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Abstract

We propose a new method for clustering based on the local minimization of theγ-

divergence, which we call the spontaneous clustering. The greatest advantage of the

proposed method is that it automatically detects the numberof clusters that adequately

reflect the data structure. In contrast, exiting methods such asK-means, fuzzyc-means,

and model based clustering need to prescribe the number of clusters. We detect all the

local minimum points of theγ-divergence, which are defined as the centers of clusters.

A necessary and sufficient condition for theγ-divergence to have the local minimum

points is also derived in a simple setting. A simulation study and a real data analysis

are performed to compare our proposal with existing methods.

1 Introduction

Cluster analysis is a common procedure for grouping similarobjects in unsupervised

learning (Jain et al., 1999; Xu and Wunsch, 2005; Hastie et al., 2009). The procedure

stably produces a classification, and is frequently used as apreprocessing before su-

pervised learning. Cluster analysis has wide applicationsover many disciplines in ex-

ploratory data analysis. See, for example, Jin et al. (2011)and Wu et al. (2011) for

recent developments. There are mainly two approaches in cluster analysis. One is the

hierarchical approach which describes a tree structure called dendrogram. The other is

the approach of data space partition such asK-means algorithm. This paper focuses on
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the latter approach from a view point of statistical patternrecognition.

We propose what we call the spontaneous clustering. It starts with finding cen-

ters of clusters in a data set. For this purpose, we employ a loss function derived

from the power entropy with the power indexγ. It is referred to theγ-loss function

(Fujisawa and Eguchi, 2008; Eguchi and Kato, 2010). Here is amotivational example

for the proposal of the spontaneous clustering. Consider the problem of estimating

Gaussian mean parameterµ. The maximum likelihood estimator (MLE) ofµ is given

by the arithmetic mean of the data set as the unique maximum point of the log likelihood

function. It is known that the MLE poorly behaves in various situations where Gaus-

sianity assumption is inappropriate. For example, the log likelihood function suggests

rather a misleading summary as seen in panel (a) of Figure 1. Alternatively, theγ-loss

function properly reflects the data shape. For the same data set in panel (a) of Figure 1,

panel (b) shows that theγ-loss function has two local minimum points corresponding

to the two normal distributions. We will propose to determine the centers of clusters by

such local minimum points.

Almost all procedures via data space partition need the number of clusters a priori.

The selection of the number of clusters is a major challenge in cluster analysis. A lot of

methods have been proposed in the literature (Xu and Wunsch,2005). Our clustering

method can find the number of clusters automatically as long as the value ofγ is prop-

erly fixed. The name of the spontaneous clustering comes fromthis property. Instead

of the number of clusters, the value of power indexγ should be determined. We will

propose two methods to accomplish this aim. One is a heuristic choice ofγ that merely

relies on the range of the data, and the other is a more sophisticated method based on
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Akaike Information Criterion (AIC).

This paper is organized as follows. Section 2 describes the algorithm of the spon-

taneous clustering and selection procedure of the value ofγ. In section 3 the existence

of the local minimum points is discussed. Section 4 investigates the numerical proper-

ties of the spontaneous clustering. In section 5 a real data analysis is given. Further a

discussion is presented in section 6.

2 Spontaneous Clustering

We begin with a statistical formulation of cluster analysis. Suppose thep-dimensional

density function of the population distribution is given by

g(x) =

K
∑

k=1

τkfk(x),

K
∑

k=1

τk = 1, τk > 0, k = 1, . . . , K, (1)

wherefk(x) is a density function. Let{x1, . . . , xn} be a data set generated fromg.

We apply theγ-estimation method to this data set. Theγ-loss function for the normal

distribution with the identity covariance matrix is given by

Lγ(µ) = −1

n

n
∑

i=1

exp
(

−γ

2
‖xi − µ‖2

)

, (2)

apart from a constant, whereµ and‖ · ‖ denote the mean vector and the Euclidean

norm, respectively. In the remainder of the paper, we omit a constant term that does not

affect the optimization. In panel (b) of Figure 1,Lγ(µ) is illustrated. See appendix B

for a general introduction to theγ-loss function. It is expected that theγ-loss function

Lγ(µ) hasK local minimum points corresponding toK mean vectors with respect

to f1, . . . , fK . Then we expect that the local minimum points can help us to define
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the centers ofK clusters and to buildK clusters in a similar way to theK-means

algorithm. The covariance structure of the data set is takeninto consideration in a

subsequent discussion.

2.1 γ-loss Function for the Normal Distribution

We consider theγ-loss function for the normal distribution with mean vectorµ and

covariance matrixΣ,

Lγ(µ,Σ) = − det Σ− γ

2(1+γ)

n
∑

i=1

exp
(

−γ

2
(xi − µ)⊤Σ−1(xi − µ)

)

.

