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Abstract

Recent experimental and computational evidence suggests that several dynamical prop-
erties may characterize the operating point of functioning neural networks: critical
branching, neutral stability, and production of a wide range of firing patterns. We seek
the simplest setting in which these properties emerge, clarifying their origin and re-
lationship in random, feedforward networks of McCullochs-Pitts neurons. Two key
parameters are the thresholds at which neurons fire spikes, and the overall level of feed-
forward connectivity. When neurons have low thresholds, we show that there is always
a connectivity for which the properties in question all occur: that is, these networks pre-
serve overall firing rates from layer to layer and produce broad distributions of activity
in each layer. This fails to occur, however, when neurons have high thresholds. A key
tool in explaining this difference is eigenstructure of the resulting mean-field Markov
chain, as this reveals which activity modes will be preserved from layer to layer. We ex-
tend our analysis from purely excitatory networks to more complex models that include
inhibition and “local” noise, and find that both of these features extend the parameter
ranges over which networks produce the properties of interest.

1 Introduction
Many basic questions remain unresolved in understanding how simple features of net-
work connectivity determine the statistical structure of their outputs. In particular, as
we vary the average connectivity strength between model neurons, what kinds of tran-
sitions occur in model dynamics? The first dynamical property we might study at a
transition is neutral stability of trajectories. Intuitively, it appears that neutral stabil-
ity could favor signal transmission, because it suggests that input patterns (and their
noisy perturbations) will retain their original separation in state space, neither diverg-
ing nor converging towards some fixed attractor (Bertschinger & Natschlager, 2004;
Legenstein & Maass, 2007). The second, allied property that could occur as networks
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transition from weak to strong connectivity is the production of a wide range of out-
put states – that is, a mix of firing patterns that induce a broad distribution with high
response entropy. If responses are tallied via total network output, this could require
statistical correlations of all orders (Amari et al., 2003); thus, higher-order correlations
are another statistical property of interest at network transitions. Finally, an assay that
involves all of these properties is the decodability of input patterns based on network
outputs.

But how are all of these properties related? Do networks ever exhibit all of them
simultaneously, and if so, when? Developing the complete picture is a formidable chal-
lenge; in this paper, we progress by answering these questions in what is probably the
most tractable class of systems in which they can be studied. These are noisy, feedfor-
ward networks of thresholding neurons Nowotny & Huerta (2003) .

Several important prior studies of signal propagation in feedforward networks in-
form our approach. These suggest that a wide range of network responses fails to occur
in broad parameter regimes: rather, the only outputs produced are all cells firing or
being silent simultaneously. This is due to the buildup of correlations among neural
activity at each layer, even when inputs drive the cells to fire independently in the first
layer. In particular, for iteratively constructed in vitro feedforward networks, neurons
displayed a marked tendency to synchronize (Reyes, 2003). Subsequent simulations and
analyses with thresholding neurons have corroborated these findings, arguing that any
initial spike count distribution becomes strongly bimodal after a few layers (Nowotny
& Huerta, 2003). Integrate-and-fire neurons similarly fail to transmit rates without de-
caying or saturating to a point independent of the input rate, but are able to support
propagation of highly-synchronized volleys of spikes (Litvak et al., 2003). In contrast,
different studies demonstrate a “critical” regime with broadly distributed output patterns
and significant higher-order interactions (Beggs & Plenz, 2003; Yu et al., 2011).

As we will further explore here, the key difference among these studies turns out
to be the threshold number of excitatory inputs that each cell must receive in order to
fire (Kumar et al., 2010). This threshold is low (a single spike) in the work of Beggs
& Plenz (2003) but much higher for Nowotny & Huerta (2003), Reyes (2003), and
Litvak et al. (2003). As reviewed in Kumar et al. (2010), densely connected feedfor-
ward networks with synapses that are weak relative to threshold tend to produce more
synchrony than their sparsely connected counterparts, due to the neurons having more
shared inputs (Rosenbaum et al., 2010). Thus, as synaptic inputs are weak compared to
spike thresholds in many biological settings, it may appear that synchrony is inevitable.
However, noise “local” to each neuron decreases synchrony, and can do so without
damaging the capacity to transmit signals, at least those defined by firing rates within
each network layer (van Rossum et al. (2002), but see Nowotny & Huerta (2003); Reyes
(2003)).

Here, we undertake to unify these results through a common mathematical frame-
work, and extend them by treating multiple assays of network outputs. In particular, we
show when and how neutral stability, broad response distributions, higher-order corre-
lations, and the transmission of firing rate signals coexist and when these properties fail
to coexist. For any level of spike threshold, we find that there is always an intermediate
value of network connectivity characterized by neutral stability and higher order corre-
lations. High response entropy and transmission of firing rates, however, only occur at
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this point when neurons have low thresholds or added noise.
The narrative of the paper proceeds as follows. Section 2 gives the setup of the

model. In Section 3, we introduce the branching ratio, describing how layer-averaged
activity – that is, firing rates – are propagated from layer to layer. Next, in Section 4,
we develop tools that give a more refined view of how activity is transmitted. Specif-
ically, we show that the model can be reduced to a mean-field Markov chain, and that
the eigenstructure of the corresponding transition matrix reveals intermediate parame-
ter values for which the networks support persistent, broadly distributed responses. In
Section 5 we study the resulting responses in terms of higher-order correlations and
response entropy, showing that they are both maximized at this intermediate parameter
regime. Section 6 introduces a combined metric, which assess the capacity of networks
to preserve rates from one layer to the next while maintaining broadly distributed re-
sponses. In Sections 7 and 8, we apply the same analyses to excitatory-inhibitory net-
works and to those with localized “background” noise, and see that both factors increase
parameter ranges over which the propagation of broad activity distributions with pre-
served firing rates occurs.

2 Model of stochastic feedforward networks
Network: Following Nowotny & Huerta (2003), we examine a network of binary (Mc-
Culloch & Pitts, 1943) neurons in a feedforward architecture with probabilistic synapses
and input (see Figure 1A for a schematic). Each layer consists of N identical neurons.
In general, we will illustrate N = 20; results hold for larger N as well, as we summa-
rize in the Discussion. The neurons are thresholding units that spike if they receive at
least θ synaptic inputs from neurons in the previous layer and are otherwise quiescent
(i.e., silent). The connectivity structure between layers is random and spatially homoge-
nous; each neuron upstream is connected to C postsynaptic neurons chosen uniformly
from the downstream layer. Connections between neurons have a fixed probability p of
synaptic transmission.
Stimuli: The networks are driven by a stimulus to elicit an average spike count of
S ∈ {0, . . . N} firing neurons in the first layer at that time step. Unless otherwise
specified, this stochastic input is injected independently so that each neuron in the first
layer responds as an independent (0,1) Bernoulli random variable with biased probabil-
ity S/N of spiking (taking value 1). This results in a binomially distributed spike count
in the first layer.
Propagation: The state of the Lth layer is denoted by xL, an N -vector of zeros and
ones, and the connectivity matrix between layers L and L + 1 by EL. (Henceforth we
will use E to refer to the N × N × L − 1 connectivity matrix of the entire network.)
Since the connections between neurons are stochastic, in a given trial each synapse fails
with probability 1 − p. It will be useful to call the realization of EL according to the
probability of synaptic transmission the “effective” connectivity matrix ÊL, keeping in
mind that different trials will yield different ÊL yet EL will remain fixed. The state at
layer L of a realization of a given network can now be expressed as

xL+1 = Θ(ÊLxL − θ),

3



0 10 200

10

20

layer L

Student Version of MATLAB

0 10 200

0.5

1

1.5

connectivity !

br
an

ch
in

g 
ra

tio
 "

Student Version of MATLAB

0 10 200

0.5

1

1.5

connectivity !

br
an

ch
in

g 
ra

tio
 "

Student Version of MATLAB

L layers !!
N

 n
eu

ro
ns

 p
er

 la
ye

r!A! B! C!

