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Abstract

Non-negative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful 

machine learning method for decomposing a high-dimensional nonnegative matrix V into two 

nonnegative matrices, W and H where V ~ WH. It has been successfully applied in the analysis 

and interpretation of large-scale data arising in neuroscience, computational biology and natural 

language processing, among other areas. A distinctive feature of NMF is its nonnegativity 

constraints that allow only additive linear combinations of the data, thus enabling it to learn parts 

that have distinct physical representations in reality. In this paper, we describe an information-

theoretic approach to NMF for signal-dependent noise based on the generalized inverse Gaussian 

model. Specifically, we propose three novel algorithms in this setting, each based on multiplicative 

updates and prove monotonicity of updates using the EM algorithm. In addition, we develop 

algorithm-specific measures to evaluate their goodness-of-fit on data. Our methods are 

demonstrated using experimental data from electromyography studies as well as simulated data in 

the extraction of muscle synergies, and compared with existing algorithms for signal-dependent 

noise.
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1 Introduction

Nonnegative matrix factorization (NMF) was introduced as an unsupervised, parts-based 

learning paradigm, in which a high-dimensional nonnegative matrix V is decomposed into 

two matrices, W and H, each with nonnegative entries, V ~ WH by a multiplicative updates 

algorithm (Lee & Seung, 1999;2001). In the past decade, NMF has been increasingly 

applied in a variety of areas involving large-scale data. These include, but not limited to, 

neuroscience, computational biology, natural language processing, information retrieval, 

biomedical signal processing and image analysis. For a review of its applications, the 

interested reader is referred to Devarajan (2008) and references therein.

HHS Public Access
Author manuscript
Neural Comput. Author manuscript; available in PMC 2017 August 08.

Published in final edited form as:
Neural Comput. 2014 June ; 26(6): 1128–1168. doi:10.1162/NECO_a_00576.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lee & Seung (2001) outlined algorithms for NMF based on the Gaussian and Poisson 

likelihoods between two nonnegative matrices. Ever since their seminal work, numerous 

variants, extensions and generalizations of the original NMF algorithm have been proposed 

in the literature. For example, Hoyer (2004), Shahnaz et al. (2006), Pascual-Montano et al. 

(2006) and Berry et al. (2007) extended NMF to include sparseness constraints. Wang et al. 

(2006) introduced LS-NMF that incorporated variability in the data. Cheung & Tresch 

(2005) and Devarajan & Cheung (2012) extended the NMF algorithm to include members of 

the exponential family of distributions while Devarajan et al. (2005, 2006, 2008, 2011) 

formulated a generalized approach to NMF based on the Poisson likelihood that included 

various well-known distance metrics as special cases. Dhillon & Sra (2006) and Kompass 

(2007) have also proposed generalized divergence measures for NMF. Cichocki et al. (2006, 

2008, 2009, 2011) extensively developed a series of generalized algorithms for NMF based 

on α- and β-divergences while Fèvotte et al. (2011) recently extended it by proposing some 

novel algorithms. The work of Cichocki et al. (2009) provides a detailed reference on this 

subject.

The main focus of this paper is on NMF algorithms for signal-dependent noise with 

particular emphasis on the generalized inverse Gaussian family of distributions. This family 

includes the well-known gamma model for signal-dependent noise as a special case. It also 

includes the inverse Gaussian model as a special case, among others. Each model 

incorporates signal-dependence in noise in structurally different ways based on the mean-

variance relationship, as evidenced in the forthcoming sections. These models are embedded 

within the framework of the exponential family of models outlined in Cheung & Tresch 

(2005) and can be obtained as special cases of β-divergence proposed in Cichocki et al., 

(2006, 2009). In each case, the NMF algorithm is based on maximizing the likelihood or, 

equivalently, minimizing a cost function defined by the Kullback-Leibler divergence 

between the input matrix V and the reconstructed matrix WH.

We describe an approach to NMF for signal-dependent noise by extending the standard 

likelihood approach to include two well-known alternative cost functions from information 

theory for quantifying this divergence, namely, the dual Kullback-Leibler divergence and the 

J-divergence. Based on these measures, we propose three NMF algorithms applicable when 

the data exhibit signal-dependent noise. For each algorithm, we provide a rigorous proof of 

monotonicity of updates using the EM algorithm. We describe a principled method for 

selecting the appropriate rank of the factorization and develop algorithm-specific measures 

to quantify the variation explained by the chosen model. We demonstrate the applicability of 

our methods using experimental data from electromyography (EMG) studies as well as 

simulated data in extracting muscle synergies, and compare the performance of our proposed 

methods with existing algorithms for signal-dependent noise.

The remainder of the paper is organized as follows. Section 2 provides the necessary 

background required for the information-theoretic approach described in this paper. It is 

intended to serve as a brief tutorial on fundamental concepts, terminology, basic quantities 

of interest for our problem and their interpretations. Section 3 provides a detailed overview 

of existing NMF algorithms for signal-dependent noise and places them within the broader 

context of NMF algorithms based on generalized divergence measures. Furthermore, it 
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describes our proposed NMF algorithms for signal-dependent noise and provides 

multiplicative update rules. Section 4 outlines methods for model selection and evaluation 

while section 5 presents an application of our methods to EMG data and a comparison to 

existing methods. Section 6 provides a summary and conclusions. Detailed proofs of 

monotonicity of updates for the proposed algorithms are relegated to the Appendix.

