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Abstract
We investigate why electrically coupled neuronal oscillators synchronize or fail to synchronize
using the theory of weakly coupled oscillators. Stability of synchrony and antisynchrony is
predicted analytically and verified using numerical bifurcation diagrams. The shape of the phase
response curve (PRC), the shape of the voltage time course, and the frequency of spiking are
freely varied to map out regions of parameter spaces that hold stable solutions. We find that type-1
and type-2 PRCs can both hold synchronous and antisynchronous solutions, but the shape of the
PRC and the voltage determine the extent of their stability. This is achieved by introducing a five-
piecewise linear model to the PRC, and a three-piecewise linear model to the voltage time course,
and then analyzing the resultant eigenvalue equations that determine the stability of the phase-
locked solutions. A single time parameter defines the skewness of the PRC, and another single
time parameter defines the spike width and frequency. Our approach gives a comprehensive
picture of the relation between the PRC shape, voltage time course and the stability of the resultant
synchronous and antisynchronous solutions.

1 Introduction
The theory of weakly coupled oscillators (Winfree, 1967; Neu, 1979b, 1979a; Kuramoto,
1984; G. B. Ermentrout & Kopell, 1986, 1991; Hoppensteadt & Izhikevich, 1997; Brown,
Moehlis, & Holmes, 2004) provides a mechanism to relate the phase response curve (PRC)
of a neuron and its voltage to the stability of the emergent phase-locked states such as
synchrony of a network. The PRC and the voltage are not totally independent of one another
(G. B. Ermentrout & Kopell, 1986, 1991; Hoppensteadt & Izhikevich, 1997; Brown et al.,
2004) but at the same time their shapes are not easily predictable from each other. These
shapes could be affected by a steady stimulus, drug application or modulation of ion channel
conductances (B. Ermentrout, Pascal, & Gutkin, 2001; Netoff et al., 2005; Tateno &
Robinson, 2007). For example causing the frequency of a neuron to change would also have
caused a number of other changes in the shapes of the PRC and the voltage: a change of the
spike width, spike height, spike maximum hyperpolarization, spike threshold, a possible
change of the slope of the depolarizing phase, change of the PRC skewness, and a change of
the maximum delay and advancement of the PRC. A detailed and extensive understanding
of which of these parameters is more sensitive in changing the dynamical behavior of a
network is generally lacking. Considerable progress is made when the neurons are
synaptically coupled and are posited near bifurcation point (Van Vreeswijk, Abbott, &
Ermentrout, 1994; Hansel, Mato, & Meunier, 1995; B. Ermentrout, 1996) where voltage
time course does not significantly affect the stability of synchrony and antisynchrony,
leading to a somewhat general theory that relates the PRC shapes to the network behavior.

However when the neurons are coupled by gap junctions or electrical connections, the task
becomes more difficult. In fact very few general rules that relate the PRC and voltage shapes
to the network behavior are available the literature. Most studies focused on leaky integrate-
and-fire and related models (Chow & Kopell, 2000; Lewis & Rinzel, 2003), and the
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predictions are confined to specific forms of the PRCs corresponding to those models. This
is still an unsolved problem requiring a detailed study. Lewis and Skinner (Lewis & Skinner,
2012) summarize the importance of this problem by stating that in order to obtain detailed
insights into the dynamical and biophysical mechanisms underlying network behavior, we
must “determine how the shapes of Z and VLC affect phase-locking, i.e., study how the
shapes of the functions Z and VLC combine … to influence the phase-locking states.” (Z and
VLC are, respectively the PRC and the voltage profile of the neuron between two
consecutive spikes.)

Cell-to-cell gap-junction mediated electrical coupling is important because it is not only
found in a number of brain neurons including striatal fast-spiking interneurons (Koos &
Tepper, 1999; Klaus et al., 2011) neocortex (Galarreta & Hestrin, 1999; Gibson, Beierlein,
& Connors, 1999; Mancilla, Lewis, Pinto, Rinzel, & Connors, 2007), thalamic reticular cells
(Landisman et al., 2002), thalamic relay neurons during development (Lee, Cruikshank, &
Connors, 2010), and CA1 hippocampal neurons that could generate synchronous discharges
characteristic of seizures (Valiante, Perez Velazquez, Jahromi, & Carlen, 1995; Carlen et al.,
2000) but is also common in several other biological preparations such as sinoatrial node
cells (Jalife, 1984; Verheijck et al., 1998; Demir, Clark, & Giles, 1999). When the neurons
are in oscillatory state either autonomously or in response to external stimuli a synchronous
state may emerge in the connected network (Kepler, Marder, & Abbott, 1990; Traub et al.,
2003; Fuentealba et al., 2004; Hestrin & Galarreta, 2005; Mancilla et al., 2007) (also see
simulations in (Gao & Holmes, 2007; Ostojic, Brunel, & Hakim, 2009)). Electrical coupling
has also been found to result in a failure of synchrony (Bou-Flores & Berger, 2001). A
number of models have been proposed to explain the mechanism of synchrony or its failure
(Chow & Kopell, 2000; Lewis & Rinzel, 2003; Nomura, Fukai, & Aoyagi, 2003; Bem, Le
Feuvre, Rinzel, & Meyrand, 2005; Pfeuty, Mato, Golomb, & Hansel, 2003). When neurons
are coupled electrically, the coupling lasts the entire duration of the voltage time course.
Although this dependence of the coupling on the voltage shape makes the task of obtaining
general rules more difficult, some earlier studies succeeded in parameterization of spike
width, spike height, and frequency while keeping the rest of the spike profile and the PRC
shape intact (Chow & Kopell, 2000; Lewis & Rinzel, 2003).

In this study we are interested in the stability of phase-locked states of two coupled neurons
that oscillate at identical natural frequency in their uncoupled state. The phase-locked states
we are interested in are synchrony and antisynchrony. Synchronous state is characterized by
the oscillating neurons maintaining no spike time difference, whereas the antisynchrony is
characterized by the neurons maintaining a spike time difference equal to half their
oscillation period. The model of the neuron however is not based on a dynamical evolution
of independent variables. It is represented by its PRC and its voltage shape, which together
with the knowledge of the coupling mechanism are sufficient to predict the emerging phase-
locked states and their linear stability. Because we aim to obtain some general rules relating
the PRC and the voltage shapes to the phase-locked states, we parameterize the shapes of
both the PRC and the voltage, which is facilitated by not imposing any functional
relationship between them in the analysis. This dissociation of the shapes would extend the
applicability of the results to a wider class of PRCs and voltage shapes that are found both in
experiments and models. This also gives the ability to independently evaluate the sensitivity
of the phase-locked states to changes in the parameters that define the shapes of the PRC
and the voltage. But we first need to make a reasonable choice of these shapes.

Phase response curves are usually classified as type-1 or type-2 (Hansel et al., 1995)
depending on whether they show only phase advancement or that in addition to phase delay.
The classic Hodgkin-Huxley neuron model, when driven using a steady current to oscillate,
displays a type-2 PRC. We aim to capture not only type-2 PRCs of this kind but also other
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type-1 PRCs that may be obtained by altering the shape parameters. Fitting experimental
PRCs with Fourier modes (Galán, Ermentrout, & Urban, 2005; Tsubo, Teramae, & Fukai,
2007) or polynomials (Netoff et al., 2005) is a common practice in neuroscience. So it
would seem an obvious choice to formulate shapes comprising of Fourier modes or
polynomials. However the functional form of these shapes is less crucial than the ability to
parameterize those shapes to span a wide range of PRCs. Considering that at least three
Fourier modes are recommended for fitting most experimental PRCs, the number of
parameters required to achieve a wide range of both type-1 and type-2 PRCs can be large.
Similarly a third or higher order polynomial could be considered but it still suffers from the
same disadvantage as that of the Fourier series.

Instead we use a piecewise linear functional form to model the PRCs requiring effectively
only two independent parameters: a skewness parameter that determines how far the
maximum phase advancement is from the spike initial phase, and a type parameter that
determines the relative magnitude of the maximum phase delay with respect to the
maximum phase advancement. The skewness parameter could range from zero when the
maximum phase advancement of the PRC is at half oscillation period, to the oscillation
period itself when the PRC has its peak near the oscillation period. The type parameter could
be zero or positive making it either type-1, or negative making it a type-2. As will be
demonstrated, this choice achieves our goals of spanning a wide range of shapes while being
still accurate in predicting the nature of stability of the phase-locked states. Voltage profiles
broadly comprise of spike downstroke, depolarization phase, and the spike upstroke. We
again consider piecewise linear functional forms to model the voltage time course that is
shaped by few parameters: the normalized spike width parameter that could range from 0 to
its maximum allowed value, and the three amplitude parameters, viz., the spike width, spike
height, and spike threshold. All these could be altered freely. Note that though linear in
individual segments, the complete PRC and voltage shapes themselves are nonlinear. The
PRC and the voltage shape parameters are fully explored in the permissible ranges of
parameters to delineate the regions of stability of both synchrony and antisynchrony.

In Section 2, the PRC and the voltage shapes are formulated, and the method to determine
the stability of the phase-locked states is described. The stability of synchronous and
antisynchronous states is studied in Section 3 when the spike width is zero, and in Section 4
when the spike width is non-zero. The results are discussed in relation to the previous
studies and are analyzed in Section 5. We obtain analytical results and provide explicit
relations for the boundaries of the phase-locked states. And these boundaries are rigorously
verified when feasible by examining the corresponding eigenvalue transitions. The results
are summarized in Fig. 5 for zero spike width, and in Figs. 10 and 11 for non-zero spike
width.

2 Model and methods
Coupled oscillatory model neurons that are intrinsically nonlinear in nature (such as those
modeled by Hodgkin-Huxley equations) can be described by coupled phase evolution
equations applying the theory of weakly coupled oscillators. The main idea behind such a
reduction is that one would be able to study the collective behavior of coupled neurons with
information that is easily obtainable in experiments. Instead of the full intrinsic dynamics
that are necessary to model individual neurons, the phase coupled model requires only the
knowledge of phase response curves, the voltage time course and the coupling mechanism,
all of which are relatively easy to obtain. If θ1 and θ2 represent phases, i.e. times elapsed
since their last respective spike times, of the two coupled neurons that are oscillating with
nearly identical periods T1 and T2, their collective behavior is described by the two phase
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evolution equations (Winfree, 1967; Neu, 1979b, 1979a; Kuramoto, 1984; G. B. Ermentrout
& Kopell, 1986, 1991; Hoppensteadt & Izhikevich, 1997; Brown et al., 2004):

(1)

where ε is a small (because of the assumption of weak-coupling) constant parameter, and
H1,2(ϕ) are the mutual interaction functions that are essentially the instantaneous frequency
increments. We assume that the oscillators are identical, and thus T1 = T2 = T, and H1,2(ϕ) =
H(ϕ) where H(ϕ) is given by a convolution of the PRC, Z(t), that is characteristic of each of
the oscillators, and the coupling function which in our case of electrical coupling is simply
the difference of the voltages [V(t)] of the two neurons:

(2)

If H(ϕ) is the interaction function of the first oscillator, the second oscillator’s interaction is
defined by H(−ϕ). The voltage with phase advancement [V(t + ϕ)] is from the coupled
oscillator, and is also the factor that will make the computation of the stability a complex
task even within our assumption of piecewise linear functions. The dynamics of the two
identical coupled oscillators can further be reduced to the study of single equation by writing
an equation for the phase difference ϕ = θ2 − θ1 as

(3)

where

(4)

We will call the function G(ϕ) the growth function, because it essentially quantifies the
growth of the phase difference, or the rate of divergence of the phases. If there is no
divergence, i.e. when G(ϕ) = 0 at some ϕ = ϕ*, those phases represent equilibria of the
original phase equations. These equilibria can be synchronous states (ϕ* = 0),
antisynchronous (ϕ* = T/2), or any other phase-locked states. We can clearly see from Eq. 4
that G(ϕ) becomes zero at ϕ = 0 and T/2, and thus synchronous and antisynchronous states
always exist for this model. We are concerned in this study with these two states. However,
to be of any practical utility, these states must be shown to be linearly stable. An equilibrium
ϕ = ϕ* is stable if any perturbation imparted to the system subsides in time, i.e. the
derivative of the growth function at the equilibrium must be negative, or the eigenvalue εG′

(ϕ*), where , must be negative. We represent this eigenvalue by
λ if ϕ* = 0, and γ if ϕ* = T/2. We can directly express these eigenvalues from Eq. 3 and 4
as:

(5)
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(6)

In this study we compute λ and γ for various shapes of Z(t) and V (t), and map regions of
stability of both synchronous and antisynchronous states. But first, we formulate V (t) and
Z(t) below.

2.1 Model for the voltage time course
The voltage trace V (t) is periodic in time with period T (> 0), and is formulated by three
piecewise linear curves (Fig. 1) that use three parameters (Vp, Vm, and Vth) defining
different voltage levels, and another parameter W (≥ 0) that is closely related to the width of
the spike that is asymmetric. This formulation is inspired by an empirical observation of the
time course of the Hodgkin-Huxley (HH) model neuron (depicted as thin lines in Fig. 1 for
an applied current of Iapp = 10μA/cm2). The three linear curves correspond to the spike
upstroke, downstroke, and depolarization regimes. The number of free parameters is kept to
a minimum and they are Vp, the peak value of the spike, Vm, the maximum
hyperpolarization reached by the downstroke of the action potential, Vth, the spike threshold,
and finally the parameter W. These parameters are now freely variable and no more
correspond to the HH model alone. The voltage profile is thus given by

(7)

By observing the spike profile and the time course, we arrive at some simple conditions on
the parameters defining V (t) as described below. The spike width and the refractory period
together are accounted for by the rise time (W/2), and the fall time (2W), and we insist that
the spike period (T) not smaller than this so that there is a finite time to recover before the

next spike onset: , or

(8)

The actual width of the spike could be considered either 5W/2 or less, but for simplicity we
term W in this study as the spike width. The spike peak Vp is bigger than the Vth, and hence

(9)

The spike peak Vp can be either positive or negative, but its magnitude is assumed to be not
smaller than that of Vm, hence

(10)

The maximum hyperpolarization Vm is assumed to be negative, and the magnitude of Vth is
smaller than that of Vm, such that
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(11)

The shape of the voltage trace also imposes the condition

(12)

and

(13)

Of all the parameters that define the voltage shape, we will see that only W/T and a3/a2 are
the truly independent parameters that affect the stability boundaries of synchrony and
antisynchrony.

