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Abstract 
 

Vector Symbolic Architectures (VSAs) are high-dimensional vector 
representations of objects (eg., words, image parts), relations (eg., sentence 
structures), and sequences for use with machine learning algorithms.  They 
consist of a vector addition operator for representing a collection of unordered 
objects, a Binding operator for associating groups of objects, and a methodology 
for encoding complex structures. 

We first develop Constraints that machine learning imposes upon VSAs:  for 
example, similar structures must be represented by similar vectors.  The 
constraints suggest that current VSAs should represent phrases (“The smart 
Brazilian girl”) by binding sums of terms, in addition to simply binding the terms 
directly. 

We show that matrix multiplication can be used as the binding operator for a 
VSA, and that matrix elements can be chosen at random.  A consequence for 
living systems is that binding is mathematically possible without the need to 
specify, in advance, precise neuron-to-neuron connection properties for large 
numbers of synapses. 

A VSA that incorporates these ideas, MBAT (Matrix Binding of Additive Terms), 
is described that satisfies all Constraints. 

With respect to machine learning, for some types of problems appropriate VSA 
representations permit us to prove learnability, rather than relying on simulations.  
We also propose dividing machine (and neural) learning and representation into 
three Stages, with differing roles for learning in each stage. 

For neural modeling, we give  “representational reasons” for nervous systems to 
have many recurrent connections, as well as for the importance of phrases in 
language processing. 

Sizing simulations and analyses suggest that VSAs in general, and MBAT in 
particular, are ready for real-world applications. 
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1.  Introduction 

Representation is an important topic in its own right. 

Perhaps the most successful representation ever invented (other than writing itself!) is the decimal 

representations of integers, a great advance over counting by simple hash marks.  Decimal 

representations illustrate that a good representation can help us calculate more quickly, by orders 

of magnitude, and thereby enable computations that would otherwise be impossibly difficult.  

This is precisely our goal here.  We want a representation of objects (for example, words), 

multiple relations of those objects (eg., assorted syntactic and semantic information), and 

sequences (eg., sentences), that is hospitable to machine learning.  For another example in the 

computer vision domain, we are interested in representing image parts, relations among those 

parts, and sequences of (sub) image presentations (eg., from eye saccades). 

We seek a representation that permits us to use standard machine learning techniques (eg., neural 

networks, perceptron learning, regression) to simultaneously learn mappings of objects, relations, 

and sequences.  Moreover, we want to use standard algorithms “out of the box” on vector inputs, 

without the need for constructing a separate learning architecture for each task. 

This would open the possibility of “higher order holistic modeling”, where the predicted output 

encodes objects simultaneously with their structure, and where the structure can be more complex 

than selection from a small set of options.  For example, we want to be able to predict full parse 

trees in one shot, rather than word-for-word part-of-speech tags.  Ultimately we would like to 

predict a translated or summarized sentence, or a transformed image representation. 

These are longer term goals; a more immediate motivation for developing such representations is 

to facilitate the use of machine learning when starting from the outputs of Structured 

Classification approaches.  For example, Collobert et al. [2011] produce a system that outputs 

structure information (part of speech, chunks, semantic roles) for each word in a sentence.  We 

want to be able to cleanly incorporate these outputs into a fixed-length vector representing the 

entire sentence, for use with follow-on machine learning. 

To address these goals, since the 1990s a number of investigators have worked on incorporating 

structure into high-dimensional, distributed vector representations.  (A distributed vector 

represents objects or other information by patterns over the entire vector.)  Following Levy & 

Gayler [2008], we’ll refer to these architectures as Vector Symbolic Architectures (VSAs).   

The desire to use machine learning techniques places a number of Constraints on Representation.  

Inputs and outputs to standard machine learning algorithms are most conveniently expressed as 

fixed-length vectors, ie., vectors having a pre-specified number of components.  Thus we cannot 

directly apply neural networks to sentences, because sentences have no fixed and bounded length 

(and also because they possess important structure that is not immediate from the string of letters 

in a sentence). 
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Here we will focus on developing a VSA that simultaneously represents multiple objects, 

multiple versions of relations among those objects, and sequences of such objects/relations using 

a single fixed-length vector, in a way that satisfies the representational constraints.  We name the 

VSA we develop Matrix Binding of Additive Terms or MBAT. 

Vector Symbolic Architectures 

To help with basic intuition for VSAs, consider Table 1, where five terms (“smart”, “girl”, “saw”, 

“grey”, “elephant”) are shown with their corresponding vectors (V
smart

, Vgirl
, etc).   

Notationally, we represent all matrices by M, and vectors by other capital letters, such as V,W.  

We will also follow the standard convention of representing the vector for a term (V
smart

) by just 

the term (smart) where the context is clear.   

Vectors for words: 
    

smart girl saw gray elephant 
 

V = smart + 
girl 

-1 1 -1 1 1 
 

0 

1 1 -1 -1 -1 
 

2 

1 1 1 -1 1 
 

2 

-1 -1 1 -1 -1 
 

-2 

-1 -1 1 -1 -1 
 

-2 

-1 1 -1 -1 1 
 

0 

1 -1 1 -1 -1 
 

0 

-1 -1 1 1 1 
 

-2 

-1 -1 1 1 -1 
 

-2 

1 -1 -1 -1 -1 
 

0 

       

       Dot products with V: 
    

smart girl saw gray elephant 
  12 12 -8 -4 4 
  

Table 1:  Computational example with 10-dimensional vectors.  This illustrates the sum 

of two vectors, and the process for recognizing individual constituents from a sum using 

the dot product.     

Table 1 suggests that we have a way of recognizing individual constituents of a vector sum using 

dot products (vector inner products).  This will be formalized below in Section 3. 

Vector Symbolic Architectures trace their origins to Smolensky’s [1990] tensor product models, 

but avoid the exponential growth in vector size of those models.  VSAs include Kanerva’s Binary 

Spatter Codes (BSC) [1994, 1997], Plate’s Holographic Reduced Representations (HRR) [1992, 

2003], Rachkovskij and Kussul’s Context Dependent Thinning (CDT) [2001], and Gayler’s 

Multiply-Add-Permute coding (MAP) [1998]. 

Vector Symbolic Architectures can be characterized along five defining characteristics: 
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 Components of vectors are either binary (BSC), sparse binary (CDT), “bi-polar” (+1/-1) 

(MAP objects), continuous (HRR and MAP sums), or complex (HRR). 

 Addition of vectors (also referred to as “bundling”) represents collections of (simple or 

complex) objects, but without any structure among the summed terms.  If objects 

represent words, their addition gives an unordered “bag of words.”  Operators used for 

addition include normal vector addition as in Table 1 (HRR, MAP), and addition 

followed by conversion to binary components according to thresholds (BSC). 

 Binding of vectors is used to group objects, and can also be used for ordering them.  

Binding operators include Exclusive-OR or parity (BSC) and component-wise 

multiplication (MAP).   

A particularly important binding method is circular convolution (HRR).  Letting D be 

vector dimensionality, the circular convolution of two vectors, V = X * Y, is defined by 

Vj = ∑(k = 0, … D-1) Xk Yj-k 

where the subscript calculation is taken mod D.  In other words, reverse the numbering of 

Y’s indices, and now each component of the result Vj is just the dot product of X and 

(reverse numbered) Y, where Y is first rotated j positions prior to taking the dot product.  

Binding is commutative with respect to its two operands, and VSAs typically include an 

inverse operation for recovering one operand if the other  is known.  Inverses can be 

mathematically exact inverses (BSC, MAP) or have mean-0 noise added to the result 

(HRR), in which case a “cleanup step” is required to find the unknown element.  Cleanup 

consists of finding the closest resulting vector using dot products with all vectors, or 

making use of Auto-associative memories [Kohonen 1977, Anderson et al. 1977].   

For CDT binding, sparse binary vectors (representing objects or sub-structures) are first 

OR’ed together forming vector V.  Then V is AND’ed with the union of a fixed number 

of permutations of V to control the expected number of 1s in the final vector.  A separate 

addition operator is not needed for CDT. 

 Quoting applied to binding produces unique binding operators in order to differentiate 

among groups joined by binding.  This typically involves a random permutation of vector 

elements to represent, for example, two different subject phrases in a single sentence.  

(“The smart girl and the grey elephant went for a walk.”) 

 Complex Structure Methodology represents complex relations among objects, such as 

nested sub-clauses in a sentence.  For VSAs, this consists of binding (and quoting) to get 

sub-objects bound together, and addition to represent unordered collections of bound sub-

objects.  For example, let us suppose each of the roles actor, verb, and object have their 

own vectors, as well as objects Mary, loves, and pizza.  Then using * to denote binding in 

VSAs, we might represent “Mary loves pizza” by the vector 

(actor * Mary)  + (verb * loves)  + (object * pizza). 

This permits extraction of, say, the actor (Mary) by binding the final sum with the inverse 

of actor, and following with a “cleanup” step. 
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For MBAT, we will be presenting a different, unary binding operator, and a different complex 

structure methodology that emphasizes additive “phrases”.  

Organization 

This paper is organized as follows.  We first propose in Section 2 a collection of necessary 

Constraints for representing structured objects for use by standard machine learning algorithms.  

We then (Section 3) describe the MBAT architecture that encodes objects, structures and 

sequences into a single distributed vector. In Section 4, we examine the role (and advisability) of 

machine learning during three information processing stages:  Preprocessing, Representation 

Generation, and Output Computation.  We also see how for many tasks, with a suitable 

representation we can prove learnability for standard machine learning algorithms, rather than 

rely upon simulations.   

