector at each time step, and computed the following 5 orientation-invariant
features from each window: mean, standard deviation, fluctuation of amplitude, average
energy, and frequency-domain entropy (Bao and Intille, 2004; Bharatula et al., 2005).

Let us consider a situation where a new user wants to use the activity recognition
system. However, since the new user is not willing to label his/her accelerometer data
due to troublesomeness, no labeled sample is available for the new user. On the other
hand, unlabeled samples for the new user and labeled data obtained from existing users
are available. Let labeled training data {(xtr

j , y
tr
j )}ntr

j=1 be the set of labeled accelerometer
data for 20 existing users. Each user has at most 100 labeled samples for each action. Let
unlabeled test data {xte

i }nte

i=1 be unlabeled accelerometer data obtained from the new user.

We use kernel logistic regression (KLR) for activity recognition. We compare the fol-
lowing four methods:

• Plain KLR without importance weights (i.e., α = 0 or τ = 0).

• KLR with relative importance weights for α = 0.5.

• KLR with exponentially-flattened importance weights for τ = 0.5.

• KLR with plain importance weights (i.e., α = 1 or τ = 1).

The experiments are repeated 100 times with different sample choice for ntr = 500 and
nte = 200. Table 5 depicts the classification accuracy for three binary-classification tasks:
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Table 5: Experimental results of transfer learning in real-world human activity recognition.
Mean classification accuracy (and the standard deviation in the bracket) over 100
runs for activity recognition of a new user is reported. The method having the
lowest mean classification accuracy and comparable methods according to the t-
test at the significance level 5% are specified by bold face.

Task KLR RIW-KLR EIW-KLR IW-KLR
(α = 0, τ = 0) (α = 0.5) (τ = 0.5) (α = 1, τ = 1)

Walks vs. run 0.803 (0.082) 0.889(0.035) 0.882(0.039) 0.882(0.035)

Walks vs. bicycle 0.880 (0.025) 0.892(0.035) 0.867 (0.054) 0.854 (0.070)

Walks vs. train 0.985 (0.017) 0.992(0.008) 0.989 (0.011) 0.983 (0.021)

walk vs. run, walk vs. riding a bicycle, and walk vs. taking a train. The classification accuracy
is evaluated for 800 samples from the new user that are not used for classifier training (i.e.,
the 800 test samples are different from 200 unlabeled samples). The table shows that KLR
with relative importance weights for α = 0.5 compares favorably with other methods in
terms of the classification accuracy. KLR with plain importance weights and KLR with
exponentially-flattened importance weights for τ = 0.5 are outperformed by KLR without
importance weights in the walk vs. riding a bicycle task due to the instability of importance
weight estimation for α = 1 or τ = 1.

Overall, the proposed relative density-ratio estimation method was shown to be useful
also in transfer learning under covariate shift.

5. Conclusion

In this paper, we proposed to use a relative divergence for robust distribution compari-
son. We gave a computationally efficient method for estimating the relative Pearson di-
vergence based on direct relative density-ratio approximation. We theoretically elucidated
the convergence rate of the proposed divergence estimator under non-parametric setup,
which showed that the proposed approach of estimating the relative Pearson divergence
is more preferable than the existing approach of estimating the plain Pearson divergence.
Furthermore, we proved that the asymptotic variance of the proposed divergence estima-
tor is independent of the model complexity under a correctly-specified parametric setup.
Thus, the proposed divergence estimator hardly overfits even with complex models. Exper-
imentally, we demonstrated the practical usefulness of the proposed divergence estimator
in two-sample homogeneity test, inlier-based outlier detection, and transductive transfer
learning under covariate shift.