2.2 Model for the phase response curve
A popular method of measuring phase response curves experimentally is by computing the
relative shifts of the spike times in response to brief current inputs placed during the time
course in between the spike times. However such current inputs also cause similar phase
shifts in other independent variables that define the spiking dynamics of the neuron. The
profiles of these phase shifts are different in different variables, and together form different
components of the adjoint solution that can be computed numerically for any spiking neuron
model (Izhikevich, 2007). This is also referred to as the phase response curve, linear
response function, or sensitivity function (Winfree, 1967). However, since the electrical
coupling depends only on the voltage, the voltage component of the phase response curve
[Z(t)] (i.e. the phase shifts measured in the voltage variable) is of interest to us, and we
formulate it by five piecewise linear curves (Fig. 1). It is parameterized by three parameters
A, B, and C. Of these three, A is a time parameter, and B and C (which can indeed be
combined into a single parameter B/C without loss of generality) define the magnitude
levels of the PRC. In addition to these three parameters, the time period T controls both the
voltage and the PRC. Spike rise time W/2 is also used in specifying the PRC.

This formulation, as in the previous section, is again motivated by an empirical observation
of the PRC shape of the HH model (thin lines in Fig. 1). Thus the piecewise linear
formulation incorporates some general features of the HH model, but since the shape
parameters are freely variable, our predictions based on the piecewise linear model are
applicable to much larger set of models than those based on the HH model alone. The profile
of Z(t) is given by

(14)

and is illustrated in Fig. 1 (thick lines). The parameter B is the type parameter that can
convert the PRC to become completely non-negative (B ≥ 0) and thus a type-1, or partially
negative (B < 0) and thus a type-2. We term A the skewness parameter because the nearness
of the maximum phase delay position to the center of the period is controlled by A. By this
definition, A = 0 signifies a more symmetric PRC that has the maximum phase advancement
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at half period. Since the maximum advancement occurs at , and should be less than

 above which the PRC is zero, this leads to the following condition

(15)

The parameter C(> 0) is the maximum phase advancement of the PRC. We will see that only
B/C and A/T are the only independent PRC parameters that affect the stability boundaries of
synchrony and antisynchrony.

PRC with large A is said to have large skewness, and that with no or zero skewness is
characterized by A = 0. Many experimental PRCs show the maximum phase advancement
tilted more toward higher values of the phases, i.e. they have large skewness. Mimicking the
HH model that has very small response near early phases, we have assumed the PRC to be
zero from spike peak time to a time half of maximum delay time of the PRC. Also, the PRC
is assumed to be zero during the rise time of the spike. The zero regime during the action
potential is essentially a depiction of the fact that the identical phase lines (i.e. isochrons)
drawn in the phase plane of voltage versus any other variable are parallel to the voltage axis,
thus perturbations imparted to the voltage (which are used in determining the PRC) cause
negligible phase shifts.

2.3 Stability of synchrony and antisynchrony
In the synchronous state the phases of the two coupled oscillators are identical, i.e. the spike
time difference of the two neurons is zero, and in the antisynchronous state the phase
difference is equivalent to half the oscillation period. The stability of these two states is
determined, respectively, by λ and γ defined in Eqs. 5 and 6. In computing λ and γ from
these formulas, it is convenient to segment the parameter space of (W, A) depending on the
relation between the V and Z segments. We have detailed this procedure in the Appendix A:.
To help us compute the stability of synchronous state, the (W, A) parameter regime is split
into four regions: a, b, c, and d. These regions and the relative position of the V and Z in
each of these regions are displayed in Fig. 2(A). The eigenvalue in each region is written as

(16)

The expressions for each of these components are listed in the Appendix D:. Similarly to
help us compute the stability of antisynchronous state (i.e. find γ from the integral in Eq. 6),
we time shift the voltage by half period, and identify the parameter regimes where slopes are
constant. This results in seventeen different regions (a, b, c, …, q), and the eigenvalue in
each region is written as

(17)

The regions and the relative placement of V and Z in some of these regions are illustrated in
Fig. 2(B). We have detailed the procedure and the eigenvalue expressions for all the
components in, respectively, the Appendix B: and Appendix E:. An examination of the
relative placement of V and Z can directly give us an estimate of the sensitivity of the
synchronous and antisynchronous states to the parameters that define the PRC and voltage
shapes.

In the following two sections, we analyze these eigenvalues to determine where synchronous
and antisynchronous states are located in the parameter regimes. Explicit curves for the
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boundaries of these states are derived. When possible the derivation is substantiated by
examining the actual transitions of the eigenvalues.

3 Zero spike width
In this section, conditions for synchrony and antisynchrony are derived analytically for the
case of zero spike width (W = 0). An example set of type-1 PRCs are displayed in Fig. 3(b)
for a range of PRC skewness levels. These are obtained by setting B = 0. The parameter
region is represented by the region (c) in the (W,T) plane of Fig. 2A, and is illustrated by an
example in Case (c) Type I. We clearly see from the lack of any shaded region there (see
Appendix A: for description) that no eigenvalue component is positive for any level of
skewness, and the non-zero eigenvalue components λ4c and λ5c [displayed in Fig. 3(c)] and
hence the total eigenvalue are negative and thus the synchrony is stable for all A. For the
antisynchronous state we refer to regions (b) and (e) of (W,T) plane of Fig. 2B, and the
corresponding illustrations in Case (b) and (e) of Type-I. There we see that the only
eigenvalue component that is positive and hence contributes to instability of antisynchrony
is due to the spike downstroke, λ5b (λ4e becomes zero at B = 0). We will see that this is the
biggest in magnitude among all the components due to the contribution of the downstroke
with infinite slope in the limit of zero spike width. All the other components are negative.
These are illustrated in Fig. 3(d). As the skewness is increased, the discontinuity in the
voltage occurs at smaller and smaller levels of PRC leading to a diminishing effect of it, and
thus the total eigenvalue becomes negative beyond certain level of skewness, causing the
antisynchrony become stable. A numerical bifurcation diagram obtained by solving for the
slopes of G(ϕ) directly from Eq. 4 [Fig. 3(e)] confirms these observations. The stable
synchrony and antisynchrony regions as a function of the skewness are shown in Fig. 3(f)
and will be rigorously shown in this section.

An example of type-2 PRCs for a range of A is shown in Fig. 4(b). B/C is set to −0.5 for
illustration. For the eigenvalue components contributing to the stability of synchrony we
refer to the Case (c) Type II in Fig. 2(A). There we see that the negative lobe of the PRC can
potentially destabilize synchrony (see Appendix B: for description) if its contribution
surpasses in magnitude that of the other PRC regions. Of the two shaded segments, the Z2(t)
segment of the PRC results in a positive eigenvalue component (λ3c) for any level of
skewness, and its magnitude increases linearly with skewness. At the same time, the other
PRC segments span less range along the phase and thus their contribution to the negative
eigenvalue diminishes [Fig. 4(c)], leading to the total eigenvalue becoming positive above a
critical skewness causing the synchrony become unstable. For the stability of antisynchrony
we refer to Cases (b) and (e) of Type II in Fig. 2(B). At small skewness the spike
discontinuity occurs at a positive level of PRC, and thus it contributes a positive component
to the eigenvalue (sum of λ4b due to upstroke, and λ5b due to downstroke) that overpowers
the other stabilizing components of the eigenvalue. This effectively makes the antisynchrony
unstable. But as the skewness is increased such that the discontinuity occurs closer to the
zero crossing of the PRC, its effect in destabilizing the antisynchrony diminishes leading to
a stable antisynchrony. At extremely large skewness, the discontinuity occurs at negative
PRC level when the stabilizing roles of the spike upstroke and downstroke are reversed
(represented now by λ3e and λ4e). But at the same time the rising phase of the voltage
convolved with the negative PRC regime (λ5e and λ6e) adds to the positive level of the
eigenvalue. Consequently at very large skewness, the antisynchrony could become unstable
again [Fig. 4(d)]. A numerical bifurcation diagram as a function of skewness [Fig. 4(e)]
confirms that the synchrony becomes unstable at large skewness whereas antisynchrony is
unstable for small A/T, but becomes stable for large A/T before becoming unstable again at
extremely large A/T. The analytical boundaries for synchrony (ρ2) and the antisynchrony (σ8
and σ10) that are derived later in this section are depicted in Fig. 4(f). We in fact derive the
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stability regions in the plane of skewness and type parameter; These are depicted in Fig.
5(a); The type-1 PRCs always show stable synchrony, and type-2 PRCs are capable of
displaying stable synchrony at all skewness levels. Both type-1 and type-2 PRCs exhibit
stable antisynchrony at large skewness with type-2 PRCs showing instability at very large
skewness levels. Type-2 PRCs may also lose stability at very large skewness. These are
verified by numerically computed G(ϕ) in Figs. 5(b,c,d). We next present the analytical
stability boundaries.

3.1 Synchrony
Neurons with type-1 PRCs which have finite zero segments at either end always display
synchrony as there are no eigenvalue components that can make the synchrony unstable
[Fig. 2(A), Case (c) Type I]. But if the PRC is of type-2, then synchrony can become
unstable due to negative PRC regime [Fig. 2(A), Case (c) Type II]. Since W = 0, the only
eigenvalue components that are non-zero are λ3c(> 0), λ4c that may become positive for
large B, and λ5c < 0 [Fig. 4(c)]. Combining these components, we get the eigenvalue

. We see that  [Fig. 3(c)], and hence the
synchrony is stable at B = 0. A critical state of stability will be reached when λc becomes 0.

By setting the eigenvalue to zero, we obtain . And on this critical

curve, . That is this critical value acts as a lower boundary for stability.
Increasing B across B* causes the eigenvalue go through 0 with a negative slope, and hence
the eigenvalue is positive for B < B* and negative for B > B* and is zero at B = B*. Thus
the region of stable synchrony is given by

(18)

where we have also normalized B with C. This curve is negative for A between 0 and T.
Consequently, all type-1 PRCs that have zero segments at the edges display stable
synchrony [Fig. 3(f)], but type-2 PRCs (B < 0) do not necessarily lead to unstable
synchrony. The maximum delay of the PRC (B) must be sufficiently long to counter the
skewness in order to destabilize the synchrony. But PRCs with large skewness are closer to
the unstable boundary than those with small skewness.

The above critical condition for stability can be inverted to obtain an expression in terms of
the skewness. Thus the stable synchrony is obtained when

(19)

The above condition [shown in Fig. 4(f)] predicts the value of upper boundary on skewness
for synchrony to be stable. For the HH model discussed earlier, B/C = −0.5, and hence the
upper limit of skewness for synchrony is A/T = 0.75. Numerical bifurcation diagrams were
computed using functional forms of V(t) and Z(t), and are illustrated for type-1 [Fig. 3(e)]
and type-2 [Fig. 4(e)] which verify the above analytical prediction.

3.2 Antisynchrony
Two stability criteria will emerge for antisynchrony, corresponding to the case of small
skewness [Case (b), Fig. 2(B)], and the case of large skewness [Case (e), Fig. 2(B)]. In the
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first case, , and the eigenvalue γb determines the stability, and in the second case

 where γe determines the stability. We will find that there are four segments that
form the boundary of stable antisynchrony. Type-1 PRCs at moderately large skewness

 may lead to unstable antisynchrony. They can also lead to stable

antisynchrony for very small skewness  provided the type parameter is large

positive. Further we will see that at very large skewness , a type-2 PRC can lead
to unstable antisynchrony. There are in all two disjoint regions of stability in (A, B)
parameter space.

First consider the case of . The eigenvalue components consist of γ2b, γ3b, γ6b, γ7b,

and the integral across the voltage discontinuity at  that can also be obtained by
combining γ4b and γ5b in the limit of zero spike width. Combining these components and
using the formula in Eq. 17, we write the eigenvalue as

. We directly see that for B = 0,
the antisynchronous state is unstable for small skewness, and becomes stable for large
skewness because

Thus the criterion for stability when B = 0 is

(20)

and is illustrated in Fig. 3(f). As B is increased or decreased from 0, antisynchrony may
become stable. The sign of γb could change across a critical curve (B*) which is obtained by
solving the equation γb = 0:

(21)

where C is used to normalize B. On this critical curve, the transition of the eigenvalue is
given by

Dodla and Wilson Page 10

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Thus for very small skewness levels , the eigenvalue becomes negative when B is
increased past B*. Thus the region of stable antisynchrony is given by

(22)

where B* is given by Eq. 21. So when there is no skewness in the PRC (A = 0), the type-
parameter must be twice bigger than the maximum PRC advancement (B > 2C) for the
antisynchrony to become stable. For slightly bigger A, the stability boundary increases
quadratically as seen in Eq. 21. This curve, σ2, appears in the top left corner of Fig. 5(a).

For , stable synchronous region lies below B = 0, and crossing B = B*
from below the eigenvalue becomes positive. Hence the stability region is defined by

(23)

where B* is given by Eq. 21. This curve is shown in Fig. 5(a).

In the region , antisynchronous state is already stable when B = 0, and
across the critical curve B = B*, it loses stability. Hence the curve B = B* lies above B = 0.
Thus the stability region is again given by

(24)

where B* is given by Eq. 21. The curve σ4 and the region represented by the above relation
is shown in Fig. 5(a).

Next consider the case of  where the eigenvalue components [Fig. 2(B) Case (e)]
are given by γ2e, γ5e, γ6e, γ7e, and the contribution from the voltage discontinuity that can in
turn be computed by taking the limit of spike width going to zero from γ3e and γ4e.
Combining all the eigenvalue components, and using the formula in Eq. 17, we get the total

eigenvalue as . This eigenvalue is negative at

B = 0 in this regime because . Thus the antisynchronous state is
already stable. A critical curve that may lie above or below the B = 0 level is obtained by
solving for B from the equation γe = 0 which gives,

(25)

This clearly lies above B = 0 when , and below B = 0 level when . The
transition of the eigenvalue is determined by
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Thus when , the stable antisynchronous state becomes unstable when B is increased
above B*. Thus the stable region for antisynchrony is given by

(26)

where B* is given by Eq. 25. This region is shown in Fig. 5(a).

When , because the eigenvalue transitions to negative value across B*, the stable
region lies above the critical curve, and thus the stable region for antisynchrony is given by

(27)

where B* is again given by Eq. 25. This region is shown bounded by the curve σ6 in Fig.
5(a). Thus type-2 PRCs with very large skewness can lose both synchrony and
antisynchrony.

The critical curves can also be written in terms of A, and the regions can be inferred by
solving the equations γb = 0 and γe = 0. We list the critical curves and the regions below but
infer the regions by simply matching them with those already derived above instead of
repeating such an analysis. For a specific value of B/C = −0.5, the eigenvalue components
and the total eigenvalue are shown in Fig. 4(d) and the stable antisynchrony region derived
from the eigenvalue is marked in Fig. 4(f). The computed numerical bifurcation diagram
[Fig. 4(e)] verifies this region. From the equations for γb, critical curves are obtained as

(28)

(29)

And from the equation for γe, the following critical curves are obtained:

(30)

(31)

We list below the critical regions in terms of A that can be verified with those already given
above by numerically plotting them. The antisynchrony is stable in the following regions:
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(32)

(33)

(34)

(35)

For B/C = −0.5 as in Fig. 4, the last condition gives us the stable range of skewness as 0.347
< A/T < 0.883. This region is depicted in Fig. 4(f).