Section 5 looks at capacity, namely the required dimensionality for vectors.  Both analytic 

estimates and simulation results are presented.  Section 6 re-examines the Constraints with 

respect to the MBAT architecture.  Section 7 reviews prior research.  Section 8 (Discussion) 

revisits VSAs with respect to Complex Structure Methodology, and suggests applications for 

MBAT in computational linguistics, computer vision and modeling neural information 

processing.  The Appendix develops estimates for required dimensionality of vectors. 

2.  Requirements for a Good Representation of Objects, 
Relations and Sequences 

We want a  representation of structured objects, such as sentences or images, that is directly 

suitable for machine learning, without the need for constructing special-case learning algorithms. 

There are several requirements that must be met: 

Constraint 1:  Fixed Length Vector.  Most standard machine learning approaches take 

inputs that are vectors of some pre-specified length.  Thus if we want a way to 

simultaneously learn mappings of objects and structures, we need a way to represent 

many different objects, and structures of those objects, simultaneously, in a single vector 

with pre-specified length, eg., 1,000 components.  (For simplicity and concreteness, we 

refer here to a 1,000-dimensional system.  However, a practical system may require a 

different dimensionality, either larger for increased capacity or smaller for increased 

speed of computations.  Section 5 and the Appendix explore dimensionality 

requirements.)   

Constraint 2:  Distributed Representations.  We need to represent hundreds of 

thousands of objects involved in an exponentially larger number of representations, so 

only one bit or vector component per object will not supply sufficient capacity.  

Therefore, we need to use a distributed representation for the vector, where information 

is stored in patterns, and where an individual component gives little, if any, information. 

To take a specific example in natural language, we might represent a word as a 1,000 

dimensional vector, whose components are randomly generated choices of -1 and +1 (as 

in Table 1).  Then we can represent a sentence as the (single vector!) sum of the vectors 

for words in the sentence.  We’ll examine disadvantages of this representation in 

Constraint 4, but the sum of vectors gives one way to represent a variable length sentence 

as a single, distributed, fixed-length vector. 
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It is amusing to note that the usual computer representation of a sentence as a text string 

qualifies as a distributed representation!  Any individual letter gives little or no 

information; only the larger pattern of letters gives information.  Similarly, an image bit 

map is also a distributed representation.  These representations have a minor problem in 

that they are not fixed length, but they also have a major “continuity” problem, as 

discussed below in Constraint 4. 

Constraint 3:  A Complex Structure Methodology for Representing Objects and 

Structure Information Within the Distributed Vector.  For many natural-language 

tasks, we clearly must take the syntactical structure into account.  Here we encounter the 

“Binding Encoding Problem” in Cognitive Science and Artificial Intelligence surveyed 

by Treisman [1999]:  for the word pair “smart girl”, we need to represent that “smart” 

refers to “girl”, and not some other word in the sentence.  More generally, we need to be 

able to represent full parse information (or relations among image features) in a single 

distributed vector.  This includes representing sub-clauses in sentences and representing 

parts of images with associated features (eg., color, location, motion). 

Conversely, given a vector, we need to be able to recognize objects or structures encoded 

in the vector. 

Constraint 4:  Map Similar Objects and Structures to Similar Representations.  For 

learning algorithms to be able to generalize, it is necessary that similar objects and 

structures be represented by similar vectors.  This is a continuity property for maps from 

objects and their structures to their representations.   

On the representation side, vector similarity is readily defined  by Euclidean distance 

between vectors.  Two vectors are similar if (after normalization) they are close in 

Euclidean distance or, equivalently, if they have a significantly greater dot product than 

the dot product for two randomly chosen vectors. 

Starting with object similarity, we need to represent similar objects by similar vectors.  

For example, we want the vector for “smart” to be similar to the vector for “intelligent”.   

Turning to structure representations, we also need to represent similar structures by 

similar vectors.  For example, we want all of the following to have similar vectors (to 

varying degrees): 

 “The smart girl saw the gray elephant” 

 “The gray elephant was seen by the smart girl” 

 “The smart girl I just met saw the young gray elephant eating peanuts” 

(The second case might also be considered as having a different structure, but similar 

meaning.) 

For images, we want to be able to replace similar image parts, or include additional 

features and structure information for an image, and have the new image vector similar to 

the original image. 
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This Similarity Constraint is where character strings and bit maps fail as vector 

representations.  For a string, if we add a space, or change to a similar word with a 

different number of letters, or switch active/passive voice, then the vector of letters 

changes drastically (as measured by vector Euclidean distance).  Similarly, adding a row 

of pixels to an image can make a drastic difference in bit map vector similarity. 

Constraint 5:  Sequences.  We need to represent sequences of objects and relations.  For 

example, we want to represent a group of sentences, as well as images derived from a 

sequence of eye saccades.  This requirement for sequences is especially strong for spoken 

language, where even a single two-syllable word like “baby” does not hit our auditory 

system all at once, but rather as a sequence of sounds. 

Thus, ultimately, we need to represent, over time, sequences of objects and relations: 

phonemes, words, sentences, images, or sensory inputs. 

Constraint 6:  Efficient Encoding into the Representation.  If we want to be able to 

encode, say, 100,000 sentences as 100,000 vectors, we need the mapping computation 

from each sentence to its representation vector to be roughly linear in the length of the 

sentence (or number of objects and relations for the sentence).  Methods that require a 

machine learning pass over all 100,000 sentences to represent one of the sentences, or 

that require n
2
 computation to represent n sets of objects and structures, would seem to be 

impractical.  Similarly, we can’t practically use a representation method that, when 

presented with a new object, requires re-computation of the representations for all 

previously seen objects.   

Constraint 7:  Neural Plausibility.  Although not required for computational 

applications in language, vision, etc., we are nonetheless interested in representations that 

can serve as abstract models that capture important representational functionality in 

living systems.   

To summarize, we have listed six “must have” Constraints, along with one final “nice to have” 

Constraint for representing objects, structures, and sequences so that we can use machine learning 

algorithms (and their extensive mathematical theory) “out of the box,” without constructing 

special case learning algorithms. 

3.  Representing Objects, Relations and Sequences 
Using a Single Distributed Vector 

We now define MBAT, a Vector Symbolic Architecture, and show how it represents objects, 

relations and sequences by a single, distributed, fixed-length vector, while satisfying previously 

described Constraints.   

We employ two vector operations:  Addition (+) and Binding (#), as well as a Complex Structure 

Methodology of binding additive phrases, as described in the following Sub-Sections.   

3a.  Vector Addition (+) and Additive Phrases 
The familiar vector addition operator is sufficient to encode an unordered set of vectors as a 

single vector of the same dimension as its constituent vectors.  For example, in previous work we 

encoded a document as the sum of its constituent term vectors, and used this document vector for 
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Information Retrieval purposes [Caid et al. 1995].  The key property of vector addition, illustrated 

in Table 1, is:  

Property 1:  Addition Preserves Recognition 

This property is non-intuitive.  For example, with scalars if we know that six positive and 

negative integers added together sum to 143, we cannot say whether one of those numbers was 

17. 

By contrast, as in Table 1, suppose we add together six 1,000 dimensional vectors with random 

+1/-1 components representing words, 

V
Sum 

=
 
V

1 
+ V

2 
+ … + V

6
. 

Let us denote the vector for the term “girl” by Vgirl.
  

Now we can be highly certain whether 

Vgirl
 was one of the six.  We simply compute the inner product (dot product)  

 

x = V
girl  

• VSum
  = ∑ Vi

girl   Vi
Sum

 

and if x is near 1,000 the answer is “yes”, while if x is near 0 then the answer is “no”. 

Proof:  If  Vgirl 
 is one of the six vectors, say V

1
, then  

V
girl  

• VSum 
 = V

girl  
• (V

girl
 
 
+ V

2 
+ … + V

6
) 

= V
girl  

• Vgirl
  

 
+   V

girl  
• (V

2 
+ … + V

6
) 

= 1,000 + <mean 0 noise> 

Similarly, if Vgirl 
 is not one of the six vectors, then 

V
girl  

• VSum 
 =   <mean 0 noise>  

This completes the proof except for one small point:  we have to verify that the standard deviation 

of the <mean 0 noise> term does not grow as fast as the vector dimension (here 1,000), or else 

the two dot products could become overwhelmed by noise, and indistinguishable for practical 

purposes.  The Appendix shows that the standard deviation of the noise grows by the square root 

of the vector dimension, completing the proof.     █ 

The Addition Property of high-dimensional vectors gets us part of the way to a good distributed 

representation for a collection of objects.  For example, we can represent a sentence (or a 

document or a phrase) by a single (normalized) 1,000 dimensional vector consisting of the sum of 

the individual word vectors.  Then we can compute the Euclidean distance between vectors to 

find, for example, documents with vectors most similar to a query vector.  This was the approach 

for our previous document retrieval efforts.  However, we still need to represent structure among 

objects. 
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3b.  The Binding Operator (#) 

For both language and vision, relying solely on vector addition is not sufficient.  Due to the 

commutativity of vector addition, multiple phrases such as in “The smart girl saw the gray 

elephant” will have exactly the same vector sum as “The smart elephant saw the gray girl” or 

even “elephant girl gray saw smart the the”.  In other words, vector addition gives us the “bag of 

words” used to create the sum, but no other structure information. 

Here we run into the classic “Binding Encoding Problem” in Cognitive Science and Artificial 

Intelligence, surveyed by Treisman [1999].  We need some way to bind “gray” to “elephant” and 

not to “girl” or to any other word, while retaining a distributed representation.  More generally, 

we need the ability to represent a parse tree for a sentence, yet without abandoning distributed 

representations. 