2 Background and Preliminaries

2.1 Directed Divergence and Divergence

Suppose we are interested in testing a set of hypotheses denoted by Hi, i = 0, 1, that a 

random variable X is from population i with probability measure μi Assume that μ0 and μ1 

are absolutely continuous with respect to each other and that X takes values on the entire 

real line. Let P(Hi) denote the prior probabilities, f, g the density functions, and F, G the 

distribution functions corresponding to the hypothesis Hi, i = 0, 1, respectively. If P(Hi|x) 

denotes the conditional (or posterior) probability of Hi given X = x, then using Bayes’ 

theorem, we have,

and

Hence,

i.e., the logarithm of the likelihood ratio, defined as the negative difference between the 

logarithm of the odds in favor of H0 before and after the observation X = x, is the 

information in X = x for discrimination in favor of H0 against H1 (Kullback & Leibler, 

1959).

Suppose that x is not given and there is not specific information on the whereabouts of x 
other than x ∈ S. The mean information per observation, averaged over all the values x of X, 

for discrimination in favor of H0 against H1 is thus

(1)

This quantity is known as Kullback-Leibler divergence between f and g, the negative log-
likelihood or empirical entropy. Similarly, the measure I(g, f) is defined as the mean 
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information per observation, averaged over all the values x of X, for discrimination in favor 

of H1 against H0 and is given by

(2)

This quantity is known as dual Kullback-Leibler divergence between f and g or the empirical 
likelihood. In light of the above definitions, I(f, g) and I(g, f) are also referred to as directed 
divergences. These quantities are nonnegative definite and are zero if and only if f(x) = g(x) 

almost everywhere (Kullback & Leibler, 1959; Owen, 2001).

Using directed divergences I(f, g) and I(g, f), one can define J-divergence J(f, g) as

(3)

which is a measure of the divergence or the difficulty of discriminating between the 

hypotheses H0 and H1. A key feature of J(f, g) is symmetry with respect to the measures μ0 

and μ1. It has all the properties of a distance measure (metric) except the triangle inequality, 

is nonnegative definite and is zero if and only if f(x) = g(x) almost everywhere (Kullback & 

Leibler, 1959).

2.2 Motivating NMF for Signal-Dependent Noise

2.1 The Generalized Inverse Gaussian Distribution—A non-negative random 

variable X is said to be a member of the family of generalized inverse Gaussian (GIG) 

distributions if its probability density function is given by

(4)

where γ > 0, δ > 0, ξ ∈ R and Kξ is the modified Bessel function of the third kind with 

index ξ. In the limiting case δ → 0 when ξ > 0, f(x) reduces to a gamma distribution with 

density

(5)

where α = ξ > 0 and . The mean-variance relationship can be written as
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(6)

and thus indicates a quadratic dependence of variance on the mean. When , f(x) 

reduces to an inverse Gaussian distribution with density

(7)

where λ = δ2 and . The mean-variance relationship can be written as

(8)

and thus indicates a cubic dependence of variance on the mean.

Other special cases of the GIG family of distributions include the inverse gamma and 

hyperbolic distributions (Eberlein & Hammerstein, 2004). In this paper, we focus on the 

gamma and inverse Gaussian distributions as data generating models for signal-dependent 

noise in the context of NMF.

2.2 Divergence Measures for Signal-Dependent Noise—The discrimination 

information functions defined above were introduced by Kullback & Leibler (1951) and 

serve as divergence measures for comparing two distributions or probability models. Using 

appropriate densities for f(x) and g(x) in equations (1)-(3) based on the Gaussian (normal), 

gamma or inverse Gaussian models, one can obtain various divergence measures for NMF 

based on the empirical entropy, empirical likelihood or a combination of these. Throughout 

the presentation, we shall use KL, KLd and J to denote Kullback-Leibler, dual Kullback-

Leibler and J-divergence, respectively. In each case, the subscripts N, G and IG are used to 

refer to the Gaussian, gamma and inverse Gaussian models, respectively. The term KL 
divergence has been used in the literature to refer to that based on the Poisson model. 

However, it is important to note that the terms KL, dual KL and J-divergence used in this 

paper refer to generic divergence measures between any two densities f and g as defined in 

equations (1)-(3) and are not model-specific. Each divergence measure can be defined 

specifically for a particular choice of model as outlined below.

For two normal random variables with means μ1 and μ2 (and equal variance σ2) and 

corresponding probability density functions f(x) and g(x), it can be shown that
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(9)

Using equation (5), it can be shown that for two gamma random variables with means μ1 and 

μ2 (and common shape parameter α) and corresponding probability density functions f(x) 

and g(x),

(10)

(11)

and

(12)

Similarly, using equation (7), it can be shown that for two inverse Gaussian random 

variables with means μ1 and μ2 (and common shape parameter λ) and corresponding 

probability density functions f(x) and g(x),

(13)

and

(14)

It will become clear in §3 that none of the parameter coefficients in the divergence equations 

(9)-(14) play any role in the derivation of the NMF algorithms. Hence, we assume that 2σ2 = 

α = λ/2 = 1 without loss of generality. It should be noted that this assumption is consistent 

with the basic formulation in NMF and that numerous other divergence measures available 

in the literature for NMF implicitly make such assumptions (Cichocki et al., 2006, 2008, 

2009; Févotte et al., 2011; Kompass, 2007; Devarajan & Cheung, 2012).