4 Non-zero spike width
In this section, we investigate the effect of spike width and the dependence of stability
criteria on it. The effect of the spike width in type-1 PRCs is illustrated in Fig. 6 (cf. Fig. 3).
The parameter W/T is set at 0.15 in the figure. For studying the stability of synchrony, in the
limit of zero spike width we could consider the parameter point either belonging to region
(c) as we did earlier or to region (a). But for finite spike width we must consider regions (a)
and (d) in the (W, A) space of Fig. 2(A), and the corresponding illustrations in Cases (a) and
(d). When A/T = 0, the PRC is non-zero near early phases, and thus the spike downstroke
could cause instability of synchrony [Fig. 6(c)]. As the skewness is increased, the spike
downstroke effect diminishes because of either small or zero level of the PRC, and
consequently the synchrony acquires stability. Again in contrast to the case of zero spike
width, the antisynchrony can acquire stability even at A/T = 0. At finite spike width the
spike downstroke [Case (a) Type I in Fig. 2(B)] that earlier destabilized antisynchrony could
become less effective [γ6a in Fig. 6(d)] if it extends to the region of the PRC that has
negative slope. Consequently the total eigenvalue can become slightly negative for certain
W/T leading to a stable antisynchrony. But as the skewness is increased the spike
downstroke that contributes to positive eigenvalue occurs at PRC levels that are larger than
that during the spike upstroke, leading to unstable antisynchrony. At extremely large spike
width stability can return as quantified by the eigenvalue components in Fig. 6(d). A
numerical one-parameter bifurcation diagram as a function of A/T obtained by computing
the G(ϕ) from Eq. 4 [Fig. 6(e)] confirms these observations. The corresponding boundaries
of stability are shown in Fig. 6(f). In the above illustration we have set B/C = 0. For finite
positive B/C, as will be seen from the expressions derived later, the movement of the
boundaries are as indicated in the side panel of Fig. 6(f).

The effect of spike width on type-2 PRCs is illustrated in Fig. 7. W/T is again set to 0.15 and
B/C = −0.5 [Fig. 7(a,b)]. At these parameter values, the stability of synchrony is similar to
that at zero spike width. The spike downstroke could still cause instability of synchrony [λ3a
in Case (a) Type II of Fig. 2(A)] even at small skewness, but due to the narrow region
between the zero crossing of the PRC and time of the maximum hyperpolarization that
contributes to the positive part of λ3a, it would require a large negative B/C to cause
instability. But in the regions (b) and (c), part or the entire negative lobe of the PRC [Fig.
2(A) Cases (b) and (c) Type II] contributes to a positive eigenvalue [Fig. 7(c)] causing the
synchrony become unstable. The effect of spike width on the antisynchrony could be more
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drastic than on synchrony. The antisynchrony becomes unstable for most of the skewness
except at large and very small skewness. The components γ5a and γ6a [Fig. 7(d)] (and their
corresponding segments in the regions (f), (d), (g), and (e)) together dominate the
contribution to the total eigenvalue in causing the instability. A numerical one-parameter
bifurcation diagram in Fig. 7(e) as a function of skewness confirms these observations. The
stability boundaries and their dependence on the level of B/C are depicted in Fig. 7(f).

Before we present the analytical results, we illustrate the role of spike threshold together
with spike width at a small (Fig. 8, A/T = 0.2) and a large (Fig. 9, A/T = 0.6) value of
skewness. Comparing Figs. 3(e) and 6(e), we see that finite spike width could cause an
instability of synchrony at small skewness. From these figures we also notice that the range
of stable antisynchrony appearing near large skewness levels is moved further to larger
skewness. The movement of eigenvalues for antisynchrony is shown in Fig. 8(a), and the
corresponding bifurcation diagram in the space of W/T and a3/a2 is shown in Fig. 8(b).
When the synchrony is unstable, increasing the spike threshold such that a3/a2 crosses a
critical level causes the synchrony become stable because the destabilizing effect of
downstroke is countered by the contribution of the stabilizing segments of the PRC that are
now amplified by a larger slope of the voltage segment. G(ϕ) computed at a parameter point
where both the synchrony and antisynchrony are unstable is shown in Fig. 8(c), and a one-
parameter bifurcation diagram [Fig. 8(d)] verifies the stability diagram. A stability diagram
at the same level of skewness for a type-2 PRC (here by setting B/C = −0.5) is shown in Fig.
8(e) and is numerically verified in Fig. 8(f).

Large skewness causes the spike downstroke have less effect on synchrony, and thus is
generally favorable to stable synchrony. Except when the spike threshold is small such that
the slope of the depolarizing phase is very small, we find a stable synchrony [Fig. 9(a)] for
all values of W/T. Large skewness coupled with small or zero spike width also makes the
spike profile itself be less effective [see Cases (d) and (e) in Fig. 2(B)] in the antisynchrony;
The spike downstroke contributes to instability in type-1 PRCs but is now diminished, and
contributes to stability in type-2 PRCs. Thus we may expect a stable antisynchrony at small
spike width. It becomes unstable at large spike width/frequency [Fig. 9(a)]. A numerical
bifurcation diagram in Fig. 9(b) verifies this. The eigenvalue components illustrated for a
type-1 PRC [Fig. 9(c)] for the antisynchrony clearly reveal that the stabilizing segments [see
γ6e and γ7e] at small spike width/frequency are not countered by the spike contribution. A
numerical computation of G(ϕ) [Fig. 9(d)] reveals that the antisynchrony is stable at small
W/T and becomes unstable at large W/T, while the synchrony is stable at all W/T.

4.1 Synchrony
All the four cases (a-d) depicted in (W, A) space in Fig. 2(A) are treated here, and the
corresponding regions of stability for synchrony are derived. Since each case constitutes
only a portion of the parameter space, the critical curves in the space of (W, A) or (A, B) are
composed of one or more of these critical curves. The eigenvalues are linear in the type
parameter, B, but even then the expressions are not as simple as those in the previous
section, and the eigenvalue transition conditions cannot be easily ascertained except in the
case of very large skewness [Case (c)]. In the other three cases, we provide the critical
curves by solving the critical eigenvalue equations, and list out expressions for the
eigenvalue transitions. The regions may be verified by directly plotting the eigenvalue and
checking for regimes where it is negative. The results from this section are presented in the
Figs. 6, 7 that also display the explicit movement of eigenvalues as one of the parameters is
varied, and also in Figs. 8, 9, 10, and 11 that are plotted after verifying the eigenvalues (not
displayed).
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To illustrate the effect of finite spike width on the phase-locked states, for type-1 [Fig. 6(b)]
and type-2 [Fig. 7(b)] PRCs, we compute numerically one-parameter bifurcation diagrams
as a function of PRC skewness for B/C = 0 [Fig. 6(e)] and for B/C = −0.5 [Fig. 7(e)] at W/T
= 0.15. Type-1 PRCs showed loss of synchrony at small skewness when the effect of spike
downstroke dominates (λ3a), and type-2 PRCs showed loss of synchrony at large skewness
where the effect of the negative PRC lobe dominates (λ3c). The stability of synchrony in
these diagrams is also verified by actually plotting the eigenvalues, respectively, in Fig. 6(c)
and Fig. 7(c). Corresponding stability regions as a function of PRC skewness are shown in
Fig. 6(f) and Fig. 7(f). The boundaries for type-1 neurons are defined by ρa [Case (a) below]
and ρb [Case(b)] and for type-2 neurons the stability boundaries are defined by ρa, and ρd
[Case (d)]. The stability boundaries for these four cases are given below. In Case (c) where
A ≥ 4W, the stability regions are derived exactly, but in the other three cases the regions are
not derived but only the boundary curves are listed due to the inherent complexity in the
analysis, but we show the stability regions in (A/T, B/C) and (W/T, B/T) parameter spaces
in Figs. 10 and 11 based on the eigenvalue movements.

Very large skewness (A ≥ 4W), Case (c)—This region extends all the way to A = 0,
but can be termed the case of very large skewness because this region extends beyond the
maximum skewness in the other three cases. The Hodgkin-Huxley model (see Fig. 1) falls in
this regime. The arrangement of Z(t) and V (t) is shown for type-1 and type-2 in Case (c) of
Fig. 2(A). The spike profile does not affect the stability because it occurs during the zero
phases of the PRC. Only three eigenvalue components are non-zero, λ3c, λ4c, and λ5c
(computed in the Appendix D:). Combining these three, and using the formula in Eq. 16, we
get the eigenvalue as

Utilizing the conditions in Eq. 15 and 8, we directly see that λc < 0 for B ≥ 0. That is if the
parameter W/T is small enough or if the skewness is large enough such that 4W < A, then all
type-1 PRCs lead to synchronous state, and no instability occurs at larger A. In fact
synchrony is also stable for type-2 PRCs, and the condition for stable synchrony is obtained
directly from the above equation when we insist that λc < 0 which results in the following
region:

(36)

Whenever the spike width is less than one quarter of the skewness, the above condition
provides the lower boundary for synchrony, and there is no upper boundary. As the spike
width is increased the regime of existence of the curve ρc decreases as can be seen from the
panels in Fig. 10. Since the skewness is limited by T – W (Eq. 15), as the spike width is
increased, the skewness regime for the existence of ρc falls in the forbidden region, and
hence this curve will not define boundary any more as seen in Fig. 10(d). On the other hand
from the condition 4W ≤ A where ρc exists, we see that as the skewness is increased, the
span of W/T increases as is also seen in the (W/T, B/C) plots in Fig. 11. We can express the
condition in terms of the skewness as well. From the eigenvalue equation above, we see that
it becomes negative if A < T − W/2 + BT/(2C). Given that A must be bigger than 4W and
also smaller than T – W, we write the sufficient condition for stable synchrony as:
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(37)

This condition complements other conditions from the other three cases in defining the
complete picture of stability. For the example shown in Fig. 6, the parameter values are B/C
= 0, W/T = 0.15, and thus the lower and upper limits in the above relation become 0.6 and
0.85. Since 0.6 is the lower limit of the present case the lower boundary will have be
complemented with the results from the other cases (studied below), but the upper limit on
A/T is 0.85 [Fig. 6(e)]. Similarly for the example shown in Fig. 7, B/C = −0.5 and W/T =
0.15, and thus the lower and upper limits in the above relation becomes 0.6 and 0.675. Thus
the upper boundary for synchrony is defined by A < 0.675 [Fig. 7(e)].

Large skewness (2W ≤ A < 4W), Case (b)—The arrangement of V (t) and Z(t) are
shown for type-1 and type-2 PRCs respectively in Case (b) Type I and Case (b) Type II of
Fig. 2(A). The non-zero eigenvalue components are λ2b, λ3b, λ4b, and λ5b and are listed in
the Appendix D:. The critical curve is obtained by solving the equation λb = 0 that results in
the following equation in terms of the normalized type parameter:

(38)

where , and the derivative of the eigenvalue on the critical
boundary is

By observing the behavior ρb in (W/T, A/T) plane (Fig. 10), we conclude that there are two
segments to the curve ρb, and they form boundaries of the synchronous state. These two
segments fall on either side of the singularity that is in between the segments. The right
segment lies in the regime where B/C < −2 + 9W/T, and the left segment lies in the regime
where B/C > e2, and both segments reach a singularity when the denominator of the ρb
reaches 0, which is when the abscissa, A/T, asymptotes the following value:

where , ,

, , and W′ = W/T. Though the expression for ρb is an
exact expression, it is difficult to see the dominant W′ terms. Using the above asymptote, we
get simple sufficient conditions for stable synchrony in this regime:

(39)
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(40)

The asymptote can be seen in all the panels in Fig. 10: For a3/a2 = 0.2234, using the
boundaries predicted by the asymptotes for W/T = 0.02, we obtain the stability boundaries

as  when B/C > 0.58, and  when B/C < −1.82. For W/T = 0.05, the

stability boundaries are obtained as  when B/C > 0.58, and  when

B/C < −1.55. For W/T = 0.15, the stability boundaries are obtained as  when

B/C > 0.6, and  when B/C < −0.65. And finally for W/T = 0.3, the asymptote
results in a value of 0.7 which is also the boundary (1 − W/T) of existence of skewness, but
the actual curve ρb shows that there is a small region of stable synchrony at this level of W/
T. Thus the asymptote analysis predicts the boundaries for small W/T very well, and for
large W/T the full expression for ρb must be used.

Intermediate skewness (4W − T ≤ A < 2W), Case (a)—The arrangement of V (t)
and Z(t) for this case are shown for type-1 and type-2 PRCs respectively in Case (a) Type I
and Case (a) Type II of Fig. 2(A). The non-zero eigenvalue components are λ2a, λ3a, λ4a,
and λ5a. The critical curve is obtained by solving λa = 0 equation, and is given in terms of B
as,

(41)

where , ,

,

,

. The derivative of the eigenvalue at B =B* is

Small skewness (0 ≤ A < 4W − T), Case (d)—And finally in this case, the
arrangement of V (t) and Z(t) are shown for type-1 and type-2 PRCs respectively in Case (d)
Type I and Case (d) Type II of Fig. 2(A). The non-zero eigenvalue components are λ2d, λ3d,
λ4d, and λ5d. The critical curve that is obtained by solving λd = 0 is given in terms of B as,

(42)
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where . The transition of the eigenvalue

is given by .

The curves ρa, ρb, ρc and ρd are illustrated in Fig. 10 for select values of W/T at a3/a2 =
0.2234, and in Fig. 11 for two skewness levels for three values of a3/a2. They are also
illustrated in Figs. 8 and 9. Figures 8 and 9 essentially indicate that the stable synchronous
region expands in size to larger W/T with increasing skewness. This fact is also corroborated
by the two parameter stability regions in Fig. 11. Increasing the type parameter B/C to
negative values also increases this range, but beyond some level (ρc which may be beyond
realistic B/C levels in models or experiments), synchrony loses stability and is largely
confined to higher values of W/T.

4.2 Antisynchrony
It is difficult to derive conditions for stability of antisynchrony in the general case due to the
inherent complexity of the coefficients that arise in the stability conditions, but the critical
curves can be written down easily by solving corresponding eigenvalue equations. We list
them here without rigorous proof of the stable regions. The type parameter (B) appears
linearly in all the eigenvalue equations, and thus the critical curves expressed in terms of B
are simpler without multiplicity than those expressed in terms of A or W. The critical curves
are expressed in each of the seventeen cases [Case (a), …, Case (q)], which are all marked in
the (W, A) space in Fig. 2. The arrangement of Z(t) and V (t) for some of the cases are also
displayed. The main results are summarized in the two parameter stability regions in Figs.
10 and 11.