Phrases 

It is first helpful to formalize the definition of phrase with respect to representations.  We define a 

phrase as a set of items that can have their order changed without making the representation 

unusable.  Phrases loosely correspond to language phrases, such as noun clauses and prepositional 

phrases, or “chunks” in computational linguistics.  For example, in “The smart Brazilian girl saw 

a gray elephant,” we can reorder the leading four-word noun phrase as in “Brazilian the girl 

smart saw a gray elephant,” and still understand the sentence, even though it becomes 

ungrammatical.   

Similarly, for machine vision, an example of a phrase would be the vectors for an associated 

shape, X and Y-positions, color, and motion.  Again, order is not critical. 

Neural Motivation 

To motivate the binding operator we propose, consider the neural information processing 

schematic in Figure 1.    
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Figure 1:  Recurrent connections give a way to bind inputs to the current and previous 

system states, as well as each other.  We will see that these connections may be randomly 

generated. 

Here we have inputs from various sensory subsystems:  vision, hearing, and touch.  The current 

state of the system (“neuron state”) is modified by information from these inputs, as well as 

recurrent connections from itself. 

The Figure illustrates the “Brain Binding Problem,” where we need the capability of linking 

together diverse sensory inputs (or different neural regions), with the current state of the system.  

Sequences also come into play here, as when we hear “baby” as two phonemes over two time 

periods, we need to sequentially bind the inputs to recognize and represent the term “baby” and 

its associations.   

For the binding task, the main thing we have to work with are the recurrent connections at the top 

of the Figure.  (Any Theory of Neural Information Processing that does not include a major role 

for such recurrent connections is missing a very big elephant in the Neural Physiology room!)  

Moreover, we cannot make too many organizational demands upon the recurrent connections, 

because any complex structure needs to be passed genetically and hooked up during a noisy, 

messy growth phase.  

So, continuing with our motivational exploration for binding, what if we take the easiest possible 

genetic/growth structural organization, namely random.  Can we have the recurrent connections 

compute a random map and have that be of any use for binding?   
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Binding Operator (#) 

Returning to the mathematics, let us now define the simplest version of a unary binding operator, 

#.  (Below we will also define several alternatives.) 

Let M be a fixed square matrix of appropriate dimension for our vectors, eg., 1,000 by 1,000.  We 

let components of M be randomly chosen values (eg., +1/-1).   

As a point of notation, when raising a matrix to a power, we will always use parentheses, as in 

(M)
3
.  This distinguishes from the designation of several different matrices, for example M

Actor
 

and M
Object

. 

Now if we have a sum of vectors, V
1 
+ V

2 
 + V

3
, i.e., a phrase, we can bind them as part of a 

structure description by: 

 #( V
1 
+ V

2 
 + V

3
)  ≡  M (V

1 
+ V

2 
 + V

3
). 

(The “#” operator “pounds” vectors together.)   Thus all terms in the vector of the form (M)
1
 V 

are differentiated from terms of the form (M)
2
 V,  (M)

3
 V,  etc.  We can think of (M)

i
 V as 

transforming V into a unique “bind space” according to i. 

With respect to complex structure methodology, in MBAT binding operates upon additive 

phrases, where the order of vectors in the phrase is not critical.  Thus we bind  

#(actor
 
+ the

 
 + smart + Brazilian + girl)   

≡  M (actor
 
+ the

 
 + smart + Brazilian + girl). 

Each term in the phrase may itself be the result of a binding operation, which allows us to 

represent  complex structure (for example, sub-clauses of a sentence). 

Some things to note: 

 One of the vectors in the summed arguments can be the current state of the system, so 

letting 

V(n) be the current state at time n,  

we have the next state given by 

V(n+1)   =   M (V(n))  +   ∑ V
inputs

  ( 3.1) 

Note that the Binding operator in this formulation corresponds to the recurrent 

connections in Figure 1.  Mi,j is the synapse between cell j and cell i. (Also, individual 

cells in the “Current State” do not need to differentiate whether inputs are coming from 

feed-forward sources or from recurrent connections.) 

 This formula for computing the next state also gives a way to represent input sequences.  

Kanerva [2009] and Plate [2003] previously employed this technique for sequence 

coding, using different binding operators. 
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 Phrases that get bound together must be unambiguous with respect to order.  Thus we can 

bind phrases like “the smart girl”, where order doesn’t really matter in understanding the 

phrase.  However, we couldn’t bind in one step “the smart girl saw the grey elephant”, 

because we would run into the binding ambiguity of whether “smart” refers to “girl” or 

“elephant”.  Several binding operations would be required, as in Figure 2. 

 We can make good use of Tags, represented by (random) tag vectors added to phrases, to 

specify additional syntactic and semantic information such as actor (ie., V
actor), object, 

phraseHas3words, etc. 

 Computing binding (matrix multiplication) involves more work than computing circular 

convolution in Holographic Reduced Representations if Fast Fourier Transforms are used 

for HRRs [Plate 2003].  Also, Binding in MBAT  requires us to make use of a different 

mathematical space, i.e., matrices vs. vectors-only in HRRs. 

Now we can see how to unambiguously represent “The smart girl saw the gray elephant” in 

Figure 2. 
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sum of one or more term vectors

“Current State”

Random Recurrent 

Connections

Random

Connections

 

 

Time Vector 

1. actor + the + smart + girl + phraseHas3words 

2. verb + saw + phraseHas1word 

3. object + the + gray + elephant + phraseHas3words 

 

Figure 2:  Representing a sentence by binding a sequence of phrase inputs.  At each 

time step, a phrase consisting of a sum of word vectors is collected in the bottom vector.  

The phrase sum may also contain structure information (eg., subject, passive-voice) in 

the form of Tag vectors.  This vector is added to the random recurrent connections from 

V(n), to produce the next state vector, V(n+1). 

The resulting (single) vector, V, is formed from 13 object/Tag vectors: 

V = (M)
2
 (actor + the + smart + girl + phraseHas3words) + M (verb + saw + 

phraseHas1word) + (object + the + gray + elephant + phraseHas3words). 

Tags such as phraseHas3words and phraseHas1word, though perhaps not biologically realistic, 

greatly simplify the task of decoding the vector, i.e. producing the sentence encoded in the sum.  
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If we need to speak the sentence, an approach to “decoding a vector” is to produce each phrase by 

first computing the number of words in the phrase, and then finding that many terms with the 

highest dot products. 

As desired, “smart” is associated with “girl” in this sum of 13 vectors, because we have term 

(M)
2 Vsmart and (M)

2 Vgirl, but elephant appears as V
elephant.   

We also have a recognition property for the binding operator.   

Property 2:  Binding (#) Preserves Recognition 

Suppose we are given V
 
=  #( V

1 
+ V

2 
 + V

3
).  Can we tell if  V

girl is among the bound operands? 

Yes, we simply look at  M V
girl 

 
 
• V  

=  M V
girl 

 
 
• ( M V

1 
 +  M V2

 +  M V3
)    (3.2) 

and the result follows similarly to Property 1 for vector sums. 

      █ 

3c.  Complex Structure Methodology 

Figure 2 also illustrates the Complex Structure Methodology we employ in MBAT.  Binding is a 

unary operator that operates upon phrases consisting of bundled (added) vectors.  Each vector 

being summed may be an object (eg., word), or the result of another binding operation (eg., sub-

clause).  Thus “the smart Brazilian girl” is represented by  

#(actor
 
+ the

 
 + smart + Brazilian + girl). 

Given a vector for a complex structure, we can check whether “girl” appears in any of the phrases 

at three outermost levels by taking a dot product with the single vector
1
  

  
[(M)

0 
 +  (M)

1
 +  (M)

2
] V

girl .    (3.3) 

The dot product with V given by  [ 
((M)

0 
 +  (M)

1
 +  (M)

2
) V

girl
] • V will be large positive only if 

Vgirl
 appears in one of the phrases, i.e. as Vgirl

,  (M)
1
 V

girl
,  or (M)

2
 V

girl
.    

Similarly, we can determine if “smart” and “girl” appear together in any phrase in V by checking 

if  

MAXi=0
2  [(M)i

  ( V
smart

  
 
+   V

girl) • V ]    (3.4) 

is sufficiently positive.  Note that if “girl” appears without “smart” in a phrase, then the value 

above is still positive, but half of the value than when both appear in the same phrase.  Also note 

that we cannot replace the MAX operator by a sum, or we run into binding ambiguity issues.
2
 

Thus using additive vector phrases, (V
1 
+ V

2 
 + V

3
), as operands for binding helps with 

subsequent recognition (and learning) of items.  It also helps reduce computational demands 

compared to using only binding operations, because vector addition is cheaper than matrix 

multiplication. 

 

                                                 
1
 (M)

0
 is the identity matrix. 

2
 It is not clear to what extent MAX should be considered neurally plausible. 
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3d.  Variants of the Binding Operator 
 

As with vector addition, vector binding has several important variations. 

 We can define a collection of binding operators with structural significance, and give 

each phrase its own binding operator, such as M
Actor

 and M
Object

.   This makes all 

phrases at the same level.  For example, 

V = M
Actor

 (the + smart + girl + phraseHas3words) + M
verb

 (saw + phraseHas1word) 

+ M
Object

 (the + gray + elephant + phraseHas3words). 

 As a special case, we can also define “Two Input” binding operators.  For example, if we 

want a binary parse tree, we can define #( V
1
, V

2
 ) to be M

Left
 V

1
 + M

Right
 V

2
, where 

M
Left

 and M
Right

 are two different fixed matrices.  Note that “Two Input #” is non-

commutative: 

#( V
1
, V

2
 )  ≠  #( V

2
, V

1
 )  

as required for specifying a binary tree. 

