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Abstract

We address the problem of estimating the difference between two probability den-
sities. A naive approach is a two-step procedure of first estimating two densities
separately and then computing their difference. However, such a two-step procedure
does not necessarily work well because the first step is performed without regard to
the second step and thus a small error incurred in the first stage can cause a big
error in the second stage. In this paper, we propose a single-shot procedure for di-
rectly estimating the density difference without separately estimating two densities.
We derive a non-parametric finite-sample error bound for the proposed single-shot
density-difference estimator and show that it achieves the optimal convergence rate.
The usefulness of the proposed method is also demonstrated experimentally.
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1 Introduction

When estimating a quantity consisting of two elements, a two-stage approach of first

estimating the two elements separately and then approximating the target quantity based

on the estimates of the two elements often performs poorly, because the first stage is

carried out without regard to the second stage and thus a small error incurred in the first

stage can cause a big error in the second stage. To cope with this problem, it would be

more appropriate to directly estimate the target quantity in a single-shot process without

separately estimating the two elements.

A seminal example that follows this general idea is pattern recognition by the support

vector machine (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1998): Instead of

separately estimating two probability distributions of patterns for positive and negative

classes, the support vector machine directly learns the boundary between the two classes

that is sufficient for pattern recognition. More recently, a problem of estimating the ratio

of two probability densities was tackled in a similar fashion (Qin, 1998; Sugiyama et al.,

2008; Gretton et al., 2009; Kanamori et al., 2009; Nguyen et al., 2010; Kanamori et al.,

2012; Sugiyama et al., 2012b; Sugiyama et al., 2012a): The ratio of two probability densi-

ties is directly estimated without going through separate estimation of the two probability

densities.

In this paper, we further explore this line of research, and propose a method for di-

rectly estimating the difference between two probability densities in a single-shot process.

Density differences are useful for various purposes such as class-balance estimation under

class-prior change (Saerens et al., 2002; Du Plessis & Sugiyama, 2012), change-point de-

tection in time series (Kawahara & Sugiyama, 2012; Liu et al., 2012), feature extraction

(Torkkola, 2003), video-based event detection (Matsugu et al., 2011), flow cytometric

data analysis (Duong et al., 2009), ultrasound image segmentation (Liu et al., 2010),

non-rigid image registration (Atif et al., 2003), and image-based target recognition (Gray
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& Principe, 2010).

For this density-difference estimation problem, we propose a single-shot method, called

the least-squares density-difference (LSDD) estimator, that directly estimates the density

difference without separately estimating two densities. LSDD is derived within a frame-

work of kernel least-squares estimation, and its solution can be computed analytically in a

computationally efficient and stable manner. Furthermore, LSDD is equipped with cross-

validation, and thus all tuning parameters such as the kernel width and the regularization

parameter can be systematically and objectively optimized. We derive a finite-sample

error bound for the LSDD estimator in a non-parametric setup and show that it achieves

the optimal convergence rate.

We also apply LSDD to L2-distance estimation and show that it is more accurate than

the difference of KDEs, which tends to severely under-estimate the L2-distance (Anderson

et al., 1994). Compared with the Kullback-Leibler (KL) divergence (Kullback & Leibler,

1951), the L2-distance is more robust against outliers (Basu et al., 1998; Scott, 2001;

Besbeas & Morgan, 2004).

Finally, we experimentally demonstrate the usefulness of LSDD in semi-supervised

class-prior estimation and unsupervised change detection.

The rest of this paper is structured as follows. In Section 2, we derive the LSDD

method and investigate its theoretical properties. In Section 3, we show how the L2-

distance can be approximated by LSDD. In Section 4, we illustrate the numerical behavior

of LSDD. Finally, we conclude in Section 5.

2 Density-Difference Estimation

In this section, we propose a single-shot method for estimating the difference between two

probability densities from samples, and analyze its theoretical properties.
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2.1 Problem Formulation and Naive Approach

First, we formulate the problem of density-difference estimation.

Suppose that we are given two sets of independent and identically distributed sam-

ples X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 drawn from probability distributions on R
d with

densities p(x) and p′(x), respectively:

X := {xi}ni=1
i.i.d.∼ p(x),

X ′ := {x′
i′}n

′

i′=1
i.i.d.∼ p′(x).

Our goal is to estimate the difference f(x) between p(x) and p′(x) from the samples X

and X ′:

f(x) := p(x)− p′(x).

A naive approach to density-difference estimation is to use kernel density estimators

(KDEs) (Silverman, 1986). For Gaussian kernels, the KDE-based density-difference esti-

mator is given by

f̃(x) := p̂(x)− p̂′(x),

where

p̂(x) :=
1

n(2πσ2)d/2

n∑

i=1

exp

(
−‖x− xi‖2

2σ2

)
,

p̂′(x) :=
1

n′(2πσ′2)d/2

n′∑

i′=1

exp

(
−‖x− x′

i′‖2
2σ′2

)
.

The Gaussian widths σ and σ′ may be determined based on cross-validation (Härdle et al.,
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2004).

However, we argue that the KDE-based density-difference estimator is not the best

approach because of its two-step nature: Small estimation error in each density estimate

can cause a big error in the final density-difference estimate. More intuitively, good

density estimators tend to be smooth and thus a density-difference estimator obtained

from such smooth density estimators tends to be over-smoothed (Hall & Wand, 1988;

Anderson et al., 1994, see also numerical experiments in Section 4.1.1).

To overcome this weakness, we give a single-shot procedure of directly estimating the

density difference f(x) without separately estimating the densities p(x) and p′(x).