For small skewness [A < (T − W)/2 in (W, A) plot in Fig. 2(B)], six cases could form
boundaries of antisynchrony: Cases (b, a, j, k, l, m). For example, four of these cases
contribute to the boundary at A/T = 0.2 [Fig. 8(b,e)]. The combined value of the components
(γ5a and γ6a) due to the spike downstroke for A > 0 is comparable to that (γ6a) for A = 0 but
could be higher because part of the destabilizing downstroke occurs in the ramp-up phase of
the PRC, and thus the stability of antisynchrony is delayed until larger W/T [Fig. 8(b)].
Similar effect is seen for negative B [Fig. 8(e)], as well as in Figs. 11 where the stability
boundary is defined by σa, σb, σj, σk, σl, and σm. In each of these cases, the eigenvalue
components are given in the Appendix E:, and using the eigenvalue equation 17 the critical
curves are obtained by solving the equations γa = 0, …, γm = 0. The critical curves written in

terms of normalized type parameter are given in Eqs. 43 when .

The critical curve σa at A/T = 0.2, B/C = 0.2 [Fig. 8(b)] can be approximated by the first
term in the Taylor series: 4.9(W/T − 0.165). Or inverting this term, we obtain an
approximate stability criterion as: W/T > 0.165 + 0.2a3/a2. Similarly the critical curve σj at
A/T = 0.2, B/C = −0.25 [Fig. 8(e)] can be approximated by the first term in the Taylor
series: 4(W − 0.22). Again inverting this term, we get the approximate stability criterion as:
W/T > 0.22 + 0.25a3/a2. The stability of antisynchrony at high frequencies is verified
numerically in Fig. 8(d,f).

Finite spike width and frequency helped in stabilizing antisynchronous state even in the
absence of skewness (Fig. 6) essentially due to the sharp spike upstroke (γ4a). But the level
of the PRC during the upstroke of V (t−T/2) decreases if the PRC acquires a finite skewness
causing the negative eigenvalue component to reduce its magnitude [Fig. 7(d)] resulting in a
loss of antisynchronous state [Fig. 7(e, f)]. But this loss can be delayed until larger values of
A/T if we prevent the reduction of the PRC due to skewness, which can be achieved by
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increasing the B/C value as depicted in the side panel of Fig. 7(f). Reducing the B/C to
negative values has the opposite effect [Fig. 7(d,f)] because the PRC level during the
upstroke is further reduced.

For intermediate levels of skewness, the stability is defined by eigenvalues in the Cases (c, f,
i, n, o) [(W/T, A/T) space in Fig. 2(B). Similar to the curves derived above, we solve the
equations γc = 0, …, γo = 0, to obtain curves on which the eigenvalues are zero. Thus the

critical curves in terms of normalized type parameter B in the case when 
are given in Eqs. 44. And finally for large skewness (A > T/2), the critical curves are derived
from the Cases (e, d, g, h, p, q). Following the same procedure as described above, we arrive
at the critical curves in Eqs. 45.

In Section 3.2 we have seen how antisynchrony might become stable for large skewness in
the absence of spike width effects. For finite spike width this stability is still seen [σd and σe
in Fig. 9(a), and in Figs. 10 and 11] due to the dominant effect of the positive lobe of the
PRC [γ6e and γ7e in Fig. 9(c)], but the region becomes sensitive (for type-1 PRCs) or
disappears (for both types of PRCs) at large W/T. This observation is also verified
numerically in Fig. 9(b,d).

For small skewness the spike upstroke contributes a stabilizing eigenvalue component in
both type-1 and type-2 PRCs, and the spike downstroke uniformly contributes a
destabilizing component in both type-1 and type-2 PRCs because the sign of the PRC during
spiking of V (t − T/2) is not altered [see Fig. 2(B) Case (a) Type I and Type II]. But as the
skewness is increased, the spike up and downstrokes of V (t − T/2) begin to occur during the
Z2(t) segment that is positive for type-1 and negative for type-2. And hence the role of spike
up and downstrokes is reversed for type-2 PRCs [see Fig. 2(B) Case (e)]. Additionally, for
type-1 PRCs, the boundary σe becomes sensitive function of spike width because the
segment Z2(t) is positive and the slope of the spike downstroke goes from infinity to a finite
value quickly with W/T [Fig. 2(B) Case (e) Type I]. Thus the stable region bounded by σd
and σe [σ4 and σ5 in Fig. 5(a)] shrinks drastically with increasing W/T (Fig. 10) for type-1
PRCs. As the skewness is increased, the contribution of the spike portion of the time course
to the stability diminishes due to decreasing PRC levels, but the positive slope of the
depolarizing phase that occurs during the negative PRC lobe contributes to the instability.
Thus eventually for type-2 PRCs, the stability region at large skewness deceases in size.
Figure 10 also reveals that the antisynchrony that is stable due to large skewness totally
disappears at very high frequency for type-1 PRCs, and is mostly confined to large negative
B/C.

For the HH voltage model parameter of W/T = 0.075, it can be verified that the stability
diagram is similar to Fig. 10(b) with little change in σd and σe, and the curves in the top left
quadrant slightly moving up on the right and slightly moving down on the left. For the HH
model’s PRC parameters of A/T = 0.567, and B/C = −0.5, the system lies in the bistable
region above the curve ρc and slightly to the right of σd. This is also verified numerically in
Fig. 1. The system is closer to the boundary of antisynchrony (σd), and thus altering the
parameters in the HH model that solely reduces skewness is likely to cause the system lose
its stable antisynchronous state.

For the HH model’s parameter a3/a2 = 0.2234, the stability diagram (for slightly bigger A/T)
as a function of the product of spike with and frequency is almost identical to Fig. 11(d). At
very low frequency both synchrony and antisynchrony are stable in a bistable manner, and
as the frequency is increased only synchrony remains stable. We had earlier remarked that
for models such as LIF a similar scenario happens, thus making the PRC skewness more
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critical in determining the stability states than its type. Many neuronal models are likely to
have B/C ranging from −0.5 to 0.5, and in this range, as we can see from Fig. 11(c,d), PRC
skewness plays important role in stability. The PRC type plays a role in a qualitative
manner, as for example, the stability curves are not vertical to the B/C axis, but are sloped at
some angle such that changing the type of the PRC may have drastically different effect only
at certain parameter points. Large negative B/C has of course different behavior than large
positive B/C.

The stability structure as a function of W/T and B/C is not altered significantly when the
spike threshold is increased [Fig. 11(e,f)], but if the threshold is decreased to very small
value [Fig. 11(a,b)], then the PRC type can cause qualitative changes in the stability
structure. At such small spike thresholds, the depolarizing part [V2(t)] does not contribute
much to the stability of either synchrony or antisynchrony. The spike up and down strokes
dominate the eigenvalue components. And when the skewness is large, the effect is more
tangible: A portion of the curve σe is very close to B/C = 0 and thus type-1 neurons at low
frequencies show only synchrony whereas type-2 neurons can show bistability. And at
moderately high frequencies a portion of ρb becomes very close to B/C = 0 such that type-1
PRC neurons show neither synchrony nor antisynchrony, whereas type-2 PRC neurons show
stable synchrony.

5 Discussion
Relation to previous works

Synchrony among pulse coupled neuronal oscillators received generic treatment earlier
(Mirollo & Strogatz, 1990; Abramovich-Sivan & Akselrod, 1998; Goel & Ermentrout, 2002;
Achuthan & Canavier, 2009) where the shape of the voltage was generalized by Mirollo and
Strogatz, the slope of the PRC near zero phase was related to the stability of synchrony by
Goel and Ermentrout, and Achuthan and Canavier, and the shape of a type-1 PRC was
parameterized to study synchrony of non-identical oscillators by Aromovich-Sivan and
Akselrod. But synaptic or electrical coupling has always been difficult to generalize because
of the inherent complexities of the models and the ensuing shapes of the voltages and PRCs.
For electrical interactions, leaky integrate-and-fire (LIF) models became attractive in the
past because for them the voltage and PRC shapes can be derived analytically. Chow and
Kopell (Chow & Kopell, 2000) and Lewis and Rinzel (Lewis & Rinzel, 2003) studied
exhaustively the effect of oscillation frequency, and voltage shape on the phase-locked states
either using the LIF model or modified versions of LIF model that incorporated spike and
shape effects. Pfeuty et al. (Pfeuty et al., 2003) studied the effect of oscillation frequency
and voltage shape parameter (that approximately corresponds to a3 in our model) in a
quadratic LIF model. Lewis and Rinzel found that electrical coupling led to synchrony at all
frequencies of the LIF. Integrate-and-fire neurons are of type-1 with zero spike width, and
the PRCs computed for very small perturbations possess large skewness (see, for example
(Goel & Ermentrout, 2002)). Our results for type-1 neurons in the absence of spike width
and large skewness (Fig. 9) are consistent with their conclusions. Lewis and Rinzel also
implemented spike effects by adding a positive term to the voltage profile every time spike
happens in the opposite neuron. This quantity emulates the missing spike profile in their
model, and in our model such a term is equivalent to considering spike upstroke effects. But
during the spike upstroke our PRC profile is zero, but if it were non-zero the synchrony
region would be expanded to larger frequencies. In our model synchrony could become
unstable due to the spike downstroke effect that was not part of their model. Lewis and
Rinzel also found that antisynchrony becomes unstable at high frequencies. Our bifurcation
diagram at large skewness (Fig. 9) is in agreement with that observation, but we also find
that had the skewness been smaller, then antisynchrony would have been stable at higher
frequencies instead of at lower frequencies.
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Chow and Kopell (Chow & Kopell, 2000) studied an LIF model that again is of type-1 but
with more complex structure to the voltage evolution that now incorporates not only spike
amplitude, but also spike width, slope of spike upstroke, and spike frequency. Such an
incorporation was done as an added kernel to the voltage evolutions. Their kernel has the
effect of altering both the voltage spike profile and the PRC at the same time as the kernel
parameters are altered. In our formulation, we change them independently. But their general
conclusion on the synchronous state is that it is stable at low frequencies, and unstable at
high frequencies. Our bifurcation diagrams for type-1 PRCs (Fig. 10) clearly map how such
instability arises with increasing spike width or frequency. In Fig. 11 the loss of synchrony
is seen beyond a critical frequency. Chow and Kopell found the antisynchrony in their
model both at high as well as low frequencies. Our results are at some variance with theirs.
We find the antisynchrony stable either at low or high frequencies, but not in general at both
the frequencies (Fig. 11). It is possible that the PRCs corresponding to Chow and Kopell’s
LIF model are acquiring distinctly different shapes than those of pure LIF model because of
the kernel affecting the voltage evolutions. At large skewness, for example, we do find
within our model (Fig. 10) regimes of stable antisynchrony at low and high frequencies.

Pfeuty et al. (Pfeuty et al., 2003) studied a quadratic integrate-and-fire model which displays
a type-1 PRC with more symmetry, albeit with jumps at the end, than that of an LIF model,
but with small skewness. In particular Pfeuty et al. reported that as the magnitude of the
ratio of reset voltage (Vr) to the spike threshold voltage (VT) in increased stable synchrony
is achieved, and reducing this ratio leads to stable antisynchrony (with perhaps regimes of
bistability with synchrony). The PRC does not have as much skewness as the LIF does, and
hence falls under low skewness. We have not incorporated edge effects of the PRCs, if any,
in our current study. But within our model, we see from Fig. 8(b) that as the ratio a3/a2 is
increased (that is the separation of reset and threshold levels increases and hence the
magnitude of their ratio, Vr/VT) we find stable synchrony at large a3/a2, and stable
antisynchrony at small a3/a2 and also at large frequencies.

Nomura et al. (Nomura et al., 2003) studied Erisir et al. (Erisir et al., 1999) model and
discovered that the interneurons are capable of displaying synchrony even at high
frequencies. The model displays a type-1 PRC with small skewness, and the voltage time
course has a finite spike width. This may appear counter-intuitive because even in the Chow
and Kopell’s model, synchrony became unstable at high frequencies, and in our results it
does become unstable for type-1 PRCs above a critical frequency [Fig. 11(c)] unless the
PRC has large skewness [Fig. 11(d)]. We wanted to investigate this puzzle, and present the
results in Fig. 12(a-f). The model (thin curves) does show stable synchrony (negative slopes
of the growth functions) at high frequencies. But the PRC is no more of type-1 at high
frequencies. The skewness is slightly increased (A/T from 0.17 to 0.27), but the type
parameter (B/C) became negative (from 0.44 to −0.27) when the external steady current is
increased to cause the frequency change from 64.3 Hz to 186.9 Hz. From Fig. 11(c) we see
that increasing the frequency while decreasing the type parameter still keeps the system in
stable synchronous state. We have also fitted this model’s voltage [Fig. 12(a,d)] and PRC
[Fig. 12(b,e)] with PWL functional forms (thick curves), and the resultant growth function
[Fig. 12(c,f)] predicted the stability of the phase-locked states accurately at both these
frequencies.

Mancilla et al. (Mancilla et al., 2007) studied neocortical interneurons that exhibited type-1
PRCs at low frequencies. The PRCs retained their type-1 character even at 50 Hz. The
resultant growth functions predicted stable synchrony and unstable antisynchrony. We have
fitted piecewise linear curves to the average voltages and PRCs recorded from these neurons
to determine our fit parameters [Fig. 12(g-i)]. The spike width, skewness, and type
parameters are all within the ranges of our model parameters. As the frequency is increased
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from 28 Hz to 50 Hz, the W/T factor is increased twice, the skewness is not altered much,
but the type parameter B/C decreased from positive to 0. In both cases, the growth function
computed from the PWL fits [Fig. 12(i, lines)] predicts the experimentally determined [Fig.
12(i, points)] stability of synchronous and antisynchronous states accurately. The reduction
in the type parameter perhaps also indicates that increasing the frequency further might
result in a type-2 PRC (with negative B/C) just as in the Erisir et al. model.

Effect of spike upstroke and downstrokes
In type-1 PRC neurons, spike downstroke helps destabilize both synchronous and
antisynchronous states [Fig. 2]. In our PRC model, the segment at large phases is set to zero
(Z5 = 0), thus its contribution is not visible in the case of synchrony. But making this
segment non-zero (but positive) causes both the synchrony and antisynchrony enhance their
ability to become stable due to the PRC being positive and the corresponding voltage
segment having also a positive slope. The sign of the contribution of the upstroke segment
(λ6x) can also be inferred from Fig. 2 by imagining the Z4(t) segment extending all the way
to T. The sign would be the same as that of λ5x because the slope of the upstroke [V3(t)] has
the same sign as that of the depolarizing phase [V2(t)]. The spike upstroke helps stabilize the
antisynchrony in all the cases considered [Fig. 2(B)].