An iteration algorithm to find the local minimum points ofLγ(µ,Σ) is proposed in

Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). It is obtained by differentiat-

ingLγ(µ,Σ) with respect toµ andΣ−1 and setting the derivatives to0. The algorithm is

a concave-convex procedure (CCCP) (Yuille and Rangarajan,2003), so that it is guar-

anteed to decrease theγ-loss function monotonically as the iteration stept increases. It

is described as follows.

Step 1 Set appropriateµ0 andΣ0 as initial values.

Step 2 Givenµt andΣt, calculateµt+1 andΣt+1 by the following update formula,

µt+1 =

n
∑

i=1

wγ(xi, µt,Σt)xi, (3)

Σt+1 = (1 + γ)
n
∑

i=1

wγ(xi, µt,Σt)(xi − µt+1)(xi − µt+1)
⊤, (4)

where

wγ(x, µ,Σ) =
exp

(

−γ

2
(x− µ)⊤Σ−1(x− µ)

)

∑n

j=1 exp
(

−γ

2
(xj − µ)⊤Σ−1(xj − µ)

) .
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Step 3 For a sufficiently small numberε, repeat Step 2 while

‖µt+1 − µt‖+ ‖Σt+1 − Σt‖F < ε,

where‖ · ‖F denotes the Frobenius norm.

If γ = 0, then the right hand sides of equations (3) and (4) are equal to the sample mean

vector and covariance matrix, respectively, which are nothing but the MLEs. If our aim

is to obtain the local minimum points ofLγ(µ), then we only have to updateµt and fix

Σt to be the identity matrixI. Similarly if our aim is to obtain the local minimum points

of Lγ(µ,Σ) with fixedµ, then we only have to updateΣt and fixµt = µ.

2.2 Algorithm of the Spontaneous Clustering

In general, the spontaneous clustering based on a density functionf(x, θ) with param-

eterθ is defined as follows.

Spontaneous Clustering

Step 1 Find the local minimum points ofLγ(θ), denoted bŷθ1, . . . , θ̂K , whereLγ(θ) is

theγ-loss function forf(x, θ).

Step 2 ConsiderK clusters according tôθ1, . . . , θ̂K , and assign the data to the clusters.

In a special case, the spontaneous clustering based on the normal distribution is defined

as follows. We setΘµ andΘ(µ,Σ) are the empty sets at the start of the algorithm. The

algorithm of subsection 2.1 is employed in the spontaneous clustering below.

Spontaneous Clustering Based on the Normal Distribution
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Step 1-1 If Θµ is the empty set, chooseM initial valuesx(1), . . . , x(M) in the data

set{x1, . . . , xn} at random. Otherwise, choose initial values in{x1, . . . , xn} as

follows: x(1), . . . , x(M) areM maximum points ofd(·,Θµ), where

d(x,Θµ) = min
µ̂∈Θµ

‖x− µ̂‖.

Step 1-2 Apply the algorithm in subsection 2.1 to the data setM times with each initial

valuex(i), i = 1, . . . ,M to find the local minimum points ofLγ(µ). Then add the

obtained local minimum points toΘµ.

Step 1-3 Repeat Step 1-1 and 1-2 until the number of elements inΘµ does not increase.

Step 1-4 For each local minimum point̂µ ∈ Θµ, obtain a minimum point ofLγ(µ̂,Σ)

with respect toΣ, denoted bŷΣ, with the algorithm in subsection 2.1. Then add

(µ̂, Σ̂) to Θ(µ,Σ).

Step 2 WriteΘ(µ,Σ) by {(µ̂k, Σ̂k)}Kk=1 and assign each observationxi to thek̂-th cluster

with

k̂ = argmin
k=1,...,K

(xi − µ̂k)
⊤Σ̂−1

k (xi − µ̂k).

In the algorithm of the spontaneous clustering, we define(µ̂k, Σ̂k), k = 1, . . . , K as the

centers and the covariance matrices of clusters. In the remainder of this paper, we focus

on the spontaneous clustering based on the normal distribution.

2.3 Selection Procedure for γ

The value of power indexγ plays a key role in the spontaneous clustering, becauseγ

affects the number of clusters obtained by the spontaneous clustering. We propose two
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methods to select the value ofγ. One is a heuristic choice ofγ that depends on the

range of the data. Our proposal isγ̂ = 72/R2, whereR is defined by the maximum

range:

R = max
j=1,...,p

{(

max
i=1,...,n

xij

)

−
(

min
i=1,...,n

xij

)}

,

wherexi = (xi1, . . . , xip)
⊤. The outline of the derivation of̂γ is as follows. Suppose the

data set is generated from the mixture of two normal distributions centered atµ1 andµ2

with the identity covariance matrix and the same mixing proportion, respectively. Our

simulation result suggests that if‖(µ1 − µ2)/2‖ = 3
√
2/2

.
= 2.12, then the value of

γ needs to be more than or equal to 1 for two local minimum pointsof Lγ(µ) to exist.

