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Abstract

We study a rate-model neural network composed of excitatory and inhibitory neurons in which

neuronal input-output functions are power laws with a power greater than 1, as observed in

primary visual cortex. This supralinear input-output function leads to supralinear summation of

network responses to multiple inputs for weak inputs. We show that for stronger inputs, which

would drive the excitatory subnetwork to instability, the network will dynamically stabilize

provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus

parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation

of network responses to multiple inputs. We compare this to the dynamic stabilization in the

“balanced network”, which yields only linear behavior. We more exhaustively analyze the 2-

dimensional case of 1 excitatory and 1 inhibitory population. We show that in this case dynamic

stabilization will occur whenever the determinant of the weight matrix is positive and the

inhibitory time constant is sufficiently small, and analyze the conditions for “supersaturation”, or

decrease of firing rates with increasing stimulus contrast (which represents increasing input firing

rates). In work to be presented elsewhere, we have found that this transition from supralinear to

sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.

1 Introduction

In work to be presented elsewhere (presented as abstracts in Miller and Rubin (2010); Rubin

and Miller (2010); Miller and Rubin (2011); Rubin and Miller (2011)), we have found that a

large set of response properties of cells in primary visual cortex (V1) and other sensory

cortical areas can be understood from a very simple circuit motif. The response properties

have in common a change in integration with increasing input strength, so that responses to
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weak inputs sum supralinearly while those to stronger inputs generically sum sublinearly. In

this paper, we mathematically analyze the model’s behavior.

One set of properties the model can address involves contextual modulation or “surround

suppression”. A visual sensory neuron has a classical receptive field (CRF), corresponding

to the region in which appropriate visual stimuli will drive the neuron’s responses. The size

of the CRF does not change with input strength (Song & Li, 2008). Stimuli outside the CRF

can modulate responses to CRF stimuli, although they cannot drive responses, and typically

are suppressive. However, the nature of the surround influence can vary with input strength

(Sengpiel, Blakemore, & Sen, 1997; Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998). A

size tuning curve is obtained by centering an effective stimulus on the CRF center and

studying response vs. stimulus radius. The summation field size is the stimulus size evoking

peak response. This summation field size shrinks with input strength, as represented by

stimulus contrast (Sceniak, Ringach, Hawken, & Shapley, 1999; Cavanaugh, Bair, &

Movshon, 2002; Anderson, Lampl, Gillespie, & Ferster, 2001; Shushruth, Ichida, Levitt, &

Angelucci, 2009; Tsui & Pack, 2011). This means that regions of the surround are changing

from facilitating to suppressing with increasing input strength.

Another set of properties involves sublinear summation of the responses to multiple stimuli:

the response to two simultaneously presented stimuli can be closer to the average than the

sum of the responses to the stimuli presented individually. We refer to this property as

“normalization”, because it is the most prominent of a set of nonlinear response properties

that have been given that name (reviewed in Carandini and Heeger (2012)). In at least some

cases, this summation becomes supralinear when inputs are weak (Heuer & Britten, 2002;

Ohshiro, Angelaki, & DeAngelis, 2011). If one thinks of surround suppression as

representing the response to simultaneous presentation of a center stimulus that normally by

itself evokes a certain response and a surround stimulus that normally by itself evokes zero

response, then surround suppression can be thought of as an example of sublinear

summation. Similarly, facilitation by the near surround for weak inputs then represents

supralinear summation.

As we will show elsewhere, these and other response properties can be understood in some

detail from a simple model. We consider a network of excitatory (E) and inhibitory (I)

neurons, extended across a 1-D or 2-D space. The strengths of each type of connection − E

⇒ E, E ⇒ I, I ⇒ E, I ⇒ I − fall off as functions of cortical distance. We are guided by

previous results that showed that the inhibition received by cells is decreased when they are

being suppressed by a surround stimulus, relative to their response to a CRF stimulus alone

(Ozeki, Finn, Schaffer, Miller, & Ferster, 2009), and correspondingly that the firing of

inhibitory cells, like that of excitatory cells, is suppressed by surround stimuli (Song & Li,

2008). These results led to the conclusion that the E ⇒ E connections must be sufficiently

strong that, when the network is being driven by a CRF stimulus, they would render the

network unstable in the absence of feedback inhibition (Tsodyks, Skaggs, & Sejnowski,

1997; Ozeki et al., 2009), a conclusion also supported by other work (London, Roth, Beeren,

Hausser, & Latham, 2010). We termed such a network an inhibition-stabilized network or

ISN.
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We then add to this the fact that individual neurons have a supralinear, power-law input-

output function. This is based on intracellular recordings in anesthetized cat primary visual

cortex (V1) that showed that a neuron’s instantaneous firing rate is well described as a

power law function of its instantaneous mean voltage relative to rest (rates and voltages

measured in 30 ms bins) with powers ranging from 2 to 5, and that this holds true over the

entire dynamic range of neuronal response to visual stimuli (N. Priebe, Mechler, Carandini,

& Ferster, 2004; N. J. Priebe & Ferster, 2005, 2006; Finn, Priebe, & Ferster, 2007).1 This

power law relationship is predicted on theoretical grounds when mean input is subthreshold

and spiking is driven by input fluctuations (Miller & Troyer, 2002; Hansel & van Vreeswijk,

2002), as appears to be the case in V1 (Anderson, Lampl, Gillespie, & Ferster, 2000).

Here we mathematically analyze the model. We focus particularly on exposing the origins of

the generic transition in model behavior from supralinear to sublinear summation as input

strength increases. This typically corresponds to a transition from a regime in which the

excitatory network is stable by itself to one in which the excitatory subnetwork by itself is

unstable, but is stabilized by feedback inhibition. Hence we refer to the network as the

stabilized supralinear network or SSN. We also conduct a more detailed analysis of the 2-

dimensional case consisting of a single excitatory and a single inhibitory population.

2 Setup: Equations for the Supralinear Network

We take  to be the N-dimensional vector of neuronal firing rates, ordered so that

the top NE neurons, represented by rE, are all excitatory neurons, and the remaining NI

neurons, represented by rI are inhibitory neurons, NE + NI = N. (We refer to the units in our

model as “neurons”, but, as discussed below, the equations represent average firing rates and

so excitatory or inhibitory units may be better understood as local interconnected groups of

excitatory or inhibitory neurons, over which the average is taken.) The matrix of connections

between the neurons is  where WXY is the matrix of connections

from neurons of type Y (E or I) to neurons of type X and has non-negative entries. The

feedforward input to the neurons in the network is .

We study the simplest standard firing-rate-model equations (reviewed in Ermentrout and

Terman (2010), Chapter 11; Gerstner and Kistler (2002), Chapter 6; Dayan and Abbott

(2001) Chapter 7), in which a neuron’s firing rate approaches a nonlinear function of its

input with first-order dynamics:

1We are assuming that mean voltage is linear in the input. Nonlinearities such as spike-rate-adaptation currents could complicate this
picture. We also are ignoring the fact that the power increases with contrast, because the noise level decreases with contrast (Finn et
al., 2007), which yields increasing powers (Miller & Troyer, 2002; Hansel & van Vreeswijk, 2002). However the picture we describe
in this paper primarily concerns stabilization against the otherwise explosive nonlinearity of a supralinear input-output function. Thus,
the picture should hold so long as the input-output function is supralinear over the cell’s dynamic range, as expected for fluctuation-
driven spiking – the closer the cell is to threshold, the greater the increase in spiking driven by a given increment of input.
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(1)

Here T is a diagonal matrix of relative time constants, i.e. the time constant of the ith neuron

is τTii. f is a vector function of a vector argument that acts elementwise on its argument,

(f(v))i = fi(υi), for some scalar functions of a scalar variable, fi, where υi is the ith element of

v. These rate model equations do not capture fast time scales that arise in spiking networks,

and cannot capture synchronization of spikes across neurons, but tend to be reliable in

describing steady states or slower aspects of dynamics when neurons spike asynchronously.

We will focus on the steady state and its stability.

We will study the case in which the fi are identical for all elements, fi ≡ f, and f is a rectified

power law with power n > 1:

(2)

where [x]+ = x, x > 0; = 0, otherwise. We will summarize this by saying

(3)

where v․n is the vector with ith element ([υi]+)n (the period in the exponent ․n, based on

Matlab notation, is to indicate that the operation is done element-by-element rather than to

the vector as a whole). A power-law relation between the mean input and mean response

arises in the case that spiking is driven by input fluctuations (Miller & Troyer, 2002; Hansel

& van Vreeswijk, 2002), and similarly it is observed in V1 as the relation between the trial-

averaged mean voltage and mean response. Note that the fact, noted in the Introduction, that

the power law holds over the entire dynamic range of visual responses means that V1

neurons never reach firing rates at which intrinsic saturation of the input-output function

plays a role. Since V1 firing rates in response to optimal visual stimuli are typically among

the highest seen in cerebral cortex, the same conclusion is likely to apply to cortex more

generally. For this reason, we model the input/output function of the neuron simply as a

power law without considering saturating parts of the input/output function. Model results

will only apply when the model produces firing rates that remain within the non-saturating

regime.

We now change variables to dimensionless ones. This allows us to determine the

dimensionless combinations of parameters on which model behavior depends and in which

expansions for small or large values may be undertaken. We let ψ = ‖W‖ where ‖W‖ is
some matrix norm or other measure of the size of W, and write W = ψJ with J
dimensionless and ‖J‖ = 1. Similarly we let c = |h| and write h = cg with g dimensionless

and |g| = 1 (again, |g| indicates some measure of the size of a vector, e.g. a vector norm).

Note that c and ψr have the same units, so that ψr/c is dimensionless, and that kcn and r
have the same units, so that kcn/(c/ψ) = kcn−1ψ is dimensionless. We thus define the

dimensionless variable and parameter:
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(4)

(5)

Then equation 3 becomes

(6)

Thus, given J, g, T, and n, the dynamics depends only on the single parameter α.

The fact that Eq. 6 has a single α for all neurons is quite general: if neuron i had parameter

αi, this could be replaced with α by multiplying all weights Jij and inputs gi to neuron i by

, leaving the form of the equation unchanged. However the fact that the equation

has a single n for all neurons is a real restriction. Consideration of n’s that vary between

neurons or between neuron types remains a question for future study.

Note that we can rewrite Eq. 3 as  where f(x) = x․n and the input

. By incorporating the factors of k into the input I, the steady-state rate f(I)

becomes of unit magnitude when the input I is of unit magnitude. This is a natural scaling

for defining the effective recurrent weights, , and the effective input strength, .

Then , that is, α = (recurrent weight)(feedforward

strength)n−1. Note also that whether the input is dominated by feedforward input cg or

recurrent input Wr is determined by the size and structure of y for a given α (because Wr +

cg = c(Jy + g), so that the balance depends only on the relative sizes of Jy vs. g), and is not

impacted at all by the ratio c/ψ, which naively might be thought to determine the

feedforward/recurrent balance. For a given α, this ratio simply scales r (r = (c/ψ)y).

We will focus on the equation for the steady-state:

(7)

However, in considering stability of the steady state we will need to use the dynamical

equation 6.