In type-2 PRCs neurons, spike upstroke always contributes to stabilizing the synchronous
state (since the sign of λ6x is the same as λ5x as explained above), but it can contribute to
either stabilizing [Cases (a), (b), (j), (k), (l), (m) in Figs. 2(B)], or destabilizing (in the
remaining Cases) the antisynchronous state. That is, if the skewness is small such that A/T <
(1 − W/T)/2, then the upstroke contributes to stabilizing the antisynchronous state, otherwise
it contributes to destabilizing it. On the other hand, spike downstroke contributes to
stabilizing the synchronous state only if A > 2W [i.e. in cases (b) and (c)], otherwise its
contribution toward stabilizing or destabilizing the synchrony depends on sign of the PRC
segment during the downstroke. Again in contrast, the spike downstroke contributes to
destabilizing the antisynchronous state if the skewness is small such that A/T < (1 − W/T)/2
[Cases (a), (b), (j), (k), (l), (m) in Figs. 2(B)]. Similar behavior occurs in Cases (n) and (o).
The downstroke contributes to stabilizing the antisynchrony at large skewness and small W/
T such that A > T/2 and W < A/4 [Cases (d) and (e)]. In all other cases, the contribution of
the spike downstroke toward stability of antisynchrony is dependent on the signs of the PRC
segments during the upstroke.

Role of spike width and spike frequency
Type-1 PRC neurons are always in stable synchronous state in the absence of the spike
width effects for any level of PRC skewness (Fig. 5) because there is no factor that counters
stable synchrony [see Fig. 2(A) Case (c) Type I]. But finite spike width [such that the
product of the spike width and spike frequency (W/T) is large] can destabilize it [see λ2b in
[see Fig. 2(A) Case (b) Type I]. For small or no skewness, instability occurs at smaller and
smaller levels of W/T as the height of depolarizing voltage segment (a3) becomes smaller
and smaller [ρa, ρb in Fig. 8(b)]. When the expression for ρa is Taylor expanded, we get an

approximate expression for synchrony when B = 0 and .
Skewness helps increase the chances of synchrony in type-1 PRC neurons, competing
against the influence of spike width. For finite skewness (A > 0), sharp spike downstrokes
are encountered for small spike widths. And when the spike downstroke does not extend
beyond a factor that is proportional to the skewness A, synchrony becomes unstable (Fig.
10). But stability is retained for some values of B even when the skewness is smaller than
2W [curve ρa in Fig. 10] provided B/C is below the curve ρa.
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Type-1 PRC neurons can display antisynchrony either due to the dominant effect of spike
upstroke or sharp PRC segments at large skewness. For small skewness, antisynchrony
becomes stable only at sufficiently large frequencies [curves σa and σj in Fig. 8]. Again at A
= 0 and B = 0, a polynomial can be fitted to σa giving an approximate condition for stable

antisynchrony as . Antisynchrony does not
necessarily immediately become stable after the loss of stable synchrony. Other phase-
locked states could mediate the in-between regime [Figs. 8(d)]. As the skewness (A) is
increased the slope of the spike upstroke encounters smaller levels of the PRC, leading to its
(upstroke’s) diminishing effect on stabilizing the antisynchrony. Thus the stable
antisynchronous region that occurs at large frequencies (contributed to by the spike
upstroke) decreases and disappears as the skewness is increased. As the skewness is
increased the slopes of the PRC segments to the left [Z3(t)] and to the right [Z4(t)] of the
peak increase leading to an increase of the negative eigenvalue components (γ6e, γ7e). This
results in stabilizing the antisynchrony even at low frequencies (W/T) (see Fig. 9). But slope
of the left segment [Z3(t)] will decrease with increasing B, and thus its stabilizing effect
diminishes. Thus the stable antisynchronous region is confined to smaller values of B/C at
large skewness.

Type-2 PRC neurons, like those of type-1, can display both stable synchrony and stable
antisynchrony. In addition to the spike width countering the synchrony as in type-1 PRC
neurons, the PRC delay could also counter the synchrony [see Fig. 2 Case (b,c) Type II]. In
the absence of spike effects (W = 0), unlike type-1 PRC neurons, type-2 PRC neurons do not
display synchrony for all levels of skewness. Synchrony fails at large skewness because of
the increasingly destabilizing effect of the negative segments of the PRC [λ3c and positive
portion of λ4c in Fig. 2 Case (c) Type II]. If B is large negative, these segments contribute
more, and instability occurs at even smaller A. In particular, synchrony is stable [Eq. 19,

Fig. 5] only if . So, for example, if maximum PRC delay is equal in
magnitude to maximum PRC advancement, then synchrony fails if skewness is bigger than
half of the spike period. Comparison of Type I and Type II plots in Cases (a,b,d) of Fig. 2
reveals that some of the positive eigenvalue contribution that existed in type-1 neurons
within the time span of spike downstroke is being removed in the type-2 neurons, and thus
for small W/T, type-2 neurons are likely to remain synchronous in the presence of skewness.
That indeed is the case as can be seen in Fig. 10(a,b). However, as the spike width and
frequency increase, and if B is not sufficiently large negative, the gain in the form of the
removed contributions referred to above can be countered by the effect of spike downstroke
in combination with the positive segment of the PRC leading to unstable synchrony at large
W/T. Thus in theory we could have two boundaries for stable synchrony, one at small
skewness, and the other at large skewness. But for most of the negative B range, either upper
limit defined by ρc and ρb or lower range defined by ρa and ρd constitute the boundaries
(Fig. 10).

Type-2 PRC neurons display antisynchrony, and its region in the parameter spaces can
become fragmented into two just as in the case of type-1. In the absence of spike width
effects (Section 3.2), spike downstroke effect inherent in the discontinuity of V (t − T/2) at t
= T/2 counters the stability. The combined effect of the spike discontinuity (the sum of γ4b
and γ5b which is 2a3 [AB + C(T − 2A)] / [T(T − A)] could contribute either a positive or a
negative component to the eigenvalue. For A = 0, this term is positive and helps destabilize
the antisynchrony. For non-zero A, unless B is large negative (less than −C(T − 2A)/A), the
term continues to be positive, and thus contributes to destabilizing the antisynchrony. This
destabilizing effect is overcome by reducing the level of PRC at t = T/2 which can be
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achieved by increasing the skewness and thus pushing the PRC to the right. Thus it requires
a finite skewness (A > σ3) for stabilizing antisynchrony when W = 0. But increasing the
skewness to big levels has the opposite effect because then the spike upstroke and
downstroke fall in the negative lobe regime of the PRC causing the upstroke destabilize (due
to its positive eigenvalue component), the downstroke stabilize in contrast to what happened
at smaller A. Additionally, a considerable amount of the depolarizing phase could also fall
in the negative PRC lobe regime. These factors together increase the chances of
destabilizing the antisynchrony, and the instability occurs when A > σ6 (Fig. 5). Thus we
obtain stable antisynchrony when σ3 < A < σ6 in the absence of spike width effects. Now
consider the competing effects at a non-zero W [see Fig. 2(B) Case(b) Type II] where the
spike upstroke and downstroke assume less sharp slopes, but at the same time the upstroke
spreads toward higher levels of PRC, and the downstroke toward lower levels of PRC. In
effect, the effect of the upstroke (which contributes to instability) dominates, making it
slightly harder to achieve stable antisynchrony. Thus the stability will be lost as W/T is
gradually increased [the stable region bounded by σd in Fig. 11(d)], and also the level of A
at which stability occurs (due to countering the spike effect by skewness) moves to larger
values of A at finite W [σb, σc, σd, σp in Fig. 10]. Another mechanism could lead to stable
antisynchrony at small A. When B is negative, but not very large in magnitude, the
reduction in the PRC level encountered by the spike upstroke may not be very significant
[see Fig. 2(B) Case (a) Type II]. This results in a sizeable stabilizing effect contributed by
portions of the depolarizing phase and the spike upstroke to counter the destabilizing effect
due to the spike downstroke and the negative PRC lobe. This results in a stable
antisynchronous state occurring at small skewness levels. This effect lasts until the skewness
sufficiently diminishes the PRC level during the spike upstroke [σa, σm, σj, σk in Fig. 10].

Distinction between type-1 and type-2 PRCs
The above discussion makes it clear that both stable synchrony and stable antisynchrony
occur in both type-1 and type-2 PRCs, but the amount of skewness, the type parameter, and
the spike width or frequency control where these phase-locked states are located. For
example, large positive B at large skewness, and large negative B at small skewness hold
stable synchrony in large parameter areas for some spike frequencies [Fig. 10(c)]. Similarly
small skewness with large positive B, and large skewness with large negative B hold stable
antisynchronous solutions [Fig. 10(a-d)].

But at the level of neuron pairs, any critical line that starts at B = 0 and runs perpendicular to
the B-axis would constitute a clear distinction between type-1 and type-2 PRCs in terms of
their ability to display stable synchrony and antisynchrony. Such critical lines can be found
(ρb and σe) when the voltage time course has zero slope [i.e. when a3/a2 = 0 which is closer
to the cases depicted in Fig. 11(a,b)] where brief parameter ranges along W/T exist that
clearly distinguish type-1 and type-2 PRCs. Consider the eigenvalue corresponding to Case
(b) for synchrony (λb). Examining the components (in the Appendix D:), we find that only

one component (λ2b) becomes non-zero when a3 = 0, and it is equal to 
(curve ρb) which clearly changes its sign causing a change of stability of synchrony when B
is increased from negative to positive. This eigenvalue regime is defined (see the definition
of Region b in Appendix A:) by the range 2W ≤ A < 4W. Rewriting this range, we conclude
that when a3 = 0, and the frequency is high enough such that the spike width is bigger than a

quarter of the skewness but less than half of skewness , type-2 PRC neurons
synchronize, and type-1 PRC neurons lose synchrony.
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Now consider the eigenvalue corresponding to Case (e) for antisynchrony (γe). Examining
its components (in the Appendix E:) by setting a3 = 0 reveals that there are only two non-
zero components (γ3e and γ4e corresponding to the spike up and downstrokes) which add up

to become . This clearly changes its sign as B is moved across 0, and is negative
(leading to stability) for B < 0 and positive (leading to instability) for B > 0. The eigenvalue

regime (see the definition of Region e in Appendix B:) is . Rewriting
this range, we conclude that when a3 = 0, and when the spike frequency is small enough

such that , antisynchrony is stable for type-1 PRCs, and is unstable for type-2
PRCs.

There is also a range of skewness for certain frequencies that comes close to distinguishing
between type-1 and type-2 PRCs. The boundary of antisynchrony at large skewness for
type-1 PRCs is sensitive to changes in frequency (σe in Fig. 10). For low frequencies around
W/T = 0.05, σe is positive and is near B = 0. This clearly acts like a threshold for making the
antisynchrony unstable.

In the specific cases mentioned above, the parameter ranges near crossings of the critical
boundaries across B = 0 become regimes where crossing from type-1 to type-2 brings in
qualitative change in the behavior of coupled neurons. Except in these cases, the stable
boundary lines cross the B = 0 axis with a non-zero angle, and thus in general, the PRC
skewness and the voltage profile must also be considered in characterizing the PRC
behaviors.

6 Conclusions
The main question we address in this study is when electrically coupled neurons synchronize
under the assumption of weak coupling. Conventionally such a question is addressed by
investigating the dynamics of the internal gating currents, and then relating the mechanism
to the emerging collective behavior of the coupled networks. Such investigative methods
include drug application to block or enhance the activation of a selected ion channel type,
and application of steady current to cause a change in the neuron’s oscillating frequency.
These methods in addition to causing the desired effect on physiological behavior of the
neurons, also alter a number of other observables of interest such as spike width, spike
frequency, spike height, PRC type, and PRC skewness. Although these observables are
inter-related, insights into the effect of each of them on the network behavior could only be
detailed if there was a mechanism to parameterize each of them. Such a task is indeed
difficult to carry out experimentally. But we can take advantage of the theory of weakly
coupled oscillators to address this in a comprehensive manner.

Earlier studies that aimed at such generalizations largely focused on integrate-and-fire
models (Chow & Kopell, 2000; Lewis & Rinzel, 2003; Pfeuty et al., 2003; Lewis & Skinner,
2012; Hansel, Mato, & Pfeuty, 2012) while principally working with fixed relationships
between voltage time course and the PRC. In this study we have taken the liberty to make
these parameters independent, i.e. make the PRC and the voltage independent, and study the
emerging collective states based on these shapes. This task would have been difficult but for
the weakly coupled oscillator theory that is already being used widely in neuroscience (Van
Vreeswijk et al., 1994; Hansel et al., 1995; B. Ermentrout, 1996; Netoff et al., 2005; Preyer
& Butera, 2005; G. B. Ermentrout, Galán, & Urban, 2007; Tateno & Robinson, 2007; Cui,
Carmen, & Butera Robert, 2009; Smeal, Ermentrout, & White, 2010). However,
parameterizing the shapes independently would inevitably produce some parameter regimes
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that may be of less physiological interest, but at the same time it exhaustively covers all the
possible and physiologically relevant voltage and PRC shapes within our model
assumptions. The predictions would now become more general based on these two
functions. In the current approach only one independent time parameter (A/T, the PRC
skewness), and one independent type parameter (B/C) define the PRC. The voltage spike
train is again defined by just one independent time parameter (W/T, the spike width
parameter), along with the spike peak, maximum spike hyperpolarization, and the spike
threshold level. But the latter three parameters collectively result in one truly independent
parameter, a3/a2, that affects the stability of synchrony and antisynchrony. The stability is
studied by segmenting the (W, A) parameter spaces (Fig. 2) such that each regime contains
segments of the voltage and the PRC with constant slopes. This minimalistic formulation is
possible because we have employed piecewise linear functions to model the voltage and the
PRC shapes. Note however that the functional form of these shapes is less important than
the ability to parameterize the shapes. We examined exhaustively whether the conventional
categorization of PRCs into type-1 and type-2 had bearing on their role in synchrony. Or
more specifically we addressed how the amplitude of the negative lobe in the PRC affects
synchrony. We also investigated the role of PRC shape skewness as the maximum phase
advancement of the PRC is systematically moved to longer phases. The effect of voltage
depolarization and spike frequency was also investigated.

All the analytical results relating the shape parameters are given in Sections 3 and 4, and are
summarized for zero spike width in Fig. 5, and for non-zero spike width in Figs. 10 and 11.
These results explain and put in perspective the previous results obtained using leaky
integrate-and-fire (Chow & Kopell, 2000; Lewis & Rinzel, 2000), quadratic integrate-and-
fire (Pfeuty et al., 2003), and Hodgkin-Huxley model equations (Nomura et al., 2003). The
leaky integrate-and-fire model exhibits large PRC skewness making a two-neuron LIF
network exhibit antisynchrony at small spike width/frequency (Fig. 9). The coupled network
of oscillating Hodgkin-Huxley model neurons exhibit bistability [Fig. 10(b), Fig. 1] again
because of the large skewness. Altering the PRC of the HH model such that the maximum
PRC delay occurs at earlier phases would eliminate the antisynchrony. We also found [Fig.
11] that if the PRC skewness is small or the spike height is large (a3/a2 small), then the
synchronous state could be preserved even at high frequencies or large spike widths
provided the type parameter B becomes sufficiently negative. Such possibility occurs in
some models (Nomura et al., 2003).