We motivate non-negative matrix factorizations in the context of dimension reduction of 

high-dimensional electromyography (EMG) data. EMG data is typically presented as a 
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matrix in which the rows correspond to different muscles, the columns to disjoint, 

sequentially sampled time intervals, and each entry to the EMG signal of a given muscle in a 

given time interval. In EMG studies, the number of muscles, p, is typically less than fifty, the 

number of time intervals, n, is typically in the tens of thousands, and the matrix of EMG 

signal intensities V is of size p×n so that each column of V represents an activation vector in 

the muscle space at one time instance. Our goal is to find a small number of muscle 

synergies, each defined as a non-negative, time-invariant activation balance profile in the p-

dimensional muscle space. This is accomplished via a decomposition of the matrix V into 

two matrices with nonnegative entries, V ~ WH, where W has a size p × r, so that each 

column is a time-invariant muscle synergy in the p-dimensional muscle space and the matrix 

H has size r × n, so that each column contains the activation coefficients for the r synergies 

in W for one time instance. The number of synergies r is chosen so that (n + p)r < np. The 

entry hai of H is the coefficient of time interval i in synergy a and the entry wja of W is the 

expression level of synergy a in muscle j, where a = 1, 2, …, r.

The first step in obtaining an approximate factorization for V is to define cost functions that 

measure the divergence between the observed matrix V and the product of the factored 

matrices WH. We can express this in the form of a linear model as follows:

(15)

where ε represents noise. NMF algorithms for signal-dependent noise based on KL 
divergence (equations (10) and (13), respectively) for gamma and inverse Gaussian models 

exist in the literature (Cheung & Tresch, 2005; Cichocki et al, 2009; Fèvotte et al, 2011). In 

this paper, we propose three novel NMF algorithms for handling signal-dependent noise, 

specifically based on dual KL and J-divergence for gamma and inverse Gaussian models 

(equations (11), (12) and (14)). The appropriate cost function for each model is obtained by 

simply substituting μ1 and μ2 in equations (9)-(14) with V and WH, respectively.

2.3 Application of NMF to EMG Data

We present an application involving the analysis of EMG data, electrical signals recorded 

from muscles that reflect how they are activated by the nervous system for a particular 

posture or movement. It is well-known in the literature that EMG data exhibits signal-

dependent noise (Harris & Wolpert, 1998; Cheung et al., 2005). One long standing question 

in neuroscience concerns how the motor system coordinates the activations of hundreds of 

skeletal muscles, representing hundreds of degrees of freedom to be controlled (Bernstein, 

1967). They define an immense volume of possible motor commands that the central 

nervous system (CNS) must search through for the execution of even an apparently simple 

movement. It has been argued that the CNS simplifies the complexity of movement and 

postural control arising from high dimensionality by activating groups of muscles as 

individual units, known as muscle synergies (Tresch et al., 2002; Giszter et al., 2007; Bizzi 

et al., 2008; Ting et al., 2012). As modules of motor control, muscle synergies serve to 

reduce the search space of motor commands, reduce potential redundancy of motor 

commands for a given movement, and facilitate learning of new motor skills (Poggio and 

Bizzi, 2004). Numerous laboratories have utilized linear factorization algorithms to extract 
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muscle synergies from multi-channel EMGs recorded from humans and animals (reviewed 

in Bizzi and Cheung, 2013). In particular, several studies have demonstrated that the muscle 

synergies returned by the Gaussian NMF could be neurophysiological entities utilized by the 

CNS for the production of natural motor behaviors (Saltiel et al., 2001; Tresch et al., 2006; 

Overduin et al., 2012).

It has been further posited that muscle synergies for locomotion are basic units of the so 

called central pattern generators (CPGs) whose organizations are independent of the pattern 

of sensory feedback. Cheung et al. (2005) sought to demonstrate this possibility by 

recording hind-limb EMGs from bullfrogs during jumping and swimming, before and after 

deafferentation, or the surgical procedure of eliminating sensory in-flow into the spinal cord 

by cutting the dorsal nerve roots. By applying a manipulated version of the Gaussian NMF 

to the data matrix that pooled the intact and deafferented EMGs together, they found 3 to 6, 

out of 4 to 6, muscle synergies were preserved after deafferentation. The preserved synergies 

were then interpreted as basic components of the CPGs. Here, we ask whether the NMF 

algorithms based on gamma or inverse Gaussian noise can better identify CPG components 

by discovering more muscle synergies shared between the pre- and post-deafferentation data 

sets than the traditional Gaussian NMF. We hypothesize that the NMF algorithms derived 

from signal-dependent noise outperform the Gaussian NMF in their ability to discover 

shared muscle synergies, because signal-dependent noise formulations should better model 

the noise properties of EMG signals than a Gaussian formulation (Harris and Wolpert, 

1998).

The data analyzed here were previously described in Cheung et al. (2005). Briefly, EMGs 

during unrestrained jumping and swimming were collected from four adult bullfrogs (Rana 
catesbeiana), before and after a complete hind-limb deafferentation was achieved by 

severing dorsal roots 7 to 9. Intramuscular EMG electrodes were surgically implanted into 

the following muscles in the right hind-limb: rectus internus major (RI), adductor magnus 

(AD), semimembranosus (SM), semitendinosus (ST), iliopsoas (IP), vastus internus (VI), 

rectus femoris anticus (RA), gastrocnemius (GA), tibialis anticus (TA), peroneus (PE), 

biceps (BI), sartorius (SA), and vastus externus (VE). The collected EMG signals were 

amplified (gain of 10,000) and bandpass filtered (10-1000 Hz) through differential 

alternating-current amplifiers, then digitized at 1000 Hz. Using custom software written in 

Matlab (R2010b; Math-Works, Natick, MA), the EMG signals were further high-pass 

filtered with a window-based finite impulse response (FIR) filter (50th order; cutoff of 50 

Hz) to remove any motion artifacts, then rectified, low-pass filtered (FIR; 50th order; 20 

Hz), and finally integrated over 10-ms intervals. The pre-processed data of each muscle were 

then normalized to the maximum EMG value of that muscle attained in the entire 

experiment.