In addition to two-sample homogeneity test, outlier detection, and transfer learn-
ing, density ratios were shown to be useful for tackling various machine learning prob-
lems, including multi-task learning (Bickel et al., 2008; Simm et al., 2011), independence
test (Sugiyama and Suzuki, 2011), feature selection (Suzuki et al., 2009), causal inference
(Yamada and Sugiyama, 2010), independent component analysis (Suzuki and Sugiyama,
2011), dimensionality reduction (Suzuki and Sugiyama, 2010), unpaired data matching
(Yamada and Sugiyama, 2011), clustering (Kimura and Sugiyama, 2011), conditional den-
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sity estimation (Sugiyama et al., 2010), and probabilistic classification (Sugiyama, 2010).
Thus, it would be promising to explore more applications of the proposed relative density-
ratio approximator beyond two-sample homogeneity test, outlier detection, and transfer
learning tasks.
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Appendix A. Technical Details of Non-Parametric Convergence Analysis

Here, we give the technical details of the non-parametric convergence analysis described in
Section 3.1.

A.1 Results

For notational simplicity, we define linear operators P,Pn, P
′, P ′

n′ as

Pf := Epf, Pnf :=

∑n
j=1 f(xj)

n
,

P ′f := Eqf, P ′
n′f :=

∑n′

i=1 f(x
′
i)

n′
.

For α ∈ [0, 1], we define Sn,n′ and S as

Sn,n′ = αPn + (1− α)P ′
n′ , S = αP + (1− α)P ′.

We estimate the Pearson divergence between p and αp + (1 − α)q through estimating the
density ratio

g∗ :=
p

αp+ (1− α)p′
.

Let us consider the following density ratio estimator:

ĝ := argmin
g∈G

[
1

2

(
αPn + (1− α)P ′

n′

)
g2 − Png +

λn̄

2
R(g)2

]

=argmin
g∈G

(
1

2
Sn,n′g2 − Png +

λn̄

2
R(g)2

)
.

where n̄ = min(n, n′) and R(g) is a non-negative regularization functional such that

sup
x

[|g(x)|] ≤ R(g). (16)
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A possible estimator of the Pearson (PE) divergence P̂Eα is

P̂Eα := Pnĝ −
1

2
Sn,n′ ĝ2 − 1

2
.

Another possibility is

P̃Eα :=
1

2
Pnĝ −

1

2
.

A useful example is to use a reproducing kernel Hilbert space (RKHS; Aronszajn, 1950)
as G and the RKHS norm as R(g). Suppose G is an RKHS associated with bounded kernel
k(·, ·):

sup
x

[k(x,x)] ≤ C.

Let ‖ · ‖G denote the norm in the RKHS G. Then R(g) =
√
C‖g‖G satisfies Eq.(16):

g(x) = 〈k(x, ·), g(·)〉 ≤
√

k(x,x)‖g‖G ≤
√
C‖g‖G ,

where we used the reproducing property of the kernel and Schwartz’s inequality. Note that
the Gaussian kernel satisfies this with C = 1. It is known that the Gaussian kernel RKHS
spans a dense subset in the set of continuous functions. Another example of RKHSs is
Sobolev space. The canonical norm for this space is the integral of the squared derivatives
of functions. Thus the regularization term R(g) = ‖g‖G imposes the solution to be smooth.
The RKHS technique in Sobolev space has been well exploited in the context of spline
models (Wahba, 1990). We intend that the regularization term R(g) is a generalization of
the RKHS norm. Roughly speaking, R(g) is like a “norm” of the function space G.

We assume that the true density-ratio function g∗(x) is contained in the model G and
is bounded from above:

g∗(x) ≤ M0 for all x ∈ DX.

Let GM be a ball of G with radius M > 0:

GM := {g ∈ G | R(g) ≤ M}.

To derive the convergence rate of our estimator, we utilize the bracketing entropy that is a
complexity measure of a function class (see p. 83 of van der Vaart and Wellner, 1996).

Definition 1 Given two functions l and u, the bracket [l, u] is the set of all functions f
with l(x) ≤ f(x) ≤ u(x) for all x. An ǫ-bracket with respect to L2(p̃) is a bracket [l, u] with
‖l − u‖L2(p̃) < ǫ. The bracketing entropy H[](F , ǫ, L2(p̃)) is the logarithm of the minimum
number of ǫ-brackets with respect to L2(p̃) needed to cover a function set F .