In simulations it may be possible to devise parameters or parameter combinations that could
lead to an independent control of the PRC and voltage shape parameters. But such a control
may be more difficult in experimental preparations. For example, increasing a steady
applied current or incrementally controlling the maximum ionic conductance of a selected
channel could cause multiple changes in the PRC and voltage shapes, traversing some
curvilinear path in our parameter spaces. But a simple assessment of the PRC and the
voltages to acquire their shape parameters could be made. The current results provide
guidance to the network behavior when such shape parameters are determined. The results
when spike width is zero [Fig. 5] are the simplest to interpret: For PRCs whose normalized
type parameter is bigger than −2(1 − A/T) [curve ρ1 in Fig. 5] the coupled network displays
stable synchrony. That is all type-1 PRCs lead to synchrony. Type-1 PRCs whose
normalized skewness exceeds some threshold [Eqs. 32-35] lead to antisynchrony [curves σ4
and σ5 in Fig. 5]. Type-2 PRCs may cause loss of synchrony if the maximum PRC delay is
large with sufficient skewness [curve ρ1 in Fig. 5]. Large (bigger than σ3) but not very large
(less than σ6) skewness in the type-2 PRCs causes stable antisynchrony. At zero spike width,
the slope of the voltage depolarization does not determine the stability of synchrony or
antisynchrony.
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For finite spike width, the stability boundaries [Figs. 10 and 11] are more complicated. As
discussed in Section 5, the boundary of antisynchronous state, particularly when the PRC is
of type-1, depends sensitively on spike width [curve σe in Fig. 10]. For sufficiently large
spike width or at sufficiently high frequency, type-1 and type-2 PRCs can lead to an
unstable synchrony, but the threshold of instability for the type-2 PRCs is higher than that
for the type-1 PRCs. At high frequencies or large spike width stable antisynchrony may
disappear if the PRC has large skewness, and instead it may appear at small PRC skewness.

Limitations
The limitations of our model come in the form limitations of the voltage and PRC profiles,
and the basis of the weak coupling among oscillators. The voltage time course with three
piecewise linear profile described time courses of Hodgkin-Huxley (Fig. 1), Erisir et al. [Fig.
12(a,d)], and even some experimental recordings [Fig. 12(g)]. The piecewise linear
formulation of the PRC profile also described satisfactorily the PRCs of Hodgkin-Huxley’s
(Fig. 1) and the experimental recordings of Mancilla et al. [Fig. 12(h)], but some deviations
are prominent between the piecewise curves and the Erisir et al.’s model [Fig. 12(b,d)].
These deviations are at longer input phases. Though these deviations did not affect in
predicting the stability of the phase-locked states, it is also a reflection of the limitations of
our five-segment piecewise linear PRC model in being unable to capture perhaps a large
class of other PRCs. This model is also obviously unsuitable for PRCs with more than one
peak (see some examples reported in (Perez Velazquez et al., 2007; Devlin & Kay, 2001)).
In fact the profile of the PRC that we chose that has zeros at the ends may not be suitable for
all experimental data. For example a polynomial fit to the PRC that would have finite values
at the ends may be more appropriate for some experimental recordings (Netoff et al., 2005;
Tateno & Robinson, 2007). Also, because the coupling via electrical interactions uses all the
voltage profile, deviations from the three piece-wise linear profile can have significant effect
on the stability of the phase-locked states, particularly when those deviations impart slopes
with opposite signs. Finally the interactions are assumed to be weak, and thus the results
reported here cannot explain effects due to strong coupling. We have also not considered the
role of heterogeneities and noise (for such studies in LIF models see (Ostojic et al., 2009))
on the phase-locked states. In fact the synchronous state considered here is a perfect
synchronous state where the spikes align with no phase difference. The regions of unstable
synchrony bordering the curves of stability contain phase-locked states that are near
synchronous.
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Appendix A

Computing eigenvalue for the stability of synchrony
We can use the profiles of Z(t) and V (t) to compute λ using Eq. 5. Since both Z(t) and V (t)
are piecewise linear, the resultant λ will have piecewise contributions. As a typical case that
we must deal with in computing the eigenvalue, consider the figure panel marked Case (c)
Type II in Fig. 2(A) that corresponds to the arrangement of Z(t) and V (t) for models such as
the HH model. The time point at which the spike downstroke ends (at t = 2W) is less than
the point at which the PRC becomes non-zero (t = A/2), and hence we obtain the condition,
A ≥ 4W. The line A = 4W is depicted in the (W, A) plot of Fig. 2(A), and the condition A ≥
4W is represented by the region (c). The parameter point for HH model itself is marked by a
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square symbol. There are six regimes that are separated by the change of slopes of these
curves. Each regime contributes a portion (λ1c, λ2c, λ3c, λ4c, λ5c, and λ6c), to the eigenvalue,
and together all the six regimes will combine to determine the stability of the synchronous
state. In this particular case, we can directly see that λ1c, λ2c, and λ6c are 0 because Z(t) is
zero in those regimes. The other eigenvalue components will have either positive or negative
values depending on the product Z(t)V′(t) and its integral in those regimes. We shaded the
regimes or parts of regimes that contribute to positive value of the eigenvalue component. In
this figure, we see that λ3c is completely positive because Z(t) [i.e. Z2(t) in particular] is
negative in this regime and the slope of the voltage is positive. Hence the product Z(t)V′(t)
is negative resulting in a negative value of the integral over this regime. Since there is a
minus sign already outside the integral in Eq. 5, the eigenvalue component becomes
positive, hence the region is shaded. In the adjacent regime that contributes to λ4c the
product Z(t)V′(t) changes its sign when Z(t) goes from negative to positive, and thus the
positive eigenvalue portion that is marked by negative Z(t) is shaded. The sign of the
component λ4c itself depends on the magnitude of the maximum delay B, the maximum
advancement C, and the skewness A. These two components together determine whether the
synchronous state can become unstable because the other components λ2c and λ5c are
completely negative since the product Z(t)V′(t) is positive in those regimes. But if the PRC
becomes type-1, in this case [Fig. 2(A) Case (c) Type I], all the eigenvalue components
become negative, and thus the synchronous state cannot be destabilized.

As the skewness becomes smaller than 4W such that the maximum depolarizing time point
(t = 2W) is between the point at which the PRC becomes non-zero (t = A/2) and maximum
delay (t = A) we obtain the condition 2W ≤ A < 4W [region (b) in (W, A) plane of Fig.
2(A)]. The corresponding arrangement of Z(t) and V (t) are shown for type-1 and type-2
PRCs in Case (b) of Fig. 2(A). When the product Z(t)V′(t) is negative, the resultant portion
of the eigenvalue becomes positive contributing to the instability of the synchronous state.
Such regions along time axis are shaded. In this case, both type-1 and type-2 can potentially
cause the synchronous state become unstable. Reducing the parameter A further such that
the maximum delay (t = A) in the PRC occurs within the spike downstroke (t = 2W) but the
downstroke ends before the maximum phase advancement (t = A/2 + T/2), we arrive at the
condition 4W − T ≤ A < 2W [region (a) in (W, A) plane of Fig. 2(A)]. This condition occurs
when the frequency is high. The corresponding arrangements of Z(t) and V (t) for type-2 and
type-1 are shown respectively in Case(a) Type II and Case(a) Type I in Fig. 2(A). The
regions that contribute to positive eigenvalue components are shaded. Finally when the
frequency of oscillation is very high such that the spike downstroke (t = 2W) ends after the
PRC acquires its maximum advancement (t = A/2+T/2), we arrive at the condition A < 4W
− T [region (d) in (W, A) plane of Fig. 2(A)]. An example of the arrangement of Z (t) and V
(t) are displayed for type-2 and type-1 PRCs in Case (d) Type II and Case (d) Type I of Fig.
2(A). There are now larger regions shaded that mark the regions contributing to positive
eigenvalue which in turn destabilizes synchronous state. We summarize the four parameter
regions discussed above as follows:

Region (a) Intermediate skewness: 4W − T ≤ A < 2W: λ ≡ λa

Region (b) Large skewness: 2W ≤ A < 4W: λ ≡ λb

Region (c) Very large skewness: A ≥ 4W: λ ≡ λc

Region (d) Small skewness: 0 ≤ A < 4W − T: λ ≡ λd

where λx is given in Eq. 16. The expressions for λa λb, λc and λd are listed in the Appendix
D: for all the four cases. The value λ1x corresponds to the full or part of Z1(t), and λ6x
corresponds to the contribution of Z5(t). Hence both these are zero for all the cases.
Consequently, the rising phase of the action potential has no effect on the stability of
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synchrony in our model. If we were to consider the PRC to be non-zero during the rising
phase, that would contribute to more stabilizing eigenvalue because the slope of the voltage
is positive and PRC is always positive in that region. The effect of the falling phase of the
action potential will have diminishing effect as the skewness of the PRC increases. The
parameter region of W above 2T/5 is forbidden by the condition in Eq. 8.

Appendix B

Computing eigenvalue for the stability of antisynchrony
The eigenvalue γ for the antisynchronous state is found using Eq. 6, but this case turns out to
be more complex than that for λ. γ comprises of piecewise contributions from Z(t) and V (t
− T/2). Depending on the value of the skewness (A) in relation to the spike width parameter
W, the relative arrangement of Z(t) and V (t − T/2) changes while keeping the spike peak
position of the voltage time course fixed at T/2. Four such arrangements are displayed in
Fig. 2(B). At any given such arrangement of Z (t) and V (t − T/2) we will have to evaluate
eight integrals corresponding to the eight different time segments during which the slopes of
Z (t) and V (t − T/2) are constant. We refer to these integrals as eigenvalue components.

At A = 0, for example, the spike peak and the positive peak of the PRC coincide, and for
small positive A, the regions marked (a) and (b) in (W, A) plane of Fig. 2(B) arise.
Examples of the arrangement of the PRC and V (t) in these two regions are shown,
respectively, in Cases (a) and (b). Consider the Case (a) where the positive peak position

 of the PRC is slightly shifted toward longer phases, but still the spike width is big
enough that the peak occurs during the downstroke of the spike and before the spike

minimum (at ). That is we have the relation A < 4W, and if A is increased beyond
4W, another set of regions along the time axis contribute to the eigenvalue. But W is small

enough that the spike minimum (at ) occurred within the Z4(t) branch and before

Z5(t) began (at ). That is we must have . And A is also small enough that

the position of PRC minimum (at A) occurs before the spike upstroke initiates (at ).

Hence we also have the condition that . If these conditions are violated then we
will have to rewrite the conditions for the validity of the corresponding arrangement of the Z
(t) and V (t−T/2). These three conditions are valid in the region (a) in the (W, A) space of
Fig. 2(B), and the region is bounded by A = 4W, W = T/5, and A = (T − W)/2 which are also
drawn in the figure. The Case (a) Type II and Type I panels also show the regimes during
which the slopes of neither Z(t) nor V (t − T/2) change. These regimes from left (starting at t
= 0) contribute to the eigenvalue components γ1a, …, γ8a. Since the slopes of V (t − T/2) and
Z(t) are constant the sign of the eigenvalue component can be directly visualized from the
panels. When the product Z(t)V′(t−T/2) is negative either because of the negative voltage
slope or because of the negative PRC segment, then it contributes to a positive eigenvalue
(due to the extra negative sign outside the integral in Eq. 6). In Type-2, the negative part of
the PRC contributes to positive eigenvalues (γ2a and part of γ3a are positive). In both Type-1
and Type-2 of Case (a), the spike downstroke contributes to a positive eigenvalue, i.e. γ5a
and γ6a both become positive. The spike down stroke even in the form of a voltage
discontinuity when the spike width is zero contributes significant amount of positiveness to
the eigenvalue due to the sharp voltage gradient. Thus we will see that the antisynchronous
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state is unstable for small W even when A = 0, and only becomes stable for sufficiently long
W such that the downstroke contribution diminishes due to decreased slope.

Starting from conditions of region (a), when A is increased slightly we will arrive at three
other possible arrangements of Z(t) and V(t − T/2). We will arrive at region (b) when the

maximum PRC (at ) occurs after the spike minimum at , which results in

the condition A > 4W while still obeying . Instead we could have the PRC

minimum (at A) occur after the spike upstroke event (at ) but before the spike

peak (at ), and thus defining the bottom and top boundaries of the region (f):

 and . As a third possibility we could have both the above occurring at the
same time, i.e. the PRC minimum (at A) occurring after the spike upstroke initiation (at

) but before the spike peak (at ), and the PRC maximum occurring after the spike

minimum (at ). Together this gives the region of validity of this scenario at the
intersection of the previous two regions and results in the region (c). In the example of Case
(b) the regions along the time axis that contribute to a positive eigenvalue component on
account of the product Z(t)V′(t − T/2) becoming negative are shaded in Fig. 2(B) Case (b).

The arrangements of Z(t) and V (t − T/2) in two [(c) and (f)] of the above four regions define

the maximum value of A which is smaller than  on account of the PRC minimum (at A)
occurring before the half period (at T/2). The Hodgkin-Huxley model discussed earlier is an
example of its PRC minimum occurring above its half period point [the filled square mark in
region (d) in the (W, A) panel of Fig. 2(B)]. But in general when A is increased further such
that the PRC minimum occurs after the half period point, the arrangement of the PRC and
Z(t) in region (c) transforms into that of region (d), and region (f) into that of region (g).
And when A increased further such that the PRC minimum (A) occurs not only after the half

period point as shown in Case (d) but occurs after the spike minimum (at ), then
we arrive at region (e) for which Case (e) shows an example. All the above seven regions

discussed so far occur when the spike width is less than one fifth of the time period, .
The arrangements of the PRC and V (t) in region (d) and region (e) are illustrated,
respectively, in Fig. 2(B) Case (d) and Case (e). The conditions for these seven regions are
summarized below:

Region (a) A < 4W, , : γ ≡ γa

Region (b) : γ ≡ γb

Region (c) , 4W ≤ A < T/2: γ ≡ γc

Region (d) , : γ ≡ γd

Region (e) : γ ≡ γe
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Region (f) , A < 4W, : γ ≡ γf

Region (g) , : γ ≡ γg,

where γx is defined by Eq. 17. The eigenvalue components γnx in the Eq. 17 are computed
using the same integration formula as in Eq. 6 with the limits adjusted according to the
regions (a-g). The algebraic expressions for γx are listed in the Appendix E:. The values γ1x
and γ8x are contributed by either part or whole of the PRC segments Z1(t) and Z5(t)
respectively, and thus they are zero. The other segments contribute either positively or
negatively to the eigenvalue, and thus decide the critical boundary that defines the stability
region of the antisynchronous state.