2.2 Least-Squares Density-Difference Estimation

In our proposed approach, we fit a density-difference model g(x) to the true density-

difference function f(x) under the squared loss:

argmin
g

∫
(g(x)− f(x))2 dx. (1)

We use the following linear-in-parameter model as g(x):

g(x) =

b∑

ℓ=1

θℓψℓ(x) = θ
⊤ψ(x), (2)

where b denotes the number of basis functions, ψ(x) = (ψ1(x), . . . , ψb(x))
⊤ is a b-

dimensional basis function vector, θ = (θ1, . . . , θb)
⊤ is a b-dimensional parameter vector,

and ⊤ denotes the transpose. In practice, we use the following non-parametric Gaussian

kernel model as g(x):

g(x) =
n+n′∑

ℓ=1

θℓ exp

(
−‖x− cℓ‖2

2σ2

)
, (3)
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where (c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′) are Gaussian kernel centers.

If n + n′ is large, we may use only a subset of x1, . . . ,xn,x
′
1, . . . ,x

′
n′ as Gaussian kernel

centers.

For the model (2), the optimal parameter θ∗ is given by

θ∗ := argmin
θ

∫
(g(x)− f(x))2 dx

= argmin
θ

[∫
g(x)2dx− 2

∫
g(x)f(x)dx

]

= argmin
θ

[
θ⊤Hθ − 2h⊤θ

]

=H−1h,

where H is the b× b matrix and h is the b-dimensional vector defined as

H :=

∫
ψ(x)ψ(x)⊤dx,

h :=

∫
ψ(x)p(x)dx−

∫
ψ(x′)p′(x′)dx′.

Note that, for the Gaussian kernel model (3), the integral in H can be computed analyt-

ically as

Hℓ,ℓ′ =

∫
exp

(
−‖x− cℓ‖2

2σ2

)
exp

(
−‖x− cℓ′‖2

2σ2

)
dx

= (πσ2)d/2 exp

(
−‖cℓ − cℓ′‖2

4σ2

)
,

where d denotes the dimensionality of x.

Replacing the expectations in h by empirical estimators and adding an ℓ2-regularizer
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to the objective function, we arrive at the following optimization problem:

θ̂ := argmin
θ

[
θ⊤Hθ − 2ĥ

⊤
θ + λθ⊤θ

]
, (4)

where λ (≥ 0) is the regularization parameter and ĥ is the b-dimensional vector defined

as

ĥ =
1

n

n∑

i=1

ψ(xi)−
1

n′

n′∑

i′=1

ψ(x′
i′).

Taking the derivative of the objective function in Eq.(4) and equating it to zero, we can

obtain the solution θ̂ analytically as

θ̂ = (H + λIb)
−1
ĥ,

where Ib denotes the b-dimensional identity matrix.

Finally, a density-difference estimator f̂(x) is given as

f̂(x) = θ̂
⊤
ψ(x). (5)

We call this the least-squares density-difference (LSDD) estimator.

2.3 Theoretical Analysis

Here, we theoretically investigate the behavior of the LSDD estimator.

2.3.1 Parametric Convergence

First, we consider a linear parametric setup where basis functions in our density-difference

model (2) are fixed.
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Suppose that n/(n+ n′) converges to η ∈ [0, 1]. Then the central limit theorem (Rao,

1965) asserts that
√

nn′

n+n′
(θ̂− θ∗) converges in law to the normal distribution with mean

0 and covariance matrix

H−1((1− η)V p + ηV p′)H
−1,

where V p denotes the covariance matrix of ψ(x) under the probability density p(x):

V p :=

∫ (
ψ(x)−ψp

) (
ψ(x)−ψp

)⊤
p(x)dx, (6)

and ψp denotes the expectation of ψ(x) under the probability density p(x):

ψp :=

∫
ψ(x)p(x)dx.

This result implies that the LSDD estimator has asymptotic normality with asymptotic

order
√
1/n+ 1/n′, which is the optimal convergence rate in the parametric setup.

2.3.2 Non-Parametric Error Bound

Next, we consider a non-parametric setup where a density-difference function is learned

in a Gaussian reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950).

Let Hγ be the Gaussian RKHS with width γ:

kγ(x,x
′) = exp

(
−‖x− x′‖2

γ2

)
.

Let us consider a slightly modified LSDD estimator that is more suitable for non-
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parametric error analysis: For n′ = n,

f̂ := argmin
g∈Hγ

[
‖g‖2L2 − 2

(
1

n

n∑

i=1

g(xi) +
1

n

n∑

i′=1

g(x′
i′)

)
+ λ‖g‖2Hγ

]
,

where ‖ · ‖L2 denotes the L2-norm and ‖ · ‖Hγ
denotes the norm in RKHS Hγ .

Then we can prove that, for all ρ, ρ′ > 0, there exists a constant K such that, for all

τ ≥ 1 and n ≥ 1, the non-parametric LSDD estimator with appropriate choice of λ and

γ satisfies1

‖f̂ − f‖2L2 + λ‖f̂‖2Hγ
≤ K

(
n− 2α

2α+d
+ρ + τn−1+ρ′

)
, (7)

with probability not less than 1−4e−τ . Here, d denotes the dimensionality of input vector

x, and α ≥ 0 denotes the regularity of Besov space to which the true density-difference

function f belongs (smaller/larger α means f is “less/more complex”; see Appendix A for

its precise definition). Because n− 2α
2α+d is the optimal learning rate in this setup (Eberts

& Steinwart, 2011), the above result shows that the non-parametric LSDD estimator

achieves the optimal convergence rate.