The EMG signal is a spatiotemporal summation of the motor action potentials traveling 

along the muscle fibers of the thousands of motor units in the recorded muscle. The high-

frequency components of the EMG reflect, in addition to noise, the contribution of these 

action potentials. In motor neuroscience, it is customary to perform low-pass filtering on the 

recorded EMGs to obtain an envelope of muscle activation, which should reflect the higher-

level control signals originating from the brain and spinal cord that specify the degree of 
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muscle contraction for generating the desired force (with the force magnitude dictated by the 

muscle’s force-length and force-velocity relationships). Since we are interested in 

discovering structures at the level of control signals for muscular contraction (i.e., muscle 

synergies), and since signal-dependent noise is thought to occur at this control-signal level, it 

is appropriate to apply NMF to filtered EMG data. There is a sizable literature on using the 

Gaussian NMF algorithm for extracting muscle synergies from filtered EMG data (reviewed 

in Bizzi and Cheung, 2013). Moreover, filtering the EMGs before NMF extraction would 

allow an easier comparison of our results with those in the literature.

One approach to visualizing signal-dependence in this data is to plot the variability as a 

function of the mean for EMG signals from each muscle separately. Any observed trend in 

the mean-variance relationship would indicate some form of signal-dependence, the exact 

nature of the relationship being dependent on the data generating mechanism. For each 

muscle, the mean and variance of the EMG signal were computed for moving windows 

across time. Several window sizes ranging from 3-50 were explored and it was observed that 

mean-variance relationship was not sensitive to the choice of window size. Our choice of 

window size was based on a physiological justification. There has been an earlier result 

suggesting that bursts with 275 msec. duration could be a fundamental pulse unit in the frog 

spinal cord (Hart and Giszter, 2004). Since our integration time interval is 10ms, we used a 

window size of 28 so that each window corresponded to the duration of this fundamental 

drive.

Using equation (6), the mean-variance relationship for a gamma model can be rewritten in 

terms of the standard deviation σ(X) as

Taking the logarithm on both sides, we obtain

Fig. 1(A) shows a plot of the logarithm of the estimated standard deviation against the 

logarithm of the estimated mean for moving windows across time for the intact jump of one 

frog for the muscle TA. The black solid line represents a linear fit to this data. The proximity 

of the estimated slope of this line to unity provides strong evidence that a gamma model 

adequately represents the mean-variance relationship in this data. The logarithmic 

transformation provides variance stabilization and aids in interpreting the slope of the fit. 

Panels (A)-(D) in Fig. 1 display such plots for each of the four behaviors of selected muscles 

and frogs. At the top of each panel in this figure, the estimate of the slope and goodness-of-

fit measures such as the root mean squared error (RSE) and adjusted R2 are listed along with 

frog behavior and name of muscle. This figure is representative of the mean-variance 

relationship typically observed in our frog EMG data. Supplemental Table 1 lists the 

estimates of slope and adjusted R2 (mean ± SD for N = 4 frogs) from the least squares fit for 
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each behavior and muscle. It is evident from these results that the gamma model provides an 

overall good fit of the EMG data.

In the following section, we discuss NMF algorithms for signal-dependent noise. We begin 

with a survey of existing work in this area before proceeding to describe three novel 

algorithms for this problem. A detailed analysis of the data sets described here, including a 

comparison of existing approaches to our proposed methods, is presented in Section 5.

3 NMF Algorithms for Signal-dependent Noise

3.1 Existing Work

Cheung & Tresch (2005) proposed a heuristic NMF algorithm for the exponential family of 

distributions that embeds the Gaussian, Poisson, gamma and inverse Gaussian models. They 

provided generalized multiplicative update rules for W and H by modifying the step-size in 

the gradient based on the negative log-likelihood (or, equivalently, KL divergence). In 

independent work, Cichocki et al. (2006) also proposed a similar heuristic algorithm based 

on the generalized β-divergence and provided multiplicative update rules for W and H. β-

divergence between the input matrix V and reconstructed matrix WH is given by

(16)

β-divergence includes the Gaussian (β = 2), Poisson (β → 1), gamma (β → 0) and inverse 

Gaussian (β = −1) models as special cases. It should be noted that this generalized 

divergence is related to the other divergence measures independently described in the 

literature (such as those in Kompass (2007), Cichocki et al. (2008) and Devarajan et al. 

(2005, 2011)) via transformations. For NMF algorithms based on gamma and inverse 

Gaussian models stemming from the work of Cheung & Tresch (2005) and Cichocki et al. 