3 Scaling Argument

In this section, we show that the supralinear network generically makes a transition between

responses that scale in two different ways with α. For weak inputs (α ≪ 1), the net input

(feedforward plus recurrent) to a neuron grows linearly with the feedforward strength.

Because of the supralinear neuronal input/output function, this yields supralinear summation

of responses to multiple sets of feedforward inputs. For stronger inputs (α ≫ 1), the

recurrent input largely cancels the feedforward input, leaving only a net input component
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that grows sublinearly with the feedforward input strength. This yields sublinear response

summation for a broad range of parameters. The transition between these two scaling

regimes, which we refer to as the supralinear and sublinear scaling regimes respectively,

occurs for α of order of magnitude 1, for which we use the standard notation α ~ O(1). We

then compare this dynamic input cancellation to that in the balanced network model of Van

Vreeswijk and Sompolinsky ((1998)).

The transition from supralinear to sublinear scaling is generally marked by recurrent

excitation becoming strong enough to yield instability and explosive growth of activity on

its own, along with dynamical stabilization of network activity by feedback inhibition. The

effective connection strength between two neurons tells how much the steady-state

postsynaptic rate changes for a given change in steady-state presynaptic rate. This is given

by the weight between the neurons times the postsynaptic gain. The gain is the slope of the

input-output function (Eq. 2), which is monotonically increasing with the postsynaptic cell’s

firing rate. That is, given the steady-state equation , the effective

weight from neuron j to neuron i is , which

monotonically increases with ri. With increasing input, the network responses typically

increase and hence effective connections grow until the recurrent excitatory-to-excitatory

connections become strong enough to yield instability absent stabilization by feedback

inhibition. The transition from supralinear to sublinear scaling is generally closely

associated with this transition to potential excitatory instability, as we will see (Figs. 2–4

and Section 5.4).

3.1 Scaling for small α

For α ≪ 1 we expect the steady state to satisfy y ≈ αg․n, since then the Jy term is small

relative to the g term and so adds only a small correction to this solution. More generally, we

can write a formal expression for the steady state by starting with Eq. 7 and iteratively

substituting α(g + Jy)․n for each instance of y, yielding:

(8)

or, in terms of r,

(9)

where the ellipses indicate infinite repetition of the pattern. Assuming quantities in the

parentheses are positive (which they will be for sufficiently small α as we assume all

components of g are positive) so that we can ignore rectification, Eq. (8) can be converted

into an infinite series in increasing integer powers of α with dominating (lowest-order) term

αg․n.2 The terms multiplying αp will involve factors of g interspersed with J’s, with the sum

of the powers on the g’s equal to p(n − 1) + 1. Similarly for r, one obtains a series involving

an infinite set of powers of c, with lowest-order term k(cg)․n and higher-order terms

proportional to kpcp(n−1)+1 and involving a set of g’s with summed power also equal to p(n −
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1) + 1. If this series converges, which it will for sufficiently small α, it will give a steady

state solution.

Thus, for small α, feedforward inputs sum supralinearly to produce responses (i.e., the

response r depends supralinearly on the feedforward input cg). Intuitively: as previously

noted, the effective connection from neuron j to neuron i is . For small α, ri ≈

k(cgi)n so  is small, that is, effective connections are small. In this

regime the network is essentially feedforward driven, with small modifications by the weak

effective recurrent connections. Since individual cells respond supralinearly to their inputs,

the network sums responses supralinearly.

3.2 Scaling for large α

The scaling y ~ α (or equivalently r ~ cn) cannot hold once α is sufficiently large. In

particular, for sufficiently large α, the series in Eq. 8 will explode rather than converge.

Physically, this occurs because inputs are raised to the power n > 1 to produce responses

which in turn feed back in as inputs; once inputs are sufficiently large, this process is

explosive, like a nuclear reaction going critical. We expect this to occur for α = O(1).

Moreover, for α ≳ 1, the effective recurrent weights typically become strong enough that

the excitatory subnetwork by itself becomes unstable in the absence of dynamic feedback

inhibition.

For Eq. 7 for the steady state to be self-consistent, the dependence of α(Jy + g)n on the

leading α must be cancelled, because otherwise y ~ α, which enters into Jy and (dominating

over the feedforward input, g, for large enough α) is raised to the nth power to give3 y =

α(Jy + g)n ~ αn+1, which in turn enters into Jy, and so on – the infinite series in powers of α
results, which will blow up for sufficiently large α. Thus to cancel the leading α, it must be

the case that, to leading order in α, . This in turn requires that, to leading order,

y has the same α-dependence as g, y ~ α0, so that the leading order of y can cancel the g

term leaving only terms of order .

Thus, if the steady-state Eq. (7) is stable, the recurrent input Jy must have dynamically

adjusted itself to approximately cancel the feedforward input g, leaving a remainder that

becomes smaller with growing α. We refer to this as dynamic stabilization, for two reasons.

First, mathematically, this dynamic cancellation is necessary for the existence of a stable

steady state for large α. Second, physically, the cancellation typically arises as the excitatory

subnetwork becomes unstable by itself and the network is dynamically stabilized by

feedback inhibition, although as we will discuss later (Section 5.4) there are cases in which

the cancellation arises without excitatory subnetwork instability.

2This can be done by expanding each power in Eq. 8 as

, where ․* indicates
element-by-element multiplication of two vectors to create another vector, and then collecting together the terms of each given order
in α.
3This could be avoided if Jy = 0 to leading order in α, but that requires fine tuning, i.e. it requires Det J = 0.
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Let us define

(10)

We write y = y0 + βy1, with both y0 and y1 approximately O(β0) so that βy1 scales

approximately as β. It follows from the requirement Jy + g ~ β that

(11)

Substituting y = −J−1g + βy1 in Eq. (7) then yields

(12)

The latter equation shows that y1 itself has some further dependence on β. We will further

discuss below whether the assumption holds that βy1 scales approximately as β.

These arguments can be translated in terms of r. Once c is sufficiently large, self-

consistency requires cancellation of the linear dependence of Wr + cg on c, because

otherwise r ~ cn, which enters back into Wr and is raised to the n to yield cn2
 dependence,

and so on. Cancellation requires that, to leading order, r ~ c, which in turn requires that to

leading order , that is, the net input to a cell grows sublinearly with the

feedforward input strength. Writing , with r0 and r1 both O(1), we find that

 and , with r1 satisfying

.

These solutions show that, if the network dynamically stabilizes, the net input to cells grows

sublinearly with the feedforward input strength and responses are given by a sum of terms

that are linear and sublinear in the feedforward inputs. In studies of 2-dimensional systems

(one excitatory and one inhibitory population), we will find that, when the excitatory-neuron

element of −J−1g (equivalently of r0) is negative, the sublinear term becomes dominant (as it

must: (y0)E < 0, so one must have β(y1)E > |(y0)E| for yE > 0) and network behavior becomes

strongly sublinear. In this case, excitatory firing rates eventually peak and then are

ultimately pushed to zero with increasing c, i.e. with decreasing β, but there is typically a

large dynamic range of c beyond the supralinear-to-sublinear transition before this peak

occurs (see Figure 2). The behavior from c = 0 until somewhat beyond the peak yields

behavior much like that seen in biology, and so we guess that this dynamic range represents

the dynamic range of the feedforward input to cortex. This will be discussed in Sections 5.2–

5.3. In simulations, the dependence of y1 on β remains weak, so that βy1 decreases nearly as

fast as β, as was assumed, over the range from the supralinear-to-sublinear transition until rE

has been pushed close to zero. By contrast, when the elements of −J−1g are positive, the

subleading correction, , can have either sign, and the total response  can be

a supralinear or sublinear function of c,4 according to whether the sign of r1 is negative or

positive respectively. However, even in the case where the response as a function of c

remains supralinear for large c (small β), the response to the sum of two non-aligned inputs,
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g1 and g2, will typically sum sublinearly for large c, as we will see in Section 4.2. Given

positive elements of −J−1g, Eq. 12 shows that y1 goes to an O(1) constant as β decreases to

zero , and thus the term βy1 is guaranteed to decay approximately as

β for sufficiently small β.

A more systematic account of the large α (small β) case can be obtained by formulating a

solution like that of Eq. 8 for small α. When the elements of y are > 0 (and thus the elements

of Jy + g are > 0), we can rearrange Eq. 7 for the steady state as

(13)

Then we can formally write a steady-state solution by starting with equation 13 and

iteratively substituting  for y to obtain

(14)

or

(15)

If quantities in parentheses are positive, a series solution in powers of β can be obtained

from Eq. 14 in the same manner as outlined for Eq. 8. When this series converges, which it

will for small enough β, it gives a steady-state solution. However, if elements of −J−1g are

negative, then for small enough β the elements in parentheses will no longer be positive (and

correspondingly, as mentioned above, in the 2-D case yE is pushed to zero with decreasing β
at finite β, so that Eq. 13 fails at that point). We can instead regard Eq. 13 as an iterative

scheme, , beginning from some initial condition y[0] (Eq. 8

can also be regarded in this way), which generates Eq. 14 as p → ∞. Writing this as y[p +

1] = f(y[p]), if all of the eigenvalues of the Jacobian of f at the fixed point have absolute

values less than 1, then the iteration will converge to the fixed point within some basin of

attraction about the fixed point. Hence with suitable initial conditions, one can find solutions

through this iterative scheme, although not for β’s less than that at which some elements of y
are pushed to zero.

These scaling arguments provide key insights into the supralinear network (Eq. 3) that is

confirmed by other analysis and simulations: for small α, recurrence is weak and the

network supralinearly adds responses to different feedforward inputs; with increasing α,

there is a transition, for α = O(1), to a dynamic stabilization that causes the net input

neurons receive, and in many cases their responses, to add sublinearly. Note that, when

responses add sublinearly, individual neurons still supralinearly sum the net (feedforward

plus recurrent) inputs they receive, but the network “conspires” to deliver net input that is so

4By saying that r(c) is a supralinear or sublinear function of c, we mean that  is > 0 or < 0 respectively.
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strongly sublinear that, even after the neuron raises its net input to the power n, its responses

add sublinearly. We have found in both high-dimensional and 2-dimensional simulations,

and we will show below for the 2-dimensional case, that stabilization will occur provided

feedback inhibition is sufficiently strong and the inhibitory time constant is not too slow

relative to the excitatory time constant. This transition from supralinear to sublinear

behavior in turn appears to underly a wide variety of nonlinearities in neocortical behavior.