It is known that, if the naive KDE with a Gaussian kernel is used for estimating a

probability density with regularity α > 2, the optimal learning rate cannot be achieved

(Farrell, 1972; Silverman, 1986). To achieve the optimal rate by KDE, we should choose

a kernel specifically tailored to each regularity α (Parzen, 1962). But such a kernel is not

non-negative and it is difficult to implement in practice. On the other hand, our LSDD

estimator can always achieve the optimal learning rate with a Gaussian kernel without

regard to regularity α.

1Because our theoretical result is highly technical, we only describe a rough idea here. More pre-
cise statement of the result and its complete proof are provided in Appendix A, where we utilize the
mathematical technique developed in Eberts and Steinwart (2011) for a regression problem.
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2.4 Model Selection by Cross-Validation

The above theoretical analyses showed the superiority of LSDD. However, the practical

performance of LSDD depends on the choice of models (i.e., the kernel width σ and the

regularization parameter λ). Here, we show that the model can be optimized by cross-

validation (CV).

More specifically, we first divide the samples X = {xi}ni=1 and X ′ = {x′
i′}n

′

i′=1 into T

disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1, respectively. Then we obtain a density-difference

estimate f̂t(x) from X\Xt and X ′\X ′
t (i.e., all samples without Xt and X ′

t ), and compute

its hold-out error for Xt and X ′
t as

CV(t) :=

∫
f̂t(x)

2dx− 2

|Xt|
∑

x∈Xt

f̂t(x) +
2

|X ′
t |
∑

x′∈X ′

t

f̂t(x
′),

where |X | denotes the number of elements in the set X . We repeat this hold-out validation

procedure for t = 1, . . . , T , and compute the average hold-out error as

CV :=
1

T

T∑

t=1

CV(t).

Finally, we choose the model that minimizes CV.

A MATLABR© implementation of LSDD is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSDD/’.

(to be made public after acceptance)
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3 L2-Distance Estimation by LSDD

In this section, we consider the problem of approximating the L2-distance between p(x)

and p′(x),

L2(p, p′) :=

∫
(p(x)− p′(x))

2
dx, (8)

from samples X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 (see Section 2.1).

3.1 Basic Form

For an equivalent expression

L2(p, p′) =

∫
f(x)p(x)dx−

∫
f(x′)p′(x′)dx′,

if we replace f(x) with an LSDD estimator f̂(x) and approximate the expectations by

empirical averages, the following L2-distance estimator can be obtained:

L2(p, p′) ≈ ĥ⊤
θ̂. (9)

Similarly, for another expression

L2(p, p′) =

∫
f(x)2dx,

replacing f(x) with an LSDD estimator f̂(x) gives another L2-distance estimator:

L2(p, p′) ≈ θ̂⊤Hθ̂. (10)
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3.2 Reduction of Bias Caused by Regularization

Eq.(9) and Eq.(10) themselves give approximations to L2(p, p′). Nevertheless, we argue

that the use of their combination, defined by

L̂2(X ,X ′) := 2ĥ
⊤
θ̂ − θ̂⊤Hθ̂, (11)

is more sensible. To explain the reason, let us consider a generalized L2-distance estimator

of the following form:

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂, (12)

where β is a real scalar. If the regularization parameter λ (≥ 0) is small, then Eq.(12)

can be expressed as

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂ = ĥ

⊤
H−1ĥ− λ(2− β)ĥ

⊤
H−2ĥ+ op(λ), (13)

where op denotes the probabilistic order (its derivation is given in Appendix B).

Thus, the bias introduced by regularization (i.e., the second term in the right-hand

side of Eq.(13) that depends on λ) can be eliminated if β = 2, which yields Eq.(11). Note

that, if no regularization is imposed (i.e., λ = 0), both Eq.(9) and Eq.(10) yield ĥ
⊤
H−1ĥ,

the first term in the right-hand side of Eq.(13).

Eq.(11) is actually equivalent to the negative of the optimal objective value of the

LSDD optimization problem without regularization (i.e., Eq.(4) with λ = 0). This can

be naturally interpreted through a lower bound of L2(p, p′) obtained by Legendre-Fenchel
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convex duality (Rockafellar, 1970):

L2(p, p′) = sup
g

[
2

(∫
g(x)p(x)dx−

∫
g(x)p′(x)dx

)
−
∫
g(x)2dx

]
,

where the supremum is attained at g = f . If the expectations are replaced by empirical es-

timators and the linear-in-parameter model (2) is used as g, the above optimization prob-

lem is reduced to the LSDD objective function without regularization (see Eq.(4)). Thus,

LSDD corresponds to approximately maximizing the above lower bound and Eq.(11) is

its maximum value.

Through eigenvalue decomposition of H , we can show that

2ĥ
⊤
θ̂ − θ̂⊤Hθ̂ ≥ ĥ⊤

θ̂ ≥ θ̂⊤Hθ̂.

Thus, our approximator (11) is not less than the plain approximators (9) and (10).

3.3 Further Bias Correction

ĥ
⊤
H−1ĥ, the first term in Eq.(13), is an essential part of the L2-distance estimator

(11). However, it is actually a slightly biased estimator of the target quantity h⊤H−1h

(= θ∗⊤Hθ∗ = h⊤θ∗):

E[ĥ
⊤
H−1ĥ] = h⊤H−1h+ tr

(
H−1

(
1

n
V p +

1

n′
V p′

))
, (14)

where E denotes the expectation over all samples X = {xi}ni=1 and X ′ = {x′
i′}n

′

i′=1, and

V p and V p′ are defined by Eq.(6) (its derivation is given in Appendix C).