We assume that there exists γ (0 < γ < 2) such that, for all M > 0,

H[](GM , ǫ, L2(p)) = O

((
M

ǫ

)γ)
, H[](GM , ǫ, L2(p

′)) = O

((
M

ǫ

)γ)
. (17)
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This quantity represents a complexity of function class G—the larger γ is, the more com-
plex the function class G is because, for larger γ, more brackets are needed to cover
the function class. The Gaussian RKHS satisfies this condition for arbitrarily small γ
(Steinwart and Scovel, 2007). Note that when R(g) is the RKHS norm, the condition (17)
holds for all M > 0 if that holds for M = 1.

Then we have the following theorem.

Theorem 2 Let n̄ = min(n, n′), M0 = ‖g∗‖∞, and c = (1 + α)
√

P (g∗ − Pg∗)2 + (1 −
α)
√

P ′(g∗ − P ′g∗)2. Under the above setting, if λn̄ → 0 and λ−1
n̄ = o(n̄2/(2+γ)), then we

have

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n̄−1/2cM0),

and

P̃Eα − PEα =Op(λn̄ max{1,M
1

2
(1− γ

2
)

0 , R(g∗)M
1

2
(1− γ

2
)

0 , R(g∗)}+ λ
1

2

n̄ max{M
1

2

0 ,M
1

2

0 R(g∗)}),

where Op denotes the asymptotic order in probability.

In the proof of Theorem 2, we use the following auxiliary lemma.

Lemma 3 Under the setting of Theorem 2, if λn̄ → 0 and λ−1
n̄ = o(n̄2/(2+γ)), then we have

‖ĝ − g∗‖L2(S) = Op(λ
1/2
n̄ max{1, R(g∗)}), R(ĝ) = Op(max{1, R(g∗)}),

where ‖ · ‖L2(S) denotes the L2(αp + (1− α)q)-norm.

A.2 Proof of Lemma 3

First, we prove Lemma 3.
From the definition, we obtain

1

2
Sn,n′ ĝ2 − Pnĝ + λn̄R(ĝ)2 ≤ 1

2
Sn,n′g∗2 − Png

∗ + λn̄R(g∗)2

⇒ 1

2
Sn,n′(ĝ − g∗)2 − Sn,n′(g∗(g∗ − ĝ))− Pn(ĝ − g∗) + λn̄(R(ĝ)2 −R(g∗)2) ≤ 0.

On the other hand, S(g∗(g∗ − ĝ)) = P (g∗ − ĝ) indicates

1

2
(S − Sn,n′)(ĝ − g∗)2 − (S − Sn,n′)(g∗(g∗ − ĝ))− (P − Pn)(ĝ − g∗)− λn̄(R(ĝ)2 −R(g∗)2)

≥ 1

2
S(ĝ − g∗)2.

Therefore, to bound ‖ĝ − g∗‖L2(S), it suffices to bound the left-hand side of the above
inequality.

Define FM and F2
M as

FM := {g − g∗ | g ∈ GM} and F2
M := {f2 | f ∈ FM}.
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To bound |(S−Sn,n′)(ĝ−g∗)2|, we need to bound the bracketing entropies of F2
M . We show

that

H[](F2
M , δ, L2(p)) = O

((
(M +M0)

2

δ

)γ)
,

H[](F2
M , δ, L2(q)) = O

((
(M +M0)

2

δ

)γ)
.