Proposition 3.1 tells that if all the data are multiplied by ascalara and the spontaneous

clustering is applied to the transformed data, then the value ofγ needs to be more than

or equal toa−2 to guarantee the existence of two local minimum points ofLγ(µ). If

‖(µ1 − µ2)/2‖ = r, thena = r/(3
√
2/2). Hence we propose to use the value ofγ

defined as

γ̂ =

(

r
3
√
2

2

)−2

=
9

2r2
. (5)

The value ofr can be estimated by the range of the data. LetRj be the range of thej-th

variable. If there areK disjoint clusters lying side by side on a line parallel to theaxis

of thej-th variable, then we can estimater by Rj/(2K) as is just illustrated in Figure

2. There arep variables, sop directions have to be considered simultaneously. We use

the maximum rangeR, and estimater by R/(2K). The value ofK can be determined

from our prior knowledge about the possible number of clusters. If K = 2, we have

γ̂ = 72/R2. We observe that this rule works well in several empirical studies although

the discussion does not completely have the theoretical background.
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We also propose a more sophisticated method based on AIC. Thevalue ofγ which

minimizes AIC is recommended as the optimal selection ofγ. Let Kγ be the number

of clusters and(µ̂γk, Σ̂γk), k = 1, . . . , Kγ be the centers and the covariance matrices

of clusters resulting from the spontaneous clustering. Letφ(x, µ,Σ) be the density

function of the normal distribution with mean vectorµ and covariance matrixΣ. Then

φ(x, µ̂γk, Σ̂γk) is used as a density estimator of mixture componentfk(x) in (1). The

result of the spontaneous clustering implies the mixture ofnormal distributions as an

estimator of the density function of the population distributiong in (1),

ĝγ(x) =

Kγ
∑

k=1

τ̂γkφ(x, µ̂γk, Σ̂γk),

whereτ̂γk is an estimator of mixing proportionτk defined as the proportion of the ob-

servations assigned to thek-th cluster. The AIC based on̂gγ is defined as follows.

AICγ = −2
n
∑

i=1

log ĝγ(xi) + 2

{

Kγ

p(p+ 3)

2
+Kγ − 1

}

.

The value ofγ minimizing AICγ is proposed as the optimal selection ofγ.

3 Behavior of the γ-loss Function

We provide a justification for the spontaneous clustering byexploring its theoretical

aspects. The key fact is that theγ-loss functionLγ(µ) hasK local minimum points if

the data set consists ofK cluster groups.

3.1 Nonconvexity

We consider the reason why theγ-loss function has local minimum points as illustrated

in panel (b) of Figure 1. The optimization problem for a nonconvex function which is
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expressed as difference of two convex functions has been considered in Yuille and Rangarajan

(2003) and An and Tao (2005). Effective algorithms such as CCCP and DCA have

been developed. Actually, a monotonic transformation of the γ-loss function can be

expressed as difference of two convex functions, and this expression gives the reason

why theγ-loss function has local minimum points. RewriteLγ(µ) as

Lγ(µ) = −1

n
exp

[

log

{

n
∑

i=1

exp
(

γx⊤
i µ− γ

2
x⊤
i xi

)

}

− γ

2
µ⊤µ

]

.

The local minimum points ofLγ(µ) are equal to local maximum points ofΓγ(µ) =

Γ
(1)
γ (µ)− Γ

(2)
γ (µ), where

Γ(1)
γ (µ) = log

{

n
∑

i=1

exp
(

γx⊤
i µ− γ

2
x⊤
i xi

)

}

, Γ(2)
γ (µ) =

γ

2
µ⊤µ.

ThenΓ(2)
γ (µ) is obviously a convex function and has a constant Hessian matrix with

positive diagonal elements, which means the surface ofΓ
(2)
γ (µ) is curved. Γ(1)

γ (µ) is

also a convex function because its Hessian matrix is given by

∂2Γ
(1)
γ (µ)

∂µ∂µ⊤ = γ2

n
∑

i=1

w(xi, µ, I)(xi − xγµ)(xi − xγµ)
⊤, (6)

wherexγµ =
∑n

i=1wγ(xi, µ, I)xi, and the Hessian matrix is obviously positive defi-

nite. However, the Hessian matrix ofΓ(1)
γ (µ) varies depending on the data andµ, and

becomes close to the zero matrix in a neighborhood where observations are concen-

trated. This fact is clear from the form of the Hessian matrix(6) and means the surface

of Γ(1)
γ (µ) is almost flat in such a neighborhood. Difference between theflat surface

and the curved surface causes local maximum points ofΓγ(µ). Figure 3 illustrates such

a phenomenon, where the red, green, and blue lines showΓ
(1)
γ (µ), Γ(2)

γ (µ), andΓγ(µ),

respectively, with dimensionp = 1 andγ = 3. The graphs ofΓ(1)
γ (µ) andΓγ(µ) are

shifted to take 0 atµ = 0.
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3.2 Existence of Local Minimum Points

We consider a condition for the existence of local minimum points of Lγ(µ). As we

discussed in subsection 2.2, the local minimum points ofLγ(µ) are defined as the cen-

ters of clusters, so it is important to know when theγ-loss function has local minimum

points.