The second term in the right-hand side of Eq.(14) is an estimation bias that is generally

non-zero. Thus, based on Eq.(14), we can construct a bias-corrected L2-distance estimator
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as

L̃2(X ,X ′) := 2ĥ
⊤
θ̂ − θ̂⊤Hθ̂ − tr

(
H−1

(
1

n
V̂ p +

1

n′
V̂ p′

))
, (15)

where V̂ p is an empirical estimator of covariance matrix V p:

V̂ p :=
1

n

n∑

i=1

(
ψ(xi)− ψ̂p

)(
ψ(xi)− ψ̂p

)⊤
,

and ψ̂p is an empirical estimator of the expectation ψp:

ψ̂p :=
1

n

n∑

i=1

ψ(xi).

The true L2-distance is non-negative by definition (see Eq.(8)), but the above bias-

corrected estimate can take a negative value. Following the same line as Baranchik (1964),

the positive-part estimator may be more accurate:

L
2
(X ,X ′) := max

{
0, L̃2(X ,X ′)

}
.

However, in our preliminary experiments, L
2
(X ,X ′) does not always perform well partic-

ularly when H is ill-conditioned. For this reason, we practically propose to use L̂2(X ,X ′)

defined by Eq.(11).

4 Experiments

In this section, we experimentally evaluate the performance of LSDD.
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4.1 Numerical Examples

First, we show numerical examples using artificial datasets.

4.1.1 LSDD vs. KDE

We experimentally compare the behavior of LSDD and the KDE-based method. Let

p(x) = N(x; (µ, 0, . . . , 0)⊤, (4π)−1Id),

p′(x) = N(x; (0, 0, . . . , 0)⊤, (4π)−1Id),

where N(x;µ,Σ) denotes the multi-dimensional normal density with mean vector µ and

variance-covariance matrix Σ with respect to x, and Id denotes the d-dimensional identity

matrix.

We first illustrate how LSDD and KDE behave under d = 1 and n = n′ = 200. Figure 1

depicts the data samples, densities and density difference estimated by KDE, and density

difference estimated by LSDD for µ = 0 (i.e., f(x) = p(x)− p′(x) = 0). This shows that

LSDD gives a more accurate estimate of the density difference f(x) than KDE. Figure 2

depicts the results for µ = 0.5 (i.e., f(x) 6= 0), showing again that LSDD performs well.

Next, we compare the L2-distance approximator based on LSDD and that based on

KDE. For µ = 0, 0.2, 0.4, 0.6, 0.8 and d = 1, 5, we draw n = n′ = 200 samples from

the above p(x) and p′(x). Figure 3 depicts the mean and standard error of estimated

L2-distances over 100 runs as functions of mean µ. When d = 1, the LSDD-based L2-

distance estimator gives accurate estimates of the true L2-distance, whereas the KDE-

based L2-distance estimator slightly underestimates the true L2-distance. This is caused

by the fact that KDE tends to provide smoother density estimates (see Figure 2(c) again).

Such smoother density estimates are accurate as density estimates, but the difference of

smoother density estimates yields a smaller L2-distance estimate (Anderson et al., 1994).
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Figure 1: Estimation of density dif-
ference when µ = 0 (i.e., f(x) =
p(x)− p′(x) = 0).
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p(x)− p′(x) 6= 0).



Density-Difference Estimation 17

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

µ

L
2

 d
is

ta
n

ce

 

 

True

LSDD

KDE

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

µ

L
2

 d
is

ta
n

ce

 

 

True

LSDD

KDE

(a) d = 1 (b) d = 5

Figure 3: L2-distance estimation by LSDD and KDE. Means and standard errors over
100 runs are plotted.

This tendency is more significant when d = 5; the KDE-based L2-distance estimator

severely underestimates the true L2-distance, which is a typical drawback of the two-

step procedure. On the other hand, the LSDD-based L2-distance estimator still gives

reasonably accurate estimates of the true L2-distance even when d = 5.

4.1.2 L2-Distance vs. KL-Divergence

The Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) is a popular divergence

measure for comparing probability distributions. The KL-divergence from p(x) to p′(x)

is defined as

KL(p‖p′) :=
∫
p(x) log

p(x)

p′(x)
dx.

First, we illustrate the difference between the L2-distance and the KL-divergence. For

d = 1, let

p(x) = (1− η)N(x; 0, 12) + ηN(x;µ, 1/42),

p′(x) = N(x; 0, 12).
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Implications of the above densities are that samples drawn from N(x; 0, 12) are inliers,

whereas samples drawn from N(x;µ, 1/42) are outliers. We set the outlier rate at η = 0.1

and the outlier mean at µ = 0, 2, 4, . . . , 10 (see Figure 4).

Figure 5 depicts the L2-distance and the KL-divergence for outlier mean µ =

0, 2, 4, . . . , 10. This shows that both the L2-distance and the KL-divergence increase as µ

increases. However, the L2-distance is bounded from above, whereas the KL-divergence

diverges to infinity as µ tends to infinity. This result implies that the L2-distance is less

sensitive to outliers than the KL-divergence, which well agrees with the observation given

in Basu et al. (1998).

Next, we draw n = n′ = 100 samples from p(x) and p′(x), and estimate the L2-distance

by LSDD and the KL-divergence by the Kullback-Leibler importance estimation procedure2

(KLIEP) (Sugiyama et al., 2008; Nguyen et al., 2010). Figure 6 depicts the estimated

L2-distance and KL-divergence for outlier mean µ = 0, 2, 4, . . . , 10 over 100 runs. This

shows that both LSDD and KLIEP reasonably capture the profiles of the true L2-distance

and the KL-divergence, although the scale of KLIEP values is much different from the

true values (see Figure 5) because the estimated normalization factor was unreliable.