This can be shown as follows. Let fL and fU be a δ-bracket for GM with respect to L2(p);
fL(x) ≤ fU (x) and ‖fL − fU‖L2(p) ≤ δ. Without loss of generality, we can assume that
‖fL‖L∞

, ‖fU‖L∞
≤ M +M0 . Then f ′

U and f ′
L defined as

f ′
U(x) := max{f2

L(x), f
2
U (x)},

f ′
L(x) :=

{
min{f2

L(x), f
2
U (x)} (sign(fL(x)) = sign(fU(x))),

0 (otherwise)
,

are also a bracket such that f ′
L ≤ g2 ≤ f ′

U for all g ∈ GM s.t. fL ≤ g ≤ fU and ‖f ′
L −

f ′
U‖L2(p) ≤ 2δ(M +M0) because ‖fL − fU‖L2(p) ≤ δ and the following relation is met:

(f ′
L(x)− f ′

U (x))
2 ≤

{
(f2

L(x)− f2
U(x))

2 (sign(fL(x)) = sign(fU (x))),

max{f4
L(x), f

4
U (x)} (otherwise)

≤
{
(fL(x)− fU(x))

2(fL(x) + fU (x))
2 (sign(fL(x)) = sign(fU (x))),

max{f4
L(x), f

4
U (x)} (otherwise)

≤
{
(fL(x)− fU(x))

2(fL(x) + fU (x))
2 (sign(fL(x)) = sign(fU (x))),

(fL(x)− fU(x))
2(|fL(x)|+ |fU (x)|)2 (otherwise)

≤ 4(fL(x)− fU(x))
2(M +M0)

2.

Therefore the condition for the bracketing entropies (17) gives H[](F2
M , δ, L2(p)) =

O
((

(M+M0)2

δ

)γ)
. We can also show that H[](F2

M , δ, L2(q)) = O
((

(M+M0)2

δ

)γ)
in the

same fashion.
Let f := ĝ − g∗. Then, as in Lemma 5.14 and Theorem 10.6 in van de Geer (2000), we

obtain

|(Sn,n′ − S)(f2)| ≤ α|(Pn − P )(f2)|+ (1− α)|(P ′
n′ − P ′)(f2)|

=αOp

(
1√
n̄
‖f2‖1−

γ

2

L2(P )(1 +R(ĝ)2 +M2
0 )

γ

2 ∨ n̄
− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)

+ (1− α)Op

(
1√
n̄
‖f2‖1−

γ

2

L2(P ′)(1 +R(ĝ)2 +M2
0 )

γ

2 ∨ n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)

≤Op

(
1√
n̄
‖f2‖1−

γ

2

L2(S)
(1 +R(ĝ)2 +M2

0 )
γ

2 ∨ n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)
, (18)

where a ∨ b = max(a, b) and we used

α‖f2‖1−
γ

2

L2(P ) + (1− α)‖f2‖1−
γ

2

L2(P ′) ≤
(∫

f4d(αP + (1− α)P ′)

) 1

2
(1− γ

2
)

= ‖f2‖1−
γ

2

L2(S)
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by Jensen’s inequality for a concave function. Since

‖f2‖L2(S) ≤ ‖f‖L2(S)

√
2(1 +R(ĝ)2 +M2

0 ),

the right-hand side of Eq.(18) is further bounded by

|(Sn,n′ − S)(f2)|

=Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ)2 +M2

0 )
1

2
+ γ

4 ∨ n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)
. (19)

Similarly, we can show that

|(Sn,n′ − S)(g∗(g∗ − ĝ))|

=Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ)M0 +M2

0 )
γ

2 ∨ n̄− 2

2+γ (1 +R(ĝ)M0 +M2
0 )

)
, (20)

and

|(Pn − P )(g∗ − ĝ)| = Op

(
1√
n̄
‖f‖1−

γ

2

L2(P )(1 +R(ĝ) +M0)
γ

2 ∨ n̄− 2

2+γ (1 +R(ĝ) +M0)

)

≤ Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ) +M0)

γ

2M
1

2
(1− γ

2
)

0 ∨ n̄
− 2

2+γ (1 +R(ĝ) +M0)

)
, (21)

where we used

‖f‖L2(P ) =

√∫
f2dP =

√∫
f2g∗dS ≤ M

1

2

0

√∫
f2dS

in the last inequality. Combining Eqs.(19), (20), and (21), we can bound the L2(S)-norm
of f as

1

2
‖f‖2L2(S)

+ λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ)2 +M2

0 )
1

2
+ γ

4 ∨ n̄
− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)
. (22)

The following is similar to the argument in Theorem 10.6 in van de Geer (2000), but we
give a simpler proof.