3.3 Comparison to the balanced network

Van Vreeswijk and Sompolinsky (1996, 1998) introduced the “balanced network” model

(see also Renart et al. (2010)). They considered a circuit of randomly connected stochastic

excitatory and inhibitory units that could have activity states 0 or 1, in the limit in which

both feedforward and recurrent inputs were very large. (The same model could also be

studied in other regimes, but we use “balanced network” to refer to the model in the large-

input regime that they studied and “balanced state” to refer to the solution they characterized

in that regime.) They studied the conditions in which the network would dynamically find its

way to a balanced state in which the mean input is subthreshold, yet firing rates are nonzero

(where firing rate is defined as the average activity), meaning firing is driven by

fluctuations. They assumed each unit received K inputs of strength , or a net input of

strength , for K large (e.g., thousands of inputs). The mean field equations for the

average E and I firing rates are the 2-dimensional version of the rate equation, Eq. 1, for one

E and one I population, where both W and cg are of order ,5 and the function f is a

sigmoidal function rising from 0 to 1 as the input moves from approximately −3 to 3, and

saturating at 0 or 1 for smaller or larger values respectively. To be in the balanced state, the

mean firing rate must be neither 0 nor saturated at 1, so the net input must be O(1) (i.e.

between −3 and 3).

Thus, the condition for the balanced state is that Wr + cg ~ O(1) where both W and cg are

. The solution, much as in our scaling argument, is to write ,

where r0 and r1 are O(1) and the dots represent higher-order terms in . The balance

condition is that the  term in the input vanishes, that is, Wr0 = −cg, leaving as input

only the O(1) term  and terms that are .

The dynamic cancellation condition for the balanced state, r0 = −cW−1g, is of course

identical to the condition we have found for approximate dynamic cancellation in the SSN.6

Although the condition is formally identical, the meaning is different in crucial ways:

1. In the balanced network, the cancellation is required because inputs are large and

must cancel to leave something small, in order to avoid zero or saturated output. In

5The input is expressed in units of a variance term which itself is dynamically determined, but this term is O(1) and does not impact
the points made here.
6We wrote the leading term as cr0 rather than r0, but the leading terms are identical.
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the SSN, partial cancellation can already arise when none of the inputs are large

and is required so that the supralinear input-output functions do not give rise to an

inconsistent, explosive scaling. The difference in the size of the inputs when

cancellation occurs can be seen by recalling that, in the SSN, α = (recurrent

weight)(feedforward strength)n−1 (see paragraph above Eq. 7).7 In the balanced

network, the recurrent weights and the feedforward weight are both , so the

SSN’s α would be . In contrast, dynamic cancellation arises in the SSN

when α is O(1).

2.
In the balanced network, the second-order term  is negligibly small relative

to the first-order term r0 (because the stabilization is to cancel large things, leaving

something small). The first-order term is linear in the input, r0 = −cW−1g, and so in

the balanced network responses are always linear in the input. In the SSN, the first-

order term in y, y0 = J−1g, is O(1), and while the second-order term βy1 scales

approximately as β, it can have a large pre-factor such that it can be comparable to

or larger than the first-order term over a wide dynamic range, enabling a variety of

sublinear behavior (and r0 and r1 are just c/ψ times the corresponding y’s).

In particular, in the SSN, elements of r0 can be negative, meaning that for such an element

r1 > |r0| over the relevant dynamic range of behavior (discussed in more detail for the 2-D

model in Section 5.2). In the balanced network, since all terms except r0 are negligibly

small, the elements of r0 must be positive for activity to be nonzero.

In sum, in the balanced network, inputs are huge relative to the distance from rest to

threshold, and must dynamically cancel for the network to neither saturate nor have 0

activity but instead be in the fluctuation-driven regime. The dynamic cancellation or

stabilization yields network responses that are always linear in the input. In the SSN, the

supralinear input-output function renders the network explosive – input is raised to a power

greater than 1 to produce responses, which feed back as input. Stabilization against this

explosive nonlinearity arises when inputs are relatively small, yielding a range of sublinear

behavior.

Finally, for clarity we note that the balanced network and SSN are not necessarily different

models, but rather very different solutions with different behaviors in different regimes,

which may be found in the same model. For example, in the power-law model studied here,

the balanced-state solution can be found if α is large, the elements of y0 = −J−1g are

positive, and the feedforward input  and recurrent input  both have the same scaling,

e.g. both are , so that (c/ψ) is O(1). In this case, as α → ∞, y → y0 and ,

so r is O(1); and the first-order correction is , which scales as

7Note that this expression for α holds when the input is scaled appropriately so that the steady state firing rates, f(input), are O(1)
when the input is O(1) (see paragraph above Eq. 7). This relationship between input and steady state rates also holds for the balanced
network, so we have a common scale for the input on which to compare the size of the recurrent weights and of the feedforward
strengths in the two models.
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, e.g. as  (recall y1 is O(1) for large α). This is the balanced-state solution.

Similarly, in the model studied in the balanced network, the input/output function is initially

supralinear before saturating, so we expect that SSN-like solutions could be found for

appropriate regimes of input and recurrent strengths with α = O(1).8

4 Reduction to a 2-dimensional system

Most of our analysis hereafter will focus on a 2-dimensional system of one excitatory and

one inhibitory population, as it is difficult to say much in general in higher dimensions. A 2-

D system of one E and one I population can be derived as a mean field equation from

higher-dimensional models in which E and I neurons have random connectivity (e.g. van

Vreeswijk and Sompolinsky (1998), Renart et al. (2010)). In particular, if the high-

dimensional model involves integrate-and-fire neurons, their input-output functions in the

fluctuation-driven regime can be reasonably approximated by power-law functions (Hansel

& van Vreeswijk, 2002).

Here we consider a higher-dimensional system with structured connectivity. We show a

heuristic derivation of a 2-D system that preserves a surprising amount of the behavior of the

higher-dimensional system. We then show how the conditions for “normalization” –

sublinear addition of responses to multiple stimuli – in the high-D system can be expressed

as simple conditions in the 2-D system on the growth of r with increasing c, or the growth of

y with increasing α. In particular, the transition to the high-α regime represents a transition

to sublinear addition in the corresponding high-D system, even when the dependence of r on

c remains supralinear in the 2-D system.

4.1 Reduction

We consider a topographic network, with pairs of excitatory (E) and inhibitory (I) units

arranged on a 1-D or 2-D grid with periodic boundary conditions. The grid dimensions

mirror stimulus parameters such as orientation or position on the retina, such that units at a

certain location in the grid prefer stimuli with the corresponding parameter(s) (other

stimulus preferences may also be incorporated, e.g., a 2-D retinotopic grid with a

superimposed map of preferred orientations). We will use as an illustration a 1-D ring of

cells of similar retinotopic position but varying preferred orientation, with preferred

orientation represented by position on the ring, but the reduction framework is more general.

Stimuli are localized on the grid (e.g. in the 1-D ring a single oriented grating stimulus

evokes a localized Gaussian-shaped bump of input, centered at the neurons that prefer the

stimulus orientation), though there may be more than one localized stimulus present (e.g.

two superimposed oriented gratings of different orientations). For simplicity, we assume a

single time constant for all E cells and one for all I cells. We let θ represent the position on

the grid, and rE(θ) and rI(θ) the excitatory and inhibitory firing rates at position θ. Thus, we

can write Eq. 3 as

8The value of n in the definition of α could be derived from an approximate power-law fit to the supralinear portion of the input/
output function in that model.
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(16)

(17)

Here, WXY * rY (θ) = ∑θ′ WXY (θ, θ′)rY (θ′)Δθ, where Δθ is the stimulus parameter volume

per grid point.

We will consider “normalization”, the sublinear addition of the responses to two stimuli

(Carandini & Heeger, 2012). We let one stimulus be centered at θ = 0. We let W̃
XY = WXY

(0, 0), and we define  to be the vector of weights to position 0,

normalized by W̃
XY. Similarly, we let r̂E, r̂I be the vectors of excitatory and inhibitory firing

rates, respectively, normalized to equal 1 at position 0, with elements r̂E(θ), r̂I(θ). Then the

equations for the units at position 0 are

(18)

(19)

Although we had previously incorporated changes in |g| into c, we now take addition of a

second stimulus to simply alter g with no change in c, so that in particular addition of a

second stimulus that gives no input to position 0 does not alter gE(0) or gI(0). We now

define

(20)

(21)

Note that in general the JXY depend on the normalized shapes of the responses, r̂E and in

some cases r̂I, which in turn may depend on c and/or g. Letting rE ≡ rE(0), gE ≡ gE(0), etc.,

our equations become

(22)

(23)

As written, Eqs. (22)–(23), together with the definitions (20) and (21), are simply a rewriting

of Eqs. (18)–(19) and hence exact. In particular, the seemingly closed system of equations
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for the two variables rE = rE(0) and rI = rI(0) are in general parametrically dependent on the

values of rX̂(θ) at other θ’s through the dependence of JXY and Ψ on the normalized shapes

of the response curves.

We now adopt the ansatz that, as the stimulus changes, the four dot products w⃗XY · r̂Y are all

scaled by a common factor, whether the stimulus changes in strength (changing c) or in

shape (changing g, e.g. by adding a second stimulus). This means that we treat the JXY as

constants independent of c and g. On the other hand, Ψ is scaled by this common scaling

factor. We make the further ansatz that Ψ depends only on g and not on c. Since Ψ depends

only on the shape of the response, r̂E, and not its magnitude, this amounts to the ansatz that

stimulus strength c alters response magnitude without altering response shape. With these

two ansatze, Eq. 23 is simply the 2-dimensional version of Eq. 3, and is equivalent to Eq. 6

for a 2-dimensional y if Ψ replaces ψ in the definitions of y and α (Eq. 5). (We are no

longer following our convention of ‖J‖ = 1, as the matrix J composed of these J’s need not

satisfy ‖J‖ = 1 for any standard matrix norm; one could, however, return to this convention

by dividing the JXY’s by ‖J‖ and multiplying Ψ by the same factor.) If, furthermore, we also

assume that the shapes of the population responses roughly follow the shape of the input,

then, since the weights w⃗XY are non-negative, the effect of adding a second non-negative

stimulus is to increase Ψ. Hence “normalization” of the E or I population corresponds to a

decrease in firing rates rE(0) or rI(0), respectively, with increasing Ψ, which for a second

stimulus of infinitesimal strength corresponds to

(24)

The ansatze, of course, are not in general true, but they can be close enough to true to give a

good qualitative account of the higher-dimensional system (however, see the discussion at

the end of Section 5.3 for a discussion of cases where the assumptions in our ansatze fail

considerably and therefore Eq. (24) no longer expresses correctly the condition for

normalization). To illustrate this, we simulate the model on a one-dimensional ring, which

we think of as representing the preferred orientations of neurons representing a common

position in visual space.9 We consider 180 E/I pairs at grid positions separated by 1° in

preferred orientation, with 0° = 180°. All four connection types have the same width,

following evidence that excitatory and inhibitory inputs received by cells in upper layers

have similar orientation tuning (Ferster, 1986; Anderson, Carandini, & Ferster, 2000;

Martinez, Alonso, Reid, & Hirsch, 2002; Marino et al., 2005). The connectivity takes the

form

(25)

9The paradigm we study here – suppression of response to one orientation by presentation of an orthogonal orientation – is known as
“cross-orientation suppression”. In V1, this appears to be primarily mediated by sublinear addition of the feedforward inputs to V1
evoked by the two stimuli (Lauritzen, Krukowski, & Miller, 2001; N. J. Priebe & Ferster, 2006; B. Li, Thompson, Duong, Peterson, &
Freeman, 2006). However we use this paradigm to study how the model cortex sums responses to multiple stimuli, assuming the
feedforward inputs sum linearly.
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where d(θ, θ′) is the shortest distance around the circle between θ and θ′. We consider

stimulation by either one oriented luminance grating or two orthogonal gratings of equal

contrast. Each grating is represented by a Gaussian-shaped curve of feedforward input with

width (standard deviation of the Gaussian) σstim and height c; a single grating is centered at

θ = 0°, a second added grating is centered at θ = 90°. For any given stimulus (1 or 2 stimuli,

stimulus height c, given stimulus width σstim) the equivalent 2-D model is found as follows:

we use the same τE,I, k, n, and JXY’s as in the high-dimensional model and take Ψ to be the

value of the convolution, at θ = 0, of the connectivity Gaussian (Eq. 25 with JXY = 1, i.e. the

vector of weights to θ = 0 normalized to equal 1 at θ = 0) with g․n (for our stimuli, g is 1 at

position 0). We use g․n as a surrogate for the shape of the response, with the knowledge that

at least at low contrast it gives a good approximation to this shape (Section 3.1).