(2006), monotonicity of updates cannot be established and they remain heuristic. Recently, 

however, Fèvotte et al. (2011) proposed a rigorous Majorization-Maximization (MM) 

algorithm based on β-divergence that enables monotonicity of updates for W and H to be 

theoretically established. Moreover, they provided generalized multiplicative update rules 

for W and H that were seen to be different from heuristic updates. We refer to these as the 

heuristic and MM algorithms for gamma and inverse Gaussian models. In each algorithm, it 

is straightforward to see that the divergence measure for gamma and inverse Gaussian 

models is that based on KL divergence. For the NMF problem V ~ WH, using equation (10) 

the kernel of KL divergence for the gamma model can be written as

(17)

This is commonly referred to as the Itakuro-Saito divergence (Cichocki et al., 2009; Fèvotte 

et al, 2011). Heuristic updates for W and H are given by
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(18)

(19)

and MM updates are given by

(20)

(21)

Similarly, using equation (13) the kernel of KL divergence for the inverse Gaussian model 

can be written as

(22)

Heuristic updates for W and H are given by

(23)
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(24)

and MM updates are given by

(25)

(26)

Using results from Cheung & Tresch (2005), Cichocki et al. (2006) and Fèvotte et al. (2011), 

it is straightforward to obtain the above update rules in each specific case. For consistency, 

we use the notation , ,  and  to represent the heuristic and MM 

algorithms for gamma and inverse Gaussian models, respectively.

3.2 Proposed Algorithms

In this section, we propose two novel NMF algorithms based on dual KL divergence, one 

each for the gamma and inverse Gaussian models, and one algorithm based on J-divergence 

for the gamma model. We use the notation ,  and JG, respectively, to denote these 

three algorithms presented in Theorems 1-3. Closed form multiplicative update rules for W 
and H are provided for each while proofs of monotonicity of updates are detailed in the 

Appendix.

3.1 Gamma Model: Algorithm based on dual KL divergence—Using equation 

(11), the kernel of dual KL divergence for the gamma model can be written as

(27)

Theorem 1: The divergence  in (27) is non-increasing under the 
multiplicative update rules for W and H given by (28) and (29). It is also invariant under 
these updates if and only if W and H are at a stationary point of the divergence.
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Proof: See Appendix.

Update rules for H and W are

(28)

(29)

3.2 Gamma Model: Algorithm based on J Divergence—Using equation (12), the 

kernel of J divergence for the gamma model can be written as

(30)

Theorem 2: The divergence JG(V, WH) defined in (30) is non-increasing under the 
multiplicative update rules for W and H given by (31) and (32). It is also invariant under 
these updates if and only if W and H are at a stationary point of the divergence.

Proof: See Appendix.

Update rules for H and W are

(31)

(32)
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3.3 Inverse Gaussian Model: Algorithm based on dual KL divergence—Using 

equation (14), the kernel of dual KL divergence for the inverse Gaussian model can be 

written as

(33)

Theorem 3: The divergence  defined in (33) is non-increasing under the 
multiplicative update rules for W and H given by (34) and (35). It is also invariant under 
these updates if and only if W and H are at a stationary point of the divergence.

Proof: See Appendix.

Update rules for H and W are

(34)

(35)

Using equations (13) and (14), J-divergence for the inverse Gaussian model can be written in 

terms of V and WH. However, we note that closed form multiplicative updates cannot be 

obtained using the EM approach, and monotonicity of updates cannot be theoretically 

established.

Remark: The divergences (27), (30) and (33) and their corresponding update rules for W 
and H (equations (28,29), (31,32) and (34,35), respectively) contain Vij in the denominator 

of various terms. Theoretically, this should not cause any numerical issues (such as division 

by zero) since Vij > 0 for both gamma and inverse Gaussian models (i.e., zero is not in their 

domain). However, in a practical setting, due to data preprocessing a few zero entries may 

sometimes occur in the input matrix V. In such cases, it is reasonable to set the zero entries 

to the smallest non-zero entry in V.

4 Model Selection and Measuring Goodness-of-Fit

Starting with random initial values for W and H, the multiplicative update rules for any 

given NMF algorithm outlined in §3 ensure monotonicity of updates for that run; however, 
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the algorithm may not necessarily converge to the same solution on each run. In general, 

NMF algorithms are prone to this problem of local minima. For a given NMF algorithm and 

a pre-specified rank r factorization, the corresponding divergence (or reconstruction error) 

computed at the final converged values of W and H for a set of random initial values can be 

used directly in model selection and to measure goodness-of-fit. One solution is to utilize the 

factorization from the run that results in the best reconstruction (quantified by minimum 

reconstruction error across multiple runs) for evaluation using different quantities. Below, 

we define two quantities of interest for this purpose based on algorithm-specific minimum 

reconstruction error E.

4.1 Proportion of Explained Variation

We propose several new measures to quantify the variation explained by the various 

algorithms for signal dependent noise discussed in this paper. For each pre-specified rank r 
the proportion of explained variation (or empirical uncertainty), R2, is dependent on the 

particular algorithm and model used in the factorization. For the Gaussian NMF algorithm, 

R2 is the well-known quantity given by

(36)

where RSS is the residual sum of squares, SST is the total sum of squares and 

 is the minimum reconstruction error (E), calculated based on the kernel of 

the Gaussian likelihood Σi,j (Vij − (WH)ij)2. The Gaussian likelihood for NMF is obtained 

using (9) and was first proposed by Lee & Seung (2001).