To simplify the argument, we assume that the data set is generated from the mixture

of two normal distributions with covariance matrixσ2I,

g(x) = τ1φ(x, µ1, σ
2I) + τ2φ(x, µ2, σ

2I), τ1 + τ2 = 1, τk > 0, k = 1, 2.

For easy calculation, we considern = ∞. As n tends to∞, Lγ(µ) almost surely

converges to theγ-cross entropy defined by

Cγ(g, φ(·, µ, I)) = −
∫

g(x)φ(x, µ, I)γdx. (7)

See appendix B for the detailed discussion about theγ-cross entropy.Cγ(g, φ(·, µ, I))

becomes

Cγ(g, φ(·, µ, I)) =
∑

k=1,2

τkCγ(φ(·, µk, σ
2I), φ(·, µ, I))

∝ −
∑

k=1,2

τkφ

(

µ, µk,

(

σ2 +
1

γ

)

I

)

,

which is nothing but the minus density function of the mixture of two normal distribu-

tions with the same covariance matrix(σ2+1/γ)I. Hence the local minimum points of

Cγ(g, φ(·, µ, I)) are equal to the modes of the density function of the normal mixture.

Figure 4 shows−Cγ(g, φ(·, µ, I)) with dimensionp = 2, where−Cγ(g, φ(·, µ, I)) has

one or two modes depending on the values ofµ1, µ2, τ1, τ2, andγ. For the univariate

case, a necessary and sufficient condition that the density function of the mixture of two
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normal distributions should be bimodal is given in de Helguero (1904). We use a simi-

lar technique as in de Helguero (1904) to obtain a necessary and sufficient condition for

Cγ(g, φ(·, µ, I)) to have two local minimum points.

Proposition 3.1 Let ν = (µ1−µ2)/2 and d = ‖ν‖2−(σ2+1/γ). Then Cγ(g, φ(·, µ, I))

has two local minimum points if and only if the following three conditions hold:

d > 0, (8)

exp

(

2γ

1 + γσ2
‖ν‖

√
d

)

>
γ

1 + γσ2

(

‖ν‖+
√
d
)2 τ1

τ2
, (9)

exp

(

− 2γ

1 + γσ2
‖ν‖

√
d

)

<
γ

1 + γσ2

(

‖ν‖ −
√
d
)2 τ1

τ2
. (10)

Especially, if τ1 = τ2, then (9) and (10) hold for any d > 0. When the two local

minimum points exist, they lie on the segment between µ1 and µ2. One closer to µ1 and

the other to µ2 are denoted by µ∗
1 and µ∗

2, respectively. Then ‖µ1 − µ∗
1‖ and ‖µ2 − µ∗

2‖

are bounded above by

‖ν‖ −
√

‖ν‖2 −
(

σ2 +
1

γ

)

.

By proposition 3.1, for anyσ2, if µ1 andµ2 are distinct enough, then there existsγ

that guarantees the existence of two local minimum points ofCγ(g, φ(·, µ, I)), and two

clusters are defined at the same instant. In addition, the center of a clusterµ∗
k becomes

arbitrarily close toµk (k = 1, 2), when‖µ1 − µ2‖ becomes large.

4 Simulation

The performance of the spontaneous clustering was investigated through Monte Carlo

experiments. A comparison of the spontaneous clustering with theK-means algorithm
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and the model based clustering (MBC) was also implemented.

4.1 Case of Spherical Clusters

We demonstrate the performance of the spontaneous clustering in comparison with the

K-means algorithm. In this simulation, it is supposed that the covariance matrices

of clusters are known to be the identity matrix. The value ofγ for the spontaneous

clustering is determined by the two methods described in subsection 2.3. The number

of clusters for theK-means algorithm is determined by two methods described below.

The performance of clustering is measured by BHI defined later.

For theK-means algorithm, the method by Caliński and Harabasz (1974) and the

gap statistic by Tibshirani et al. (2001) were used to fix the number of clusters. Let

B(k) andW (k) be the between- and within-cluster sums of squares withk clusters.

Caliński and Harabasz (1974) propose to select the number of clustersk which maxi-

mizes CH(k), where CH(k) is defined as

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
.

On the other hand, Tibshirani et al. (2001) propose to choosethe value ofk which

maximizes Gapn(k) = E∗
n(log(Wk)) − log(Wk), whereE∗

n denotes expectation under

a sample of sizen from the reference distribution.

The sample of size200 is generated from the mixture of five standard normal distri-

butions centered at(0, 0)⊤, (3, 3)⊤, (−3, 3)⊤, (−3,−3)⊤, (3,−3)⊤ with equal mixing

proportion. Figure 5 displays an example sample. We simulated 100 runs, and com-

pared clustering results from the spontaneous clustering with those from theK-means

algorithm. Figure 6 shows the value of AIC and the number of clusters resulting from
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the spontaneous clustering for the sample in Figure 5. The selected value ofγ based on

AIC is 0.7.