D! E! F!0 5 10 15 200

0.5

1

1.5

2

!

se
co

nd
 e

ig
en

m
od

e 
of

 A

 

 

" = 1

Student Version of MATLAB

0 5 10 15 200

0.5

1

1.5

2

!

se
co

nd
 e

ig
en

m
od

e 
of

 A

 

 

" = 7

Student Version of MATLAB

D
E
F

L layers !!N
 n

eu
ro

ns
 p

er
 la

ye
r!

critical!

fir
in

g 
ra

te
 !

(n
eu

ro
ns

 p
er

 la
ye

r)!

0 10 200

10

20

layer L

Student Version of MATLAB

subcritical!

supercritical!

0 10 200

10

20

layer L

Student Version of MATLAB

Figure 1: Average rate transmission in feedforward networks. (A) A schematic of a
feedforward network. Filled circles indicate spikes, hollow circles quiescence (i.e.,
absence of firing). In this example, N = 4, L = 5, C = 2, p = 0.5, and θ = 1. (B, C)
Branching ratio σ as a function of connectivity strength γ forN = 20, (B) θ = 1 and (C)
θ = 7. Each data point is the branching ratio of a network of a particular connectivity
structure. (D - F) Simulated propagation of firing rates shown for three sample networks
with θ = 1 and C = 3, p = 0.25, 0.43, 0.85, respectively. These parameters are
also indicated by the markers in (B). Noisy, uncorrelated input is injected into the first
layer, and the resulting firing rates are averaged over 1000 trials plotted over multiple
layers. Error bars indicate standard deviation scaled by a factor of 1/10 to facilitate
comparison. Vertical grey bars are shown at L = 5 to emphasize that henceforth we
will primarily be concerned with shallow layers. (D) In subcritical networks (σ < 1),
activity tends to die out. (F) In supercritical (σ > 1) networks, activity saturates. (E)
Critical networks (σ ≈ 1) reveal greatest fidelity in propagating Poisson input rates
through layers; however, while this picture is qualitatively true for networks of low-
threshold neurons, when θ reaches higher values, networks tend to transmit only high
or low rates (see Section 6).

where Θ is the elementwise Heaviside step function. The key parameter in this system
is the connectivity strength γ = Cp.
Limitations and simplifications: We note several important facts about the model setup
and analysis. First, this model has no time in its dynamics; each trial can be thought
of as a wave of activity evolving from a particular initialization in the first layer, and
is independent of the next. Because of this, the phenomenon of synchrony in the usual
temporal sense is not applicable. The corresponding concept of synchrony is when
neurons in a layer tend to fire, or be quiescent, together in a given trial; this is what we
will mean in the remainder of this paper when we refer to synchrony or synchronous
coding. Second, because of the assumption of spatial homogeneity both in inputs and
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in network architecture, this model is not well-suited to study spatial modes of activity.
Third, and most importantly, our analysis henceforth focuses on the total activity

within each layer. That is, rather than quantify network responses in the full space of
2N firing patterns that can occur in each layer, we restrict our description to the number
of cells that fire in that layer: the N + 1 different values of the (layer-averaged) firing
rate.

3 The branching ratio
To understand the qualitative dynamics and average firing rate transmission through
multiple layers, we borrow a useful tool from the criticality literature (Beggs & Plenz,
2003). A “critical” transition regime is often experimentally defined via the branching
ratio σ, the ratio between the number of cells in a population firing at a particular time
step and the number of cells firing at the previous timestep, averaged over time. To
avoid decay or growth of activity, the system must produce firing rate dynamics which
are neutrally stable, satisfying σ ≈ 1; such networks are labeled critical.

In our feedforward framework, the relevant measurement is the branching ratio av-
eraged over trials and layers rather than time. To quantify the general capacity of a
particular network with fixed connectivity structure E to maintain activity in a one-to-
one manner, we will also average this layerwise branching ratio over repeated trials
with the same network, each with different stimulus rates as well as different (random)
inputs x1 to the first layer. The result is:

σ =

〈〈〈
SL
SL−1

〉
L

〉
Ê,x1

〉
S

,

where SL is the number of neurons spiking in layer L on a given trial. Throughout this
paper, when we refer to the branching ratio we will mean σ.

We conducted Monte Carlo simulations to compute how this quantity changes with
connectivity level γ. In detail, at a fixed γ, we first chose one example of a network
structure E for every C ≥ dγe, the constrained value ensuring that p < 1. For each E,
we then input a deterministic rate of exactly S = θ + 1, . . . , N spiking neurons in the
first layer with 100 random instantiations of x1, evolve the network, and measure the
ratios SL/SL−1 for each layer until either the neural activity dies out or until the last
layer is reached. Finally, σ is computed as the average over the 100 random network
realizations and instantiations at the first layer, and subsequently over all stimulus levels
greater than θ spiking neurons per layer (as any input less than that is guaranteed to be
extinguished at the next layer.)

Figure 1BC shows results over five layers. Each of the tight scatter of points at each
value of connectivity γ is the branching ratio of a particular network with that value of
connectivity and a specific architecture E. (The fact that there is very little variation at
a given level γ supports our choice of this combined parameter as the principal one in
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our study.1) Note that as we sweep connectivity γ from small to large values, we pass
through a value γobs at which σ ≈ 1. Thus, we find that the transition (critical) branching
parameter is consistently found in our networks at some intermediate connectivity level.

We next illustrate the implications of the branching parameter for propagation of
firing rates across network layers. For many different networks, we compute rate tra-
jectories averaged over 1000 trials for input rates ranging from 0 to N = 20 neurons
firing in the first layer. In each trial, the input rate S and E are fixed, yet x1 and Ê
change probabilistically. The evolution of the firing rate over 20 layers is shown for
three representative networks with threshold θ = 1 in Figure 1D-F. In subcritical net-
works (Figure 1D) neural activity dies after a few layers regardless of stimulus. The
supercritical, i.e. σ > 1, network (Figure 1E) inflates rates to nearly maximal values,
and as in the subcritical case it is difficult to distinguish between two inputs based on
output rate alone. In critical networks, however, rate trajectories remain separated at
each layer (Figure 1F). This result is in agreement with other findings in the literature
regarding information transmission of critical networks. Overall, these simulations con-
firm the expected picture that the average firing rate statistic is best propagated through
networks when σ ≈ 1.

Beyond preservation of firing rates from one layer to the next, we are interested in
networks that can produce a broad distribution of responses, and avoiding the limita-
tions of strong synchrony. To assess this, in the next section we introduce a tool to
describe propagation of firing rate distributions across layers via a mean-field approxi-
mation.

4 Mean-field Markov chain model and spectral analysis
Since the state of each layer depends solely on the state of the previous layer and
the synaptic connections between layers, our feedforward networks are Markov chains
(Nowotny & Huerta, 2003). Furthermore, as we aim to describe only the propagation
of layer-averaged firing rates, rather than particular firing patterns (or binary “words”),
our Markov chain has N + 1 states. We proceed to derive a mean-field description of
the Markov chain for each connectivity level γ by averaging over possible connection
matrices. This mean-field model becomes exact in the special case of all-to-all connec-
tivity (C = 1), for which Nowotny & Huerta (2003) developed the same description.
For the excitatory networks considered in the main part of the paper (Sections 1-6), we
have verified numerically that the mean-field model is a good predictor of the true spike
count dynamics except in the deterministic limit of large p and small C (see Appendix).

The mean-field transition matrix A – i.e., the matrix whose (n,m)th element is the
probability that there are SL = m neurons spiking at a layer given SL = n spiking in

1In more detail: in following sections we reduce the two parameters C and p dic-
tating network connectivity to the single connectivity parameter γ; this is supported by
the observation that variation in σ for fixed γ but varying values of C and p is has a
negligible impact on the branching ratio, as shown by the tight scatter of points at each
γ in Figure 1BC. Moreover, in the mean-field theory we develop, it is also the case that
γ, rather than C and p separately, enters.
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the previous layer – is given by:

Anm =

(
N

m

)
qmn (1− qn)N−m

if n ≥ θ. Here, qn is the probability that a downstream neuron will fire assuming n
spiking neurons in the previous layer:

qn =
n∑
k=θ

(
n

k

)( γ
N

)k (
1− γ

N

)n−k
.