The result is that the reduced 2-D model accurately reproduces the behavior of the full

model as shown in Fig. 1. (See also Figs. 2–4 of Section 5.3 for a more detailed comparison

in various parameter regimes; as explained at the end of Section 5.3, the bottom three rows

of Figs. 4 show directly the quality of the approximations involved in the ansatze introduced

after Eq. (23).) The firing rates of the cells at θ = 0 vs. stimulus strength closely match the

firing rates in the 2-D model (Fig. 1A). Both models show a similar transition from

supralinear summation of responses to the two gratings for weak stimuli to sublinear

summation or “normalization” for stronger stimuli (Fig. 1B). The network also shows a form

of surround suppression, in which the “summation field size” – the stimulus width that

yields maximal response for a given stimulus strength – shrinks monotonically with

increasing stimulus strength, as is well known in real space (rather than orientation space)

for V1 cells (Sceniak et al., 1999; Cavanaugh et al., 2002), and this behavior is extremely

similar in the full and reduced models (Fig. 1C).10 Thus, the 2D model can provide a good

basis for understanding more general models.

4.2 Conditions for Normalization in the 2-Dimensional System

Here we show that, when our ansatze hold, the high-dimensional network exhibits

normalization precisely when the 2-dimensional network shows sublinear scaling. We

consider steady-state r or y and use expressions like  to refer to the dependence of the

10Note that this “summation field size” for orientation selectivity should not be confused with the orientation tuning width, which is
the width of the orientation tuning curve obtained by studying response vs. single orientations (more precisely: studying response vs.
center orientation, using stimuli that evoke a fixed curve of feedforward input vs. orientation that is symmetric about the center
orientation). The orientation tuning curve, representing the set of single orientations that can drive the cell, is analogous to the
“minimal response field” in real space, which represents the sum of the set of small regions in visual space in which appropriate light
stimuli can evoke spiking responses. The minimal response field in real space is invariant with stimulus contrast (Song & Li, 2008),
and so too is the shape of the orientation tuning curve (Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987; Anderson, Lampl, et al.,
2000; Ferster & Miller, 2000) (contrast is monotonically related to the firing rate of the inputs to cortex (e.g. Ohzawa, Sclar, and
Freeman (1985)). The fact that the summation field size in real space is larger than the minimal response field indicates that stimuli in
regions where light cannot directly drive spikes can facilitate responses to stimuli in the minimal response field. Recall that the size of
this facilitating area shrinks with contrast. The model suggests that the same may be true in the orientation domain, in terms of cortical
processing of feedforward input to cells of different preferred orientations. However, attempts to test this idea will likely be
compromised by two facts: (1) simultaneous presentation of multiple orientations does not yield linear summation of the input to
cortex evoked by the individual orientations (Lauritzen et al., 2001; N. J. Priebe & Ferster, 2006; B. Li et al., 2006) and (2) varying the
feedforward orientation tuning by changing stimulus attributes – e.g. a sinusoidal luminance grating of a given size provides drive to
cortical cells with an orientation tuning that narrows with increasing spatial frequency, and similarly a longer bar drives narrower
orientation tuning than a shorter bar – also changes other attributes to which the neurons are independently sensitive, such as spatial
frequency or bar length.
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steady state on parameters. We have seen that rX (X ∈ {E, I}) exhibits normalization in

response to addition of an infinitesimal second stimulus if  in the 2-D model (more

generally, for a finite-strength second stimulus, if ). Since Eqs. 22–23 are

equivalent to Eqs. 5–6 with Ψ replacing ψ, we revert to the notation of Eqs. 3–6 and use ψ.

We work with the 2-D model and express the conditions  as a single vector

condition. We note first that  and .

Putting these together we find . Thus, the condition for normalization is

that y grow more slowly than linearly with increasing α:  or  or, roughly, that

y ~ αp for p < 1. As we have seen, p becomes less than 1 precisely when the transition from

the supralinear to the sublinear scaling regime occurs.

We can reexpress this in terms of r. Using algebra similar to the above, we find

, from which we find that  is equivalent to .

Thus, the condition for normalization is that r grow more slowly than cn with increasing c:

 or, roughly, that r ~ cp for p < n. Again, p becomes less than n precisely at the

transition from supralinear to sublinear scaling.

Finally, noting that the steady state condition is r = k(Wr + cg)․n, without loss of generality

we write Wr = cf (c) for some vector function f of c, so that the steady state condition r =

k(Wr + cg)․n becomes r = kcn(f(c) + g)․n. Thus we see that a component of r grows more

slowly than cn precisely when the corresponding component of f(c) is a decreasing function

of c (that is, for corresponding components r and f,  precisely when f′(c) < 0). Thus,

the condition for normalization can alternatively be expressed as the requirement that the

recurrent input Wr grow more slowly than linearly with c, i.e.  yields

 or .

5 Analyses of the 2-Dimensional Network

We will assume throughout this analysis that gE ≥ 0, gI ≥ 0. We will use the following

definitions:

(26)

Ahmadian et al. Page 16

Neural Comput. Author manuscript; available in PMC 2014 May 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(27)

We also note that there are three possible conditions: (1) (−J−1g)E > 0 and (−J−1g)I > 0; (2)

(−J−1g)E < 0 and (−J−1g)I > 0; and (3) (−J−1g)E < 0 and (−J−1g)I < 0. The 4th condition,

(−J−1g)E > 0 and (−J−1g)I < 0, is not mathematically possible for gE ≥ 0 and gI ≥ 0: ΩE > 0

and ΩI < 0 together imply Det J < 0, and similarly ΩE < 0 and ΩI > 0 together imply Det J >

0.

5.1 When Does the Network Dynamically Stabilize?

5.1.1 The case of infinitely fast inhibition—We first analyze the case of infinitely fast

inhibition, τI/τE = 0, with constant feedforward inputs. We show that in this case, if Det J >

0, the network is always driven to a stable fixed point from arbitrary starting conditions. The

condition Det J > 0 means that feedback inhibition is sufficiently strong: JEIJIE > JEEJII. In

addition, we show that if Det J < 0, sufficiently large initial firing rates will cause the system

to “blow up”, i.e. firing rates will grow arbitrarily large.

With τI = 0, the value of yI is “slaved” to, or instantaneously set by the value of, yE

according to the  part of Eq. 6 for y. Because of the nonlinearity, we cannot solve this for

yI as a function of yE, but we can instead solve for yE as a function of yI:

(28)

Substituting this in the  part of Eq. 6 yields, after a bit of algebra, an equation for 

induced by the slaving of yI to the yE dynamics:

(29)

For sufficiently large yI, if Det J > 0, the term inside the parentheses in the  term

will be negative, and so will be set to zero after the thresholding involved in the ()․n

operation. The dominant term will then be the −JIIyI term, which is negative. So for

sufficiently large yI, . On the other hand, if Det J < 0, then for sufficiently large yI,

the (…)․n will be positive and larger than the sum of the other terms, so that  0 and,

since increasing yI will increase , this derivative is ever-increasing.

For sufficiently small yI,  if either gI or gE is nonzero, which can be seen as follows.

For sufficiently small yI, the source terms gI and ΩI, if nonzero, dominate the terms
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involving yI. Both gI and the (…)․n term containing ΩI are non-negative, so if either is

positive  will be positive; if ΩI > 0, the (…)․n term is positive; if ΩI ≤ 0, this implies gI >

0 (given that at least one of gI and gE is nonzero, and that both are non-negative).

Thus, for Det J > 0, yI is driven to a stable fixed point, and yE is then determined from Eq.

28, so the system will arrive at a stable fixed point. Note that the system could have multiple

fixed points with varying levels of yI. The topology of flow along the yI axis tells us that

there must be an odd number of fixed points, alternating from stable to unstable to stable

with increasing yI, with the outermost fixed points (those with lowest and highest yI) being

stable. In the simplest case, there is a single stable fixed point. In addition, for Det J < 0, the

system will blow up for sufficiently large initial firing rates.

5.1.2 More general requirements for stability—Changes in the time constants can

alter the stability of the fixed points, but do not alter the number or positions of the fixed

points. The results of the previous section tells us that, for Det J > 0, the system always has

a fixed point that is stable for τI = 0. We consider such a fixed point, and ask when it retains

or loses stability for finite τI.

We let the fixed point be , and assess stability by linearizing the dynamics about this

fixed point. We let q = τI/τE > 0. Setting τ = τE in Eq. 6, the matrix T is given by

. Define the matrix . Writing the identity matrix as

1, the Jacobian matrix of the 2-D system is:

(30)

A fixed-point of the dynamics will be stable if  has a negative trace and a positive

determinant.

The negative trace condition is EE < II, which becomes

(31)

The condition EE ≤ 0 means that the excitatory subnetwork by itself is stable (or

marginally stable), which guarantees that the network will always be stable, since only

unchecked recurrent self-excitation can destabilize the network. When the excitatory

subnetwork is unstable, we can further reduce the condition on q for n = 2:11

(32)
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The determinant condition, Det  > 0, is always true for any fixed point that is stable at q =

0. To see this, note that the sign of the determinant does not depend on q for q > 0 (because

Det AB = Det A Det B for any matrices A, B, and Det ). So if we prove that Det  >

0 for arbitrarily small q > 0, we will have shown that it holds for all q > 0. For q = 0, the

determinant, which is the product of the two eigenvalues, was infinite: because the fixed

point was stable, both eigenvalues had negative real part: one real part was infinite,

corresponding to the instantaneous flow onto the inhibitory nullcline (the line in the yE/yI

plane on which ); the other was finite, corresponding to the flow along the nullcline

converging onto the fixed point. (Since the two real parts were unequal, both eigenvalues

were real.) As q is moved infinitesimally from 0, the infinite eigenvalue becomes a large but

finite negative eigenvalue, while the finite eigenvalue is perturbed by arbitrarily small

amounts as q is made arbitrarily small. This means that there is a range of q > 0 for which

the eigenvalues continue to have negative real parts, and therefore for which the determinant

condition holds. Therefore, the determinant condition holds for all q. Thus, for a fixed point

that is stable for q = 0, the fixed point remains stable so long as condition 31, or condition

32 for n = 2, is satisfied.