Finally, based on the permutation test procedure (Efron & Tibshirani, 1993), we con-

duct hypothesis testing of the null hypothesis that densities p and p′ are the same. More

specifically, we first compute a distance estimator for the original datasets X and X ′ and

obtain D̂(X ,X ′). Next, we randomly permute the |X ∪ X ′| samples, and assign the first

|X | samples to a set X̃ and the remaining |X ′| samples to another set X̃ ′. Then we com-

pute the distance estimator again using the randomly permuted datasets X̃ and X̃ ′ and

obtain D̃(X̃ , X̃ ′). Since X̃ and X̃ ′ can be regarded as being drawn from the same distri-

2Estimation of the KL-divergence from data has been extensively studied recently (Wang et al., 2005;
Sugiyama et al., 2008; Pérez-Cruz, 2008; Silva & Narayanan, 2010; Nguyen et al., 2010). Among them,
KLIEP was shown to possess a superior convergence property and demonstrated to work well in practice.
KLIEP is based on direct estimation of density ratio p(x)/p′(x) without density estimation of p(x) and
p′(x).
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Figure 9: Schematic illustration of semi-supervised class-balance estimation.

bution, D̃(X̃ , X̃ ′) would take a value close to zero. This random permutation procedure

is repeated many times, and the distribution of D̃(X̃ , X̃ ′) under the null hypothesis (i.e.,

the two distributions are the same) is constructed. Finally, the p-value is approximated

by evaluating the relative ranking of D̂(X ,X ′) in the histogram of D̃(X̃ , X̃ ′). We set the

significance level at 5%.

Figure 7 depicts the rejection rate of the null hypothesis for outlier rate η = 0.1 and

outlier mean µ = 0, 2, 4, . . . , 10, based on the L2-distance estimated by LSDD and the

KL-divergence estimated by KLIEP. This shows that the KLIEP-based test rejects the

null hypothesis more frequently for large µ, whereas the rejection rate of the LSDD-based

test is kept almost constant even when µ is changed. This result implies that the two-

sample test by LSDD is more robust against outliers (i.e., two distributions tend to be

regarded as the same even in the presence of outliers) than the KLIEP-based test.

Figure 8 depicts the rejection rate of the null hypothesis for outlier mean µ = 10 for

outlier rate η = 0, 0.05, 0.1, . . . , 0.35. When η = 0 (i.e., no outliers), both the LSDD-based

test and the KLIEP-based test accept the null hypothesis with the designated significance

level approximately. When η = 0.1, the LSDD-based test still keeps a low rejection rate,

whereas the KLIEP-based test tends to reject the null hypothesis. When η ≥ 0.3, the

LSDD-based test and the KLIEP-based test tend to reject the null hypothesis in a similar

way.
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Figure 10: Results of semi-supervised class-balance estimation. Left: Squared error of
class balance estimation. Right: Misclassification error by a weighted regularized least-
squares classifier.
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4.2 Applications

Next, we apply LSDD to semi-supervised class-balance estimation under class prior change

and change-point detection in time series.

4.2.1 Semi-Supervised Class-Balance Estimation

In real-world pattern recognition tasks, changes in class balance are often observed. Then

significant estimation bias can be caused since the class balance in the training dataset

does not reflect that of the test dataset.

Here, we consider a pattern recognition task of classifying pattern x ∈ R
d to class

y ∈ {+1,−1}. Our goal is to learn the class balance of a test dataset in a semi-supervised

learning setup where unlabeled test samples are provided in addition to labeled training

samples (Chapelle et al., 2006). The class balance in the test set can be estimated by

matching a mixture of class-wise training input densities,

πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

with the test input density ptest(x) (Saerens et al., 2002), where π ∈ [0, 1] is a mixing

coefficient to learn. See Figure 9 for schematic illustration. Here, we use the L2-distance

estimated by LSDD and the difference of KDEs for this distribution matching.

We use four UCI benchmark datasets3, where we randomly choose 20 labeled training

samples from each class and 50 unlabeled test samples following true class-prior π∗ =

0.1, 0.2, . . . , 0.9. Figure 10 plots the mean and standard error of the squared difference

between true and estimated class balances π and the misclassification error by a weighted

regularized least-squares classifier (Rifkin et al., 2003) over 1000 runs. The results show

that LSDD tends to provide better class-balance estimates, which are translated into

3http://archive.ics.uci.edu/ml/
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Figure 11: Schematic illustration of unsupervised change detection.

lower classification errors.

4.2.2 Unsupervised Change Detection

The objective of change detection is to discover abrupt property changes behind time-

series data.

Let y(t) ∈ R
m be an m-dimensional time-series sample at time t, and let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ R
km

be a subsequence of time series at time t with length k. We treat the subsequence Y (t)

as a sample, instead of a single point y(t), by which time-dependent information can be

incorporated naturally (Kawahara & Sugiyama, 2012). Let Y(t) be a set of r retrospective

subsequence samples starting at time t:

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ r − 1)}.

Our strategy is to compute a certain dissimilarity measure between two consecutive seg-

ments Y(t) and Y(t+r), and use it as the plausibility of change points (see Figure 11). As

a dissimilarity measure, we use the L2-distance estimated by LSDD and the KL-divergence
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Figure 12: Results of unsupervised change detection. Top: Original time-series. Middle:
Change scores obtained by KLIEP. Bottom: Change scores obtained by LSDD.
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estimated by the KL importance estimation procedure (KLIEP) (Sugiyama et al., 2008;

Nguyen et al., 2010). We set k = 5 and r = 50.