If n < θ, then qn < 0 and Anm = 0. The mean-field transition matrix A can be derived
from the transition matrix of the original Markov chain (see Appendix for details).

Using the transition matrix, the spike count probability distribution PL at layer L
(the vector of length N + 1 whose jth component is the probability that j neurons are
firing in layer L) is simply given by matrix-vector multiplication: PL = PL−1A. This
averaged system is inherently permutation-symmetric due to a lack of spatial structure
in the network connectivity.

The long-term behavior of these feedforward networks can be predicted using the
eigenvalues and eigenvectors of the mean-field transition matrix. To illustrate this, as-
sume A is diagonalizable, so that the input probability distribution Pinput = P1 can be
decomposed into a linear combination of the eigenvectors of A:

Pinput = α0v0 + α1v1 + · · ·+ αNvN .

The spike count probability distribution at the Lth layer is simply PL = PinputA
L:

PL = α0λ
Lv0 + α1λ

L
1 v1 + · · ·+ αNλ

L
NvN .

The persistence of different eigenmodes through layers is determined by the size of
their corresponding eigenvalues.2 If λi � 1 then after a few layers the contribution
ith eigenmode will decay to become negligible. On the other hand, eigenmodes whose
eigenvalues are near 1 will survive through many layers.

We analyze the eigenstructure of A through a combination of mathematical analysis
and computational argument. First, it can be proven that A has one unique stationary
state corresponding to all neurons being quiescent: voff = (1, 0, . . . , 0) (Proposition 1 in
Appendix). Second, ifA is well-behaved in the sense that its eigenvectors have limits as
γ → N (an assumption that is supported by numerics, see Figure 2AC), then the second
largest eigenvalue λ∗ of A converges to 1 as γ → N , indicating the emergence of an

2In Markov chains with very non-normal transition matrices, transient activity can
persist past that expected solely by the spectrum; these matrices can be analyzed
through their prominent pseudospectral sets, which are the eigenvalues of small per-
turbations of the matrix. When we pursued this type of analysis of A, we did not find
significant pseudospectral sets that described the persistent activity of our networks
beyond expectations from the spectral analysis (results not shown; see Trefethen &
Embree (2005) for more details on pseudospectral analysis).
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Figure 2: Spectral analysis of the mean transition matrix for networks with (A, B) θ = 1
and (C, D) θ = 7. (A, C) The second largest eigenvalue λ∗ (solid line) effectively con-
verges to 1 while the angle between v∗ and the vector corresponding to full synchrony
von (dashed line) maintains significant value for a range of γ, indicating that the second
eigenmode is both persistent and far from bimodal. This is also illustrated by the in-
sets, which show typical histograms on the line quasi-attractor either for an intermediate
value of γ (circle markers on dashed line in A, C and on the second dominant eigenvalue
in B, D) or when γ is too high to support broadly distributed eigenmodes, resulting in
bimodal distributions (triangular marker in A, B). (B, D) Also at the emergence of the
line quasi-attractor (circle markers), all eigenvalues are near-maximal compared to their
values over the entire connectivity range.

additional dimension of persistent activity. The catch, however, is that the correspond-
ing eigenvector v∗ converges to a vector in the subspace of bimodal or synchronous
distributions – that is, to the span of voff and von where von = (0, ..., 0, 1) corresponds
to all neurons firing (Proposition 2 in Appendix). All other eigenmodes must converge
to 0 as γ → N . So despite the emergence of this extra persistent dimension, activity
becomes synchronous as connectivity strength increases. Ideally, what we want is for
λ∗ to be practically 1 yet for the span of v∗ and voff to be far from the plane of bimodal
distributions.

Intriguingly, numerical calculations reveal that this does occur for an intermediate
level of connectivity γeig (Figure 2AC), implying the emergence of a plane spanned by
the two principal eigenmodes v∗ and voff that, due to increased persistence, effectively
acts as an attractor in sufficiently shallow layers: because of this, we will call this plane
quasi-attracting. Once the vectors are normalized to represent probability distributions,
this means that at γeig, there exists a line quasi-attractor that is far from the space of
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Student Version of MATLABFigure 3: Geometrical interpretation of spike count propagation for N = 2, θ = 1. The
spike count histogram evolves through layers according to the mean-field model via
matrix multiplication, affecting rotation in the space of spike count probability distribu-
tions. (A) For low connectivity strengths, the input distribution quickly converges to the
plane spanned by the first two eigenmodes (the rainbow plane, although histograms will
be constrained to the line embedded in the plane satisfying

∑
i Pi = 1) as the network

encodes the signal. The distribution then slowly converges to the true stationary state
voff, and the signal decays. In this example convergence to quiescence occurs in only a
few layers. (B) For high connectivity levels, activity persists through deeper layers, but
the line quasi-attractor has rotated closer to the space of bimodal distributions spanned
by von and voff. The ideal network lies between these two figures. See text for a more
detailed discussion.

bimodal distributions, and hence that the network can support broadly distributed, in-
completely synchronized firing states. At this same intermediate γeig, we also observe
significant values of all eigenmodes (Figure 2BD), showing further persistent activity
contributed by other eigenmodes, at least for the initial network layers.

We pause to give a geometrical view of the mean-field dynamics described above.
This is illustrated in Figure 3 for N = 2, although the following description holds for
arbitrary N . Consider the (N + 1)-dimensional space of the spike count probability
distribution at a layer. Starting with any input probability vector Pinput, the layer-to-
layer mean-field dynamics of the network can be visualized as iterated rotations of the
input vector Pinput in the space of spike-count distributions, constrained to the simplex∑

i |Pi| = 1. In Figure 3, repeated applications of A are enumerated. In the first
few iterations, the spike count distribution converges towards the line quasi-attractor
spanned by voff and v∗ as smaller eigenmodes decay. This represents rapid encoding
of the input distribution. Eventually, the system drifts to the stationary state where all
neurons are silent, voff. This of course represents a final state in which the network
has “forgotten” the input. If γ < γeig, then the convergence to voff happens within a
few layers (as in Figure 3A). When γ > γeig, although activity persists through many
layers as expected, the line quasi-attractor has rotated nearer to the span of von and
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voff, so that the persistent activity is nearly synchronous (see Figure 3B). It is only
when γ ≈ γeig that activity is persistent while resisting synchrony. In this sense, γeig

represents the existence of a persistent mode of activity characterized by a balance of
principal eigenmodes that are broadly distributed, avoiding firing patterns being limited
to synchrony or quiescence. In fact, as we will explore in the following section, γ ≈ γeig

also predicts further interesting statistical features of network responses.

5 Statistical structure of network responses
Next we will quantify the statistical features of the network responses over the range of
connectivity strengths and threshold levels. First, when do responses show that neurons
in a given layer fire with higher-order correlations – that is, in a way that cannot be
predicted from their pairwise spike correlations alone? Beyond their basic role in char-
acterizing the degree of coordinated spiking in networks (Shlens et al., 2006; Schneid-
man et al., 2006; Martignon et al., 2000; Staude et al., 2010), higher-order correlations
have been shown to be necessary to produce broad distributions spiking activity (Amari
et al., 2003) (for recent applications, see Macke et al. (2011); Yu et al. (2011)), and to
significantly impact coding of stimuli (Ganmor et al., 2011; Montani et al., 2009).

To calculate the extent of higher-order correlations, we utilize maximum entropy
models (Shlens et al., 2006; Schneidman et al., 2006; Jaynes, 1957). The pairwise
maximum entropy fit of a probability distribution is defined as the distribution that has
maximal entropy while being constrained to match the first and second moments of the
true distribution. Thus, this fit makes the fewest additional assumptions on the structure
of the probability distribution – any additional structure is attributed to higher-order
correlations. For the permutation-symmetric networks at hand, the pairwise maximum
entropy distribution is given by:

PME(n) =
1

Z
exp{λ1n+ λ2n

2}

where Z is a normalizing factor and λ1, λ2 are the parameters chosen to match the first
two moments. To quantify the effect of higher-order correlations present in the system,
we compute the stimulus-averaged Jensen-Shannon (JS) divergence between the true
distribution and its maximum entropy fit:

DJS(PL, P
ME
L ) =

1

2

N∑
m=0

PL(m) log2

(
PL(m)

1
2
(PL(m) + PME

L (m))

)

+
1

2

N∑
m=0

PME
L (m) log2

(
PME
L (m)

1
2
(PL(m) + PME

L (m)

)
.