We also note that, for the case n = 2 and for q ≤ 1, a sufficient condition to conclude that

there is only a single fixed point, which is stable, is Det J > 0 and , which can

be seen as follows. The determinant condition is Det (ΦJ − 1) > 0. We note that, for an

arbitrary 2-dimensional matrix M, Det (M − 1) = Det M − Tr M + 1. Thus, the determinant

condition is Det ΦJ > Tr ΦJ − 1. Since Det Φ > 0 (because firing rates and α are > 0), this

condition will be satisfied if Det J > 0 and Tr ΦJ < 1. The trace condition for stability is Tr

T−1ΦJ < 1 + q. But, for q ≤ 1 and given the structures of Φ and J, Tr T−1ΦJ ≤ Tr ΦJ, so the

condition Tr ΦJ < 1 ensures that the trace condition is also satisfied. This condition is

(33)

For n = 2, we substitute the solution for  as a function of yE (footnote 11) into Eq. 33 for

n = 2 to find . Since the right side is positive, a sufficient

condition for this to be true is . Recall that, if there is more than one fixed point,

some will be unstable at q = 0, and they must remain unstable for some region of small but

finite q. Since this condition guarantees that any fixed point is stable, we conclude that there

can only be one fixed point, which is stable, when this condition holds.

In summary, for q = τI/τE = 0, the network always flows to a stable fixed point if Det J > 0.

For q > 0, a fixed point that is stable at q = 0 remains stable when Eq. 31 or, for n = 2, Eq.

11This condition is found by solving  as a quadratic equation for . Discarding the negative

solution, this yields . Substituting this into Eq. 31 for n = 2 yields Eq. 32.
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32 is satisfied. Note that this condition does not ensure that the network always flows to a

stable fixed point; for nonzero q there may be initial conditions outside the basin of

attraction of the stable fixed point or points. A condition that ensures that any fixed point is

stable for q ≤ 1, and therefore that there is only one fixed point, is Det J > 0 and

. If there are no limit cycles (stable or unstable), this ensures that the network

will flow to the stable fixed point. Excepting Eqs. 31–32, these conditions involve feedback

inhibition being sufficiently strong: JIEJEI > JEEJII, and .

In Fig. 2, bottom row, we will illustrate the range of q’s yielding stability for various

parameter choices with n = 2.

5.2 The case (−J−1g)E < 0 and supersaturation

We consider Eq. 3 for r, but substituting ψJ for W. We restrict to the case Det J > 0, which

ensures a stable fixed point for at least some range of . We note that for Det J > 0,

(−J−1g)E < 0 and (−J−1g)I < 0 are equivalent to ΩE < 0 and ΩI < 0, respectively.

We shall equate increasing or decreasing c with increasing or decreasing stimulus contrast.

This is based on the fact that the contrast of a visual stimulus is monotonically (but

nonlinearly) related to the firing rate of the inputs to V1 from the lateral geniculate nucleus

(LGN) (e.g. Ohzawa et al. (1985)).

In simulations, we find that if ΩE < ΩI < 0 for gE = gI, then rE grows with c for a range of c

considerably beyond the transition from supralinear to sublinear behavior, but ultimately

peaks and is pushed back to 0 with increasing c (see Fig. 2A). The inputs to cortex have

limited dynamic range (e.g. stimulus contrast cannot increase beyond 100%), and so we

imagine that this circuit may model cortex but that the maximal input strength seen

biologically cannot drive excitatory responses too far beyond their peak. The decrease in

response with increasing contrast after a peak response is referred to as “supersaturation”,

and is seen in virtually all V1 cells for contrasts larger than about 75% (Ledgeway, Zhan,

Johnson, Song, & Baker, 2005; C. Y. Li & Creutzfeldt, 1984; Tyler & Apkarian, 1985;

Peirce, 2007). This model behavior provides one possible explanation for supersaturation,

although supersaturation might also in part reflect a supersaturation of inputs, e.g. if

feedforward inhibition (Bruno, 2011) overtakes feedforward excitation with increasing

contrast.

Here we analyze this behavior. We shall find that (1) if r is a stable fixed point, then 

and  are negative precisely when  and ,

respectively (and so in particular can only be negative if ΩE < 0 or ΩI < 0, respectively); (2)

if ΩE < 0, then there is a stable fixed point with rE = 0 at a finite positive value of c, which

we calculate; and, (3) for n = 2, if in addition , then the set of fixed point
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excitatory rates, rE(c), has a maximum (where  and ), which is typically the

peak of rE before it is pushed to zero, and we calculate the corresponding c and peak value

of rE.

The condition ΩE < 0 states that the linear term in c in the high-c expansion for rE (Eq. 15) is

negative, driving rE to zero. A related criterion for supersaturation was noted by Persi,

Hansel, Nowak, Barone, and van Vreeswijk (2011), who studied a high-dimensional ring

network with power-law input/output functions much like the ring model studied here,

though with varying connectivity widths for the four connection types and different power

laws for E vs. I cells. They assumed a stimulus of orientation θ gave feedforward input

 to cells of population X (E or I) and preferred orientation θ′. For IE = II, their

criterion for supersaturation was JEIσI,LGN − JIIσE,LGN > 0, which appears closely related to

our criterion ΩE < 0, i.e. JEIgI − JIIgE > 0. Our other condition, , states that the

linear term in the expansion for rI is either positive, or not so negative as to disrupt the

ability of inhibition to drive rE to zero.

These results suggest, but do not prove, that rE will be driven to zero for arbitrary n

whenever ΩE < 0 (although there is a stable fixed point with rE = 0 at finite c, we have not

proven that it is the only stable fixed point). We note that rI can never be zero for finite c if

gI > 0 (since rE ≥ 0), so given gI > 0, rI can never be driven to zero with increasing c even

for ΩI < 0.

For ΩE < ΩI < 0, gE = gI, we find in simulations that rI only increases with increasing c (see

Fig. 2A). We speculate that, for ΩE < 0 and , where f(n) may equal n or may

equal 2, rE can never become large enough to set , while rI always becomes large

enough to set  and so ultimately to drive rE to zero.

When ΩI < ΩE < 0 for gE = gI, we find unbiological behavior in simulations in which both rE

and rI jump to very high levels at very low c, after which rE monotonically decreases and is

ultimately pushed to 0 (see Fig. 2E). Numerical calculations suggest a discontinuity at the

jump, which may explain why our calculations do not find a zero of  for real positive c

in this case. We have not tried to analyze this behavior.

5.2.1 When can rE or rI decrease with contrast?—We define the matrix

. Then a simple calculation shows that 

or , which gives
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(34)

Stability requires that Det (1 − ΦrW) > 0. Thus, this expression shows that, for a stable fixed

point, rE or rI decrease with contrast precisely when

(35)

(36)

5.2.2 The c at which rE becomes 0—The c > 0 at which rE first becomes 0 with

increasing c can be determined as follows. First, at this c, rI = cgE/ψJEI, because this is the

value of rI that sets the input to rE to zero when rE = 0. The equation for the rI steady state

then yields . The right side gives zero unless ΩE

< 0, so a solution for c ≠ 0 exists only for ΩE < 0. In this case, one can solve to find

. This corresponds to  or .12

Note that any fixed point yE = 0, yI > 0 is stable for any q since the Jacobian matrix is

, which has two negative eigenvalues

(equal to the two diagonal entries of ).

This shows that rE = 0, rI = cgE/ψJEI is a stable fixed point for this value of c, but does not

rule out the existence of other fixed points.

5.2.3 Peak excitatory firing rate and corresponding contrast—For the case n = 2

and ΩE < 0, we can calculate explicitly the contrast at which the steady-state excitatory

firing rate reaches a local maximum, , and the corresponding excitatory firing rate.

We will refer to this as the peak excitatory firing rate. We are imagining that there is a

continuous curve of stable fixed points vs. contrast stretching from zero firing rate for c = 0

to the fixed point with rE = 0 at positive c found in the previous section and that the

12Once rE has been pushed to zero, for increasing c, rI continues to increase according to rI = k(cgI − ψJIIrI)n, which for n = 2 has

the solution , and rE remains 0.
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dynamics converge to these fixed points, in which case we are finding the peak steady-state

excitatory firing rate. This has been the case in all the simulations we have studied.

However, for other parameters it is possible that other stable fixed points may appear, that

the maximum occurs at negative c and thus is biologically irrelevant (further discussed

below), and/or that the local maximum found here is an unstable fixed point.

To find the peak excitatory firing rate and the c at which it occurs for the case n = 2, we

have to solve the steady-state equations k(ψJr + cg)․2 = r, together with the extremum

condition , for the three variables rE, rI and c. The extremum condition is given by

Eq. (35) with equality, which for n = 2, yields  (as noted above, this can

only happen when ΩE < 0, which we assume here). In order to simplify the equations, we

will change variables according to , where without loss of generality we require x to

be real and positive, ensuring the positivity of r. We also rewrite the steady-state equations

by taking their square roots as

(37)

while the extremum condition now becomes . Multiplying Eq. (37) by J−1,

we obtain  where the vector . We then multiply the E

and I components of the latter equation by ΩI and ΩE, respectively (we assume ΩI ≠ 0), and

subtract the results. After simplifying, this yields .

Finally, substituting for xI using the extremum condition, we obtain

, which has one positive solution

(38)

yielding

(39)

for the maximum firing rate. Note that for this to be positive, xE must be real, which means

an additional condition needs to be satisfied, namely .

The contrast, cmax, at which rE peaks can then be solved for using either component of Eq.

(37), yielding
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(40)

(41)

with xE given by Eq. (38). Explicit calculation shows that this is always a maximum: the 2nd

derivative . cmax is not guaranteed to be positive – this is governed by rather

complicated conditions on the g’s and J’s – but in practice we have found it to be positive

for the simulation parameters we have used.13

When cmax is positive and  is indeed the peak steady-state excitatory firing rate, then

Eqs. 39 and 41 show that both the maximum excitatory firing rate that can be achieved by

the network and the contrast at which this maximum is achieved decrease with increasing ψ.

In this case, when the 2-D reduced model, Eqs. 22–23, accurately captures the high-

dimensional model, Eqs. 18–19, then in the high-D model, if the stimulus is widened or a

second stimulus is added, the maximum excitatory firing rate will decrease and will occur at

a lower contrast.

In sum, for Det J > 0 and n = 2, the steady state solution for rE has a maximum value as a

function of c (i.e., a point with  and ), given by Eq. 39, precisely when (1) ΩE

< 0 and (2) .