 “Binary World”:  A most interesting variation is to replace components of 

#( V
1 
+ V

2 
 + V

3
) by “+1” if greater than or equal to 0, and “-1” if less than 0 (as in 

Kanerva’s Binary Spatter Codes).  Restricting to +1/-1 components has the advantage of 

playing nicely with Auto-associative learning algorithms [Kohonen 1977, Anderson et al. 

1977].   

It is worth noting that we can preserve many of the benefits of continuous vector 

components (eg., for vector sums), while still restricting all vector components to        

+1/-1.  We take a group of vector components computed from (approximately) the same 

connections and employ different thresholds, obtaining a binary representation for a 

continuous sum.  For example, we can replace the first continuous component, V1, of an 

input by the group of binary components 

V1a  ≡  +1 if (V1 ≥ 37); else -1 

V1b  ≡  +1 if (V1 ≥ 5) ; else -1 

V1c  ≡  +1 if (V1 ≥ 19) ; else -1 

… . 

 Permutation Matrices:  It is possible to use a permutation (random or not) for the binding 

matrix, as permutations are maximally sparse and easy to invert.  However, an advantage 

of using matrices with many non-zero elements is that they can boost the representational 

dimensionality of isolated inputs.  For example, suppose the goal is to learn Exclusive-

OR (XOR) calculated on components 1 and 2 (and ignoring other components).  A 

random permutation maps the two inputs to two different components but retains the 

same dimensionality, so that the probability of the resulting representation being linearly 

separable remains at 0.  By contrast, in a “binary world” architecture with -1/+1 

components, when a non-sparse random matrix is applied to inputs followed by a 

thresholding step, components 1 and 2 are spread non-linearly among many components.  

This increases the effective dimensionality of the representation [Gallant & Smith 1987], 

and makes the probability of linear separability (and easy learnability) greater than 0.  
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Such increased representational ability is an advantage with working in Binary World, 

rather than using continuous vector components. 

Another advantage of using a non-sparse binding matrix is that the representation decays 

more gracefully when noise is added to the matrix.  Finally, in the nervous system, the 

majority of neurons synapse with many other neurons rather than a single neuron, making 

a permutation matrix appear much less neurally plausible. 

 An important performance tuning issue for practical implementations is scaling the 

binding operator so that, for example, an (M)
 2

 V
girl

 term does not dominate other terms.  

One approach is to normalize the result of a binding operation so that the resulting vector 

has the same length as a vector for a single term, √D.  Alternatively, the normalization 

can make each M V
i
 phrase component have length √D.  Finally, we could just work in 

“Binary World,” in which case the problem goes away. 

3e.  Multiple Simultaneous Representations 

An important technique for reducing “brittleness” of the structure representation (such as parse 

information) is to simultaneously encode several structure descriptions (with different binding 

operators) in the vector by adding them.  This increases robustness by having different structures 

“voting” in the final representation.   

An example of multiple simultaneous representations is representing sentences as structureless 

additions of word vectors, plus binding of phrases, plus sequentially binding phrase components 

to fix their precise order.  For example, with “The smart Brazilian girl …”, we might have 

(the + smart + Brazilian + girl) +  

M
Actor

 (the + smart + Brazilian + girl) + 

M
Actor_Ordered

 (the + M(smart + M(Brazilian + M(girl)))). 

We may also specify different positive weights for each of the three groups, for example to 

increase the importance of the top “surface” group with no binding.   

Multiple simultaneous representations are helpful because we cannot know, a priori, which kind 

of phrase grouping will be critical for capturing the essence of what is to be learned in later 

stages. 

For another example, if parser A results in sentence representation V
A
, and parser B produces V

B
, 

then the final representation for the sentence can be V
A
 + V

B
.   

As a third example, if we have two (or more) image feature extraction programs (perhaps 

operating at different scales in the image), each program’s outputs can be converted to a vector 

and then added together to get the final vector representation. 

To summarize this Section, the two operators + and #, coupled with representing complex 

structure by applying # to additive phrases, permit us to represent objects, structures and 

sequences in MBAT.  In Section 6, we check whether MBAT satisfies the representational 

constraints we have posed. 
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4.  Learning and Representation:  Three Stages 

For both computational and neural systems, we distinguish three Computational Stages:  Pre-

Processing, Representation Generation, and Output Computation.  This distinction is helpful, 

because learning plays a different role in each Stage. 

Pre-Processing Stage 

The Pre-Processing Stage occurs prior to actually generating a vector representation.  Here is 

where vector representations for objects (words, images) are developed so that similar objects 

have similar vectors.  Typically the mapping is the result of a preliminary learning phase to 

capture object similarities in vectors (as discussed in Section 6). 

As an important example of a Pre-Processing Stage in living neural systems, there appears to be 

much feed-forward processing of features of various complexity (eg., line detectors, moving edge 

recognizers, etc).  These computations can be genetically hard-wired and/or learned during 

development, but then do not need to be re-learned in the course of the following Representation 

Generation Stage. 

For automated systems, the identification of phrases (or “chunks”) is a typical pre-processing 

operation that can be quite helpful for following Stages. 

Although the learning involved in the Pre-Processing Stage may be computationally intensive, it 

is done only once, and then can be used in an unlimited number of representation calculations.  

Thus it avoids violating the Efficient Encoding Constraint, because it is not a part of the 

Representation Generation Stage.  The features resulting from this Stage serve as the inputs to the 

representational system. 

Representation Generation Stage 

Although the Pre-Processing Stage (and Output Computation Stage) can involve significant 

machine learning, there are reasons for the Representation Generating Stage to avoid machine 

learning. 

 Internal learning means tailoring the representation for one set of applications, but this 

can make the representation less suited to a different set of problems. 

 When representing inputs, a learning step might slow down processing so much as to 

make the resulting representation system impractical, thereby violating the Efficient 

Encoding Constraint.   

On the other hand, we can envision a good case for learning some vector representations as part 

of a separate “long term memory” component, where we want to incrementally add a set of 

sequences to an existing set so that they may be recalled.  Memory, recall, and novelty detection 

are important issues, but beyond the scope of this Representation paper. 
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Output Computation Stage 

Finally the Output Computation Stage is clearly a place where learning is vital for mapping 

representations to desired outputs.  Here is where we benefit from being able to use conventional 

fixed-length vectors as inputs. 

One major benefit is that a lot of previous theory is immediately applicable.  These include the 

Perceptron Convergence Theorem [Rosenblatt 1959, see also Minsky & Papert 1969], Perceptron 

Cycling Theorem [Minsky & Papert 1969, Block & Levin 1970], Cover’s theorem for the 

likelihood of a set of vectors to be separable [Cover 1965], and Vapnik-Chervonenkis 

generalization bounds [1971].  This body of theory permits us to prove learnability in many cases, 

as well as to set bounds on generalization.   

To take a specific example, suppose we use random vector representations of words, and we have 

a collection of sentences with at most four phrases encoded as in Figure 2, and each sentence 

either contains the word “girl” or the word “elephant” (but not both).  Then we can prove that 

perceptron learning will learn to distinguish the two cases, making a bounded number of errors in 

the process.  

Proof:  Consider  

 [ ( (M)
0 
 +  (M)

1
 +  (M)

2
  +  (M)

3
) ( V

girl
 – V

elephant
 ) ]  

 
• V. 

Excluding noise with mean 0, if 
 
V has V

girl
 in a phrase, the dot product will be positive.  If, by 

contrast, V has V
elephant

 in a phrase, then the computation will be negative.  Therefore the vector 

in brackets is a perfect linear discriminant.  Now we can apply the Perceptron Convergence 

Theorem [Rosenblatt 1959, see also Minsky & Papert 1969, Gallant 1993] to know that 

Perceptron Learning will find some error-free classifier while making a bounded number of 

wrong guesses.  (A bound is derivable from the bracketed term.)  

This proof illustrates a simple and general way of proving that these kinds of mappings are 

learnable using the MBAT representational framework.  We merely show that at least one error-

free linear classifier exists, and then we can immediately conclude that perceptron learning will 

learn some error-free classifier (perhaps a different one) in finite time. 

Note that there is no need to decode (i.e., fully recover) vectors in the process of learning! 

Reviewing the three Stages, the overall processing picture is:  

 a (one time, done in the past) Pre-Processing Stage, which may involve significant 

machine learning, feature computations, novelty detection, etc., which (efficiently) 

produces the inputs to: 

 the Representation Generating Stage (our main focus), where there may be no learning, 

and followed by:  

 an Output Computation Stage, which almost always involves machine learning for a 

particular task. 
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5.  Capacity:  Analytics and Simulation 

For practical systems, we need to know what dimension, D, is required for vectors to represent 

objects and relations, and how D scales with increased system sizes. 

The Appendix derives analytic estimates when adding S random +1/-1 vectors (referred to as the 

bundled vectors) to form vector V, and where N other random vectors are present in the system.  

(A bundle can be the vectors in a phrase.) In particular, we derive bounds and estimates for the 

required dimension, D, so that at least 98% of the time each of the S bundled vectors has a higher 

dot product with V than each of the N other vectors.  Said differently, we seek error-free 

separation performance at least 98% of the time. 

For a “Small” system where S = 20 bundled vectors, and where there are 1,000 other random 

vectors, we derive that D = 899 dimensions guarantees error-free performance at least 98.4% of 

the time.  An example of a “Small” system application would be finding whether a simple 

diagram (collection of shapes in various configurations) is among 20 designated examples. 

Similarly, for a “Medium” system with S = 100 bundled vectors, and where there are 100,000 

other random vectors, we derive an estimate for the required dimension D of 6,927 for error-free 

performance 98.2% of the time.   

Finally, for a “Large” system with S = 1,000 bundled vectors, and where there are 1,000,000 

other random vectors, we derive an estimate for the required dimension D of 90,000 for error-free 

performance 99% of the time.   