First, we use the IPSJ SIG-SLP Corpora and Environments for Noisy Speech Recog-

nition (CENSREC) dataset4 provided by the National Institute of Informatics, Japan,

which records human voice in a noisy environment such as a restaurant. The top graph

in Figure 12(a) displays the original time-series, where true change points were manually

annotated. The bottom two graphs in Figure 12(a) plot change scores obtained by KLIEP

and LSDD, showing that the LSDD-based change score indicates the existence of change

points more clearly than the KLIEP-based change score.

Next, we use a dataset taken from the Human Activity Sensing Consortium (HASC)

challenge 2011 5, which provides human activity information collected by portable three-

axis accelerometers. Because the orientation of the accelerometers is not necessarily fixed,

we take the ℓ2-norm of the 3-dimensional data. The top graph in Figure 12(b) displays

the original time-series for a sequence of actions “jog”, “stay”, “stair down”, “stay”, and

“stair up” (there exists 4 change points at time 540, 1110, 1728, and 2286). The bottom

two graphs in Figure 12(b) depict the change scores obtained by KLIEP and LSDD,

showing that the LSDD score is much more stable and interpretable than the KLIEP

score.

5 Conclusions

In this paper, we proposed a method for directly estimating the difference between two

probability density functions without density estimation. The proposed method, called

the least-squares density-difference (LSDD), was derived within a framework of kernel

least-squares estimation, and its solution can be computed analytically in a computation-

4http://research.nii.ac.jp/src/en/CENSREC-1-C.html
5http://hasc.jp/hc2011/
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ally efficient and stable manner. Furthermore, LSDD is equipped with cross-validation,

and thus all tuning parameters such as the kernel width and the regularization parameter

can be systematically and objectively optimized. We showed the asymptotic normality

of LSDD in a parametric setup and derived a finite-sample error bound for LSDD in a

non-parametric setup. In both cases, LSDD achieves the optimal convergence rate.

We also proposed an L2-distance estimator based on LSDD, which nicely cancels a

bias caused by regularization. The LSDD-based L2-distance estimator was experimentally

shown to be more accurate than the difference of kernel density estimators and more robust

against outliers than Kullback-Leibler divergence estimation.

Density-difference estimation is a novel research paradigm in machine learning, and

we have given a simple but useful method for this emerging topic. Our future work will

develop more powerful algorithms for density-difference estimation and explores a variety

of applications.
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A Technical Details of Non-Parametric Convergence

Analysis in Section 2.3.2

First, we define linear operators Pn, P, P
′
n, P

′, Qn, Q as

Pnf :=
1

n

n∑

i=1

f(xi), P f :=

∫

Rd

f(x)p(x)dx,

P ′
nf :=

1

n

n∑

i=1

f(x′
i), P ′f :=

∫

Rd

f(x)p′(x)dx,

Qnf := Pnf − P ′
nf, Qf := Pf − P ′f.

Let Hγ be an RKHS endowed with the Gaussian kernel with width γ:

kγ(x,x
′) = exp

(
−‖x− x′‖2

γ2

)
.

A density-difference estimator f̂ is obtained as

f̂ := argmin
f∈Hγ

[
‖f‖2L2(Rd) − 2Qnf + λ‖f‖2Hγ

]
.

We assume the following conditions:

Assumption 1. The densities are bounded: There exists M such that

‖p‖∞ ≤ M and ‖p′‖∞ ≤M.

The density difference f = p− p′ is a member of Besov space with regularity α: f ∈ Bα
2,∞

and, for r = ⌊α⌋+ 1 where ⌊α⌋ denotes the largest integer less than or equal to α,

‖f‖Bα
2,∞

:= ‖f‖L2(Rd) + sup
t>0

(t−αωr,L2(Rd)(f, t)) < c,
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where Bα
2,∞ is the Besov space with regularity α and ωr,L2(Rd) is the r-th modulus of smooth-

ness (see Eberts and Steinwart (2011) for the definitions).

Then we have the following theorem.

Theorem 2. Suppose Assumption 1 is satisfied. Then, for all ǫ > 0 and p ∈ (0, 1), there

exists a constant K > 0 depending on M, c, ǫ, p such that for all n ≥ 1, τ ≥ 1, and λ > 0,

the LSDD estimator f̂ in Hγ satisfies

‖f̂ − f‖2L2(Rd)+λ‖f̂‖2Hγ
≤ K

(
λγ−d+γ2α+

γ−(1−p)(1+ǫ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ǫ+ 1−p

4
)

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
,

with probability not less than 1− 4e−τ .

To prove this, we utilize the technique developed in Eberts and Steinwart (2011) for

a regression problem.

Proof. First, note that

‖f̂‖2L2(Rd) − 2Qnf̂ + ‖f‖2L2(Rd) + λ‖f̂‖2Hγ
≤ ‖f0‖2L2(Rd) − 2Qnf0 + ‖f‖2L2(Rd) + λ‖f0‖2Hγ

.