By Young’s inequality, we have a
1

2
− γ

4 b
1

2
+ γ

4 ≤ (12 −
γ
4 )a+(12 +

γ
4 )b ≤ a+ b for all a, b > 0.

Applying this relation to Eq.(22), we obtain

1

2
‖f‖2L2(S)

+ λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
‖f‖2(

1

2
− γ

4
)

L2(S)

{
n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )
} 1

2
+ γ

4 ∨ n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )

)

Young
≤ λn̄R(g∗)2 +

1

4
‖f‖2L2(S)

+Op

(
n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 ) + n̄− 2

2+γ (1 +R(ĝ)2 +M2
0 )
)

= λn̄R(g∗)2 +
1

4
‖f‖2L2(S)

+Op

(
n̄
− 2

2+γ (1 +R(ĝ)2 +M2
0 )
)
,
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which indicates

1

4
‖f‖2L2(S)

+ λn̄R(ĝ)2 ≤ λn̄R(g∗)2 + op
(
λn̄(1 +R(ĝ)2 +M2

0 )
)
.

Therefore, by moving op(λn̄R(ĝ)2) to the left hind side, we obtain

1

4
‖f‖2L2(S)

+ λn̄(1− op(1))R(ĝ)2 ≤ Op

(
λn̄(1 +R(g∗)2 +M2

0 )
)

≤ Op

(
λn̄(1 +R(g∗)2)

)
.

This gives

‖f‖L2(S) = Op(λ
1

2

n̄ max{1, R(g∗)}),
R(ĝ) = Op(

√
1 +R(g∗)2) = Op(max{1, R(g∗)}).

Consequently, the proof of Lemma 3 was completed.

A.3 Proof of Theorem 2

Based on Lemma 3, we prove Theorem 2.

As in the proof of Lemma 3, let f := ĝ−g∗. Since (αP+(1−α)P ′)(fg∗) = S(fg∗) = Pf ,
we have

P̂Eα − PEα =
1

2
Sn,n′ ĝ2 − Pnĝ − (

1

2
Sg∗2 − Pg∗)

=
1

2
Sn,n′(f + g∗)2 − Pn(f + g∗)−

(
1

2
Sg∗2 − Pg∗

)

=
1

2
Sf2 +

1

2
(Sn,n′ − S)f2 + (Sn,n′ − S)(g∗f)− (Pn − P )f

+
1

2
(Sn,n′ − S)g∗2 − (Png

∗ − Pg∗). (23)

Below, we show that each term of the right-hand side of the above equation is Op(λn̄). By
the central limit theorem, we have

1

2
(Sn,n′ − S)g∗2 − (Png

∗ − Pg∗)

= Op

(
n̄−1/2M0

(
(1 + α)

√
P (g∗ − Pg∗)2 + (1− α)

√
P ′(g∗ − P ′g∗)2

))
.
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Since Lemma 3 gives ‖f‖2 = Op(λ
1

2

n̄ max(1, R(g∗))) and R(ĝ) = Op(max(1, R(g∗))),
Eqs.(19), (20), and (21) in the proof of Lemma 3 imply

|(Sn,n′ − S)f2| = Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(g∗))1+

γ

2 ∨ n̄
− 2

2+γR(g∗)2
)

≤ Op(λn̄ max(1, R(g∗)2)),

|(Sn,n′ − S)(g∗f)| = Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ)M0 +M2

0 )
γ

2 ∨ n̄
− 2

2+γ (1 +R(ĝ)M0 +M2
0 )

)