Table 1 displays the frequency of choosingK clusters for each of the methods for

different values ofK. All methods except theK-means algorithm with Gap chose the

true number of clusters in almost every simulation run. To measure the performance

of the clustering, we used Biological Homogeneity Index (BHI) (Wu, 2011), which

measures the homogeneity between the clusterC = {C1, . . . , CK} and the biological

category or subtypeB = {B1, . . . , BL},

BHI(C,B) = 1

K

K
∑

k=1

1

nk(nk − 1)

∑

i 6=j,i,j∈Ck

1(B(i) = B(j)), (11)

whereB(i) ∈ B is the subtype for the observationxi andnk is the number of the

observations inCk. This index is bounded above by 1 meaning the perfect homogene-

ity between the clusters and the biological categories. Themean value of BHI over

100 simulation runs for each method is shown in Table 2. All methods except theK-

means algorithm with Gap have good clustering results. In every simulation run, if

each method detected five clusters for a sample, we calculated the Euclidean distance

between the center of a cluster and the mean vector of the corresponding normal com-

ponent of the normal mixture. The mean value of the distance is also shown in Table

2, where DM1, . . . ,DM5 represent the mean value for cluster1, . . . , 5, respectively. In

this simulation setting, the centers obtained by the spontaneous clustering vary more

than those obtained by theK-means algorithm.

To summarize, this simulation example shows that the spontaneous clustering with

the range and AIC has almost the same performance as theK-means algorithm with

CH, and better performance than theK-means algorithm with Gap.
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4.2 Case of Ellipsoidal Clusters

We demonstrate the performance of the spontaneous clustering in comparison with the

MBC, in which the component density is normal. It is supposedthat the covariance

matrices of clusters are heterogeneous and unknown. The value ofγ for the spontaneous

clustering and the number of clusters for the MBC are determined based on AIC.

The sample of size100 is generated from the mixture of two bivariate normal dis-

tributions with mean vectors(0, 0)⊤, (3, 3)⊤, and covariance matrices








1 0.5

0.5 1









,









2 −0.5

−0.5 2









.

Figure 7 displays an example sample, and Figure 8 shows the value of AIC and the

number of clusters resulting from the spontaneous clustering for the sample. Note that

we use two valuesγ1 andγ2 as power indexγ. γ1 is used forLγ(µ) when defining

the centers of clusters, andγ2 for Lγ(µ,Σ) when defining the covariance matrices. The

selected values ofγ1 andγ2 for the sample in Figure 7 areγ1 = 0.25 andγ2 = 0.7. We

simulated 100 runs, and compared the clustering result fromthe spontaneous clustering

with that from MBC.

Table 3 displays the frequency of choosingK clusters for each of the clustering

algorithms for different values ofK. The spontaneous clustering chose the true number

of clusters, while the MBC selected large number of clusters3-10, 39 frequencies.

The mean value of BHI is shown in Table 4. Both clustering algorithms show good

performance. In every simulation run, if each clustering method detected two clusters

for a sample, two measures were calculated. One is the Euclidean distance between

the center of a cluster and the mean vector of the corresponding normal component
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of the normal mixture. The other is the Frobenius norm of the covariance matrix of

a cluster minus that of the corresponding normal component.The mean values of the

Euclidean distance and the Frobenius norm are shown in Table4, where DV1 and DV2

represent the mean value of the Frobenius norm for cluster 1 and 2, respectively. In

this simulation setting, similar to the simulation result in subsection 4.1, the centers and

the covariance matrices obtained by the spontaneous clustering vary more than those

obtained by MBC.

To summarize, this simulation example reveals that the spontaneous clustering with

AIC has almost the same performance as MBC with AIC.

5 Data Analysis

To evaluate the practical performance of the spontaneous clustering, we applied it with

the fixed identity covariance matrix to real data as well as theK-means algorithm. The

data set consists of the chemical composition of 45 specimens of Romano-British pot-

tery, determined by atomic absorption spectrophotometry,for nine oxides (Tubb et al.,

1980). Figure 9 shows the scatterplot matrix of data on Romano-British pottery. In

addition to the chemical composition of the specimens, the kiln site at which the spec-

imen was found is known. There exist five kiln sites, and they are from three different

regions, so that we use the three regions as class labels. Ouraim is to partition the 45

specimens into clusters corresponding to the three classesby using only information

about the chemical composition without knowledge about theclass labels. The value of

γ for the spontaneous clustering is determined by the two methods based on the range
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of the data and AIC, respectively. The number of clusters fortheK-means algorithm is

determined by CH and Gap.