This quantity assumes values 0 ≤ DJS(PL, P
ME
L ) ≤ 1; it can be thought of as a sym-

metrized version of the Kullback-Leibler divergence.
Recall that each neuron in the first layer is independently stimulated so that their fir-

ing is a Bernoulli trial, so no correlations are injected into the network. All correlations,
pairwise and higher-order alike, emerge solely from the network interactions. We com-
puted the JS divergence between spike count distributions distributions at layer 5 and
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Figure 4: Statistical features of network responses for (A, B) θ = 1 and (C, D) θ =
7. (A, C) Response entropy (dashed grey line), and stimulus-averaged higher-order
correlations (solid black line) plotted as a function of γ. Also shown are γeig (hollow
arrow below panel) and γobs (solid arrow). (A) When θ = 1, peaks in both curves
line up with γeig, as does γobs (arrows offset for visibility). (B) For higher threshold
networks, γobs doesn’t align with γeig or other assays (see Section 6). (C, D) Higher-
order correlations of spike count histograms along the line quasi-attractor (solid lines;
axis parameterizes distributions along the line quasi-attractor starting at voff). Compare
with higher-correlations averaged over the entire space of histograms (dashed lines).

their pairwise maximum entropy conditioned on input rate, then average this over all
possible stimuli. Through this assessment, we note significant higher-order correlations
already by the fifth layer at γeig (Figure 4AB, solid line).

How can we understand how these higher-order correlations arise? We next show
that they can be predicted from the spectral analysis of the previous section, without
the need for simulation. Figure 4CD plots the JS divergence between the spike count
histograms on the line quasi-attractor and their pairwise maximum entropy fit. Here,
we plot this quantity as a function of their position along the line, parameterized so that
voff is at position 0. This can be compared to an average JS divergence of approximately
0.08 (dashed lines; calculated by averaging over 10,000 random sample distributions so
that the mean had converged) over the entire space of possible response histograms. In
particular, the eigenvectors at γeig produce significantly larger higher-order correlations
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than the average. This is because at this level of connectivity, the response distribution is
a mixture of two distributions: a large component of quiescent neurons corresponding to
voff, and a broader component corresponding to the contribution of v∗. As θ increases,
the level of higher-order correlations decreases on the line quasi-attractor, as higher
thresholds reduce the breadth of v∗.

The second statistical feature of note is the response entropy of the spike count
distribution:

H(P (SL)) =
N∑
n=0

P (SL = n) log2 P (SL = n).

Larger response entropies indicate broader response distributions. The response entropy
at the 5th layer peaks at γeig, indicating that the emergence of the line quasi-attractor cor-
responds to the broadest distribution of activity across all values of γ (Figure 4, dashed
grey line). However, the peak response entropy decreases for higher values of θ; this is
the result of the fact that as θ increases, v∗ produces less broad response distributions
due to the high threshold and hence the silencing of weak inputs, preventing them from
eliciting any firing in the subsequent layer.

In sum, we have shown that at γeig, networks display maximal response entropy and
significant contributions from higher-order correlations, directly because of the contri-
bution of other eigenmodes at that level of connectivity.

6 Combining neutral stability and broad response dis-
tributions

In order to maintain averaged levels of activity without succumbing to synchrony, a
network must simultaneously satisfy two criteria. The first is that it must be able to
preserve averaged firing rates from layer to layer without succumbing either to runaway
excitation and maximal firing rates in deeper layers, or to decaying network activity.
Second, a network must exhibit a broad spike count distribution at each layer in order
to prevent the buildup of correlations and synchrony (Kumar et al., 2010; Reyes, 2003;
Litvak et al., 2003). We refer to these properties, taken together, as asynchronous rate
coding.

For which parameter regimes can such asynchronous rate coding occur? To quantify
this we need an assay that captures how well networks are able to propagate broad
response distributions from one layer to the next. We base this on the propagation of
binomial spike count distributions, as these correspond to fully independent activity
in each layer. Specifically, we define the spike count JS divergence D to be the JS
divergence between the binomial input distribution P1 and the Lth layer spike count
distribution PL averaged over all stimuli S:

D(γ, θ) =
1

N + 1

N∑
n=0

DJS(P (SL|S = n), P (S1|S = n)). (1)

Networks will exhibit good performance, measured by low values D, when they main-
tain the broad (independent) spike count distribution and the averaged firing rate that
occurs in the first layer.
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Figure 5: Spike count JS divergence plotted as a function of γ for increasing θ. Optimal
performance for each threshold (the minimum value of the curve) occurs near γeig.

Plots of the spike count JS divergence over γ are shown in Figure 5 for increasing
values of the spike threshold θ. For each fixed θ, there is an optimal, intermediate
value of γ at which networks are best able to satisfy both of our criteria. However, as
threshold level increases, the best value of the spike count JS divergence also increases,
showing that high-threshold networks fail to produce asynchronous rate coding.

This failure follows from the requirements of neutral dynamics and broad response
distributions described in previous sections. First, from Section 3, γobs captures the first
criterion of complex signal coding outlined above: that is, networks demonstrate neu-
tral stability and average one-to-one rate transmission when they average a branching
ratio of σ ≈ 1. On the other hand, Section 4 shows that γeig reflects when the network
supports persistent, broad response distributions, providing an assay of the second cri-
terion. Complex signal propagation can therefore only occur in these systems when
γobs ≈ γeig. Comparing Figure 2 with the previous Monte Carlo simulations in Fig-
ure 1BC reveals both criteria can indeed be simultaneously satisfied when few inputs
are required to cause a spike, but a gap between these required values of connectivity γ
appears with increasing θ. To be precise, for N = 20, θ = 1, Monte Carlo simulations
and spectral analysis both yield γobs ≈ γeig ≈ 1.3. When θ = 7, however, simula-
tions show γobs ≈ 13.75 yet γeig ≈ 10.5. As shown through the eigenstructure, at γobs,
only bimodal activity is supported after a few layers. In fact, because of the inevitable
synchrony in deep layers, optimal performance under the JS divergence tends to fall
nearer to γeig than to γobs. Networks of high-threshold neurons are therefore unable to
simultaneously satisfy both requirements of complex signal propagation outlined at the
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beginning of this section.
Intuitively, the reason that γobs > γeig is that networks with high-threshold neurons

reject inputs of low firing rate, so that when θ is large there is an increased likelihood
that connectivity structure and stochasticity will conspire to silence all activity in the
next layer. Geometrically speaking, as θ increases so does the nullity of A, resulting in
a larger and larger subspace that trajectories must avoid lest they risk susceptibility to
network quiescence; in order to reach an average of one-to-one rate transmission, it is
necessary to provide a buffer for the coding subspace from the nullspace by inflating
the connectivity into the regime of bimodality.

Also of practical importance is the question of robustness to parameters. The deli-
cate nature of γeig and γobs constrains networks that produce asynchronous rate coding
to finely-tuned connectivity strengths; one requires that the branching ratio lie at a crit-
ical value σ ≈ 1, while the other relies on a precise balance between persistent yet
broadly supported eigenmodes. This sensitivity is reflected in the sharp troughs in the
JS divergence (Figure 5); for even higher N , these troughs become even sharper and ro-
bustness is a more important goal to obtain. As we will see in the next section, however,
this sensitivity can be mitigated by adding an inhibitory population to each layer.