≤ Op(λn̄ max(1, R(g∗)M
γ

2

0 ,Mγ
0 R(g∗)1−

γ

2 ,M0R(g∗),M2
0 ))

≤ Op(λn̄ max(1, R(g∗)M
γ

2

0 ,M0R(g∗))),

≤ Op(λn̄ max(1, R(g∗)2)),

|(Pn − P )f | ≤ Op

(
1√
n̄
‖f‖1−

γ

2

L2(S)
(1 +R(ĝ) +M0)

γ

2M
1

2
(1− γ

2
)

0 ∨ n̄
− 2

2+γ (1 +R(ĝ) +M0)

)

= Op(λn̄ max(1,M
1

2
(1− γ

2
)

0 , R(g∗)M
1

2
(1− γ

2
)

0 , R(g∗))) (24)

≤ Op(λn̄ max(1, R(g∗)2)),

where we used λ−1
n̄ = o(n̄2/(2+γ)) and M0 ≤ R(g∗). Lemma 3 also implies

Sf2 = ‖f‖22 = Op(λn̄max(1, R(g∗)2)).

Combining these inequalities with Eq.(23) implies

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n−1/2cM0),

where we again used M0 ≤ R(g∗).
On the other hand, we have

P̃Eα − PEα =
1

2
Pnĝ −

1

2
Pg∗

=
1

2
[(Pn − P )(ĝ − g∗) + P (ĝ − g∗) + (Pn − P )g∗] . (25)

Eq.(24) gives

(Pn − P )(ĝ − g∗) = Op(λn̄ max(1,M
1

2
(1− γ

2
)

0 , R(g∗)M
1

2
(1− γ

2
)

0 , R(g∗))).

We also have

P (ĝ − g∗) ≤ ‖ĝ − g∗‖L2(P ) ≤ ‖ĝ − g∗‖L2(S)M
1

2

0 = Op(λ
1

2

n̄ max(M
1

2

0 ,M
1

2

0 R(g∗))),

and

(Pn − P )g∗ = Op(n̄
− 1

2

√
P (g∗ − Pg∗)2) ≤ Op(n̄

− 1

2M0) ≤ Op(λ
1

2

n̄ max(M
1

2

0 ,M
1

2

0 R(g∗))),

Therefore by substituting these bounds into the relation (25), one observes that

P̃Eα − PEα

=Op(λ
1

2

n̄ max(M
1

2

0 ,M
1

2

0 R(g∗)) + λn̄max(1,M
1

2
(1− γ

2
)

0 , R(g∗)M
1

2
(1− γ

2
)

0 , R(g∗))). (26)

This completes the proof.
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Appendix B. Technical Details of Parametric Variance Analysis

Here, we give the technical details of the parametric variance analysis described in Sec-
tion 3.2.

B.1 Results

For the estimation of the α-relative density-ratio (1), the statistical model

G = {g(x;θ) | θ ∈ Θ ⊂ R
b}

is used where b is a finite number. Let us consider the following estimator of α-relative
density-ratio,

ĝ = argmin
g∈G

1

2

{
α

n

n∑

i=1

(g(xi))
2 +

1− α

n′

n′∑

j=1

(g(x′
j))

2

}
− 1

n

n∑

i=1

g(xi).

Suppose that the model is correctly specified, i.e., there exists θ∗ such that

g(x;θ∗) = rα(x).

Then, under a mild assumption (see Theorem 5.23 of van der Vaart, 2000), the estimator ĝ
is consistent and the estimated parameter θ̂ satisfies the asymptotic normality in the large
sample limit. Then, a possible estimator of the α-relative Pearson divergence PEα is

P̂Eα =
1

n

n∑

i=1

ĝ(xi)−
1

2

{
α

n

n∑

i=1

(ĝ(xi))
2 +

1− α

n′

n′∑

j=1

(ĝ(x′
j))

2

}
− 1

2
.