For each algorithm, R2 is computed based on the corresponding minimum reconstruction 

error (E), as listed in Table 1. In the R2 column of this table, the numerator of each quantity 

within parentheses (other than the Gaussian) is the minimum reconstruction error (E) 

calculated using equations (17), (22), (27), (30) and (33), as appropriate. The quantity 

(WH)ij in each numerator is the (i, j)th entry of the reconstructed matrix WH (also obtained 

as  for a given rank r). In the corresponding denominator of each quantity, 

each entry of the reconstructed matrix WH is replaced by the grand mean of all entries of the 

input matrix V, . The underlying principle in the calculation of R2 

is that the algorithm-specific reconstruction error E quantifies the performance of the model 

as determined by the entries (WH)ij while in the absence of the model V ~ WH, the best 

approximation of (WH)ij is provided simply by the grand mean of all observations in the 

data. This is a direct extension of the definition of R2 in equation (36) for the Gaussian 

model to non-linear models such as the gamma and inverse Gaussian. The algorithm-specific 

R2 measures the proportionate reduction in uncertainty due to the inclusion of W and H and, 

therefore, can be interpreted in terms of information content of the data (see Cameron & 

Windmeijer, 1996; 1997 for more details).
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4.2 Akaike Information Criterion (AIC)

For a particular algorithm and a pre-specified rank r, AIC is given by

(37)

where E is the corresponding minimum reconstruction error, ψ = (p + n)r is the total number 

of parameters estimated in the model for a p×n input matrix V and , α and  for the 

Gaussian, gamma and inverse Gaussian models, respectively. The model (rank r 
factorization) that results in the smallest AIC is chosen as the optimal model. The 

calculation of algorithm-specific E is detailed in §4.1 and the determination of τ is outlined 

in §5.

5 Implementation of Algorithms on EMG Data

In this section we present a detailed application of NMF algorithms based on signal-

dependent noise in the analysis of the EMG data described in Section 2. Time-invariant 

muscle synergies were extracted from each of the intact and deafferented EMG data sets of 

each frog using each of the eight NMF algorithms described earlier, including one based on 

normally distributed noise (Gaussian), four based on gamma noise (including , , 

 and JG), and three based on inverse Gaussian (IG) noise (including ,  and 

). The NMF update rules were implemented using Matlab. It should be noted that none 

of the pre-processed data sets contained zero entries. For every extraction, the muscle 

synergies (W) and their associated time-varying activation coefficients (H) were initialized 

with random matrices whose components were uniformly distributed between 0 and 1. 

Convergence was defined as having 20 consecutive iterations with a change of R2 smaller 

than 10−8 (with R2 for each algorithm defined in Table 1), but if convergence was not 

reached within 500 iterations, the extraction was terminated. The number of muscle 

synergies r extracted from each data set was successively increased from 1 to 13; at each 

number, extraction was repeated 20 times, each time with different random initial matrices.

AIC was calculated as follows. Let c denote the parameter 2σ2, α or λ/2 depending on the 

model. In the specification of the divergence for each algorithm (§2.2.2, equations (9)-(14)), 

we assumed that c = 1 without loss of generality. In order to ensure that the EMG data fit 

this assumption, a global test of the null hypothesis H0 : c = 1 against the two-sided 

alternative HA : c ≠ 1 was performed for each model. The mean-variance relationship for the 

gamma and inverse Gaussian models can be written using equations (6) and (8), respectively, 

and is described in detail in §2.2.3. This relationship was used to obtain an estimate α or λ 
in these models. For the Gaussian model, σ2 was estimated using the approach described in 

Morup & Hansen (2009). In addition, these parameters were estimated using standard 

maximum likelihood methods. In each case, the estimate of c was approximately 1 and the 

95% confidence interval for this estimate included 1 (p-values for these tests ranged from 

0.15 to 0.77) thereby providing strong evidence in favor of the null hypothesis c = 1. (p = 

0.29). For the Gaussian model, σ2 was estimated using the approach described in Morup & 
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Hansen (2009). The 95% confidence interval for the estimate of σ2 is (0.50, 1.37) with a 

mean of 0.93 (p = 0.77). Based on this empirical evidence, c was taken to be 1 and the 

appropriate value of τ was used in equation (37) for each model. The best model order was 

selected by identifying the rank r giving the minimum AIC for each data set and algorithm. 

Supplemental Table 2 lists the dimensionality of the data set, i.e., number of columns n in 

equation (37), for each frog and behavior.

Since for this application we are primarily interested in the ability of each algorithm to 

identify features shared between the intact and deafferented EMG data sets (or features 

interpretable as units of CPGs), performance of each algorithm was assessed by the 

similarity between the intact and deafferented muscle synergies, quantified with two 

measures. The first measure used was the scalar product between best-matching pairs of 

intact and deafferented synergies, calculated after the synergies were normalized to unit 

vectors. The second measure used was the cosine of the principal angles between the 

subspaces spanned by the intact and deafferented synergy sets (Golub and Van Loan, 1983). 

Both measures were used in Cheung et al. (2005).

5.1 NMF Algorithms based on Signal-dependent Noise Outperformed Gaussian NMF

In analysis of motor patterns from natural behaviors, it has remained difficult to determine, a 
priori, the number of muscle synergies composing the data set. Most previous studies on 

muscle synergies have relied on ad hoc measures to determine this number either by locating 

the cusp of the R2 curve plotted against the rank r (e.g., d’Avella et al., 2003; Cheung et al., 

2005; Tresch et al., 2006), or by finding the minimum number of synergies that produced an 

R2 greater than a certain arbitrary threshold (e.g., Cheung et al., 2012). Here, we explored 

using the AIC as a principled, objective measure of selecting the model order that best 

described the data without over-fitting (Akaike, 1987). For every algorithm and data set, we 

plotted the AIC against the number of synergies extracted r, and the preferred model order 

was indicated by the number at which the curve attained a minimum AIC (Fig. 2, *).