To summarize results thus far, we evaluate networks on two criteria: σ ≈ 1 and
broad response distributions. Low-threshold networks can always satisfy broad re-
sponse distributions and maintained average rate transmission at the same γ. High-
threshold networks are able to somewhat support broad distributions, although the pre-
served aspects of network responses and their lower values of response entropy indicate
less broad distributions as compared to their low-threshold counterparts. They also can
satisfy σ ≈ 1, however this is due to averaging: because of the increasing nullity of
the mean transition matrix, these networks cannot propagate weak input stimuli, so
they must overcompensate by inflating γ. Because of this, no high-threshold network
of a fixed γ can simultaneously both criteria, and hence they cannot propagate rates
asynchronously through layers. This appears to be a significant limitation for high-
threshold networks – and, importantly, for many biological neural networks, in which
many inputs are required to elicit a spike. In the following sections we will incorporate
additional biophysical features – inhibition and noise – and study whether this provides
a resolution so that high-threshold networks can support persistent, broadly distributed
activity.

7 Excitatory-inhibitory networks display increased ro-
bustness

How can asynchronous rate propagation emerge in high-threshold networks? Intu-
itively, we might expect an added inhibitory population to prevent runaway excitation
and saturation of firing rates to high values, thus preventing synchrony. To test this, we
added an inhibitory population of NI neurons to each layer of NE = N −NI excitatory
neurons, and further impose NE − NI > θ (otherwise no activity could be transmitted
due to the homogeneity in network connectivity – even if only the excitatory population
is active in layer L, the random connectivity imposed will cause the same proportion
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Figure 6: Excitatory-inhibitory networks display increased robustness, NE = 16 and
NI = 4. (A) The second largest eigenvalue λ∗ and the angle between v∗ and von (dashed
line) overlap over a larger parameter space, indicating robustness at γeig; (B) similarly,
all eigenvalues A of have broader peaks. Inset shows a typical broadly distributed his-
togram at γeig (indicated by the marker in A, B). (C) The spike count JS divergence has
a wider minimum for all values of θ, showing that inhbition also allows for more robust
asynchronous rate propagation.

of the excitatory and inhibitory populations in layer L + 1 to fire). Network parame-
ters are assumed to be homogenous among the inhibitory and excitatory populations.
Because of this assumption, it is straightforward to calculate the new, four-dimensional
mean-field transition matrix Ain:

P (SEL = mE, S
I
L =mI |SEl−1 = nE, S

I
l−1 = nI) =(

NE

mE

)
qmE
nE ,nI

(1− qnE ,nI
)NE−mE ×

(
NI

mI

)
qmI
nE ,nI

(1− qnE ,nI
)NI−mI ,

where SiL is the number of cells spiking in the excitatory (i = E) or inhibitory (i = I)
population at the Lth layer, and qnE ,nI

is the probability that a downstream neuron
spikes given nE spiking excitatory neurons and nI spiking inhibitory neurons in the
upstream layer:

qnE ,nI
=

nE∑
kE=θ

min(nI ,kE−θ)∑
kI=0

(
nE
kE

)( γ
N

)kE (
1− γ

N

)nE−kE
×
(
nI
kI

)( γ
N

)kI (
1− γ

N

)nI−kI
.
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The binomial input distributions now take the following form:

P (SE1 = mE, S
I
1 = mI |S = n)

=

(
NE

mE

)( n
N

)mE
(

1− n

N

)NE−mE

×
(
NI

mI

)( n
N

)mI
(

1− n

N

)NI−mI

.

The expression for the transition matrix for the excitatory-inhibitory networks has
a similar form to that of the purely excitatory networks, so the eigenstructure of Ain is
similar to that of A: it has a unique stationary state corresponding to all neurons being
quiescent, and as γ → N , the second largest eigenvalue converges to 1 and its eigen-
vector corresponds to bimodality (Proposition 3 in Appendix). There also is an inter-
mediate state of connectivity at which λ∗ ≈ 1 and v∗ is far from bimodal (Figure 6AB).
Here we consider θ = 7, as well as NE = 16, NI = 4 to simulate ∼20% inhibition,
as typically used in, for example, cortical modeling (cf. Braitenberg & Schüz (1998)).3

This yields γeig ≈ 16.9. However, according to Monte Carlo simulations, the branching
ratio is always less than 1 for all γ < N . Firing rates thus fail to be maintained in
this network, as reflected in the spike count JS divergence in Figure 6C. The reason is
that Ain is so structurally similar to A: as in the purely excitatory networks, the high
threshold still rejects weak inputs and sends them to the stationary state of quiescence,
voff. This is in agreement with Reyes (2003), who found that adding a homogenous
inhibitory population to each layer does not help networks avoid synchrony.

Inhibition does, however, increase the robustness of JS divergence to perturbations
in connectivity strength γ. Specifically, the troughs of minimal JS divergence widen
compared to those of purely excitatory networks (Figure 6C). This is reflected as well in
the eigenstructure: the intermediate state of persistent, broadly distributed distributions
is now stretched to cover a wider range of γ (Figure 6AB). This robustness further grows
as the size of the inhibitory population is increased, so long asNE−NI > θ (results not
shown). Intuition for this effect can be obtained by comparing to the purely excitatory
case. Suppose a typical neuron in this case has n inputs. To produce a broad range of
responses and avoid either too many inputs (resulting in maximal firing rates) or too
few (resulting in quiescence), n must hover near some critical value that depends on
particular choice of parameters. Now consider an excitatory-inhibitory network: then
the typical neuron has (1 − NI/NE)n net inputs when taking into account inhibition.
Since 1−NI/NE < 1, this slope is shallower than that for purely excitatory networks,
so the networks are more robust to chance perturbations around the critical value of
inputs, and hence to connectivity strength.

Increased robustness to connectivity parameters in the presence of inhibition is inter-
esting as it addresses a major concern regarding the plausibility of dynamics at critical
transition values of connectivity (as discussed in the previous section). In sum, inhibi-
tion may help resolve the need for fine-tuning by enhancing robustness to fluctuations
in network connectivity.

3We emphasize that results in this section are not particular to these specific choices
of NI and NE . As long as NE − NI > θ, the intermediate γeig producing broad,
persistent distributions will continue to exist. Other results regarding robustness, and
limitations on asynchronous rate propagation high θ, also continue to hold.
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8 Impact of background noise
The next attempt to recover asynchronous rate propagation follows from van Rossum
et al. (2002), in which a noisy background current was shown to enhance the preser-
vation of firing rates in feedforward networks of integrate-and-fire neurons; see also
Nowotny & Huerta (2003), Reyes (2003), and Litvak et al. (2003). We inject back-
ground noise in the form of independent, zero-mean Gaussian independent noise cur-
rent χ to each neuron, χ ∼ N (0, σ2

χ). This transforms the heaviside-like thresholding
into a smoother, sigmoidal operation. The probability that a neuron will spike given n
cells firing in the upstream layer is now

qn =

∫ ∞
−∞

Pr(I > θ − x)Pr(χ = x)dx,

where I is the synaptic input from the upstream layer without the additional noise com-
ponent. If x > θ then the neuron fires with probability 1 because the noise alone is
enough to elicit a spike. If x < θ − n, then the neuron can never fire as even the ad-
dition of all upstream neurons delivering input would be insufficient to cross threshold.
We can then rewrite qn as:

qn =

∫ θ

θ−n

1√
2πσχ

exp

(
− x2

2σ2
χ

) n∑
k=dθ−xe

(
n

k

)( γ
N

)k (
1− γ

N

)n−k dx
+

∫ ∞
θ

1√
2πσχ

exp

(
− x2

2σ2
χ

)
dx.

Nowotny & Huerta (2003) consider a similar expression (Equation 7 in their paper),
although both the exact form of their expression, and their conclusion that it has little
effect on the transition matrix, differ from ours. We denote by Anoisy the transition
matrix describing these networks with added noise, generated by the new qn.

Figure 7 plots the spike count JS divergence (Equation 1) as a function of θ and
σχ. The main result is that adding noise produces lower values of JS divergence – and
thus more consistent propagation of asynchronous inputs – at larger values of θ. This
result agrees with the findings of van Rossum et al. (2002) (cf. their Figure 2B and see
Appendix for further comparisons with this study). Our result is also in agreement with
Reyes (2003), who finds that adding white noise as a background current reduces the
amount of synchrony present in networks.