Table 5 shows the result of the spontaneous clustering. The value of AIC and the

number of clusters are shown in panel (a) of Figure 10. With optimal values ofγ based

on the range and AIC, the spontaneous clustering detects three clusters corresponding

to the three regions. In particular, the clustering result by the heuristic choice ofγ is the

most correct. The scatterplot of Al2O3 variable suggests that the number of clusters is

two, and the maximum range is obtained from the variable. This is associated with the

scenario discussed in the derivation of the heuristic method, in which we assume the

number of clusters is two. The values of CH and Gap are shown inpanels (b) and (c)

of Figure 10. They increase almost monotonically as the number of clusters increases,

so CH and Gap do not work well for this data. As a result, we observe the spontaneous

clustering based on the range and AIC can detect three clusters properly and partition

the 45 specimens into clusters corresponding to the three regions.

6 Discussion

We proposed a new clustering algorithm based on the local minimization of theγ-

ross function, which we named the spontaneous clustering. In the spontaneous clus-

tering, the local minimum points of theγ-loss function are defined as the centers and

covariance matrices of clusters. A large majority of statistical methods use the global

minimum or maximum point of objective functions and try to avoid local minimum

or maximum points. The convexity of the objective functionsplays an important role
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in statistics. For example, support vector machine has a convex loss function, and an

efficient algorithm to obtain the global minimum point is considered based on the con-

vexity (Bishop, 2006). Although nonconvexity is generallyintractable, the spontaneous

clustering benefits from the nonconvexity, which makes our method unique and inter-

esting. The idea to use local minimum points of theγ-loss function can be applied to

other statistical methods. For example, the idea is appliedto principal component anal-

ysis (Mollah et al., 2010) and to estimation of Gaussian copula parameter (Notsu et al.,

2012).

The spontaneous clustering does not require the information about the number of

clusters a priori and can find it automatically if the value ofpower indexγ is properly

fixed. In contrast, existing methods such asK-means and model based clustering de-

mand the number of clusters. Instead of the number of clusters, the value ofγ has to

be determined in the spontaneous clustering. Two methods todetermine the value ofγ

are proposed in this paper. One is a heuristic method which depends on the range of the

data. Our simulation research shows that it has good performance in many situations,

so we can usually use this heuristic method. A more sophisticated choice based on AIC

is also proposed although it requires much computational effort. In the beginning of the

research about selection ofγ, we considered a cross validation technique, that is one of

the common procedures to select the optimal value of a tuningparameter (Hastie et al.,

2009). In Mollah et al. (2010) the method using the cross validation is proposed for

selection ofγ. However, the method does not work well for the spontaneous clustering.

Hence we employ AIC for selection ofγ. It is demonstrated that our proposal works

well by the simulation study and the real data analysis.
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A Proof of Proposition 3.1

No generality is lost by assumingµ2 = −µ1. The gradient ofCγ(g, φ(·, µ, I)) is given

by

∂Cγ(g, φ(·, µ, I))
∂µ

∝ τ1φ(µ, µ1, (σ
2 + 1/γ)I)(µ− µ1)

+τ2φ(µ,−µ1, (σ
2 + 1/γ)I)(µ+ µ1). (12)

From (12), every local minimum point ofCγ(g, φ(·, µ, I)) should exist on the segment

between−µ1 andµ1. The Hessian matrix ofCγ(g, φ(·, µ, I)) is given by

∂2Cγ(g, φ(·, µ, I))
∂µ∂µ⊤ ∝ −τ1φ(µ, µ1, (σ

2 + 1/γ)I)
γ

1 + σ2γ
(µ− µ1)(µ− µ1)

⊤

−τ2φ(µ,−µ1, (σ
2 + 1/γ)I)

γ

1 + σ2γ
(µ+ µ1)(µ+ µ1)

⊤

+τ1φ(µ, µ1, (σ
2 + 1/γ)I)I

+τ2φ(µ,−µ1, (σ
2 + 1/γ)I)I. (13)

Letµ(t) = tµ1. From (13),µ(t) is a local minimum point ofCγ(g, φ(·, µ, I)) if and only

if t is a local minimum point ofCγ(g, φ(·, µ(t), I))with respect tot. Cγ(g, φ(·, µ(t), I))

becomes

Cγ(g, φ(·, µ(t), I)) ∝ −τ1 exp(−C(t− 1)2)− τ2 exp(−C(t+ 1)2),

whereC is equal to‖µ1‖2γ/(2(1+σ2γ)). The derivative ofCγ(g, φ(·, µ(t), I)) is given

by

d

dt
Cγ(g, φ(·, µ(t), I)) ∝ τ1 exp(−C(t− 1)2)(t− 1) + τ2 exp(−C(t + 1)2)(t+ 1).
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It is possible to restrict−1 < t < 1. Then

d

dt
Cγ(g, φ(·, µ(t), I)) > 0

⇐⇒ exp
(

−C(t + 1)2 + C(t− 1)2
)

>
(1− t)τ1
(t+ 1)τ2

⇐⇒ −4Ct + log(t+ 1)− log(1− t)− log
τ1
τ2

> 0. (14)

Let h(t) be the left hand side of inequality (14). The derivative ofh(t) is given by

h′(t) = −4C +
1

t + 1
+

1

1− t
,

and

h′(t) > 0 ⇐⇒ −4C(1− t2) + (1− t) + (1 + t) > 0

⇐⇒ t2 −
(

1− 1

2C

)

> 0.