The model order selected using the AIC was in general consistent across animals for all four 

behaviors (intact jump, deafferented jump, intact swim, and deafferented swim) and all 

algorithms. For the Gaussian and all gamma-based algorithms, the selected model order in 

each behavior differed at most by only 1 across frogs; for the IG-based algorithms, the 

selected order differed across frogs by 2 to 3 in most instances, and by 4 only in one instance 

(Fig. 3). While IG algorithms ( ,  and ) consistently indicated a rank of 8 

to 13 muscle synergies, Gaussian, , and  suggested a rank of 1 to 2 synergies. The 

JG algorithm, on the other hand, indicated a rank of 3 synergies for intact and deafferented 

jump (Fig. 2A, Fig. 3), and 4 synergies for intact and deafferented swim (Fig. 2B, Fig. 3). A 

previous study (d’Avella et al., 2003) has argued, based on a detailed kinematic analysis, that 

there are at least 3 muscle synergies underlying frog hind-limb kicking, with 2 synergies 

controlling kick direction during limb extension, and 1 for executing limb flexion. It thus 

appears that the model orders selected for the JG algorithm are the most physiologically 

interpretable. We further verified that at these ranks, all signal-dependent noise algorithms 

returned synergies that explained the EMGs with an R2 of at least 85% (Table 2). In 

addition, all three proposed algorithms returned synergies that explained the EMGs with an 
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R2 of at least 93%, a significantly higher fraction compared to that of existing signal-

dependent noise algorithms for which R2 values ranged from 85% to 93%. In the ensuing 

analysis, we will measure the performances of all algorithms at the ranks determined from 

the results of the JG algorithm.

Table 2 lists the proportion of explained variation (R2) achieved by the NMF algorithms in 

four different frog behaviors at the rank determined by the JG algorithm. The number of 

muscle synergies underlying intact and deafferented jump was assumed to be 3, and that 

underlying intact and deafferented swim, to be 4. These model orders were determined by 

selecting the ranks that resulted in the smallest AIC values when the JG algorithm was 

applied to the data sets. All R2 values shown are averages across frogs (N = 4; mean ± SD).

The seven NMF algorithms based on signal-dependent noise outperformed the Gaussian 

NMF in their ability to identify features shared between the intact and deafferented EMG 

data sets. This is indicated by the generally higher similarity between the intact and 

deafferented muscle synergy sets, measured by both the scalar product (Fig. 4A, 4C) and the 

cosine of principal angle (Fig. 4B, 4D), when the non-Gaussian NMFs were applied. In 

particular, for both similarity measures, performance of the JG algorithm exceeded that of 

the Gaussian algorithm in 3 of 4 frogs in the jump data sets (frogs 2, 3, 4; Fig. 4A, B), and 

also in 3 of 4 frogs in the swim data sets (frogs 1, 2, 3; Fig. 4C, D). Overall, the three best 

performing algorithms in terms of these measures were JG (mean scalar product = 0.8698; N 

= 4×2 = 8);  (0.8695), and  (0.8650). The worst performing algorithm was 

Gaussian (0.7648).

Table 3 lists the proportion of explained variance (R2) achieved by the NMF algorithms at 

the ranks with minimum AIC. For every algorithm, the number of muscle synergies 

underlying each behavior of each frog was determined by selecting the rank that resulted in 

the smallest AIC values. All R2 values shown are averages across frogs (N = 4; mean ± SD).

It is clear from the results shown in Tables 2 and 3 that all three proposed algorithms 

outperformed existing algorithms in terms of fraction of explained variation (R2), both at the 

ranks with minimum AIC and at the ranks determined by the JG algorithm. A closer look 

also revealed that the variability of this fraction (estimated by the standard deviation) was 

significantly lower for the proposed algorithms relative to existing methods, indicating a 

higher overall confidence level in the variation explained by these methods. The JG 

algorithm provided a much better balance between R2 and choice of rank based on minimum 

AIC compared to any other algorithm. The ranks chosen by the  algorithm based on 

minimum AIC were similar to those of existing gamma based algorithms; however, this 

algorithm was able to explain a much higher fraction of variation in the data. The 

algorithm explained the maximum variation (highest overall R2) amongst all algorithms 

while the Gaussian algorithm provided the smallest R2 and rank. Furthermore, variability of 

R2 was also the highest for the Gaussian algorithm, suggesting an overall lower confidence 

level in the variation explained by this algorithm.
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5.2 Muscle synergies extracted by the JG algorithm were physiologically interpretable

In this section we compare swim muscle synergies extracted using the standard Gaussian 

algorithm with those identified by the JG algorithm in one specific individual (frog 2), and 

illustrate how the latter set could be more physiologically interpretable. In the extraction 

results returned by the Gaussian formulation, a very high similarity between the pre- and 

post-deafferentation synergies was observed in 2 of the synergy pairs (scalar product > 0.90; 

Fig. 5A, synergies 1 to 2); a moderate similarity, in 1 synergy pair (scalar product = 0.90; 

Fig. 5A, synergy 3); and total dissimilarity, in the last pair (scalar product = 0.06; Fig. 5A, 

synergy 4). By contrast, the JG algorithm found 3 synergy pairs with high similarity (scalar 

product > 0.90; Fig. 5B, synergies 1 to 3); in the last pair, the similarity was modest (scalar 

product = 0.62; Fig. 5B, synergy 4), but the muscles active in both the intact and 

deafferented synergy vectors were the same (RI, AD, SM, and ST). Overall, the synergy 

extraction results from this frog demonstrate that the JG algorithm, derived from a signal-

dependent noise assumption, is better able to discover structures preserved after 

deafferentation than the traditional Gaussian algorithm.