Note that there are other possible estimators for PEα such as

P̃Eα =
1

2n

n∑

i=1

ĝ(xi)−
1

2
.

We study the asymptotic properties of P̂Eα. The expectation under the probability p
(p′) is denoted as Ep(x)[·] (Ep′(x)[·]). Likewise, the variance is denoted as Vp(x)[·] (Vp′(x)[·]).
Then, we have the following theorem.

Theorem 4 Let ‖r‖∞ be the sup-norm of the standard density ratio r(x), and ‖rα‖∞ be
the sup-norm of the α-relative density ratio, i.e.,

‖rα‖∞ =
‖r‖∞

α‖r‖∞ + 1− α
.

The variance of P̂Eα is denoted as V[P̂Eα]. Then, under the regularity condition for the

asymptotic normality, we have the following upper bound of V[P̂Eα]:

V[P̂Eα] =
1

n
Vp(x)

[
rα − αr2α

2

]
+

1

n′
Vp′(x)

[
(1 − α)r2α

2

]
+ o

(
1

n
,
1

n′

)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1

n
,
1

n′

)
.
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Theorem 5 The variance of P̃Eα is denoted as V[P̃Eα]. Let ∇g be the gradient vector of

g with respect to θ at θ = θ∗, i.e., (∇g(x;θ∗))j =
∂g(x;θ

∗

)
∂θj

. The matrix Uα is defined by

Uα = αEp(x)[∇g∇g⊤] + (1− α)Ep′(x)[∇g∇g⊤].

Then, under the regularity condition, the variance of P̃Eα is asymptotically given as

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]⊤U−1

α ∇g

2

]

+
1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]⊤U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
.

B.2 Proof of Theorem 4

Let θ̂ be the estimated parameter, i.e., ĝ(x) = g(x; θ̂). Suppose that rα(x) = g(x;θ∗) ∈ G
holds. Let δθ = θ̂ − θ∗, then the asymptotic expansion of P̂Eα is given as

P̂Eα =
1

n

n∑

i=1

g(xi; θ̂)−
1

2

{
α

n

n∑

i=1

g(xi; θ̂)
2 +

1− α

n′

n′∑

j=1

g(x′
j; θ̂)

2

}
− 1

2

= PEα +
1

n

n∑

i=1

(rα(xi)− Ep(x)[rα]) +
1

n

n∑

i=1

∇g(xi;θ
∗)⊤δθ

− 1

2

{
α

n

n∑

i=1

(rα(xi)
2 − Ep(x)[r

2
α]) +

1− α

n′

n′∑

j=1

(rα(x
′
j)

2 − Ep′(x)[r
2
α])

}

−
{
α

n

n∑

i=1

rα(xi)∇g(xi;θ
∗) +

1− α

n′

n′∑

j=1

rα(x
′
j)∇g(x′

j ;θ
∗)

}⊤

δθ + op

(
1√
n
,

1√
n′

)
.

Let us define the linear operator G as

Gf =
1√
n

n∑

i=1

(f(xi)− Ep(x)[f ]).

Likewise, the operator G′ is defined for the samples from p′. Then, we have

P̂Eα − PEα

=
1√
n
G
(
rα − α

2
r2α
)
− 1√

n′
G′
(1− α

2
r2α
)

+
{
Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g]

}⊤
δθ + op

(
1√
n
,

1√
n′

)

=
1√
n
G
(
rα − α

2
r2α
)
− 1√

n′
G′
(1− α

2
r2α
)
+ op

(
1√
n
,

1√
n′

)
.