5.3 Steady-state solutions for different parameter regimes

In Figs. 2–3 we illustrate model behavior, as a function of stimulus strength c, for 5

parameter regimes, with Det J > 0, n = 2, and gE = gI in all cases. In Fig. 2 we illustrate

behavior across a large range of c, sufficient to see overall model behavior. To better

illustrate the region around the transition to normalizing behavior, in Fig. 3 we replot Fig. 2

but restricting to the range c = 0 to 40. The 5 illustrated parameter regimes are: ΩE < 0 and

ΩI < 0, with either ΩE < ΩI (Figs. 2–3A) or ΩE > ΩI (Figs. 2–3E); ΩE < 0 and ΩI > 0 (Figs. 2–

3B); and ΩE > 0 and ΩI > 0, with either ΩE < ΩI (Figs. 2–3C) or ΩE > ΩI (Figs. 2–3D). We

chose parameters relatively arbitrarily, by starting with a set of parameters that had worked

well in simulations of the ring model (Fig. 1 and Fig. 2–3A) and changing small sets of

13cmax and rmax correspond to  and .
However, note that this is not a maximum of the yE vs. α curve, but rather occurs for α higher than that peak, where the curve has a

negative slope. We saw in section 4.2 that , so  implies , i.e. y is

locally evolving as .
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parameters to change the regime. However in small amounts of studies of other parameters

in the different regimes we have found behaviors to be similar to those illustrated, with one

exception. For ΩE < 0, the transition to sublinear scaling can occur and the excitatory firing

rate can peak and be driven to zero without the excitatory rate ever reaching a level at which

the excitatory subnetwork is unstable. This would be manifested in the figures as stability

for all possible values of q (fifth row, described below). In simulations we only encountered

this for ΩI > 0 with relatively weak JEE (note that ΩI > 0 includes the case JEE = 0, and

presumably sufficiently small JEE behaves similarly to that case), but it can occur for ΩI < 0

as well. The conditions in which the excitatory subnetwork does not become unstable are

discussed more generally in Section 5.4.

For each set of parameters, we first illustrate firing rates (top row), with red and blue

indicating rE and rI respectively. As expected, parameters with ΩE < 0 (columns A,B,E) all

show rE eventually pushed to zero with increasing c, while those with ΩE > 0 (columns C,D)

show rE moving toward linear growth with increasing c. The combination ΩI < ΩE < 0

(column E) leads, as mentioned previously, to unbiological behavior in which both E and I

rates abruptly jump (discontinuously, in numerical calculations with c discretized in 0.00001

steps) to high rates at low c, after which rE monotonically falls with increasing c.

If biology is represented by a case with ΩE < 0 and ΩE < ΩI (columns A,B), we imagine the

dynamic range of cortex, corresponding to the dynamic range of the firing rates of the inputs

to cortex, represents a smaller range extending up to and slightly beyond the point at which

rE peaks as a function of c, as discussed in Section 5.2. An example is the range through c =

100 in Fig. 1A, reduced model, 1 stimulus, which uses essentially the same parameters as

Figs. 2–3A. Biologically, supersaturation begins at high contrasts, e.g. 75% (C. Y. Li &

Creutzfeldt, 1984), well beyond the contrasts (10%–20%) at which the transition from

sublinear to supralinear summation (Heuer & Britten, 2002; Ohshiro et al., 2011) or from

surround facilitation to surround suppression (Sengpiel et al., 1997; Polat et al., 1998) occur.

That is, while the dynamic range of cortex ends shortly after supersaturation is seen, much

of this dynamic range exhibits normalizing behavior. Similarly, the model shows a broad

dynamic range between the onset of normalization and of supersaturation for most

parameter choices we have explored, the only exception again being the case ΩE < 0 and ΩI

> 0 for small JEE.

We next illustrate normalization weights (second row), computed just as in Fig. 1B, right

column, so that weights > 1 (weights < 1) indicate supralinear (sublinear) summation of

responses to two orthogonal gratings of equal strength in the corresponding ring model. All

but the case ΩE > ΩI > 0 show a regime of supralinear summation for very low contrasts

(behavior in all cases is sublinear for c > 10), although the supralinear behavior is weak for

ΩI > 0.

The third and fourth rows of Fig. 3 illustrate the iterative solutions that stem from the scaling

solutions in the low- and high-contrast regimes (the high-contrast iterative solutions are also

illustrated in the third row of Fig. 2). The values of J used (listed in legend of Fig. 2) are not

normalized to have ‖J‖ = 1, so for these iterations we take Ĵ = J/‖J‖ where ‖J‖ is the 2-

norm of J (the maximum singular value of J), and redefine α and y such that α = kcn−1ψ‖J‖
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and . We show the iteration results as rE vs. c. The reason for this rescaling is that,

as discussed in Section 3, with this definition of α the transitions to the sublinearly

normalizing regime happen at α ~ 1, irrespective of ‖J‖.

The small-α (low contrast) iterations are shown in the third row of Fig. 3. Here, we treat the

equation y = α(Ĵy + g)․n as the recurrence relation

(42)

Iteration of this recurrence relation generates higher- and higher-order approximations to Eq.

8 for the steady state. We use the starting condition y[0] = 0. Results are shown for numbers

of iterations ranging from 1 to 19 (red through yellow colors). As few as 5 iterations gives a

good approximation for small c, while increasing the number of iterations to 19 adds little.

The low-contrast iterations all fail before or very slightly after c = 10, which corresponds to

α in the range 1.4 to 2.4 across the parameters. That is, the failure occurs for α ~ 1, as

expected.

For the high-α or small-β (high contrast) case, we treat the equation  as

the recurrence relation:

(43)

Iterations generate approximations to Eq. 14 for the steady state. We use as starting

conditions yE[0] = 0 with yI [0] = 0 for ΩE > 0, yI [0] = gI/ĴEI for ΩE < 0. For ΩE < 0, using

y[0] = 0 would give complex solutions. We instead use as a starting condition the value of y

when yE reaches zero with increasing c. Recall that β increases with decreasing c, .

For small β (large contrasts) we expect a basin of attraction about the fixed point, such that

the iterations will converge to the fixed point for initial conditions in the basin of attraction.

As β increases (contrast decreases) the basin of attraction should disappear for β ~ 1, so that

convergence will fail for any initial condition.

The third row of Fig. 2 (fourth row of Fig. 3) illustrates these high-contrast solutions, with

blue through cyan colors corresponding to 1 through 19 iterations. Again, 5 iterations do

about as well as larger numbers of iterations. The iterations give good approximations for

high c but, for ΩE < 0, fail for larger c as rE approaches zero. β is very small for these large

c’s, so this presumably represents the initial conditions no longer being in the basin of

attraction of the fixed point. For low c failure of convergence is expected for β ~ 1, although

problems with the basin of attraction could also arise. None of the iterations work for c

below about 9 or 10, corresponding to β roughly above .65 to .85, with the exception of

column E. In that column, the largest number of iterations works down to the jump in rE and

rI, which occurs at about c = 5.435 for the given parameters, or β around 1.1. In column D

the iterations do not work below c about 190, which corresponds to β above about 0.15, a

somewhat lower value than expected for the β at which iterations fail.
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In the fourth row of Fig. 2 (fifth row of Fig. 3), we show the value of  that divides

stability (values below curves) from instability (values above curves) of the fixed point,

according to Eq. 32. In all cases except ΩI < ΩE < 0, the fixed point remains stable for q < 1

across the range of studied stimulus strengths, indicating that fine tuning or unreasonably

small values of q are not required.

Finally, the fifth row of Fig. 2 (sixth row of Fig. 3) shows the extent of the sublinearly

normalizing regime. Specifically, the solid and dashed blue horizontal lines indicate the

range of stimulus strengths for which  and , respectively. As discussed in

Section 4.2, these conditions are roughly equivalent (so long as the approximate ansatz for

2-D reduction introduced in Section 4.1 is valid) to sublinear normalization of E and I

subnetworks in the full high-dimensional ring network considered in Section 4.1.14 The

other horizontal lines in the plots of this row show the extent of the sublinear regime

according to other criteria introduced in the next subsection, and are explained there.

In Fig. 4 we examine the quality of the approximate 2-dimensional reduction of the high-

dimensional ring model (Section 4.1) in the five different parameter regimes of Fig. 2. In the

top two rows, we have plotted the peak responses of the E and I subnetworks and their

respective normalization weights for the original high-dimensional ring network of Eqs.

(16)–(17) with the connectivity given by Eq. (25), which can be compared with those in the

top two rows of Fig. 2. We see that the 2-D model captures the behavior of the original

model very well. Recall that the approximation involved in the reduction to the 2-D model

involved taking the ratios  in Eq. (20) as constants, independent of parameters of

the input stimulus (e.g. its shape and strength), and absorbing all such dependencies into Ψ
= w⃗EE · r̂E. More generally, we could have defined ΨXY = w⃗XY · r̂Y (with X, Y ∈ {E, I}). In

the model of Eq. (25), the vectors wX⃗Y are independent of X and Y by construction: w⃗XY ≡ w⃗

where w⃗ has elements . Therefore in this case we only have

two independent ΨXY, which we relabel as ΨE ≡ w⃗ · r̂E and ΨI ≡ w⃗ · r̂I. Finally, we also

made the approximation that the response shape curves, r̂X, can be well approximated by the

shape of the input, g, raised to the power n, and we used the latter to calculate the ψ used in

the 2-D model, i.e. we took ψ = w⃗ · ĝ․n. The third and fourth rows of Fig. 4 show plots of

ΨE (red), ΨI (blue), and ψ (green) as a function of stimulus strength, for the case of one or

two grating stimuli, respectively. The bottom row of Fig. 4 plots the ratio of the curves in

the fourth row (two gratings) to the corresponding ones in the third row (one grating). In the

discussion of Section 4.2 we assumed that ΨX should typically be larger for the case of two

14Note that the onset of the conditions  (vertical dashed blue lines in 2nd row, Fig. 3, corresponding to onset of blue lines in
bottom row) occurs for slightly higher c than the onset of normalizing behavior (2nd row, Fig. 3). This is because in the 2nd row we
are assaying normalization in response to a finite-strength (equal-contrast) 2nd stimulus, for which, as discussed in Section 4.2, the

condition for normalization becomes .
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gratings; we then concluded that sublinear normalization weights for the E (I) subnetwork

are hence roughly equivalent to rE (rI) being a decreasing function of ψ in the 2-D reduced

model. We see from the bottom row of Fig. 4 that in some parameter regimes and for high

enough c this assumption can weakly fail for ΨE. Surprisingly, sometimes this failure is

accompanied by the condition  in the 2-D model, and yet the normalization weights

in the full model are sublinear (< 1). This is due to the failure of the other assumption in the

ansatz, i.e. it is due to the fact that ΨE ≠ ΨI ≠ ψ.

5.4 Different criteria for crossover to the sublinearly normalizing regime

As we saw in Section 4.2, the condition that the E and I responses in the high-dimensional

network be normalizing is roughly equivalent to  and  in the 2-D model,

respectively. Here, rE and rI refer to their values at a stable fixed point. More generally, we

have seen that for sufficiently low stimulus strengths the network is supralinear (with

normalization weights > 1), but switches to a sublinear regime (with normalization weights

< 1) as stimulus strength becomes sufficiently large. One can, however, come up with

different notions or criteria for the transition from the supralinear to the sublinear regime as

stimulus contrast grows. Furthermore, since this is typically a smooth crossover, and not a

sharp phase transition, such different criteria in general do not yield the exact same value of

contrast at the transition, although as we will see, they all yield the same order of magnitude

for the transition contrast. As this crossover is at the heart of the present study, in this

section we set out to examine more closely the different criteria for the transition to the

sublinear regime and their inter-relationships.