For each of the threshold values θ shown, there is an optimal σχ for asynchronous
rate propagation (i.e., that minimizes the JS divergence). This amount of noise gives
spontaneous firing rates of less than 12%, as measured by the probability Pr(χ > θ).
For the remainder of this section, we will take the optimal value of noise for each
value of threshold. Figure 8C uses these values to provide another view of optimized
JS divergence, which reveals the improvement in comparison with noise-free networks
(Figure 5). Moreover, γobs and γeig do coincide in the noisy case, even for high values
of θ (at about 14.25 in for θ = 7, branching ratio figure not shown).

In contrast to the effects of inhibition, the addition of background noise does pro-
duce substantial changes in the structure of the transition matrix. For example, compar-
ingAnoisy withA, spontaneous activity is now possible, as voff is no longer the stationary
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Figure 7: Impact of noise on input propagation. Surface shows spike count JS diver-
gence as a function of θ and the standard deviation of noise added to each neuron, σχ.
For each θ, there is a σχ that optimizes asynchronous rate propagation. For θ < 10 the
relationship between θ and optimal σχ is linear.

state. Instead, the stationary state vSS is now a function of γ. In particular, the noise
contributes a nonzero probability from transitioning from any state to any other state,
so the components of Anoisy are strictly positive. By the Perron-Frobenius theorem, this
means the system has a unique stationary state vSS whose components are all strictly
positive (so it can never be von or voff). Computationally we find that the second largest
eigenvalue now does not converge to 1 as γ → N ; it does, however, attain a peak value
near 1 at an intermediate γeig, and at this point vSS and voff are also far from bimodal
(Figure 8AB). Thus despite the differences in eigenstructure between A and Anoisy, the
predominant features that define the existence of a persistent set of broad firing distri-
butions are still apparent: there is an intermediate connectivity level γeig at which all
eigenvalues are significant, the second largest eigenvalue in particular is close to 1, and
both the stationary distribution and the second eigenmode are far from bimodal.

Finally, to put the role of noise to a more demanding test, we test its impact on
the capacity of networks to discriminate between different input stimuli. For this, we
calculate the rate discriminability by measuring the error rate given by the maximum
likelihood estimator on T trials. Specifically, suppose the network produces output
spike counts S1

L, . . . , S
T
L under some fixed input stimulus level S. Since the trials are

independent, the maximum likelihood estimator (MLE) chooses between two stimuli S
and S ′ by selecting the one that is likelier to result in the given data, via the likelihood
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Figure 8: Properties of noisy networks at optimal background noise levels. (A) The
second largest eigenvalue λ∗ peaks very close to 1 at an intermediate γeig. The angle
between v∗ and von (dashed line) and between vSS and von (dotted line) have large values
at γeig. (B) At this same value γeig, all eigenmodes have significant contribution. Inset
shows a typical broadly distributed histogram at γeig (indicated by the marker in A, B).
(C) The spike count JS divergence, taking the optimal value of σχ for each θ. With
optimal noise values added, asynchronous rate propagation is dramatically improved
for high-threshold networks.

ratio:
T∏
j=1

P (SjL|S)

P (SjL|S ′)
.

If this product is greater than 1 the MLE chooses stimulus S; less than 1 and the MLE
chooses stimulus S ′. Assuming S and S ′ are equally likely a priori, the error rate is
given by

ER(S, S ′) =
1

2
E

[
I

(
T∏
j=1

P (SjL|S)

P (SjL|S ′)
> 1

)∣∣∣∣∣S ′
]

+
1

2
E

[
I

(
T∏
j=1

P (SjL|S)

P (SjL|S ′)
> 1

)∣∣∣∣∣S
]
,

where the first expectation is taken over the distribution P (·|S ′) and the second over
P (·|S). This produces an (N + 1)× (N + 1) matrix describing the MLE error rate for
distinguishing S from S ′. We then average over either the entries in the entire matrix to
give either the average discriminability, or we average the entries in the superdiagonal
to give the nearby discriminability, i.e, the discriminability between nearby rates.
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Figure 9: Rate discriminability for noise-free networks with (A, B) θ = 1, and (C, D)
θ = 7, as well as (E, F) a network with θ = 7 and optimal noise, σχ = 4.2. (A, C,
E) Nearby discriminability (dashed line) and average discriminability (solid line) for
T = 25 trials plotted as a function of connectivity level γ. (A) For low-threshold net-
works, rate discriminability is optimal at γeig. (C) For high-threshold networks, nearby
discriminability is best near γeig, but this minimum is shifted for average discriminabil-
ity. (E) Adding noise improves rate discrimination in high-threshold networks. (B, D,
F) Maximum likelihood error rate plotted for every possible pair of input stimuli before
averaging. The chosen networks are those that minimize average discriminability, as
indicated by the markers in (A, C, E).

Figure 9AC first summarizes discriminability in the absence of noise. Rate discrim-
inability reaches its minimal value at γeig ≈ γobs when θ = 1; when θ = 7, the minimal
discriminability does not exactly coincide with either γeig or γobs. A glance at the MLE
error rates sans averaging reveals the particular type of computation performed in each
case: Figure 9BD shows the error rates at the values of γ that yield the lowest average
discriminability, as indicated by the markers in Figure 9AC. Low-threshold networks
are able to accurately discriminate between rates over the entire stimulus space, includ-
ing nearby rates. High-threshold networks, on the other hand, although able to perfectly
distinguish a few rates in a limited intermediate range, cannot at all distinguish between
nearby high rates or low rates. Rather, these networks are better suited to classifying
input rates into two bins: low and high.

Interestingly, the added background noise promotes better discriminability between
rates in high-threshold networks, dropping the minimal level to values even below that
of noise-free, low-threshold networks (Figure 9E). Moreover, the MLE error rates (Fig-
ure 9F) show a marked improvement in the ability to distinguish between nearby rates
at γeig, as revealed by the tightly banded matrix structure. Not only, then, does noise
improve rate propagation in neurons – it also changes the computation from a coarse-
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grained classifier to one with more resolution. This is a specific example of the more
general phenomenon of stochastic resonance (see, e.g. McDonnell & Abbott (2009);
Longtin (1993)).

9 Discussion

Summary
In this paper, we study the transitions in feedforward network dynamics that occur
as connectivity strength and firing threshold are varied. We characterize these transi-
tions via critical branching, neutral stability, higher-order correlations, and broad firing
distributions. After quantifying critical branching by computing the branching ratio,
we show that neutral stability (persistence of firing patterns from one network layer
to the next), together with statistical properties of the persistent patterns, can be pre-
dicted via a spectral analysis of the underlying mean-field transition matrix. Through-
out most of the parameter space, persistent activity is restricted to highly bimodal, syn-
chronous responses, as found by Reyes (2003), Nowotny & Huerta (2003), and Litvak
et al. (2003). However, there are “transition” connectivity levels that yield persistent,
broadly-distributed spike count histograms with higher-order correlations and large re-
sponse entropy. For low threshold networks this occurs simultaneously with (approxi-
mately) critical branching, revealing that such networks are well-suited to transmitting
rates without synchronization. On the other hand, high-threshold networks do not pro-
duce both critical branching and broad response distributions at the same connectivity
strength; when the former is satisfied, these networks tend to produce synchronous re-
sponses.

Interestingly, adding further biologically-motivated features increased the robust-
ness of transitions in high-threshold networks. In particular, simulations and spectral
analysis show that including an inhibitory cell population extended the connectivity
range that yields asynchronous propagation of inputs. Adding zero-mean noise to each
neuron had a similar effect and also improved the discriminability of inputs, echoing
the findings of van Rossum et al. (2002) in integrate-and-fire networks.

We conclude that networks with low firing thresholds, or those in which intrinsic
noise elevates firing probabilities, exhibit a set of dynamical and statistical signatures
associated with “critical” transitions in network activity.