The approximation derived in the Appendix allow us to say how required dimension D scales as S 

and N increase.  In summary, for a given error threshold: 

 For fixed number of vectors S bundled together, as dimension D increases, the number of 

other vectors, N, we can distinguish from the bundled vectors (while keeping the same 

error threshold) increases exponentially with D. 

 For fixed number of other vectors, N, as dimension D increases, the number of vectors S 

we can bundle together while distinguishing bundled and random vectors (and while 

keeping the error threshold) increases linearly with D. 

Thus representing additional bundled vectors (S) is fairly “expensive” (required D is linear in S), 

while distinguishing the bundled vectors from N other Random vectors is fairly “cheap” (required 

D is logarithmic in N). 

In addition to the analytic estimates in the Appendix, we also performed capacity simulations for 

“Small” and “Medium” sized problems.  Here we investigated, for different values of vector 

dimension D, computing the sum of S vectors to form bundled vector V.  We then found the S 

vectors with highest dot products with V among the S bundled vectors and the N additional 

random vectors.  We computed: 

1. The fraction of bundled vectors that are in the S vectors having highest dot product with 

V. 

2. The fraction of trials that produce error-free performance:  all bundled vectors have 

higher dot products with V than any of the Random vectors.  (This is the same measure 

analyzed in the Appendix.) 
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Figures 3 and 4 give the results. The “Small Sized” system required several hours computation 

time on a 2.4 GHz laptop, and the “Medium Sized” system required 24 hours simulation time. 

 

 

 

Figure 3:  Capacity simulation for a "Small" system consisting of S=20 vectors 

Bundled together to form vector V, plus N=1,000 additional Random vectors.  When 

computing the top 20 vector dot products with V, the top series shows the fraction of 

bundled vectors in the top 20, and the bottom series shows the fraction of error-free 

separations (all bundled vectors have higher dot products with V than all Random 

vectors).  Averages over 200 trials. 
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Figure 4:  Capacity simulation for a "Medium" system consisting of S=100 vectors 

Bundled together to form vector V, plus N=100,000 additional Random vectors.  

When computing the top 100 vector dot products with V, the top series shows the 

fraction of bundled vectors in the top 100, and the bottom series shows the fraction of 

error-free separations (all bundled vectors have higher dot products with V than all 

Random vectors).  Averages over 100 trials. 

 

From the simulations, we conclude: 

 For a “Small” system (S=20; N=1,000), a lower estimate for required vector dimension D 

is only 350.  This gives 90% (18 of 20) of the top vectors being bundled vectors. 

 For the same “Small” system, an upper estimate for required vector dimension D is 900.  

This gives 98% probability of having error-free performance with highest dot products 

all being the 20 bundled vectors. 

 Similarly, for a “Medium” system (S=100; N=100,000), we have lower and upper 

estimates for required dimension D of 2,500 and 7,000 respectively. 

In the Appendix, we derive an approximation formula for p, the probability of error-free 

performance.  Letting  

T (x) = one-sided tail probability in a normal distribution of a random variable being at 

least x standard deviations from the mean 

We derive 

p = 1 – NS T (√ (D/(2S-1))) 

where the approximation is valid when p is close to 1 (ie., p > 0.9). 

The analytic estimates for required dimensionality for error-free performance in the Appendix are 

in close agreement with simulation results.  Results are summarized in Table 2. 
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From Formula

System Size

S = Number of 

Vectors Bundled

N = Other 

Random Vectors

Required D for  

90% of Closest 

Vectors Being in 

the Bundle 

Required D for  

Probability >= .98 of 

Error-Free 

Performance 

Required D for 

Probability >= .98 of 

Error-Free 

Performance 

Small 20 1,000 350 900 899

Medium 100 100,000 2,500 7,000 6,927

Large 1,000 1,000,000 90,000

From Simulations

 

Table 2:  Simulated and estimated vector dimension required for (a) 90% of the S closest 

vectors being in the Bundle, and (b) at least .98 probability of error-free performance.     

Some additional comments on capacity. 

 It is possible to improve recognition ability for bundle vectors when the vectors added 

together are not random.  For example, in natural-language applications we can use a 

“language model” [Brown et al. 1990], which gives statistics for a vector being included 

in the presence of other vectors in the bundle. 

 When we use vectors such that similar objects have similar vectors, for example giving 

similar vectors to similar words, then this will decrease raw discrimination ability to the 

extent that vectors are more similar than random.  However, this should help, rather than 

hurt, an implementation – that’s the reason we made the objects more similar in the first 

place! 

 When machine learning follows representation in a practical system, this may require 

significantly less dimensionality than required for error-free discrimination, depending 

upon the specifics of the learning task and performance requirements. 

For example, if there are S positive examples and N negative examples to be learned, we 

don’t need A
 
• V > R 

 
• V for every case where A is a positive example and R is a 

negative example. 

Instead of using the sum of the positive examples, V, to discriminate, we have the liberty 

of finding any vector X that does a good job of making A
 
• X > R 

 
• X for each pair A, R.  

If any X exists that works for all pairs, it is a linear discriminant which is easily learned 

by Perceptron Learning.  Moreover, most practical modeling problems do not require 

perfect discriminants.  

Finally, it is worth estimating computational requirements.  Generating a representation vector of 

dimension D involves a D × D matrix multiply for each binding operation, plus vector additions 

as needed, regardless of the number of objects in the system.  For a “Medium” sized system with 

D = 2,000 to 7,000, generating a representation on a single processor computer is clearly 

practical, although each binding requires 8 billion to 343 billion multiplications and additions.  
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(Speedups are available using multiple processors and also by fast matrix multiplication 

techniques.) 

For a “Large” system with D = 90,000, extensive parallelism would be required.  In general,  

multiple processors divide the computation time by the number of processors for these 

computations. It is noteworthy that a living system with neurons summing synaptic inputs from 

many other neurons, and with neurons working in parallel, could conceivably compute binding 

operations of vector sums for the state update Equation 3.1 in a single time step! 

Follow-on learning in the Output Computation Stage may require less computation.  For example, 

perceptron learning requires only vector dot products and vector additions for each iteration, 

avoiding the more expensive matrix multiplications.  Of course, the number of iterations required 

is also important.  (Worst-case bounds on required iterations for linearly separable problems grow 

linearly with the dimension and the number of training examples,  and  grow by the square of the 

length of the shortest integral solution vector [Gallant 1993].) 

We conclude that vector dimension requirements and computations appear easily manageable for 

practical implementations. 

 

6.  Checking the Constraints  

We want to verify that by using distributed vectors and two operations on vectors,  addition (+) 

and binding (#), plus MBAT’s approach for representing complex structure, we are able to satisfy 

the Constraints from Section 2. 

Constraints 1 (fixed-length vector) and 2 (distributed representation) are obviously satisfied.  We 

have seen how the binding operator can represent structure (Constraint 3), including a practical 

solution to the binding problem, as well as sequences (Constraint 5).  Computations are clearly 

linear in the number of objects, plus complexity (description size) of structures (Constraint 6). 

Let us consider Constraint 4 (similar objects/structures map to similar representations).  Although 

“similarity” is not precisely defined, nevertheless we can verify our benchmark test cases. 

With natural language, there are a number of ways to get similar vector representations for similar 

words, as surveyed in Section 7.   

Note that this (learned) preprocessing is a one-time computation that does not affect speed during 

the Representation Generation Stage.  

Now, suppose we encode  “The smart girl saw the gray elephant” by the sum of vectors: 

V = M
Actor

 (the + smart + girl + phraseHas3words) + M
verb

 (saw + phraseHas1word) 

+ M
Object

 (the + gray + elephant + phraseHas3words). 

Then if we have object encodings such that similar objects have similar vectors, we can 

interchange similar objects and leave the resulting representation vector similar to the original.  

For example, if V
intelligent

 is similar to V
smart

, then “The intelligent  girl saw the gray elephant” 

will have a vector very similar to V. 



Gallant and Okaywe:  Representing Objects, Relations and Sequences 24 

Turning to structure similarity, we need add only one additional vector term, V
Passive_Voice

, to V in 

order to encode 

“The gray elephant was seen by the smart girl”.  

Thus these two representation vectors are very similar as vectors. 

In a like manner, we can encode 

“The smart girl I just met saw the young gray elephant eating peanuts” 

by adding to the original vector those additional vectors for the two new clauses, and adding 

young to the elephant clause.  Once again, we arrive at a vector similar to the original one (i.e., 

significantly closer than two randomly chosen sentence vectors). 

The last remaining Constraint, Neural Plausibility, is even less precise.  However, we maintain 

this Constraint is satisfied by having a system with individual vector components (neurons), a 

notion of state consisting of which neurons are firing, and a way to represent objects and 

structural relationships in the overall state that does not make unreasonable demands on “wiring” 

of the system by genetics or during growth. 

 

7.  Prior Research 

Vector Symbolic Architectures were summarized in Section 1, and are further discussed in the 

next Section. 

A key early source for Distributed Representations is [Hinton’s 1984], as well as [Hinton 1986].  

This paper presents characteristics, advantages and neural plausibility arguments.  (These topics 

are reviewed in Gallant [1993].)   

In Information Retrieval, the use of high dimensional vectors to represent terms (words) was 

pioneered by Salton & McGill [1983].  Deerwester et al. [1990] represented terms, documents 

and queries by starting with a document-by-term matrix, and then using Singular Value 

Decomposition to reduce dimensionality.  This also achieves some measure of similarity of 

representation among similar terms.  A later approach used random vectors and learned 

modifications of those vectors to represent similarity of meaning among words in the MatchPlus 

system [Caid et al., 1995].  The basic idea was to start with random vectors for terms, and make 

passes over a corpus while modifying vectors by adding in a fraction of surrounding vectors (and 

normalizing).  