We note that the criteria we will examine all involve addition of stimuli without change in

the values of gE or gI (or, for normalization in the high-dimensional ring model, addition of

a second stimulus at a different location on the ring but with the same relative strengths of

inputs to E vs. I cells as the first stimulus). One can imagine a different kind of sublinearity

due to rectification, in which a stimulus 1 has a large enough  that by itself it produces rE

> 0 and rI > 0, while a smaller stimulus 2 that has small  by itself produces rE = 0 and rI >

0. Then addition of stimulus 2 to stimulus 1 would reduce rE and, if the network is in the

ISN regime in response to stimulus 1, reduce rI (Ozeki et al., 2009; Tsodyks et al., 1997),

relative to the response to stimulus 1 alone. This sublinearity due to rectification would also

occur in a linear threshold network and is a separate effect from effects due to the sublinear

regime of the SSN. More generally, the results of adding stimuli with different values of 

are beyond the scope of what we consider in this paper.

Here we introduce the following five different criteria for the transition to the sublinearly

normalizing regime of the SSN, expressed in terms of the 2-D model, and study their

interrelationships:
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1 The direct definition of normalization in the high-dimensional ring model, as it

follows from the approximate 2-D reduction:

(44)

where the equivalences (demonstrated in Section 4.2) hold component by

component. Note that each component in Eq. (44) expresses a separate

condition, i.e. the normalizing property for the E and the I rates, respectively.

We can obtain an expression for  by looking at the variation of the fixed point

equation Eq. (7), which yields (−1 + ΦĴ)δy + (Ĵy + g)․nδα = 0. Here, Φ is the

diagonal matrix . Using Eq. (7) again, we

obtain

(45)

where we defined

(46)

(note that given the positivity of , all KXY are positive as defined).

Thus Eq. (44) is equivalent (component by component) to

(47)

2 The instability of the excitatory subnetwork by itself (i.e. with rI frozen at its

fixed point value). As we saw in Section 5.1.2, this can be expressed as

(48)

where the matrix  = T−1(β−1K − 1), defined in Eq. (30), is the Jacobian of the

2-D flow at the fixed point. Given that T is positive and diagonal, Eq. (48) is

equivalent to β−1KEE > 1, or

(49)

This criterion can also be written  or . For ΩE

> 0, rE becomes arbitrarily large and this criterion will always be met for

nonzero ĴEE. For ΩE < 0, the latter form makes clear that the excitatory

subnetwork becomes unstable iff it is unstable at the maximum value of rE. For

ΩE < 0 for n = 2, if we assume a single curve of stable fixed points vs. contrast

that peaks at the maximum value of rE given in Eq. 39, we find that the

condition for instability at the maximum of rE, and thus for the excitatory
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network to become unstable, is JEExE > 1 (xE given by Eq. (38)). This can be

reduced to the condition  (along with the

condition  required for real xE). This illustrates that the excitatory

subnetwork will never become unstable for sufficiently small JEE. However,

when other conditions are also imposed (excitatory subnetwork never becomes

unstable AND Det J > 0, cmax > 0 (Eqs. 40–41), fixed point at cmax stable) the

requirements on the J’s and g’s for all of these conditions to be satisfied become

far more complex.

3 Local instability of the low-contrast iteration scheme, Eq. (42), at its fixed point

(a sufficient condition for its divergence). By local instability, we mean the

instability of the linearization of Eq. (42) around the fixed point solution. It is

seen from Eq. (42) that the Jacobian of this linearization is exactly ΦĴ = β−1K
where K is the matrix defined above. The condition for stability of a linear

recurrence equation is that the modulus of all eigenvalues of the (Jacobian)

matrix be smaller than 1. Thus the iteration is linearly unstable around the fixed

point if and only if at least one eigenvalue of K has modulus larger than β:

(50)

where λ1 and λ2 are the eigenvalues of K.

4 Stability of the high-contrast iteration scheme Eq. (43) at its fixed point (a

necessary condition for its convergence). Similarly to the previous criterion, by

this condition we mean the stability of the linearization of Eq. (43) around the

fixed point. The Jacobian of the right side of Eq. (43) is given by

. Thus the linearization is stable if and

only if both eigenvalues of βK−1 have modulus smaller than 1. Since the

eigenvalues of K−1 are the inverse of the eigenvalues of K, this is equivalent to

both eigenvalues of K having modulus larger than β:

(51)

In particular, this criterion clearly implies criterion 3.

Even though these four criteria do not define exactly the same transition point (i.e. the

smallest value of α, or the corresponding value of β, for which a criterion first holds), as we

will now argue, they typically occur for similar values of α (or β) that are O(1). First, let us

consider the parameter regimes for which ΩE ∝ (−Ĵ−1g)E > 0.15 As we saw in Sec. 3.2, in

this case, for small β, y(β) asymptotically approaches the value −Ĵ−1g. As we have

normalized the magnitude of Ĵ and g, this β-independent asymptotic value will be typically

O(1). Therefore, from Eq. (46), K also asymptotically approaches a β-independent limit

with entries, eigenvalues, and norm of modulus O(1). Hence, the left hand sides of the

15As we noted after Eq. (26), for positive inputs, gE ≥ 0 and gI ≥ 0, (−Ĵ−1g)E > 0 implies (−Ĵ−1g)I > 0
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inequalities in Eq. (47) and Eqs. (49)–(51) approach an O(1) positive constant value as β
decreases (equivalently, as α increases), while the right hand sides asymptotically decrease

linearly in magnitude with β to zero.16 Thus these criteria will always be satisfied for small

enough β, and we expect that the transition (largest β for which the criterion holds) happens

for β ~ 1.

The argument for parameter regimes for which ΩE ∝ (−Ĵ−1g)E < 0 is less straightforward, as

in this case −Ĵ−1g = O(1) does not provide a valid asymptotic value for y. Instead, as we

saw in the discussion of supersaturation in Sec. 5.2.1, yE (or rE) typically reaches a

maximum and then decreases with increasing α, vanishing at a finite value of α (or β).

However, as long as parameters (Ĵ and g) are such that (1) the maximal value of yE (or rE)

is O(1) or larger, so that the left-hand sides of the inequalities are positive and of magnitude

O(1) or larger; and (2) the contrast at which yE (or rE) is maximized is large enough and thus

the corresponding β ≡ βmax small enough, βmax ≪ 1, so that the right-hand sides of the

inequalities are of magnitude O(βmax); then there will be a finite region of β’s around βmax

for which the above criteria are satisfied. Thus, as long as supersaturation does not begin too

early, we expect that transitions according to all the above criteria typically happen for β ~
O(1) also in this case.17 As we noted in Sec. 5.3, biologically supersaturation begins at high

contrasts, e.g. 75% (C. Y. Li & Creutzfeldt, 1984), relative to the contrasts (10%–20%) at

which the transition from supralinear to sublinear behavior occur (Heuer & Britten, 2002;

Ohshiro et al., 2011; Sengpiel et al., 1997; Polat et al., 1998). Thus we expect that

biologically relevant parameters should yield a relatively large cmax, and a correspondingly

small βmax ≪ 1.

In addition to the above criteria, we also introduce a fifth criterion for sublinear response,

which is directly based on the sublinearity of the E and I contrast-response curves, such as

those plotted in the first rows of Figs. 2–3. However, as we will see this last criterion is not

always as strongly associated with the crossover that happens for α, β ~ O(1).

5 Sublinear growth of rE and/or rI with stimulus strength c:

(52)

Here, the inequality on the left is the mathematical expression of sublinear

growth. As for criterion 1, we have two separate conditions here, stating the

sublinear growth of the E and I rates, respectively. To see the equivalence with

the right side in Eq. (52), note that from the definitions (4)–(5) we have ln r = ln

c − ln ψ + ln y + const:, and ln α = (n − 1) ln c+ln ψ +const. Thus

, from which (given that n > 1) the equivalence of the left

16The linear decrease of the right hand sides in Eqs. (49)–(51) with β is obvious. The right hand side of Eq. (47) asymptotically (as β
→ 0) behaves like −βK−1y, and thus asymptotically also decreases in magnitude linearly with β to zero.
17An exception to this rule was noted at the beginning of Sec. Eq. (5.3). In that example, JEE is atypically small, while
supersaturation starts at α ~ 1 and yE is pushed to zero too fast, for a value of α that is not large, such that criteria 2, i.e. the instability
of the excitatory subnetwork, is never realized.
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side with  follows. Given the positivity of y and α the latter is

equivalent to dy/dα < 0. Finally, it follows from Eq. (45) that Eq. (52) is

equivalent component-wise to

(53)

The reasoning used for criteria 1–4 to argue that they should typically occur for

β ≳ 1, cannot be used for this criteria, as the left hand side of Eq. (53) has an

asymptotic value K−1y for small β, and this need not have a definite sign for

either component. However, as discussed in Sec. 5.2.1, when ΩE < 0, and

assuming a single curve of fixed points vs. c, rE will eventually decrease with c,

i.e. eventually  becomes negative, which means that for some lower value

of c (or α) it must have become less than unity. Thus the transition according to

this criterion should always occur when ΩE < 0. On the other hand, for

parameter regimes for which ΩE > 0, criteria 2 may never be realized (as in

columns C and D of Fig. 2),18 so this criteria is the least suitable way of

characterizing this transition.

The range of stimulus strengths, c, corresponding to the sublinear regime according to each

of these criteria is demonstrated in the bottom row of Figs. 2 and 3, for the five choices of

the connectivity matrix J as explained in Section 5.3 (see the figure captions for further

explanation). Moreover, vertical lines in the plots of Fig. 3 indicate the transition points

from the supralinear (low c) to the sublinear (high c) regime. The values at the transitions of

α = kcn−1ψ‖J‖ (= kψ‖J‖c for the value n = 2 used in the figures) according to these criteria

are also given in the caption of Fig. 3. As expected, the transitions occur for α = O(1).

In summary, even though the transitions according to different criteria happen at different

numerical values of α, the transitions according to criteria 1–4 typically happen for α ~ 1, as

motivated on general grounds in Section 3 and discussed in more detail here (with the

exception that criterion 2 may not occur for some parameter regimes with weak E ⇒ E
connections). That is, all occur as part of the overall transition from supralinear behavior in

the weak-input regime (α ≪ 1) to sublinear behavior in the strong-input regime (α ≫ 1).

However, the transition according to criteria 5 may never be realized if ΩE > 0, and is less

suitable as a marker of the overall transition studied here.

6 Discussion

We have shown in studies of a 2-D system (and found in simulation studies of higher-

dimensional systems, to be presented elsewhere) that the supralinear network will

dynamically stabilize with increasing input strength provided the I ⇒ E and E ⇒ I
connections mediating feedback inhibition are sufficiently strong and the inhibitory time

18This is because in those parameter regimes the zeroth order solution Eq. (11) for the high contrast regime yields positive values for
both the E and I components, allowing for the subleading correction βy1 to be negative without making the total y = y0 + βy1
negative, as long as contrast is large enough (i.e. β is small enough). Now according to Eq. (52) criteria 2 is equivalent to ∂y/∂α < 0,
or ∂y/∂β > 0, while to leading order ∂y/∂β = y1. Hence if the allowed possibility y1 < 0 is realized, criteria 2 will never be.
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constant is not too slow. This dynamic stabilization results in a change from responses

scaling supralinearly to responses scaling sublinearly with the addition of a second input.