If 1 − 1/(2C) ≤ 0, thenh′(t) ≥ 0, andCγ(g, φ(·, µ(t), I)) has one local minimum

point. HenceCγ(g, φ(·, µ(t), I)) has two local minimum points if and only if

1− 1

2C
> 0, h(−D) > 0, h(D) < 0,

whereD is the positive solution of equationh′(t) = 0, that isD =
√

1− 1/(2C).

Condition 1 − 1/(2C) > 0 is equivalent to‖µ1‖2 − (σ2 + 1/γ) > 0. Condition

h(−D) > 0 is equivalent to

exp

(

2γ

1 + σ2γ
‖µ1‖

√

‖µ1‖2 −
(

σ2 +
1

γ

)

)

>
γ

1 + σ2γ

(

‖µ1‖+
√

‖µ1‖2 −
(

σ2 +
1

γ

)

)2

τ1
τ2
,

and conditionh(D) < 0 is equivalent to

exp

(

− 2γ

1 + σ2γ
‖µ1‖

√

‖µ1‖2 −
(

σ2 +
1

γ

)

)

<
γ

1 + σ2γ

(

‖µ1‖ −
√

‖µ1‖2 −
(

σ2 +
1

γ

)

)2

τ1
τ2
.
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Note thatµ∗
1 is on the line betweenDµ1 andµ1. Similarly (−µ1)

∗ is on the line between

−µ1 and−Dµ1. Then

‖µ∗
1 − µ1‖ ≤ (1−D)‖µ1‖ = ‖µ1‖ −

√

‖µ1‖2 −
(

σ2 +
1

γ

)

.

If τ1 = τ2, thenh(±1) = ±∞, h(0) = 0. Condition1 − 1/(2C) > 0 is equivalent

to h′(0) < 0. Hence two conditionsh(−D) > 0, h(D) < 0 hold whenever condition

1− 1/(2C) > 0 holds. ✷

B γ-divergence and γ-loss Function

The aim of this section is to give a general introduction to the γ-divergence and the

γ-loss function. A more detailed discussion can be found in Eguchi and Kato (2010).

B.1 γ-divergence

Suppose a random sample is generated from a population distribution with density func-

tion g. Let {f(·, θ)} be a family of density functions indexed by parameterθ. The

γ-cross entropy betweeng andf(·, θ) is defined as

Cγ(g, f(·, θ)) = −κγ(θ)

∫

g(x)f(x, θ)γdx,

with power indexγ > 0, whereκγ(θ) is the normalizing constant defined as

κγ(θ) =

(
∫

f(x, θ)1+γdx

)− γ

1+γ

.

The Boltzmann-Shannon cross entropy betweeng andf(·, θ) is defined by

−
∫

g(x) log f(x, θ)dx.
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Theγ-cross entropy and the Boltzmann-Shannon cross entropy have the following re-

lation sinceκγ(θ) converges to 1 ifγ tends to0.

lim
γ→0

Cγ(g, f(·, θ)) + 1

γ
= −

∫

g(x) lim
γ→0

(

f(x, θ)γ − 1

γ

)

dx

= −
∫

g(x) log f(x, θ)dx.

Hence the Boltzmann-Shannon cross entropy can be seen as the0-cross entropy, and

theγ-cross entropy can be regarded as an extension of the Boltzmann-Shannon cross

entropy. Theγ-entropy ofg is defined asHγ(g) = Cγ(g, g); theγ-divergence between

g andf(·, θ) is defined as

Dγ(g, f(·, θ)) = Cγ(g, f(·, θ))−Hγ(g).

Note that theγ-divergenceDγ(g, f(·, θ)) is nonnegative, andDγ(g, f(·, θ)) is equal to0

if and only if θ satisfies thatg(x) = f(x, θ) almost everywherex. From these properties,

Dγ(g, f(·, θ)) can be seen as a kind of distance betweeng andf(·, θ) although it does

not satisfy the symmetry. When our aim is to find the closest distribution tog in model

{f(·, θ)} with respect to theγ-divergence, we only have to find the global minimum

point ofDγ(g, f(·, θ)) with respect toθ, which is equal to that ofCγ(g, f(·, θ)).

B.2 γ-loss Function

The γ-loss function is defined by an estimator of theγ-cross entropy. Let{x1, x2,

. . . , xn} be a random sample generated from a population distributionwith density

functiong and{f(·, θ)} be our statistical model. Theγ-loss function forf(·, θ) associ-

ated with theγ-divergence is given by

Lγ(θ) = −κγ(θ)
1

n

n
∑

i=1

f(xi, θ)
γ.
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We extend the definition of theγ-cross entropy to any distributions. For any distribution

functionG, theγ-cross entropy betweenG andf(·, θ) is defined as

Cγ(G, f(, θ)) = −κγ(θ)

∫

f(x, θ)γdG(x).