Connections with the criticality literature
We now discuss links with the broader literature on criticality, which suggests that the
brain may operate at a state characterized by complex dynamics, significant higher-
order correlations, and enhanced computational properties. This is often described as
operating on the boundary between ordered and irregular (or chaotic) activity. In partic-
ular, such systems can flexibly perform a wide range of operations on time-dependent
inputs when their recurrent networks lie near the “critical” state, which is defined by
calculating the expected neutral separation of trajectories using a mean-field model
(Bertschinger & Natschlager, 2004; Legenstein & Maass, 2007).
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Along these lines Beggs & Plenz (2003) motivates a feedforward model based on
array recordings.4 Here, the authors compute the mutual information between the 2N

possible binary “words” at the first and last layers. Intriguingly, they numerically show
– for the low threshold case θ = 1 – that the mutual information is maximized for
the same parameters at which critical branching occurs. Our finding in the averaged,
mean-field setting echoes this result. An interesting extension of our work would be to
explain the findings of Beggs & Plenz (2003) via the spectral properties of the allied
layer-to-layer transition matrix between binary words.

A number of experimental and theoretical studies focus on neuronal avalanches as
a signature of critical neural connectivity. These are cascades of neural activity whose
sizes obey a power law distribution (Beggs & Plenz, 2003; Kitzbichler et al., 2009;
Hahn et al., 2010; Petermann et al., 2009; Hennig et al., 2009; Mora & Bialek, 2011).
Avalanches have been shown to arise in some neutrally stable models of neural networks
(Haldeman & Beggs, 2005), and thus have been described as a signature of optimal
computation. An interesting target for future work would be to extend our mean-field
analysis to predict the occurrence of avalanches over multiple network layers, and to
and study their role in encoding stimuli.

Verifying and extending the model
We imposed a number of simplifications in this paper to achieve analytical tractability.
The most prominent of these is that our neurons are modeled as simple thresholding
units with no intrinsic properties or time dependence (Nowotny & Huerta, 2003). How-
ever, our results agree those in networks of more realistic neurons (van Rossum et al.,
2002; Reyes, 2003; Rosenbaum et al., 2010). We therefore believe that our findings will
prove to be quite general.

Another possible limitation is that the numerical studies presented above utilize a
fixed value of N = 20 neurons. However, our analytical results on spectral properties
of the transition operator are independent of this choice. Moreover, we verified that our
main qualitative results are preserved, e.g., for the larger value N = 100 (taking θ =
1, 5, 10, 20, 35); data not shown. In more detail, as with the smaller network, the system
at N = 100 remains well-described by a mean-field transition matrix (in fact, due to
the larger population size, it is even better fit). The eigenstructure of these matrices
reveals an intermediate γeig at which the second dominant eigenmode is both persistent
and broadly-distributed, and there is significant contribution from all eigenvalues as
well as maximal response entropy. For θ = 1, this value overlaps with γobs, but as
threshold increases, the gap between the two widens; accordingly, the spike count JS
divergence increases. As for theN = 20 case, while inhibition does continue to increase
this range, the optimal performance is not improved. The addition of noise in large
networks, however, has similar beneficial effects: an optimal amount of noise lowers the
minimum JS divergence to around 0.32 for high values of θ. This amount of background
noise required generates less than 10% probability of spontaneous firing, similar to

4The authors argue that a feedforward model is appropriate in this context as elec-
trode sites are rarely active more than once during the cascades of neural activity that
they study.
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that obtained at N = 20. However, one difference at N = 100 is that the optimal
performance under the JS divergence metric D is lower: when θ = 1, the optimal
network attains at best a score of 0.58, compared to 0.33 for N = 20. Moreover, in
the larger network the “well” in D values near the optimal γ value is even narrower,
requiring a finer tuning of γ. These findings suggest that, while our findings remain
qualitatively similar for larger networks, there may be interesting new phenomena in
the continuum limit of large N – an interesting subject of future study.

On another note, we focused on only a few of the many metrics of signal propagation
and coding that could be applied to the networks at hand. We note further results on one
of these in the appendix, that used by van Rossum et al. (2002) to measure propagation
of firing rates via trial-to-trial variance of responses in deep layers. This showed similar
results to our measure D of JS divergence between input and output distributions over
intermediate firing rates; the two measures showed distinctions at extreme firing rates,
assessing the quiescent or saturating patterns that occur there differently (see appendix).

Finally, we have concentrated solely on networks with a feedforward connectivity
structure. However, these networks are equivalent to a synchronously-updated discrete-
time network with random recurrent connections (including connections to themselves)
under the annealing approximation (Bertschinger & Natschlager, 2004). Thus, to the
extent that these assumptions hold, the results of this paper may also be applied to the
evaluation of persistent activity in recurrent networks.

We close by noting experimental predictions of our work, as could be tested di-
rectly in in-vitro feedforward networks (using the techniques of Reyes (2003)), or, with
the considerations above, could predict dynamics in recurrent systems as well. First,
asynchronous rate propagation should become possible when the membrane potentials
of neurons are biased upwards (equivalent to decreasing the spike-generation thresh-
old). Second, this should also occur when sufficient noise is added local to each cell
(some white noise has already been shown to reduce synchrony in Reyes (2003)). Fi-
nally, adding an inhibitory population at each layer should increase the robustness of
asynchronous propagation to network connectivity and synaptic strength.
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Appendix

Derivation of mean-field Markov chain
We outline how to obtain a formula for the mean-field Markov chain given the transition
matrix for the original Markov chain in the space of 2N firing patterns. The first step in
this derivation is to determine the probability that, given true connectivity matrix EL,
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the instantiated “effective” connectivity matrix is ÊL:

P (ÊL|EL) = pK(ÊL)(1− p)K(EL−ÊL),

where K(M) is the number of nonzero elements in matrix M . Each element of the
transition matrix in pattern space is then given by

P (xL = x|xL−1 = x̃, EL) =
∑
ÊL

P (ÊL|EL) · I
[
x = Θ(ÊLx̃− θ)

]
.

where I denotes the indicator function. We will in two steps reduce the dimension of
the system to condense pattern space into rate space. First, summing over x:

P (SL = m|xL−1 = x̃, EL) =
∑
x

P (xL = x|xL−1 = x̃, EL) · I

[
N∑
i=1

x(i) = m

]
.

Another sum gives the (N + 1)× (N + 1) transition matrix conditioned on the connec-
tivity matrix EL:

P (SL = m|SL−1 = n,EL) =
∑
x̃

P (SL = m|xL−1 = x̃, SL−1, EL) · P (xL−1|SL−1, EL)

=
∑
x̃

P (SL = m|xL−1 = x̃, EL) · P (xL−1|SL−1).

Finally, averaging over every possible EL for the fixed γ, we obtain

P (SL = m|SL−1 = n) =
∑
EL

P (SL = m|SL−1 = n,EL) · P (EL),

which gives the elements of the mean-field transition matrix. Through these steps, the
explicit derivation of the mean-field model from the original setup is demonstrated.

Validity of the mean-field Markov chain model
In this section we investigate the validity of the mean-field Markov chain model. Specif-
ically, for a fixed network connectivity structure, we first estimate the true spike count
distribution P5 in response to input rate S through Monte Carlo simulation. We then
compare this to the distribution predicted by the mean-field Markov chain PMF

5 =
PinputA

4 by computing the Jensen-Shannon divergence between these two distributions.
Finally, we average the JS divergence over 100 instantiations of all possible input rates
and over 20 random networks for that particular C and p.