The system can also yield “supersaturation”, in which excitatory firing rates reach a peak

with increasing input strengths and then decrease (as observed biologically (Ledgeway et al.,

2005; C. Y. Li & Creutzfeldt, 1984; Tyler & Apkarian, 1985; Peirce, 2007), and as also

noted theoretically by Persi et al. (2011)), with rates ultimately decreasing to zero for large

enough input strengths (which presumably are beyond the dynamical range of biological

inputs). The conditions for this to occur were characterized in the 2-D system. The strongest

sublinear behavior, and hence behavior most likely to underly biological observations in

cerebral cortex, occurs for parameters that lead to supersaturation. As we will show in work

to be presented elsewhere (presented as Abstracts in Miller and Rubin (2010); Rubin and

Miller (2010); Miller and Rubin (2011); Rubin and Miller (2011)), this framework offers a

unifying explanation for a number of processes involving multi-input integration in sensory

cortex, including normalization and surround suppression.

Many questions remain outstanding. As some examples: within the range of models

analyzed here, can more precise results, analogous to those obtained here for 2-dimensional

models, be obtained for higher-dimensional models, for which we only discussed general

scaling arguments? For any dimensionality, can useful results be obtained as to when the

network is globally stable? How will diversity of network parameters, including in particular

of the power n, alter behavior? Presumably an even slightly larger mean n for I vs. E cells

will enormously enhance the range of parameters that will stabilize; experiments suggest

that I cells have significantly higher powers (Haider et al. (2010), Supp. Fig. S3d). How will

cell-to-cell variability of n affect behavior? How will behavior be affected by taking into

account the decreased noise level, and thus increase in n (Miller & Troyer, 2002; Hansel &

van Vreeswijk, 2002), that occurs with increasing stimulus contrast (Finn et al., 2007), i.e.

with increasing input firing rate? How will network behavior be modified by addition of

short-term synaptic facilitation and depression (e.g. Fioravante and Regehr (2011))? Can

analysis be done of more biophysically realistic models, such as networks of integrate-and-

fire neurons, which have an input/output function well approximated by a power law so long

as they are firing on input fluctuations rather than the mean input (Hansel & van Vreeswijk,

2002)? Note that in these models, the noise level, which as just mentioned controls the

power n, can itself be determined dynamically and differ between E and I cells (e.g. van

Vreeswijk and Sompolinsky (1998); Renart et al. (2010)). What can we learn as we move

beyond the steady state to network dynamics, particularly using more realistic models that

can better capture faster dynamics and that incorporate synaptic delays? How will the

network behave when we incorporate multiple types of inhibitory neurons (e.g. Isaacson and

Scanziani (2011)), or of excitatory neurons, each with their own (largely still unknown)

connectivity patterns and biophysical properties?

Despite the many open questions, we believe the basic findings are likely to be quite robust

and to underly a wide range of cerebral cortical behavior: networks of units with supralinear

input/output functions can dynamically stabilize, resulting in a transition from supralinear to

sublinear input summation.
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Figure 1. Two neuron approximation of the full ring model
(A) The reduced version of the model (right) produces qualitatively similar curves of

response vs. stimulus strength c as the full model (left; for the full model, this is the response

of the cells at θ = 0°). The top plots show the response curves for a stimulus composed of a

single grating with orientation θ = 0° and the bottom plots show the response for a two-

grating stimulus composed of the grating at θ = 0° and a grating at θ = 90°. In the 2-D

reduced model, these two cases are represented by using Ψ = 0.774 for one grating and Ψ =

1.024 for two gratings (see Eq. (21) for the definition of Ψ and the text after Eq. (25) for the

method we used to calculate these values). (B) Full and reduced models show a similar

stimulus-strength-dependent transition from supralinear summation (weight > 1) to sublinear

summation (weight < 1) of the responses to two gratings, where the weight w is defined as

follows. For the full model, for either E or I cells, we let R1(θ), R2(θ), and R12(θ) be the

response to one grating, the other grating, or the superposition of the two, and we define
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, where θ = 0 is the orientation of the first grating. For the reduced model,

we define the weight as , where R1, and R12 are the responses to one or two

gratings (modeled by the two values of Ψ given above) and we set R2 = 0 (by the way we

defined the reduction, R1, R2 and R12 should approximate the responses of the full model at

θ = 0). (C) Full and reduced models have nearly identical stimulus-strength-dependent

tuning for the width in orientation, σstim, of a feedforward stimulus (full model: width of

Gaussian stimulus centered at θ = 0 with given stimulus strength c that gives the strongest

response in cells at θ = 0; reduced model: Ψ is computed for each stimulus width as

described in the text after Eq. (25), and plot shows width whose Ψ gives maximal response).

In all curves, red shows E cells and blue shows I cells. All responses are steady-state

responses. Full model solutions found by simulating until convergence to steady state.

Parameters: JEE = 2.5, JIE = 2.4, JEI = 1.3, JII = 1.0, τE = 20 ms, τI = 10 ms, k = 0.04, n =

2.0, σori = 32°; σstim = 30° in A,B.
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Figure 2. Behavior of the 2D Model in Different Parameter Regimes
Each column corresponds to a different connectivity matrix J, corresponding to different

conditions on ΩE and ΩI as indicated at top. In all cases, Det J > 0, n = 2.0, k = 0.04, and gE

= gI = 1. The first column uses the same parameters as the 2-D reduced model in Fig. 1. In

all figures the horizontal axis is stimulus strength c; Fig. 3 shows all plots (and one

additional set of plots) for the smaller range c ∈ [0, 40]. Top row: E (red, top) and I (blue,

bottom) firing rates, rE and rI, at fixed point. For cases with ΩE < 0, dashed vertical lines

indicate analytic calculations for c at which rE goes to zero (Sec. 5.2.2) and, for ΩE < ΩI, at

which rE peaks (Eq. 41). Second Row: Weights reecting supralinear (weight > 1) or

sublinear (weight < 1) summation in an equivalent ring model, computed as in Fig. 1B. Red

and blue indicate E- and I-subnetworks, respectively. Inset in column E shows supralinear

responses at low values of c. Third Row: Iterative solutions for rE in the high-contrast

regime (Eq. 43). We plot rE[t] = yE[t]c/(ψ‖J‖) vs. c, for t = 1, 5, 10, 14, 19 iterations (blue to

cyan curves); black curves are exact solutions. Iterative solutions are shown only over the

range for which they are real. (Iterative solutions in the low-contrast regime are shown in

Fig. 3.) Fourth Row: Values of q = τI/τE separating regions in which fixed point is stable

(below red line) vs. unstable (above red line). Fifth Row: Horizontal lines showing the
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extent of the sublinear regime according to the different definitions introduced in Sec. 5.4.

Blue and red lines (E component solid, I component dashed): definitions 1 (normalization in

corresponding high-dimensional ring model) and 5 (r a sublinear function of c),

respectively. Green line: definition 2 (excitatory subnetwork unstable). The cyan lines show

the range where the modulus of each eigenvalue of the Jacobian is > 1; sublinear regime

according to definition 3 (instability of low-contrast iterative solution) or 4 (stability of high-

contrast iterative solution) is the region in which either (def. 3) or both (def. 4) lines are

present. Parameters used: ψ = 0.774 or, for two-grating case in 2nd row, ψ = 1.024 (the

values of Ψ in Fig. 1); JEI = 1.3; JEE = 2.5, except 0.8 in (D); JII = 1.0, except 2.2 in (C) and

5.0 in (D); JIE = 2.4, 4.7, 4.7, 3.6, 2.2 in (A) to (E), respectively.
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Figure 3. Crossover of the 2D Model to the High Contrast Sublinear Regime for Different
Network Parameters
The plots in this figure are the same as the ones in Fig. 2, except that (1) only the range of

stimulus strengths, c, from 0 to 40 is shown, to highlight the transition to the sublinear

regime as c grows and (2) we also illustrate the low-contrast iterative solutions for rE, which

have been inserted as the third row (conventions as for high-contrast iterative solutions,

except here red to yellow curves represent 1 to 19 iterations). See the caption of Fig. 2 for

explanation of plots and parameters. The extra horizontal axes at the bottom translate the

stimulus strengths into values of α as defined in Eq. (5). In addition, vertical dashed lines in

the first to fifth rows indicate the transition points to the sublinear regime, according to the

different definitions introduced in Sec. 5.4 and illustrated in the bottom row, with definitions
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1 to 5 corresponding to colors blue, green, orange, cyan and red, respectively (for definitions

1 and 5 the line is drawn at the point where the condition holds for both E and I

components). The values of the α’s at these transition lines, in the order mentioned, are (1.4,

0.7, 1.4, 1.4, 2.4), (1.0, 1.4, 1.4, 1.4, 16.3), (2.4, 1.1, 3.1, 3.1, −), (0.2, 4.7, 1.0, 28.5, −), and

(0.8, 0.6, 0.8, 0.8, 0.8) in columns A to E, respectively. Notice that the transitions to the

sublinear regime typically happen for α ~ 1, as expected.
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Figure 4. Behavior of the Full Ring Model in Different Parameter Regimes
Behavior of the steady state of the ring network of Sec. 4.1, in the same parameter regimes

as in Fig. 2. The ring network’s connectivity matrix is given by Eq. (25), with different J’s

in different columns equal to those in the corresponding column of Fig. 2. The rest of the

parameters are the same as in the left column of Fig. 1 (in particular, all parameters of

column A match those of Fig. 1, left column). The signs and orderings of ΩE and ΩI are

indicated on the top of each column. In all figures the horizontal axis is stimulus strength c.

Top row: E (red) and I (blue) firing rates, rE(θ = 0) and rI (θ = 0), at fixed point. For cases

with ΩE < 0, dashed vertical lines indicate analytic calculations for c in the 2-D reduced

model at which rE goes to zero (Section 5.2.2) and, for ΩE < ΩI, at which rE peaks (Eq. 41).

Second Row: Weights reecting supralinear summation (weight > 1) or sublinear summation

(weight < 1) computed as in Fig. 1B. Again, red and blue indicate E-and I-subnetworks,

respectively. Inset in column E shows supralinear responses at low values of c. Third Row:
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The red and blue curves show ΨE ≡ w⃗ · r̂E and ΨI ≡ w⃗ · r̂I, which we approximated by ψ =
w⃗ · ĝ․n (green lines) in the 2-D reduction for the case of a one-grating stimulus (see the

discussion at the end of Sec. 5.3). Fourth Row: The same as the third row, but for two-

grating stimuli. Fifth Row: The red, blue and green curves show the ratios of the red, blue

and green curves in the fourth row (two gratings) to those in the third row (one grating),

respectively.
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