Regions (a,f,g) defined above border the maximum W that can occur in all the seven regions

by requiring , and other regions also obey this relationship. This condition arises
because of the existence of the zero phase regime in the PRC at later phases, Z5(t). In all

these three regions the spike minimum (at ) occurred before the Z5(t) segment
began. When the spike width is increased such that the spike minimum occurred within the

Z5(t) segment of the PRC (i.e. after  and before t = T), then the arrangement of the
PRC and V (t) in regions (a), (f), and (g) respectively become candidates for regions (j), (i),
and (h). Thus the conditions for these three regions are given by:

Region (h) , : γ ≡ γh

Region (i) , : γ ≡ γi

Region (j) , : γ ≡ γj,

where γx, x = h, i, j is the sum of the eight individual eigenvalue components in each region.
The sum is as defined in Eq. 17, and the expressions for the individual segments are given in
the Appendix E:.

Extremely large spike width with W above  leads to some more interesting cases. Consider

the parameter region when the spike upstroke (at ) occurs after PRC minimum (at

A) in the segment Z3(t) as in the region (a, b, j), i.e. . If the spike width grows
long enough such that it is now bigger than a quarter of the period, the spike minimum of V
(t − T/2) will occur beyond the Z3(t) segment, i.e. either in the segment Z1(t) [resulting in
region (k)], in the segment Z2(t) [resulting in region (l)], or in the segment Z3(t) itself
[resulting in region (m)]. If the spike upstroke occurred in the segment Z2(t) instead of Z3(t)
because of elevated A that moves the PRC to longer phases, then for long spike widths there
will be two cases corresponding to the discussion above: one when the spike minimum (now

at ) occurs in the segment Z1(t) [resulting in region (n)], and when the spike
minimum occurs in the segment Z2(t) [resulting in region (o)]. And finally when the
skewness is large enough that the spike peak occurs before the PRC minimum but within the
segment Z2(t), then for large enough spike widths the minimum of V (t − T/2) can occur
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either in the PRC segment of Z1(t) leading to region (p) or in the segment of Z2(t) itself
leading to region (q). All the above seven regions occur when the spike width is bigger than

 but still smaller than  that is defined by Eq. 8. The conditions for the above seven
regions are given by:

Region (k) , : γ ≡ γk,

Region (l) , : γ ≡ γl

Region (m) , : γ ≡ γm,

Region (n) , : γ ≡ γn,

Region (o) , : γ ≡ γo,

Region (p) , : γ ≡ γp,

Region (q) , : γ ≡ γq,

where γx, x = k, l, m, n, o, p, q is the sum of the eight individual components as before as
defined in Eq. 17. The expressions for the individual components are given in the Appendix

E:. The region  that is not displayed in (W, A) plot in Fig. 2(B) is forbidden due to
condition in Eq. 8.

The spike downstroke or, when the spike width is zero, the discontinuity that is associated
with the spike due to its sharp slope contributes maximally to the positive eigenvalue, and
can by itself have bigger magnitude over the sum of all the other negative eigenvalue
components. And thus even when there is no spike width (W = 0), the antisynchronous state
can become unstable due to the sharp voltage drop at t = T/2. When the spike width
increases, its effect in destabilizing the antisynchrony decreases, and the antisynchronous
state has more chance of becoming stable.

Appendix C

Boundaries of antisynchrony when W > 0
The critical curves defining the antisynchronous state discussed in Section 4.2 are listed
below.

(43)
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The coefficients on the right hand sides of the above expressions and similar expressions
below are listed in the Appendix F:.

(44)

(45)

Appendix D

Eigenvalue components for synchrony
Region (a)

The following are the expressions for the six components of the eigenvalue that determines
the stability of synchronous state under case (a) as described in Appendix A:.

Region (b)
As in region (a) the first and the last component become zero, and the fifth component is
identical to that in region (a): λ1b = 0, λ6b = 0, and λ5b = λ5a. The other three components are
given below:
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Region (c)
The first two and the last component become zero: λ1c = 0, λ2c = 0, and λ6c = 0. The fourth
component is identical to that in region (b), and the fifth component is identical to that in
region (a): λ4c = λ4b, and λ5c = λ5a. The other component is given below:

Region (d)
The first and the last components become zero: λ1c = 0, and λ6d = 0. The second component
is identical to that in region (a): λ2d = λ2a. The other three components are given below:

Appendix E

Eigenvalue components for antisynchrony
The expressions for the eight components (see Eq. 17) comprising the eigenvalue in each of
the seventeen parameter regimes in (W, A) plane γa, …, γq [i.e. under region (a), …, region
(q)] for determining the stability of antisynchronous state described in Appendix B: are
listed below.

Region (a)
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Region (b)
Two of the components become zero, and three others identical to those in region (a): γ1b =
0, and γ8b = 0, γ2b = γ2a, γ3b = γ3a, and γ4b = γ4a. The other three components are given
below.

Region (c)
The components γ1c = 0, and γ8c = 0. Three other components are identical to those in
region (b): γ5c = γ5b, γ6c = γ6b, and γ7c = γ7b. The other three components are given below.
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Region (d)
The first and last components are zeros: γ1d = 0, and γ8d = 0. One component is identical to
that in region (c): γ2d = γ2c, and two others are identical to those in region (b): γ6d = γ6b, and
γ7d = γ7b. The other three components are given below:

Region (e)
The first and last components are zeros: γ1e = 0, and γ8e = 0. The third and seventh
components are identical to respectively those in regions (d) and (b): γ3e = γ3d, and γ7e =
γ7b. The other four components are given below:

Region (f)
The first and last components are zeros: γ1f = 0, and γ8f = 0. And all the other components
are identical to previously computed expressions in either region (a) or region (c): γ2f = γ2c,
γ3f = γ3c, γ4f = γ4c, and γ5f = γ5a, γ6f = γ6a, and γ7f = γ7a.

Region (g)
The first and last components are zeros: γ1g = 0, and γ8g = 0. Except the fifth component the
other components are identical to expressions derived in either region (a), (c), or (d): γ2g =
γ2c, γ3g = γ3d, γ4g = γ4d, γ6g = γ6a, and γ7g = γ7a. The remaining component is given below.

Region (h)
The first and the last two components are zeros: γ1h = 0, γ7h = 0, and γ8h = 0. Four other
components are as derived in the previous cases: γ2h = γ2c, γ3h = γ3d, γ4h = γ4d, and γ5h =
γ5g. The sixth component is given below:
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Region (i)
The first and the last two components are zeros: γ1i = 0, γ7i = 0, and γ8i = 0. And all other
components are as derived in the previous cases: γ2i = γ2c, γ3i = γ3c, γ4i = γ4c, γ5i = γ5a, and
γ6i = γ6h.

Region (j)
As in the previous two cases, the first and the last two components are zeros: γ1j = 0, γ7j = 0,
and γ8j = 0. And all other components are as derived in the previous cases: γ2j = γ2a, γ3j =
γ3a, γ4j = γ4a, γ5j = γ5a, and γ6j = γ6h.

Region (k)
The first two and the last one component become zero: γ1k = 0, γ2k = 0, and γ8k = 0. All the
other components are completely as derived in region (j) with shifted indices: γ3k = γ2a, γ4k
= γ3a, γ5k = γ4a, γ6k = γ5a, and γ7k = γ6h.

Region (l)
The first and the last one component become zero: γ1l = 0, and γ8l = 0. Four components are
identical those of the previous case: γ4l = γ3a, γ5l = γ4a, γ6l = γ5a, and γ7l = γ6h. The
remaining two components are given below:

Region (m)
The first and the last one component become zero: γ1m = 0, and γ8m = 0. Three other
components are as derived in the previous cases: γ5m = γ5b, γ6m = γ5a, and γ7m = γ6h. And
the expressions for the third and fourth components are given below:

Region (n)
The first two and the last one component become zero: γ1n = 0, γ2n = 0, and γ8n = 0. And all
other components are as derived in the previous cases: γ3n = γ2c, γ4n = γ3c, γ5n = γ4c, γ6n =
γ5a, and γ7n = γ6h.
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Region (o)
The first and the last component become zero: γ1o = 0, and γ8o = 0. Five other components
are as derived in the previous cases: γ2o = γ2l, γ4o = γ3c, γ5o = γ4c, γ6o = γ5a, and γ7o = γ6h.
The remaining component is as given below:

Region (p)
The first two and the last one component become zero: γ1p = 0, γ2p = 0, and γ8p = 0. All the
other components are as derived in the previous cases: γ3p = γ2c, γ4p = γ3d, γ5p = γ4d, γ6p =
γ5g, and γ7p = γ6h.

Region (q)
The first and the last component become zero: γ1q = 0, and γ8q = 0. And all the other
components are as derived in the previous cases: γ2q = γ2l, γ3q = γ3o, γ4q = γ3d, γ5q = γ4d, γ6q
= γ5g, and γ7q = γ6h.

Appendix F

Coefficients in the critical curve expressions for antisynchrony
These are the coefficients a10, …, a13, a20, …, a23, b10, …, q11, q12, q20, q21 that appear in

the seventeen critical curve expressions for  presented in Appendix C:. We use the

definition .

Region (a)

Region (b)
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Region (c)

Region (d)

Region (e)

Region (f)
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Region (g)

Region (h)

Region (i)

Region (j)
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Region (k)

Region (l)

Region (m)

Region (n)

Region (o)
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Region (p)

Region (q)

References
Abramovich-Sivan S, Akselrod S. A pacemaker cell pair model based on the phase response curve.

Biol Cybern. 1998; 79:77–86. [PubMed: 9742680]

Achuthan S, Canavier CC. Phase-resetting curves determine synchronization, phase locking, and
clustering in networks of neural oscillators. J Neurosci. 2009; 29:5218–5233. [PubMed: 19386918]

Bem T, Le Feuvre Y, Rinzel J, Meyrand P. Electrical coupling induces bistability of rhythms in
networks of inhibitory spiking neurons. Eur J Neurosci. 2005; 22:2661–2668. [PubMed: 16307609]

Bou-Flores C, Berger AJ. Gap junctions and inhibitory synapses modulate inspiratory motoneuron
synchronization. J Neurophysiol. 2001; 85:1543–1551. [PubMed: 11287478]

Brown E, Moehlis J, Holmes P. On the phase reduction and response dynamics of neural oscillator
populations. Neural Comput. 2004; 16:673–715. [PubMed: 15025826]

Carlen PL, Skinner F, Zhang L, Naus C, Kushnir M, Perez Velazquez JL. The role of gap junctions in
seizures. Brain Res Rev. 2000; 32:235–241. [PubMed: 10751673]

Chow CC, Kopell N. Dynamics of spiking neurons with electrical coupling. Neural Comput. 2000;
12:1643–1678. [PubMed: 10935921]

Cui J, Carmen CC, Butera Robert J. Functional phase response curves: A method for understanding
synchronization of adapting neurons. J Neurophysiol. 2009; 102:387–398. [PubMed: 19420126]

Demir SS, Clark JW, Giles WR. Parasympathetic modulation of sinoatrial node pacemaker activity in
rabbit heart: a unifying model. Am J Physiol. 1999; 276:H2221–H2244. [PubMed: 10362707]

Devlin PF, Kay SA. Circadian photoperception. Annu Rev Physiol. 2001; 63:677–694. [PubMed:
11181972]

Erisir A, Lau D, Rudy B, Leonard CS. Function of specific K+ channels in sustained high-frequency
firing of fast-spiking neocortical interneurons. J Neurophysiol. 1999; 82:2476–2489. [PubMed:
10561420]

Ermentrout B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996;
8:979. [PubMed: 8697231]

Ermentrout B, Pascal M, Gutkin B. The effects of spike frequency adaptation and negative feedback
on the synchronization of neural oscillators. Neural Comput. 2001; 13:1285–1310. [PubMed:
11387047]

Ermentrout GB, Galán RF, Urban NN. Relating neural dynamics to neural coding. Phys Rev Lett.
2007; 99:248103. [PubMed: 18233494]

Ermentrout GB, Kopell B. Multiple pulse interactions and averaging in systems of coupled neural
oscillators. J Math Biol. 1991; 29:195–217.

Dodla and Wilson Page 42

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ermentrout GB, Kopell N. Parabolic bursting in an excitable system coupled with a slow oscillation.
SIAM J Appl Math. 1986; 46:233–253.

Fuentealba P, Crochet S, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. Experimental evidence
and modeling studies support a synchronizing role for electrical coupling in the cat thalamic
reticular neurons in vivo. Eur J Neurosci. 2004; 20:111–119. [PubMed: 15245484]

Galán RF, Ermentrout GB, Urban NN. Efficient estimation of phase-resetting curves in real neurons
and its significance for neural-network modeling. Phys Rev Lett. 2005; 94:158101. [PubMed:
15904191]

Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical
synapses. Nature. 1999; 402:72–75. [PubMed: 10573418]

Gao J, Holmes P. On the dynamics of electrically-coupled neurons with inhibitory synapses. J Comput
Neurosci. 2007; 22:39–61. [PubMed: 16998640]

Gibson JR, Beierlein M, Connors BW. Two networks of electrically coupled inhibitory neurons in
neocortex. Nature. 1999; 402:75–79. [PubMed: 10573419]

Goel P, Ermentrout B. Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D.
2002; 163:191–216.

Hansel D, Mato G, Meunier C. Synchrony in excitatory neural networks. Neural Comput. 1995;
7:307–337. [PubMed: 8974733]

Hansel, D.; Mato, G.; Pfeuty, B. The role of intrinsic cell properties in synchrony of neurons
interacting via electrical synapses. In: Schultheiss, N.; Prinz, A.; Butera, R., editors. Phase
response curves in neuroscience: Theory, experiment, and analysis. Springer; 2012.

Hestrin S, Galarreta M. Electrical synapses define networks of neocortical gabaergic neurons. Trends
Neurosci. 2005; 28:304–309. [PubMed: 15927686]

Hoppensteadt, FC.; Izhikevich, EM. Weakly connected neural networks. Springer; New York, NY
10013, USA: 1997.

Izhikevich, EM. Dynamical systems in neuroscience: The geometry of excitability and bursting. The
MIT Press; 2007.

Jalife J. Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit
sino-atrial pace-maker cells. J Physiol. 1984; 356:221–243. [PubMed: 6097670]

Kepler TB, Marder E, Abbott LF. The effect of electrical coupling on the frequency of model neuronal
oscillators. Science. 1990; 248:83–85. [PubMed: 2321028]

Klaus A, Planert H, Hjorth JJ, Berke JD, Silberberg G, Kotaleski JH. Striatal fast-spiking interneurons:
from firing patterns to postsynaptic impact. Front Syst Neurosci. 2011; 5:57. [PubMed: 21808608]

Koos T, Tepper JM. Inhibitory control of neostriatal projection neurons by gabaergic interneurons. Nat
Neurosci. 1999; 2:467–472. [PubMed: 10321252]

Kuramoto, Y. Chemical oscillations, waves, and turbulence. Springer-Verlag; Berlin: 1984.

Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the
thalamic reticular nucleus. J Neurosci. 2002; 22:1002–1009. [PubMed: 11826128]

Lee SC, Cruikshank SJ, Connors BW. Electrical and chemical synapses between relay neurons in
developing thalamus. J Physiol. 2010; 588:2403–2415. [PubMed: 20457735]

Lewis TJ, Rinzel J. Self-organized synchronous oscillations in a network of excitable cells coupled by
gap junctions. Network. 2000; 11:299–320. [PubMed: 11128169]

Lewis TJ, Rinzel J. Dynamics of spiking neurons connected by both inhibitory and electrical coupling.
J Comput Neurosci. 2003; 14:283–309. [PubMed: 12766429]

Lewis, TJ.; Skinner, FK. Understanding activity in electrically coupled networks using prcs and the
theory of weakly coupled oscillators. In: Schultheiss, N.; Prinz, A.; Butera, R., editors. Phase
response curves in neuroscience: Theory, experiment, and analysis. Springer; 2012.

Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW. Synchronization of electrically coupled pairs
of inhibitory interneurons in neocortex. J Neurosci. 2007; 27:2058–2073. [PubMed: 17314301]

Mirollo RE, Strogatz SH. Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math.
1990; 50:1645–1662.

Dodla and Wilson Page 43

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White JA. Synchronization in hybrid
neuronal networks of the hippocampal formation. J Neurophysiol. 2005; 93:1197–1208. [PubMed:
15525802]

Neu JC. Chemical waves and the diffusive coupling of limit cycle oscilltors. SIAM J Appl Math.
1979a; 36:509–515.

Neu JC. Coupled chemical oscillators. SIAM J Appl Math. 1979b; 37:307–315.

Nomura M, Fukai T, Aoyagi T. Synchrony of fast-spiking interneurons interconnected by gabaergic
and electrical synapses. Neural Comput. 2003; 15:2179–2198. [PubMed: 12959671]

Ostojic S, Brunel N, Hakim V. Synchronization properties of networks of electrically coupled neurons
in the presence of noise and heterogeneities. J Comput Neurosci. 2009; 26:369–392. [PubMed:
19034642]

Perez Velazquez JL, Galán RF, Garcia Dominguez L, Leshchenko Y, Lo S, Belkas J, Erra RG. Phase
response curves in the characterization of epileptiform activity. Phys Rev E. 2007; 76:061912.

Pfeuty B, Mato G, Golomb D, Hansel D. Electrical synapses and synchrony: the role of intrinsic
currents. J Neurosci. 2003; 23:6280–6294. [PubMed: 12867513]

Preyer AJ, Butera RJ. Neuronal oscillators in Aplysia californica that demonstrate weak coupling in
vitro. Phys Rev Lett. 2005; 95:138103. [PubMed: 16197185]

Smeal RM, Ermentrout GB, White JA. Phase-response curves and synchronized neural networks. Phil
Trans R Soc Lond B Biol Sci. 2010; 365:2407–2422. [PubMed: 20603361]

Tateno T, Robinson HP. Phase resetting curves and oscillatory stability in interneurons of rat
somatosensory cortex. Biophys J. 2007; 92:683–695. [PubMed: 17192317]

Traub RD, Pais I, Bibbig A, LeBeau FE, Buhl EH, Hormuzdi SG, Whittington MA, et al. Contrasting
roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of
neuronal network oscillations. Proc Nat Acad Sci USA. 2003; 100:1370–1374. [PubMed:
12525690]

Tsubo Y, Teramae JN, Fukai T. Synchronization of excitatory neurons with strongly heterogeneous
phase responses. Phys Rev Lett. 2007; 99:228101. [PubMed: 18233330]

Valiante TA, Perez Velazquez JL, Jahromi SS, Carlen PL. Coupling potentials in ca1 neurons during
calcium-free-induced field burst activity. J Neurosci. 1995; 15:6946–6956. [PubMed: 7472451]

Van Vreeswijk C, Abbott LF, Ermentrout GB. When inhibition not excitation synchronizes neural
firing. J Comput Neurosci. 1994; 1:313–321. [PubMed: 8792237]

Verheijck EE, Wilders R, Joyner RW, Golod DA, Kumar R, Jongsma HJ, van Ginneken AC, et al.
Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol.
1998; 111:95. [PubMed: 9417138]

Winfree AT. Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol.
1967; 16:15–42. [PubMed: 6035757]

Dodla and Wilson Page 44

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Parameterizing the voltage and the PRC shapes. (a) Model piecewise linear voltage (thick)
and (b) phase response curve, PRC (thick) shapes employed in the current study. The
voltage time course gives one time parameter (W/T, normalized spike width parameter), and
three amplitude parameters, Vp, Vth, and Vm, which can be cast in terms of a1, a2, and a3.
The ratio a3/a2 will be used as a useful parameter in the bifurcation diagrams. The PRC, Z(t)
gives just one time parameter, the PRC skewness, A, and one amplitude parameter B which
is the maximum delay. The maximum advancement C(> 0) can be used to normalize B. The
thin overlaid curves are the model curves of the standard Hodgkin-Huxley equations with an
applied current of 10μA/cm2. The model can be fit with the parameters: A/T = 0.567, W/T =
0.075, B/C = −0.5, and a3/a2 = 0.2234. These are the only four independent parameters that
the stability boundaries of synchrony and antisynchrony depend on. (c) Comparison of the
interaction function and (d) the growth function computed from the HH model (thin) and the
piecewise linear model (thick). The piecewise model predicted the stability of the synchrony
(slope of G at spike time difference 0) and antisynchrony (slope of G at spike time
difference T/2) accurately.
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Figure 2.
Segmenting the parameter space and finding the stability. (A) Left: (W, A) space for
studying synchrony. Right: The arrangement of Z(t) and V(t) for determining the stability of
synchrony. Cases (a), (b), (c), and (d) depict the parameter regimes that have different
expressions for the eigenvalue and thus different stability criteria. The destabilizing
segments of Z(t) and V(t) are gray-shaded in the plots for type-1 and type-2 PRCs in each of
the four cases. The six eigenvalue segments λ1a, …, λ6a (and likewise λ1b, etc.) together
contribute to the total eigenvalue. (B) Left: (W, A) space for studying antisynchrony. Right:
Illustration of the arrangement of Z(t) and V(t) for determining the stability of antisynchrony
in four out of seventeen regimes. As in (A), the shaded portions of the segments contribute
to instability. Parameters for a few models and experiments are marked in the (W, A) planes:
Hodgkin-Huxley (HH) model depicted in Fig. 1, Morris-Lecar model (ML) at an applied
current of 0.11 μA/cm2, Erisir et al.’s model at low (E-1) and high (E-2) frequencies
(discussed in Fig. 12), and Mancill et al.’s experimental recordings at low (M-1) and high
(M-2) frequencies (see Fig. 12).

Dodla and Wilson Page 46

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
When spike width is zero, large skewness in type-1 PRCs could (1) make antisynchronous
state stable and (2) cause bistability between synchronous and antisynchronous states. (a)
Voltage time course from Eq. 7 at W/T = 0. (b) Z(t) from Eq. 14 when B/C = 0. Eigenvalue
for the synchronous state (c) and the antisynchronous state (d) as the PRC skewness is
increased. (T = 1, C = 1, a3 = 24 mV, ε = 1.) (e) Numerical bifurcation diagram showing
stable (solid lines) and unstable (dashed lines) phase-locked states with skewness.
Synchronous state (phase-locked state at 0) is stable for all skewness, whereas
antisynchronous state (phase-locked state at T/2) acquires stability for large skewness. Other
phase-locked states exist at large skewness, but are unstable. (f) Stable and unstable regions
along skewness.
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Figure 4.
When spike width is zero, large skewness in type-2 PRCs can (1) destabilize synchronous
state, (2) still cause bistability between synchronous and antisynchronous states, and (3)
destabilize both synchronous and antisynchronous states. (a) Voltage time course from Eq. 7
at W/T = 0. (b) PRC profiles from Eq. 14 when B/C = −0.5. The eigenvalue and the different
components that make up the eigenvalue which determine the stability of synchronous (c)
and antisynchronous (d) states. Bifurcation diagram (e) showing stable (solid curves) and
unstable (dashed curves) phaselocked states as the skewness is increased. Different stable
regimes are marked pictorially in (f).
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Figure 5.
Stability diagram and its verification in the absence of spike width. (a) Stability regions in
(A/T, B/C) plane for zero spike width. (At zero spike width a3/a2 does not affect the stability
boundaries.) The diagram does not include the edge effects at A = 0. Synchrony is stable for
all type-1 PRCs, and for type-2 PRCs if the type-parameter B/C > ρ1. The antisynchrony is
mostly confined to large skewness, but is also possible for very large positive B/C with
small skewness. The circled numbers mark parameter values which are used to compute
numerically the growth function [G(ϕ)] from the voltage and PRC profiles. (b,c,d) The
growth functions computed from the Z(t) and V(t) profiles for the parameters marked in (a).
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Figure 6.
Effect of non-zero spike width on type-1 PRC neurons illustrated when B/C = 0 and W/T =
0.15. For this choice, antisynchrony rather than synchrony could become stable for very
small skewness. (a) Voltage time course from Eq. 7. (b) Z(t) from Eq. 14 when B/C = 0. The
eigenvalue (thick curves) and their components (thin curves) that determine the stability of
synchrony (c) and antisynchrony (d) are plotted as the skewness is increased. λ3a is the
result of spike downstroke and causes the synchrony to become unstable. The sharp upstroke
contributes to γ4a that stabilizes the antisynchrony, but γ5a and γ6a which are the result of the
spike downstroke cause instability of antisynchronous state as the skewness is increased. (e)
One-parameter bifurcation diagram showing the stable (solid curves), and unstable (dashed
curves) phase-locked solutions. (f) Stable synchrony and antisynchrony are pictorially
depicted as skewness is increased. The white space holds other stable phase-locked solutions
as seen in (e). a3/a2 = 0.2234.
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Figure 7.
Effect of non-zero spike width on type-2 PRC neurons illustrated when B/C = −0.5 and W/T
= 0.15. For this choice, antisynchrony could become stable in two ranges: at small and large
skewness levels. Boundaries of synchrony are moderately sensitive to decreasing B/C. (a)
Voltage time course from Eq. 7. (b) Z(t) from Eq. 14 when B/C = −0.5. Total eigenvalue
(thick curve) and its components (thin curves) that determine the stability of synchrony (c)
and antisynchrony (d) are shown as a function of skewness. (e) One-parameter bifurcation
diagram showing stable (solid curves) and unstable (dashed curves) phase-locked solutions
as a function of A/T. (f) The stability regions are shown pictorially as a function of
skewness. a3/a2 = 0.2234.
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Figure 8.
At moderate skewness (here A/T = 0.2 which is less than that of the HH model) the
parameter regime where synchronous state is stable expands to larger values of W/T. The
antisynchronous state is not accessible for small W/T. The eigenvalue components (thin
curves) and the total eigenvalue (thick curve) that determine the stability of the
antisynchronous state as W/T is increased are shown in (a) for a type-1 PRC (at B/C = 0.2).
The stability diagram in (W/T, a3/a2) plane is plotted in (b). The interaction and growth
functions for a parameter point that supports only other phase-locked states are shown in (c),
and a one-parameter bifurcation diagram is shown (d) at a3/a2 = 0.2234. Similar to (b) and
(d), the results obtained for a type-2 PRC (B/C = −0.25) are shown in (e) and (f). In (d) and
(f) solid lines are stable branches, and dashed unstable.

Dodla and Wilson Page 52

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Large skewness (A/T = 0.6 here) can make the antisynchronous state accessible for a range
of W/T values starting at zero. Such regime is thinner in type-1 than in type-2 PRCs. (a)
Stability regions in (W/T, a3/a2) space for B/C = 0.2, 0,−0.25. The curves ρa and ρb are the
boundaries for synchrony. The curves σd and σe are the boundaries for the antisynchrony. (b)
One-parameter bifurcation diagram showing stable (solid) and unstable (dashed) states as a
function of W/T at a3/a2 = 0.22 that shows bistability of synchronous (phase-locked state at
0) and antisynchronous state (phase-locked state at T/2) at small W/T. (c) The eigenvalue
components (thin curves) and the total eigenvalue (thick curve) that determine the stability
of antisynchronous state as a function of W/T at a3/a2 = 0.22. (d) Growth functions at a3/a2 =
0.22 at a few values of W/T depicting how antisynchronous state becomes unstable at large
W/T.

Dodla and Wilson Page 53

Neural Comput. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Exploring all the PRC parameter space: Stability regions of both synchrony and
antisynchrony in the PRC skewness vs. its type parameter space at W/T = 0.02 (a), 0.05 (b),
0.15 (c), and 0.3 (d) when a3/a2 = 0.2234. The HH model discussed in Fig. 1 (with Iapp =
10μA/cm2 resulting in W/T = 0.075, B/C = −0.5 and A/T = 0.567) lies in a stability diagram
that is nearly identical to (b) in the bistability region above the curve ρc and slightly to the
right of σd. The unmarked white space to the right of the vertical dashed line is the forbidden
parameter space by the condition in Eq. 15. But the white space regions to the left of the
vertical dashed line that are interspersed between synchronous and antisynchronous states
hold other non-zero phase-locked states. While a number of models display a wide range of
PRC skewness levels, the type parameter (B/C) for many neuronal models is above −1.
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Figure 11.
Exploring the spike width and the PRC type parameters: Stability of the synchronous and
antisynchronous states at A/T = 0.25 (a, c, e), and 0.6 (b, d, f) in (B/C, W/T) plane. The
voltage profile for panels in each column is illustrated at the top. Panels (a) and (b) depict
the effect of skewness at very small spike threshold (i.e. the case of tall spike). Panels (c)
and (d) are for the HH model parameter of a3/a2 = 0.2234 that is depicted in Fig. 1. The
panels (e) and (f) are for very high spike threshold (i.e. the case of a short spike). The white
space holds other non-zero phase-locked states. While synchronous state may occur for
small W/T, the occurrence of antisynchronous state at either small or large W/T depends on
the level of PRC skewness.
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Figure 12.
Demonstrating piecewise linear formulation for Erisir et al. (Erisir et al., 1999) model (a-f)
and Mancilla et al. (Mancilla et al., 2007) experiments (g-i). (a-f) The voltage, PRC, and the
resultant growth functions computed from the original models are shown as thin lines, and
the corresponding computations with PWL approximation are shown in thick lines. (g-i)
Mancilla et al.’s neocortical recordings for the voltage and the PRC and the resultant growth
functions are shown at two different frequencies: open circles at low frequency, and filled
circles at high frequency. (Data was kindly provided by Jaime G. Mancilla, and the data
displayed is the average of multiple trials). The PWL approximation for the experimental
voltage and PRC traces and the resultant growth functions predicted stability of synchrony
and instability of antisynchrony agreeing with those computed experimentally.
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