Overall, the mean-field distribution approximates the true spike count distribution
quite accurately, as shown in Figure 10A. The white curve overlain on the figure in-
dicates the level set γ ≈ γeig. Note that agreement is perfect for fully connected net-
works. The only major challenge to the accuracy of the mean-field approximation is
in the deterministic limit of low C and high p. Since C is low there are few trials for
the stochastic synapses, and the high p additionally ensures that over repetitions of the
same stimulus S the activity follows a nearly deterministic trajectory, resulting in P5
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Figure 10: Investigating the validity of the mean-field model. (A) Average JS diver-
gence between the distribution after simulation through five layers and that predicted
by the mean-field model for varying C, p. The mean-field model breaks down in the
deterministic limit of small C and high p. The white curve represents γ ≈ γeig ≈ 1.3.
(B - D) Example spike count distributions from 1000 Monte Carlo simulations (grey
bars) and their mean-field predictions (black line) for three orders of magnitude of the
JS divergence. Parameters are (B) C = 3, p = 1, S = 3 for the worst fit, (C) C = 6,
p = 0.5, S = 9 for the intermediate fit, and (D) C = 5, p = 0.26, S = 11 for the best
fit.

having a narrower distribution than the mean-field predicts. Example histograms are
shown in Figure 10BC to give an interpretation of values for the JS divergence.

When repeated for θ = 7 (data not shown), the mean-field model even better cap-
tured the true distributions, with a maximal JS divergence of 0.15 in the region of in-
accuracy in the limit of p ≈ 1 and C ≈ γobs. As a final check, we also compared the
means of the response distributions and found that, as expected, the averaged error was
below machine epsilon (results not shown).

Analytical results for the eigenstructure of the mean-field transition
matrix
Proposition 1 For any threshold θ ≥ 1 and connectivity 0 < γ < N , the transition
matrix A possesses a unique stationary state π = voff such that πA = π.

Proof: Let π = (p0, . . . , pN). Then from direct matrix multiplication, the mth compo-
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nent of the vector πA is

(πA)m =
N∑
n=0

pn

(
N

m

)
qmn (1− qn)N−m.

The stationary state requires pm = (Ap)m for all m, i.e.

pm =
N∑
n=0

pn

(
N

m

)
qmn (1− qn)N−m

for all m = 0, . . . , N . In particular, when m = 0, this becomes

p0 = p0 +
N∑
n=1

pn

(
N

0

)
q0n(1− qn)N .

The summed term on the right hand side must be zero. However, note that each of
the components of this sum is nonnegative, so they each must be zero, i.e., for each
n = 1, . . . , N either pn = 0 or (1 − qn)N = 0. We could have (1 − qn)N = 0 for
a particular n if qn = 1. However, qn can never be 1 for sensible parameter values of
θ > 0 and 0 < γ < N . Therefore, we must have pn = 0 for all n = 1, . . . , N , and thus
p0 = 1. The resulting stationary state is therefore unique and precisely equal to voff. �

Proposition 2 Suppose the eigenvectors of A have limits as γ → N . Then, A has an
eigenvalue λ∗ → 1 as γ → N with corresponding eigenvector v∗ that converges to a
vector in the span of von and voff.

Proof: First consider

qn = 1−
θ−1∑
k=0

(
n

k

)( γ
N

)k (
1− γ

N

)n−k
as γ → N . For n ≤ θ, qn = 0 by definition. For n > θ, the sum on the right side of
this equation approaches 0 since n > k, so qn → 1. Below we summarize for various
m and n the limit of qmn (1− qn)N−m as γ → N :

n > θ : m = 0 : q0n(1− qn)N → 0

0 < m < N : qmn (1− qn)N−m → 0

m = N : qNn (1− qn)0 → 1

n ≤ θ : m = 0 : q0n(1− qn)N → 1

0 < m < N : qmn (1− qn)N−m → 0

m = N : qNn (1− qn)0 → 0.

Now suppose λ is an eigenvalue of A with corresponding eigenvector v for some γ.
Then, λ and v satisfy

N∑
n=0

vn

(
N

m

)
qmn (1− qn)N−m = λvm
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for all m = 0, . . . , N . In particular, for m = 0, we have:

θ∑
n=0

vn

(
N

0

)
q0n(1− qn)N +

N∑
n=θ+1

vn

(
N

0

)
q0n(1− qn)N = λv0,

which, taking γ → N , reduces to the following:

θ∑
n=0

ṽn = λ̃ṽ0,

all other terms having vanished. Here, ṽ is the limit of v, which exists by assumption,
and λ̃ is the limit of λ, which exists by the continuity of eigenvalues. For m = N , a
similar expression is obtained:

N∑
n=θ+1

ṽn = λ̃ṽN .

Finally, for 0 < m < N :
0 = λ̃ṽm

This last equation reveals two possibilities: either λ̃ = 0 or ṽm = 0 for 0 < m < N .
The latter case implies that λ = 1, thus the second largest eigenvalue of A converges to
1 with limiting eigenvector in the span of von and voff. All other eigenvalues converge
to 0. �

Proposition 3 Suppose NE − NI > θ. Then, the (four-dimensional) transition matrix
Ain has a unique (two-dimensional) stationary state π corresponding to no inhibitory
and no excitatory neurons spiking at a layer. Moreover, the second largest eigenvalue
converges to 1, and assuming the eigenvectors ofAin have limits as γ → N = NE+NI ,
then its corresponding eigenvector converges to the space spanned by the vector corre-
sponding to all inhibitory and excitatory neurons firing, and the vector corresponding
to all inhibitory and excitatory neurons being quiescent.

Proof: Because of the structure of Ain, this proposition follows similarly to those of the
previous two propositions. �

Another metric for rate propagation
In addition to the measures described in the main text, we also considered the metric
for rate propagation following van Rossum et al. (2002). Define the rate dissimilarity
between the input rate S/N and the rate at the Lth layer SL/N via:

RD(γ, θ) = ES
[
Etrials

[
(SL/N − S/N)2

∣∣S]] .
There are two potential sources of poor performance according this quantification: (1)
if the mean value of SL is far from S, or (2) if SL has large variance. As we see in
Figure 11A, when θ = 1 the rate dissimilarity reaches its minimal value at critical con-
nectivity γeig ≈ γobs, suggesting that for low-threshold neurons, these networks are best
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Figure 11: Rate dissimilarity for (A, B) θ = 1, and (C, D) θ = 7. (A, C) Rate dis-
similarity plotted as a function of connectivity level γ. For (A) low-threshold networks,
rate propagation is optimal at γobs. For (C) high-threshold networks, this is no longer
the case. (B, D) Rate dissimilarity averaged over intermediate values (S = 6, . . . , 15,
solid line) and extreme rates (S = 0, . . . , 5 and 16, . . . , 20, dashed line). (E) Mean of
spike count and (F) rate dissimilarity for high-threshold (triangles) and low-threshold
(circles) networks plotted as a function of input stimulus. The networks shown in (E)
and (F) are those that minimize the stimulus-averaged rate dissimilarity, as indicated by
the markers in (A, C).

able to propagate rates through the network. Outside of this intermediate connectivity
range, the dissimilarity between input and output returns to high values.

When threshold is raised, the dissimilarity curve changes shape and no longer has
a sharp minimum at γeig (Figure 11C); instead, there is a robust minimum. Moreover,
the minimal rate dissimilarity values for the low- and high-threshold networks are at
comparable values. This may at first seem surprising, given that the high-threshold
networks produce strong synchrony, and this should lead to large response variance.
What is actually happening is an effect of both the increasing nullity of A and averag-
ing over all stimuli. In Figure 11E the stimulus-dependent mean of the output at the
5th layer is plotted as a function of the stimulus for the networks that minimize average
rate dissimilarity, indicated by the markers in Figure 11AC, for both θ = 1 (circles) and
θ = 7 (triangles). It is immediately clear that the low-threshold network better propa-
gates intermediate rates as compared to the high-threshold network. By calculating the
stimulus-dependent rate dissimilarity, rather than taking the uniform average, we see in
Figure 11F the difference between these two networks. While high-threshold networks
can propagate low and high rates better than low-threshold networks, only the latter can
propagate intermediate rates. This is because high-threshold networks produce bimodal
responses at the connectivity value required to propagate rates. To make this point more
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apparent, in Figure 11BC we have crudely separated the rate dissimilarity averaged over
intermediate rates (solid lines) and extreme (either high or low) rates (dashed lines).
This reveals that low-threshold networks perform better than high-threshold networks
for intermediate rates.

Faced with the subtlety of these results, in the main text we use the spike count
JS divergence in order to unambiguously reveal network properties that support the
propagation of asynchronous input distributions.
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