In the same spirit, other  language systems make good use of a “language model” to statistically 

compute probabilities of a word given its immediate predecessors [Brown et al. 1990], or 

computing the probability of a word given its surrounding window [Okanohara & Tsujii 2007, 

Collobert &Weston 2008].  See also the Brown clustering algorithm [1992], phrase clustering 

[Lin & Wu, 2009] and [Huang & Yates 2009].  Self-Organizing maps present another possibility 

[Kohonen 1995, Hagenbuchner et al. 2009].   

However, all this Information Retrieval work is still within the bag of words limitations imposed 

by not having a binding operation. 
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More recently, Jones and Mewhort [2007] looked at incorporating positional information with 

semantic vectors created by a similar approach to MatchPlus.  They capture order information by 

looking at surrounding windows (up to distance 7) for each term in a corpus.  They then take the 

(HRR) convolution of each window, while replacing the target term by a dummy. 

For example, suppose we’re learning the order vector for King in “Rev. Martin Luther King, Jr. 

said …”.  Then letting ɸ be a constant placeholder for the target term “King”, we would add 

HRRs for: “Luther * ɸ”, “ɸ * Jr”, “Luther * ɸ * Jr”, etc.  The resulting order vector is then 

normalized and added to the semantic vector for King.  The result is a vector that captures 

semantics as well as word order syntactic effects.  Similar results were obtained by Sahlgren et al. 

[2008] by encoding order information with permutations; see also Recchia et al. [2010].  Such 

vectors should provide interesting starting codings for terms in language systems, including 

MBAT. 

With respect to matrix multiplication bindings, Hinton’s “triple memory” system [1981] used 

random matrix connections in a subsidiary role while focusing on learning, rather than 

representation.  Also, Plate’s book [2003, page 22] later mentions in passing exactly the “Two 

Input” version of the binding operator from Section 3, which he attributes to Hinton.  Plate also 

lists matrix multiplication as an alternative binding possibility in Section 7.3, Table 26. 

In a Computational Linguistics setting, Rudolph & Giesbrecht [2010] proposed using only 

matrices (rather than vectors) to represent objects, and examined matrix multiplication as a 

composition operation.  Similar results were obtained by Sahlgren et al. [2008] by encoding order 

information with permutations; see also Recchia et al. [2010].  However, vector addition carried 

out by sparse matrices in D
2
 dimensions rather than D dimensions is inefficient.  There is also 

loss of the binding recognition property once we use a large number of different matrices for 

multiplication, rather than a small set of matrices for binding operators. 

Mitchell & Lapata [2008], also in a Linguistics domain, mention the binary version of the # 

operator in passing, although most of their efforts focus on a bag-of-words semantic space model. 

Turning to sequences, the traditional approach to dealing with sequential inputs (eg., a sentence) 

is to use a sliding window.  A related approach, Elman nets [1990], are three-layer neural 

networks that copy the hidden layer outputs as net inputs for the next cycle, thereby producing an 

additional “sliding window over hidden layer outputs.”  Elman nets are therefore able to 

accumulate some state information over the entire sequence. 

Another related sequence approach, Time Delay Neural Networks of Waibel et al. [1989], has 

several layers of groups of hidden nodes.  The first node in each group sees (say)  nodes 1-3 in 

the group (or input) immediately below, the second node of each group sees nodes 2-4 in the 

group below, etc.  Thus we have a multi-stage fan-in from the input layer, with each stage 

reducing dimensionality while expanding global coverage. 

All three of these approach typically employ Backpropagation (or variants) to adjust weights in 

response to training data.  Therefore they are more approaches for learning algorithms, rather than 

approaches for representation.  Although we could consider hidden layer activations as 

representations for new inputs after learning has ended, there is limited ability to recognize stored 

objects, and the only type of structure that is explicitly captured is sequentiality.  Nevertheless, 

these techniques might prove useful in a Pre-Processing Stage prior to generating representations.   
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For sequence representations that do not require learning, Kanerva [1988] represents sequences 

using pointer chains.  Later, Plate [2003] employs trajectory association, where the idea is to bind 

powers of a vector to sequence information.  For example if we want to represent the sequence A, 

B, C, we can take some fixed vector V and compute 

V*A + V*V*B + V*V*V*C. 

There are additional variations involving helper terms for easier decoding. 

There is also a body of research on learning with structural inputs, much of which involves using 

Backpropagation related algorithms to learn weights in a pre-defined network without directed 

loops [Frasconi et al. 1998].  Again, the focus is on learning, rather than representation.  The 

Backpropagation computations  (along with potentially large numbers of hidden units) make this 

approach impractical for generating general-purpose representations. 

Another early work involving Reduced Representations is Pollack’s RAAM (Recursive Auto 

Associative Memory) architecture [1990] and later extensions, for example LRAAM (Labeling 

RAAM) by Sperduti, Starita  & Goller [1995].  These approaches use Backpropagation learning 

(or variants) on a network of inputs, hidden units, and outputs that attempt to reproduce inputs.  

The hidden units, after learning, encode the reduced representations of the inputs.  A drawback of 

these approaches is the need for learning over all inputs to achieve the representations of the 

inputs.  For example, adding additional input cases requires re-learning the representation for all 

previous input patterns using Backpropagation (violating the Efficient Coding Constraint).  

Improvements in capacity and generalization were reported by Voegtlin & Dominey [2005].  

Although these approaches are all too slow (non-linear) for the Representation Generation Stage, 

their abilities to capture generalization may present good synergy as part of the Pre-processing 

Stage. 

Another important line of research for learning structures with generalization was Hinton’s family 

tree tasks [1986, 1990], followed by Linear Relational Embedding [Paccanaro & Hinton 2001a, 

2001b; Paccanaro 2003].  As with RAAM architectures, generalization ability may prove useful 

in producing Pre-processing Stage inputs for MBAT or other approaches.   

Sperduti [1997] proposed a “generalized recursive neuron” architecture for classification of 

structures.  This complex neuron structure can be seen as generalizing some other ways of 

encoding structure, including LRAAM, but  representation size grows with respect to the size of 

the structure being represented, as does computational requirements.  

Another recent approach represents structures by dynamic sequences, but requires a Principal 

Component Analysis (PCA) for obtaining the representation.  Sperduti [2007] reports a speed-up 

for PCA calculation; the result could play a role in Pre-processing Stage learning of inputs, but is 

still too computationally demanding for computing representations in the Representation 

Generation Stage. 

It is worth noting that Sperduti et al. [1995] conduct simulations to show good performance for 

learning to discriminate presence of particular terms in the representation.  By contrast, Section 4  

proves learnability for a similar task, without the need for simulation.  

More recently, Collobert & Weston [2008] show how a general neural network architecture can 

be simultaneously trained on multiple tasks (part-of-speech Tags, chunks, named entity Tags, 

semantic roles, semantically similar words) using Backpropagation.  They encode sentences using 
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Time Delay Neural Networks of Waibel et al.  The network learns its own vector representations 

for words during multi-task learning, so that different tasks in effect help each other for a shared 

portion of the vector representation for each task.  However, each task ends up with its own 

vector representation for the non-shared part.  Outputs consist of either a choice from a finite set 

(eg., part-of-speech Tags) or a single number (probability) on a word-by-word basis.  

It is not apparent that their internal vector encodings can serve as representations for, say, 

sentences, because each learning task produces a different vector for the same sentence. Nor are 

the sets of outputs, produced for each word, easy to directly convert into a fixed-length vector for 

the sentence. 

However, there is an appealing natural synergy of Collobert & Weston’s system with the 

representation we examine, because outputs from their system can serve as structure information 

to be included in the representation vector.  In particular, the “chunking” outputs can comprise 

phrases, which are ideal candidates for binding operations in constructing the vector for a 

sentence.  Vector Symbolic Architectures in general, and MBAT in particular, give a natural way 

to leverage word-by-word information as inputs to learning algorithms by converting it to fixed-

length, distributed vectors. 

In a later work,  Collobert et al. [2011] develop a unified neural network architecture for these 

linguistic tasks, where all tasks are trained using two somewhat complex architectures based upon 

Time Delay Neural Networks.  As in previous work, their system outputs a set of tags for each 

word.  Training time is one hour to three days, depending upon the task, and scoring of new input 

is very fast after training.  Their impressive point is that, at least for producing various Tags for 

words in the domain of language, one of two neural network learning architectures can produce 

excellent results for a variety of tagging tasks.  The architecture is highly tuned to producing 

word-by-word Tags from language input.  Therefore, it seems very hard to adapt this approach to 

other tasks such as machine translation, where more general output structures must be produced, 

or to other domains such as image processing, without first converting outputs to fixed-length 

vectors. 

These papers are example of a broader category, Structured Classification, where for each 

sequential input object we compute either one choice from a fixed and finite set of choices, or we 

compute a single scalar value.  There is much other research in the Structured Classification 

paradigm, which we do not review here. 

Recently Socher et al. [2010, 2011a, 2011b] have shown how binding matrices can be learned 

using Backpropagation with complex loss functions.  Socher’s Recursive Neural Networks 

(RNN) are binary trees with distributed representations, which are structurally identical to “Two 

Input” binding operators in Section 3.  In particular, Socher’s matrix [2011a] for combining two 

vectors is equivalent to concatenating rows from M
Left

 and M
Right

 to form a single “double wide” 

matrix for applying to pairs of concatenated column vectors. 

The RNN approach is applied to Penn Treebank
3
 data to learn parsing and the Stanford 

background dataset
4
 to obtain a new performance level for segmentation and annotation.  They 

also report [2010] excellent results with the WSJ development dataset, and an unlabeled corpus of 

the English Wikipedia [2011b]. 