The second equality follows from

Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g] = 0.
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Then, the asymptotic variance is given as

V[P̂Eα] =
1

n
Vp(x)

[
rα − α

2
r2α

]
+

1

n′
Vp′(x)

[
1− α

2
r2α

]
+ o

(
1

n
,
1

n′

)
. (27)

We confirm that both rα − α
2 r

2
α and 1−α

2 r2α are non-negative and increasing functions with
respect to r for any α ∈ [0, 1]. Since the result is trivial for α = 1, we suppose 0 ≤ α < 1.
The function rα − α

2 r
2
α is represented as

rα − α

2
r2α =

r(αr + 2− 2α)

2(αr + 1− α)2
,

and thus, we have rα − α
2 r

2
α = 0 for r = 0. In addition, the derivative is equal to

∂

∂r

r(αr + 2− 2α)

2(αr + 1− α)2
=

(1− α)2

(αr + 1− α)3
,

which is positive for r ≥ 0 and α ∈ [0, 1). Hence, the function rα− α
2 r

2
α is non-negative and

increasing with respect to r. Following the same line, we see that 1−α
2 r2α is non-negative

and increasing with respect to r. Thus, we have the following inequalities,

0 ≤ rα(x)−
α

2
rα(x)

2 ≤ ‖rα‖∞ − α

2
‖rα‖2∞,

0 ≤ 1− α

2
rα(x)

2 ≤ 1− α

2
‖rα‖2∞.

As a result, upper bounds of the variances in Eq.(27) are given as

Vp(x)

[
rα − α

2
r2α

]
≤
(
‖rα‖∞ − α

2
‖rα‖2∞

)2

,

Vp′(x)

[
1− α

2
r2α

]
≤ (1− α)2

4
‖rα‖4∞.

Therefore, the following inequality holds,

V[P̂Eα] ≤
1

n

(
‖rα‖∞ − α‖rα‖2∞

2

)2

+
1

n′
· (1− α)2‖rα‖4∞

4
+ o

(
1

n
,
1

n′

)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1

n
,
1

n′

)
,

which completes the proof.

B.3 Proof of Theorem 5

The estimator θ̂ is the optimal solution of the following problem:

min
θ∈Θ


 1

2n

n∑

i=1

αg(xi;θ)
2 +

1

2n′

n′∑

j=1

(1− α)g(x′j ;θ)
2 − 1

n

n∑

i=1

g(xi;θ)


 .
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Then, the extremal condition yields the equation,

α

n

n∑

i=1

g(xi; θ̂)∇g(xi; θ̂) +
1− α

n′

n′∑

j=1

g(x′j ; θ̂)∇g(x′j ; θ̂)−
1

n

n∑

i=1

∇g(xi; θ̂) = 0.

Let δθ = θ̂ − θ∗. The asymptotic expansion of the above equation around θ = θ∗ leads to

1

n

n∑

i=1

(αrα(xi)− 1)∇g(xi;θ
∗) +

1− α

n′

n′∑

j=1

rα(x
′
j)∇g(x′j ;θ

∗) +Uαδθ + op

(
1√
n
,

1√
n′

)
= 0.

Therefore, we obtain

δθ =
1√
n
G((1 − αrα)U

−1
α ∇g)− 1√

n′
G′((1− α)rαU

−1
α ∇g) + op

(
1√
n
,

1√
n′

)
.

Next, we compute the asymptotic expansion of P̃Eα:

P̃Eα =
1

2
Ep(x)[rα] +

1

2n

n∑

i=1

(rα(xi)− Ep(x)[rα])

+
1

2n

n∑

i=1

∇g(xi;θ
∗)⊤δθ − 1

2
+ op

(
1√
n
,

1√
n′

)

= PEα +
1

2
√
n
G(rα) +

1

2
Ep(x)[∇g]⊤δθ + op

(
1√
n
,

1√
n′

)
.

Substituting δθ into the above expansion, we have

P̃Eα − PEα =
1

2
√
n
G(rα + (1− αrα)Ep(x)[∇g]⊤U−1

α ∇g)

− 1

2
√
n′
G′((1 − α)rαEp(x)[∇g]⊤U−1

α ∇g) + op

(
1√
n
,

1√
n′

)
.

As a result, we have

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]⊤U−1

α ∇g

2

]

+
1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]⊤U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
,

which completes the proof.
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