Note thatLγ(θ) equalsCγ(Ĝ, f(·, θ)) with empirical distribution functionĜ, so that

E(Lγ(θ)) = Cγ(g, f(·, θ)), andLγ(θ) almost surely converges toCγ(g, f(·, θ)). The

γ-estimator ofθ is defined by the global minimum point ofLγ(θ) (Eguchi and Kato,

2010). From the definition of theγ-estimator, it satisfies Fisher consistency. If the

density functiong belongs to the statistical model{f(·, θ)}, then theγ-estimator satis-

fies asymptotic consistency and normality. Theγ-loss function and the log likelihood

function satisfy the following relation

lim
γ→0

Lγ(θ) + 1

γ
= −1

n

n
∑

i=1

log f(xi, θ).

Hence the MLE can be regarded as the0-estimator and theγ-estimator can be seen as

an extension of the MLE.
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Figure 1: (a) Log likelihood function. (b) Minusγ-loss function (γ = 1). In panels

(a) and (b) the data of size 200 is generated from the mixture of two standard normal

distributions centered at 0 and 10, respectively.
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Figure 2: Example data generated from the mixture of two normal distributions centered

at (0, 0)⊤ and(5, 0)⊤ with the identity covariance matrix, respectively.
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Figure 3: Visualization ofΓ(1)

γ (µ), Γ(2)
γ (µ), andΓγ(µ). In panel (a) the sample of size

100 is generated from normal mixture0.5φ(x,−2, 0.04) + 0.5φ(x, 2, 0.04). In panel

(b) the sample of size 200 is generated from normal mixture0.25φ(x,−5.5, 0.04) +

0.25φ(x,−2, 0.04) + 0.25φ(x, 2, 0.04) + 0.25φ(x, 5.5, 0.04).

Figure 4: Illustration of−Cγ(g, φ(·, µ, I)). In panel (a)µ1 = (0, 0)⊤, µ2 =

(2, 2)⊤, τ1 = τ2 = 0.5, γ = 1, σ2 = 1. In panel (b)µ1 = (0, 0)⊤, µ2 = (4, 4)⊤, τ1 =

τ2 = 0.5, γ = 1, σ2 = 1.
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Figure 5: (a) Five clusters. (b) Same as (a) but colored according to cluster.
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Figure 6: Value of AIC and number of clusters.
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Table 1: Frequencies of ChoosingK Clusters.

K 1 2 3 4 5

Spontaneous clustering with the range 0 0 0 9 91

Spontaneous clustering with AIC 0 0 0 1 99

K-means with CH 0 0 0 0 100

K-means with Gap 91 7 0 0 2

Table 2: Mean Value of BHI and DM1-DM5.

BHI DM1 DM2 DM3 DM4 DM5

Spontaneous clustering with the range 0.93 0.38 0.38 0.37 0.33 0.34

Spontaneous clustering with AIC 0.94 0.34 0.32 0.28 0.27 0.26

K-means with CH 0.95 0.25 0.23 0.21 0.21 0.21

K-means with Gap 0.22 0.16 0.49 0.23 0.41 0.21
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Figure 7: (a) Two clusters. (b) Same as (a) but colored according to cluster.
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Figure 8: (a) Value of AIC. (b) Number of clusters.

Table 3: Frequencies of ChoosingK Clusters.

K 1 2 3 4 5 6 7 8 9 10

Spontaneous clustering 0 100 0 0 0 0 0 0 0 0

MBC 0 61 13 3 4 4 3 4 5 3

Table 4: Mean Value of BHI and DM1, DM2, DV1, and DV2.

BHI DM1 DM2 DV1 DV2

Spontaneous clustering 1.00 0.12 0.20 0.33 0.58

MBC 0.99 0.10 0.16 0.22 0.48
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Figure 9: Scatterplot matrix of data on Romano-British pottery. The red, blue, and

greed circles correspond to the three regions.

Table 5: Result of the Spontaneous Clustering.

Method γ Number of clusters BHI

Range 0.63 3 1

AIC 0.35 3 0.96
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32


	1 Introduction
	2 Spontaneous Clustering
	2.1 -loss Function for the Normal Distribution
	2.2 Algorithm of the Spontaneous Clustering
	2.3 Selection Procedure for  

	3 Behavior of the  -loss Function
	3.1 Nonconvexity
	3.2 Existence of Local Minimum Points

	4 Simulation
	4.1 Case of Spherical Clusters
	4.2 Case of Ellipsoidal Clusters

	5 Data Analysis
	6 Discussion
	A Proof of Proposition 3.1
	B  -divergence and  -loss Function
	B.1  -divergence
	B.2  -loss Function