                                                 
3
 http://www.cis.upenn.edu/~treebank/ 

4
 http://dags.stanford.edu/projects/scenedataset.html 
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Socher’s work demonstrates that the kind of Vector Symbolic Architectures we describe can be 

useful for practical problems. 

Finally, there is interesting work by Maass et al. [2002] on asynchronous modeling of noisy 

neuron behavior, including recurrent connections, in their “Liquid State Machine” model.  They 

show ability to train output neurons to discriminate noisy input patterns in neurons with fully 

asynchronous firing times. 

This modeling is at a granular neuron level, and is therefore more suited for neural modeling and 

less suited for large scale, practical systems.  For example, simulations typically deal with 

distinguishing among a small number of input patterns, and there is no attempt at explicitly 

representing complex structure among objects. 

Nevertheless, the “Liquid State Machine” models of Maass and colleagues share several 

characteristics with the kind of representational systems we examine, including: 

 They are general representations, not tuned to any specific task. 

 There is a specific task/output readout Stage that involves learning. 

 State transitions are similar to Equation 3.1 in Section 3. 

 The overall system does not need to converge to a stable state, as with most learning 

algorithms. 

 The mathematical model can be used to hypothesize computational explanations for 

aspects of neural organization and processing. 

Maass et al. investigate “local” versus “long range” recurrent connections, giving computational 

explanations for the distributions.  They find that less than complete connections work better than 

complete connections with their asynchronous, noisy, dynamic models.  (This result may not 

apply to non-asynchronous systems.) 

8.  Discussion 

We have shown that a desire to apply standard machine learning techniques (neural networks, 

perceptron learning, regression) to collections of objects, structures and sequences imposes a 

number of Constraints on the Representation to be used.  Constraints include the necessity for 

using distributed, fixed-length vector representations, mappings of similar objects and structures 

into similar vector representation, and efficient generation of the representation.   

In response we have developed MBAT, a neurally plausible Vector Symbolic Architecture that 

satisfies these constraints.  MBAT uses vector Addition and several possible variants of a vector 

Binding operator, plus a Complex Structure Methodology that focuses upon additive terms (ie., 

phrases). 

MBAT as a Vector Symbolic Architecture 

Viewed from the perspective of Vector Symbolic Architectures, MBAT can be characterized as 

follows: 

 Vector components are either continuous, or are two-valued (eg., +1/-1). 
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 Addition is vector addition, optionally followed by thresholding as in Binary Spatter 

Codes. 

 Binding is a unary operator consisting of matrix multiplication.  Either one matrix or a 

matrix chosen from a small set of matrices (M
Actor

, M
Object

, etc) is used for binding.  

Components of matrices can be chosen at random, and can have +1/-1 entries.  If vectors 

are restricted to having +1/-1 components, then matrix addition and multiplication are 

followed by a thresholding step.  Another variation adds binding operands back into the 

result of matrix multiplication.   

A two-argument version of binding is available by multiplying each argument by one of 

two fixed matrices, and adding the results.   

 Quoting is by repeated matrix multiplication, or by using different matrices from a small 

set of matrices. 

This is similar to quoting by permutation, for example Gayler [2003], Kanerva [2009], 

and Plate [2003], except we need not restrict ourselves to permutation matrices.  (See 

comments in Section 3 on permutations.) 

 The Complex Structure Methodology applies (unary) binding to additive phrases, 

M(V+W+X).  Each of the added terms may be the result of another binding operation. 

Several different representations can be simultaneously represented by adding their 

vectors. 

Vector Symbolic Architectures and Complex Structure Methodology 

The procedure for encoding complex structure deserves further comment with respect to VSAs in 

general, and Holographic Reduced Representations in particular.   

For VSAs, Context Dependent Thinning will map similar structures to similar vectors, as required 

by Constraint 4.  Other VSA methods can run into problems with this constraint:  there is no 

vector similarity between V*W and V*W*X.  For example, (smart * girl), and (smart * 

Brazilian * girl) have no similarity. 

Another troublesome case for all VSAs is representing repeated objects whenever binding is used 

for phrases.  We might like (tall * boy), (very * tall * boy), and (very * very * tall * boy) to 

each be different, yet with appropriate similarity between pairs of phrases.  However HRRs give 

no relation between pairs of phrases, and BSC gives no difference between phrases 1 and 3 

(unless various workarounds are employed).   

The issue is whether to represent phrases by binding the terms directly, (V*W*X), or by binding 

their sum, #(V+W+X), as in MBAT.   

Note that in HRRs we can convert a two-argument * operator to a unary * operator by 

*(V+W+X) ≡ dummy * (V+W+X). 

(There are other ways to create unary operators from two-argument operators.) 
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When included in representations, such additive phrases permit HRRs to map similar phrases to 

similar vectors, thereby satisfying Constraint 4 in Section 2.  We now have  

*(smart + Brazilian + girl) 

similar to  

*(Brazilian + girl), 

which was not the case with (smart*Brazilian*girl) and (Brazilian*girl).  Computation is also 

reduced, because * requires more work than computing vector addition. 

Moreover, it is also much easier to recognize whether V
girl

 is in *(smart + Brazilian + girl) than 

it is to recognize whether it is in (smart * Brazilian * girl), because we can take a single dot 

product, similar to equations 3.2 – 3.4. 

Thus employing an additive phrase as the argument for a unary binding operator would appear 

beneficial for HRR representations (and also possibly Socher’s models).  Even better, we can 

combine an additive phrase vector with an HRR binding (rather than replacing it) as in  

 (V*W*X)   +   dummy*(V+W+X). 

This is an example of multiple simultaneous representations. 

Finally, it can be seen that HRR binding of sums, as in dummy*(V+W+X), corresponds 

precisely to MBAT bindings, where the MBAT binding matrix is restricted to matrices having 

each row other than the first be a single rotation of the preceding row. 

Jackendoff’s Challenges 

These complex structure issues connect to Jackendoff’s Challenges to Cognitive Neuroscience 

[2002] and to Gayler’s response [2003].  Jackendoff issued four challenges for Cognitive 

Neuroscience, of which Challenge Two, “the problem of 2”, involves multiple instances of the 

same token in a sentence, for example “the little star” and “the big star”.  We want to keep the 

two stars distinct, while maintaining a partial similarity (both are stars).  M
Actor

 (the + little + 

star) and M
Object

 (the + big + star) are different, yet both are similar to (M
Actor

 + M
Object

) star, as 

desired.   

Further, using additive phrases, we can encode the original example discussed by Jackendoff, 

“The little star’s beside a big star” by the vector 

M
Actor

 (the + little + star)  +  M
Verb

 ( ‘s )  +  M
Relation

 (beside + the + big + star) 

and similarly for HRRs using additive terms. 

 Applications 

For applications of MBAT, each modeling environment will require that we select the appropriate 

Preprocessing Stage details to take advantage of specific characteristics.  For example with 

language, we need to select a method for making similar terms have similar vectors, decide which 
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chunking, tagger (etc.) software is available for specifying structure information, and decide 

which binding operator variation to employ.   

Similarly, for machine vision, we need to see what are the available feature detectors and what 

higher-level structure information is available.  

However once these details are specified, we can create representations using MBAT, and then 

use standard machine learning algorithms directly “out of the box” to learn tasks of interest. 

We believe that MBAT provides a practical playing field where machine learning can efficiently 

operate upon objects, their structures, and sequences all at once – as either inputs or outputs. 

Let us briefly look at possible applications. 

 For Information Retrieval, representing structure (in addition to terms) may improve 

performance in various learning tasks, for example finding specific categories of articles 

(eg., “joint ventures where a specific agreement is announced”). 

 In natural-language processing, MBAT gives a way to make good use of parse 

information keyed to sets of phrases as in  

V = M
Actor

 (the + smart + girl + phraseHas3words) + M
verb

 (saw + phraseHas1word) 

+ M
Object

 (the + gray + elephant + phraseHas3words). 

Thus we have a direct approach, using existing Taggers, for learning machine translation 

from paired corpora with paired sentences.  For example, we can work from a collection 

of English sentences with corresponding French translations.  (Different dimension 

vectors can be used for the two languages.) We take the vectors for English and French 

translations, and then train a classifier to go from the D components of the French 

sentence vector to the first component of the English vector.  Similarly for the other 

components of the English vector, resulting in D classifiers in total.  The net result is a 

map from French words and parse structure to English words and parse structure.  

Whether this would work well, or whether it would not work at all, would need to be 

explored in an implementation.   

A potential difficulty with translation is that it may be challenging to construct an output 

module that goes from a vector to a corresponding string of terms.  For this task, we need 

to recover the sentence, rather than recognize the components of a sentence encoded by a 

vector.  Here it is likely that embedding Tags into phrases (eg., phraseHas3words) will 

help with output.  Nevertheless, constructing a vector-to-sentence module is a critical – 

and likely difficult – task for translation (or summarization) when using vector 

representations. 

There are other potential applications that share similarities with representing natural 

language, including representing genome sequences and chemical structures. 

 Another application area is computer vision.  Here a natural problem seems to be 

recognizing whether an image contains a specific object. Such tasks likely require 

multiple representations of structures at different scales in the image.  This suggests 

combining multiple feature detectors (working on different scale sizes), and employing 

different binding operators (M
close_to

, M
above

, etc) to end up with sums of terms such as: 
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 M
close_to

 (location + shape_1 + shape_2) and  

M
above

 (location + shape_1 + M shape_2), etc. 

As with natural language, our representation only gives a research path to generating a 

practical system, but does not totally solve the problem.  A creative implementation is 

still required. 