Therefore, we have

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ

= ‖f̂‖2L2(Rd) − 2Qnf̂ + ‖f‖2L2(Rd) + 2(Qn −Q)f̂ + λ‖f̂‖2Hγ

≤ ‖f0‖2L2(Rd) − 2Qnf0 + ‖f‖2L2(Rd) + 2(Qn −Q)f̂ + λ‖f̂‖2Hγ

= ‖f0‖2L2(Rd) − 2Qf0 + ‖f‖2L2(Rd) + 2(Qn −Q)(f̂ − f0) + λ‖f̂‖2Hγ

= ‖f0 − f‖2L2(Rd) + 2(Qn −Q)(f̂ − f) + 2(Qn −Q)(f − f0) + λ‖f̂‖2Hγ
. (16)
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Let

K(x) :=

r∑

j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

exp

(
−2‖x‖2
j2γ2

)
,

and f̃(x) := (γ
√
π)−

d
2 f . Using K and f̃ , we define

f0 := K ∗ f̃ :=

∫

Rd

f̃(y)K(x− y)dy,

i.e., f0 is the convolution of K and f̃ . Because of Lemma 2 in Eberts and Steinwart

(2011), we have f0 ∈ Hγ and

‖f0‖Hγ
≤ (2r − 1)‖f̃‖L2(Rd) (∵ Lemma 2 of Eberts and Steinwart (2011))

≤ (2r − 1)(γ
√
π)−

d
2‖f‖L2(Rd)

≤ (2r − 1)(γ
√
π)−

d
2 (‖p‖L2(Rd) + ‖p′‖L2(Rd))

≤ (2r − 1)(γ
√
π)−

d
22
√
M. (17)

Moreover, Lemma 3 in Eberts and Steinwart (2011) gives

‖f0‖∞ ≤ (2r − 1)‖f‖∞ ≤ (2r − 1)M, (18)

and Lemma 1 in Eberts and Steinwart (2011) yields that there exists a constant Cr,2 such

that

‖f0 − f‖2L2(Rd) ≤ Cr,2ω
2
r,L2(Rd)(f,

γ

2
) ≤ Cr,2c

2γ2α. (19)

Now, following a similar line to Theorem 3 in Eberts and Steinwart (2011), we can

show that, for all ǫ > 0 and p ∈ (0, 1), there exists a constant Cǫ,p such that

|(Pn − P )(f̂ − f)| ≤ f̂ − f.
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To bound this, we derive the tail probability of

(Pn − P )

(
f̂ − f

‖f̂ − f‖2
L2(Rd)

+ λ‖f̂‖2Hγ
+ r

)
,

where r > 0 is a positive real such that r > r∗ for

r∗ = min
f∈Hγ

‖f − f‖2L2(Rd) + λ‖f‖2Hγ
.

Let

gf,r =
f − f

‖f − f‖2
L2(Rd)

+ λ‖f‖2Hγ
+ r

for f ∈ Hγ and r > r∗. Then we have

‖gf,r‖∞ ≤ ‖f‖∞ + ‖f‖∞
‖f − f‖2

L2(Rd)
+ λ‖f‖2Hγ

+ r

≤ ‖f‖Hγ
+ ‖f‖∞

‖f − f‖2
L2(Rd)

+ λ‖f‖2Hγ
+ r

≤ 1

λ‖f‖Hγ
+ r/‖f‖Hγ

+
M

r
≤ 1

2
√
rλ

+
M

r
,

and

Pg2f,r =
P (f − f)2

(‖f − f‖2
L2(Rd)

+ λ‖f‖2Hγ
+ r)2

≤
M‖f − f‖2L2(Rd)

(‖f − f‖2
L2(Rd)

+ λ‖f‖2Hγ
+ r)2

≤ M

r
.

Here, let

Fr := {f ∈ Hγ | ‖f − f‖2L2(Rd) + λ‖f‖2Hγ
≤ r},

and we assume that there exists a function such that

E

[
sup
f∈Fr

|(Pn − P )(f − f)|
]
≤ ϕn(r),
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where E denotes the expectation over all samples. Then, by the peeling device (see

Theorem 7.7 in Steinwart & Christmann, 2008), we have

E sup
f∈Hγ

|(Pn − P )gf,r| ≤
8ϕ(r)

r
.

Therefore, by Talagrand’s concentration inequality, we have

Pr

[
sup
f∈Hγ

|(Pn − P )gf,r| <
10ϕn(r)

r
+

√
2Mτ

nr
+

14τ

3n

(
1

2
√
rλ

+
M

r

)]
≥ 1− e−τ , (20)

where Pr[·] denotes the probability of an event.

From now on, we give an upper bound of ϕn. The RKHS Hγ can embedded in

arbitrary Sobolev space Wm(Rd). Indeed, by the proof of Theorem 3.1 in Steinwart and

Scovel (2004), we have

‖f‖Wm(Rd) ≤ Cmγ
−m

2
+ d

4 ‖f‖Hγ

for all f ∈ Hγ. Moreover, the theories of interpolation spaces give that, for all f ∈

Wm(Rd), the supremum norm of f can be bounded as

‖f‖∞ ≤ C ′
m‖f‖

1− d
2m

L2(Rd)
‖f‖

d
2m

Wm(Rd)
,

if d < 2m. Here we set m = d
2p
. Then we have

‖f‖∞ ≤ C ′′
p‖f‖1−p

L2(Rd)
‖f‖pHγ

γ−
d(1−p)

4 .

Now, since Fr ⊂ (r/λ)1/2BHγ
and

P (f − f)2 ≤ M‖f − f‖2L2(Rd) ≤Mr for f ∈ Fr
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hold from Theorem 7.16 and Theorem 7.34 in Steinwart and Christmann (2008), we can

take

ϕn(r) = max

{
C1,p,ǫγ

−
(1−p)(1+ǫ)d

2

( r
λ

) p

2
(Mr)

1−p

2 n−1/2,

C2,p,ǫγ
−

(1−p)(1+ǫ)d
1+p

( r
λ

) p
1+p

[( r
λ

) p
2

γ−
d(1−p)

4 r
1−p

2

] 1−p

1+p

n−1/(1+p)

}
,

where ǫ > 0 and p ∈ (0, 1) are arbitrary and C1,p,ǫ, C2,p,ǫ are constants depending on p, ǫ.