 A final application is neural modeling.  In particular, we want to capture the 

computational essence of neural information processing at a useful level of mathematical 

abstraction.   

Of course the brain does not have complete recurrent connections, where every neuron is 

connected to every other.  (In other words, binding matrices contain many zero terms, 

which doesn’t fundamentally change the analysis.)  Specialized brain sub-structures and 

many other details are also ignored in our abstract model. 

Nevertheless, the MBAT computational architecture suggests a number of computational 

explanations for large-scale aspects of neural organization.   

The most important example is that the binding operation suggests a plausible 

computational reason for the brain having so many recurrent connections.  (A neuron has 

an estimated average of 7,000 synaptic connections to other neurons.) 

A second, and more subtle, computation-based explanation is for an aspect of neural 

organization currently taken completely for granted:  the need for a separate memory 

mechanism.  In other words, why not have a unified “whole brain” that simply 

remembers everything?  The computational explanation is that, with the representation 

we have developed, objects/structures are expensive to store, because the number of 

required vector components rises linearly with the number of stored items.  Also, 

recovery – as opposed to recognition – of objects is not directly given by the 

representation we have explored.  Hence the need for a specialized memory functionality, 

separate from general binding, that efficiently stores large numbers of objects and that 

facilitates recovery of stored vectors. 

Finally, the MBAT architecture can motivate Cognitive Science hypotheses.  For 

example, we can hypothesize that there are neural resources devoted to recognizing 

phrases in language at an early processing stage.  This hypothesis is supported by the 

computational benefits we have seen, as well as by the help given for phrase recognition 

in both written and spoken language:  punctuation, small sets of prepositions and 

conjunctions, typical word ordering for phrases, pauses in speaking, tone patterns, 

coordinated body language, etc.  Recent Magnetoencephalography studies by Bemis & 

Pylkkänen [2011] give additional support.
5
 

For some applications, VSAs in general will need to be augmented by several very important 

missing pieces.  These revolve around learning (including long term and short term memory), 

storage/recall of vectors, novelty recognition and filtering, focus of attention, and dealing with 

                                                 
5
 Localized neural response for minimal phrases (“red boat”) occurs not in traditional language areas, but 

instead first in areas associated with syntax, followed by areas associated with semantic processing. 
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large sequences or structured large objects (reading a book).  Is there a good extension of MBAT 

that will properly accommodate these functions?   

We leave such Representation Theory development, as well as construction of practical systems 

in natural language, computer vision, and other areas, to future work. 
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Appendix:  Capacity for Vector Sums 

It is possible to derive good approximation formulas for storage and recognition performance 

within a single distributed vector, as we show below.   

Previous approximations appear in the Appendices in Plate’s book [2003] and Anderson [1973], 

both of which look at vector components drawn from normal distributions rather than +1/-1.  

Their findings for normally distributed components agree with Propositions 1-3 below.     

We use the following notation, assumptions, and simplifications: 

 D = dimension of vectors 

 S = number of vectors bundled together to form vector V 

 N = number of randomly generated vectors that we wish to distinguish from those used in 

the sum forming V 

 T (x) = one-sided tail probability in a normal distribution of a random variable being at 

least x standard deviations from the mean  

 Z = √ (D/(2S-1)) for fixed D and S 

 All object vectors are randomly generated +1/-1 vectors. 

 For simplicity, we do not include continuous vectors produced by binding operations 

(vectors formed by random matrix multiplications).  We could, however, include such 

vectors if we’re thresholding matrix multiplication results to obtain +1/-1 vectors. 

The first thing to note is that the dot product of two random vectors has mean 0 and variance D 

(and hence standard deviation √D), because it is the sum of D independent random variables, 

each with mean=0 and variance=1. 

Similarly, when we add S vectors to form vector V, then for a random vector R, we have
  R

 
• V 

also has mean 0 and variance SD, giving standard deviation √(SD).   

Let A be a randomly chosen vector from the S vectors Added (bundled) to form V, and R a 

Random vector. 

We’re interested in the probability of a mistaken recognition where R
 
• V > A

 
• V. 

As in the proof of Property 1 for vector addition, 

   R
 
• V = 0 + <mean 0 noise from the dot product with a sum of S vectors>, and  

   A
 
• V = D + <mean 0 noise from the dot product with a  sum of S-1 vectors>. 
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For D large enough, the Central Limit Theorem of statistics guarantees that the first noise term 

will be closely approximated by a normal distribution with mean 0 and standard deviation √(SD), 

denoted N(0, √(SD)).  Similarly, the second noise term is closely approximated by N(0, √((S-

1)D)) 

So the probability of a mistake with these two vectors is given by: 

the probability of a random value selected from N(0, √(SD))  being greater than  a 

random value selected from N(D, √((S-1)D). 

This is equivalent to the probability of a random vector being negative when selected from N(D, 

√((2S-1)D), because the difference of two normal distributions, X-Y, is a normal distribution 

having mean equal to the difference of the two means, and variance equal to the sum of the two 

variances.  [Many thanks to the Referee who pointed this out.] 

Proof:  From basic definitions, if Y is normally distributed then so is (-Y), with    

mean(-Y) = -mean(Y) and with Var(-Y) = Var(Y).  The result now follows from 

well-known properties for the sum of two normal variables, applied to X and      

(-Y). 

Thus, looking at standard deviations, an error occurs when a difference is in the tail probability at 

least D / √ ((2S-1)D)  =  √ (D/(2S-1)) standard deviations from the mean. 

Here it is convenient to introduce some simplifying notation.  We define: 

 Z = √ (D/(2S-1)) for fixed D and S. 

Thus, for pre-specified D and S, we have Z corresponding to D as measured in standard 

deviations of the difference in noise terms.  

We also adopt the notation T (x) = one-sided tail probability of a random variable being at least x 

standard deviations from the mean in a normal distribution. 

Thus an estimate for the error with the pair of randomly chosen vectors, one from the bundled 

vectors and some other random vector is  

(*)    T (Z)  = T (√ (D/(2S-1))). 

Now we only need to note that the tail probabilities of a normal distribution decrease 

exponentially (ie., as e
-x

) with the number of standard deviations to conclude: 

Proposition 1:  For a fixed number, S, of random +1/-1 vectors bundled together to get vector V, 

the probability of a random vector having greater dot product with V than a randomly selected 

vector in the sum decreases exponentially with vector dimension, D. 

proof:  T (√ (D/(2S-1))) decreases exponentially as D increases. 

We are really interested in the probability of all S of the vectors in the sum having greater dot 

product with V than any of N random vectors.  This probability is given by 

[ 1 - T (Z) ]
NS

  ≈  1 – NS T (Z) 
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assuming NS T (Z) is close to 0, and dropping higher-order terms.  Thus we have 

Proposition 2:  For a fixed number, S, of random +1/-1 vectors bundled together to get vector V, 

if we generate N additional random vectors, then the probability that each random vector has less 

dot product with V than each vector in the sum equals 1 minus an exponentially decreasing 

probability as vector dimension, D increases. 

In other words, as D increases, the probability of less than error-free discrimination between S 

vectors in the bundle and N random vectors decreases exponentially. 

Proposition 3:  For a fixed number, N, of random +1/-1 vectors, the number of vectors, S, in a 

bundle that can be perfectly discriminated against with constant probability increases nearly 

linearly with vector dimension D.  (More precisely, the required D increases linearly with S, plus 

second order terms.) 

In summary, as D increases, the number of random vectors we can discriminate from a sum of S 

vectors increases exponentially, and the number of vectors we can have in the sum while 

maintaining discriminatory power increases slightly less than linearly with respect to D. 

It is instructive to compute several of these bounds. 

For a “Small” system where we sum S=20 vectors (ie., terms, Tags, image primitives, etc.) to 

form V, and we have N = 1,000 additional random vectors, we compute 

Probability of error = (20) (1,000) [T (√ (D/(2S-1)))]. 

For the term in brackets, the tail probability which is 4.8 standard deviations from the mean is 

1/1,259,000 which gives a probability of error of about 1.6%. 

For 4.8 standard deviations, we need D large enough to satisfy  

4.8 = Z = √ (D/(2S-1)), or D = 4.8
2
 * 39 = 898.56. 

Thus:  

 98.4% of the time, a vector dimension of D = 899 will give error-free discrimination 

between 20 vectors in the sum and 1,000 additional random vectors. 

 Similarly, we can consider a “Medium” sized system with up to 100 vectors summed 

together, and with 100,000 other random vectors.  Here a 5.9 standard deviation value for 

D is required for 1.8% probability of error, which works out to a bound on required 

vector dimension of D = 6,927.  (Details omitted.) 

 Finally, we can consider a “Large” sized system with up to 1,000 vectors summed 

together, and with 1,000,000 other random vectors.  Here a 6.7 standard deviation value 

for D is required for 1% probability of error, which works out to a bound on required 

vector dimension of D = 90,000. 

 

By comparison, Plate gives simulation results [Figure 56] that for 99% error free performance in 

a small system with 14 bundled vectors and 1,000 additional random vectors, the required 
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dimension D is between 850 and 900, which is comparable to our simulations with +1/-1 

components.  

He also derives a bound on required dimensionality where vector components are normally 

distributed.  Letting q be the probability of error, Plate derives: 

 D <  8(S + 1) ln(N/q) 

provided  

 D > 2(S + 1) / π. 

These bounds are consistent with Propositions 1-3.   

For “Small”, “Medium”, and “Large” systems, Plate’s bound for 1% probability of error yields 

required dimensions of 2,000; 13,000; and 148,000 respectively.  Thus these bounds are not quite 

as tight as those derived above, or possibly systems with continuous vector components require 

greater dimensions than systems with binary components. 

 

 