In the same way, we can also obtain a bound of supf∈Hγ
|(P ′

n − P ′)gf,r|.

If we set r to satisfy

1

8
≥ 10ϕn(r)

r
+

√
2Mτ

nr
+

14τ

3n

(
1

2
√
rλ

+
M

r

)
, (21)

then we have

|(Qn −Q)(f̂ − f)| ≤ 1

4

(
r + ‖f̂ − f‖2L2(Rd) + λ‖f̂‖Hγ

)
, (22)

with probability 1− 2e−τ . To satisfy Eq.(21), it suffices to set

r = C

(
γ−(1−p)(1+ǫ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ǫ+ 1−p

4
)

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
, (23)

where C is a sufficiently large constant depending on M, ǫ, p.

Finally, we bound the term (Qn −Q)(f0 − f). By Bernstein’s inequality, we have

|(Pn − P )(f0 − f)| ≤ C

(
‖f − f0‖L2(P )

√
τ

n
+

2rMτ

n

)

≤ C

(√
2M‖f − f0‖L2(Rd)

√
τ

n
+

2rMτ

n

)

≤ C

(
‖f − f0‖2L2(Rd) +

2Mτ

n
+

2rMτ

n

)
, (24)
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with probability 1 − e−τ , where C is a universal constant. In a similar way, we can also

obtain

|(P ′
n − P ′)(f0 − f)| ≤ C

(
‖f − f0‖2L2(Rd) +

2Mτ

n
+

2rMτ

n

)
.

Combining these inequalities, we have

|(Qn −Q)(f0 − f)| ≤ C

(
‖f − f0‖2L2(Rd) +

2rMτ

n

)
, (25)

with probability 1− 2e−τ , where C is a universal constant.

Substituting Eqs.(22) and (25) into Eq.(16), we have

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ

≤ 2

{
‖f0 − f‖2L2(Rd) + C

(
‖f − f0‖2L2(Rd) +

2rMτ

n

)
+ r + λ‖f0‖Hγ

}
,

with probability 1− 4e−τ . Moreover, by Eqs.(19) and (17), the right-hand side is further

bounded by

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ
≤ C

{
γ2α + r + λγ−d +

1 + τ

n

}
,

Finally, substituting (23) into the right-hand side, we have

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ

≤ C

{
γ2α +

γ−(1−p)(1+ǫ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ǫ+ 1−p

4
)

λ
3p−p2

1+p n
2

1+p

+ λγ−d +
τ

λn2
+
τ

n

}
,

with probability 1− 4e−τ for τ ≥ 1. This gives the assertion.

If we set

λ = n− 2α+d
(2α+d)(1+p)+(ǫ−p+ǫp) , γ = n− 1

(2α+d)(1+p)+(ǫ−p+ǫp) ,
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and take ǫ, p sufficiently small, then we immediately have the following corollary.

Corollary 1. Suppose Assumption 1 is satisfied. Then, for all ρ, ρ′ > 0, there exists

a constant K > 0 depending on M, c, ρ, ρ′ such that for all n ≥ 1, τ ≥ 1, the density-

difference estimator f̂ with appropriate choice of γ and λ satisfies

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ
≤ K

(
n− 2α

2α+d
+ρ +

τ

n1−ρ′

)
, (26)

with probability not less than 1− 4e−τ .

Note that n− 2α
2α+d is the optimal learning rate to estimate a function in Bα

2,∞ (Eberts

& Steinwart, 2011). Therefore, the density-difference estimator with a Gaussian kernel

achieves the optimal learning rate by appropriately choosing the regularization parameter

and the Gaussian width. Because the learning rate depends on α, the LSDD estimator

has an adaptivity to the smoothness of the true function.

Our analysis heavily relies on the techniques developed in Eberts and Steinwart (2011)

for a regression problem. The main difference is that the analysis in their paper involves

a clipping procedure, which stems from the fact that the analyzed estimator requires an

empirical approximation of the expectation of the square term. The Lipschitz continuity of

the square function f 7→ f 2 is utilized to investigate this term, and the clipping procedure

is used to ensure the Lipschitz continuity. On the other hand, in the current paper, we

can exactly compute ‖f‖2
L2(Rd)

so that we do not need the Lipschitz continuity.

B Derivation of Eq.(13)

When λ (≥ 0) is small, (H + λIb)
−1 can be expanded as

(H + λIb)
−1 =H−1 − λH−2 + op(λ),
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where op denotes the probabilistic order. Then Eq.(12) can be expressed as

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂

= βĥ
⊤
(H + λIb)

−1
ĥ+ (1− β)ĥ

⊤
(H + λIb)

−1
H (H + λIb)

−1
ĥ

= βĥ
⊤
H−1ĥ− λβĥ

⊤
H−2ĥ

+ (1− β)ĥ
⊤
H−1ĥ− 2λ(1− β)ĥ

⊤
H−2ĥ+ op(λ)

= ĥ
⊤
H−1ĥ− λ(2− β)ĥ

⊤
H−2ĥ+ op(λ),

which concludes the proof.

C Derivation of Eq.(14)

Because E[ĥ] = h, we have

E[ĥ
⊤
H−1ĥ− h⊤H−1h] = E[(ĥ− h)⊤H−1(ĥ− h)]

= tr
(
H−1

E[(ĥ− h)(ĥ− h)⊤]
)

= tr

(
H−1

(
1

n
V p[ψ] +

1

n′
V p′[ψ]

))
,

which concludes the proof.