The muscular compositions of the synergies returned by the JG algorithm could also be 

biomechanically interpreted. Synergy 3 (Fig. 5B), for instance, was composed of the hip 

extensor SM, knee extensors VI, RA, and VE, and the ankle extensor GA. Examination of 

the time-varying coefficients associated with this synergy revealed that it was active only 

during the extension phase of every swim cycle; thus, it is likely that muscle synergy 3 

functions to propel the animal forward through extension of the hip, knee, and ankle joints. 

Synergy 1 (Fig. 5A, 5B), discovered by both the Gaussian and JG algorithms, consisted of 

the hip flexors IP and BI; synergy 2 (Fig. 5A, 5B), on the other hand, consisted primarily of 

the ankle flexors TA and PE, and the hip/knee flexor SA. It is no surprise that both of these 

synergies were indeed active during the flexion phase of every swim cycle.

The activation pattern of synergy 4 identified by JG (Fig. 5B) was more complex. During the 

intact state, it was primarily active during limb flexion; after deafferentation it was activated 

only during limb extension. Consistent with this switch of activation phase for this synergy 

after the loss of sensory feedback, the correlation coefficient between the activation 

coefficients of synergy 4 and those of the extension synergy 3 increased 5-fold after 

deafferentation (Fig. 5C). Since three muscles in this synergy -RI, SM, and ST - have both 

hip extension and knee flexion actions, it is possible that before deafferentation, this synergy 

executes knee flexion while after deafferentation, it aids limb extension. It thus appears that 

sensory feedback functions both to inhibit its activation during extension, and facilitates or 

triggers its activation during flexion. Such an inference about the contribution of afferents to 

the inhibition and activation of this muscle synergy would be difficult with the synergy sets 

obtained by the Gaussian NMF (Fig. 5A) given that the Gaussian algorithm failed to 

discover this synergy from the deafferented data set.

5.3 Comparison of results using algorithms derived from the same noise distribution

In the preceding sections, we compared the performance of various algorithms in extracting 

muscle synergies based on AIC, the fraction of explained variation (R2), their ability to 

identify features shared between the deafferented and intact EMG data (measured by the 
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scalar dot product and cosine of the principal angle) and their physiological interpretability. 

In this section, we perform a comparison of muscle synergies extracted by different NMF 

algorithms from the same EMG data set in order to understand how the underlying noise 

assumption and cost function used in the NMF algorithm may impact the muscular 

compositions of the extracted synergies. Algorithms based on the same noise distribution but 

different cost functions tended to return similar muscle synergies. For instance, using 

and  as reference algorithms, the scalar product values (mean ± SD; over 4 frogs) 

between the synergies returned by gamma based NMF algorithms and  were (i) higher 

than those between the synergies returned by the Gaussian NMF algorithm and  and 

(ii) higher than those between inverse Gaussian based NMF algorithms and  (Fig. 6A). 

Similarly, the scalar product values (mean ± SD; over 4 frogs) between the synergies 

returned by inverse Gaussian based NMF algorithms and  were (i) higher than those 

between the synergies returned by the Gaussian NMF algorithm and  and (ii) higher 

than those between gamma based NMF algorithms and  (Fig. 6B).

Our analysis shows that in our frog EMGs, algorithms derived from the same noise 

distributions tended to return similar muscle synergies. The noise distribution appears to 

play a critical role in determining the muscular compositions of the synergies extracted from 

the data. Similarly, the cost function (divergence measure) employed for formulating the 

update rules exerts its own influence on the extraction results. Indeed, the best rank (rank 

with minimal AIC) and R2 values from algorithms assuming the same noise distribution but 

employing different cost functions were still different (Table 3). This is because these 

algorithms derived from different cost functions returned different activation coefficients 

(H). As an illustrative example, we present in Fig. 7 the muscle synergies extracted by all 

eight algorithms from the deafferented jump EMGs of frog 2. In this case, the results 

produced by the four gamma-based NMF algorithms are nearly identical. However, it is 

important to note that the synergies extracted by the three IG-based NMF algorithms are 

quite different, exposing the activation of different muscles as determined by the choice of 

cost function.

6 Evaluating NMF Algorithms on Simulated Data Sets

In this section, we present a detailed application of the proposed NMF algorithms to the 

analysis of simulated data. We implemented the algorithms on simulated data sets generated 

by known muscle synergies (W) and time-varying activation coefficients (H), so that the 

performance of each NMF algorithm can be evaluated by comparing the extracted results 

with the original W and H.

In our simulations, we are interested in how well each algorithm performs as a function of 

noise distribution and noise level in the data. For every distribution and noise amplitude 

tested, 10 simulated data sets were generated. Each data set, consisting of 15 muscles and 

5000 time points, was produced by linearly combining 5 muscle synergies. The components 

of both W and H were drawn from a uniform distribution defined over (0, 1). The simulated 
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data were then corrupted by one of the three noise types - Gaussian, gamma, and inverse 

Gaussian - at different noise magnitudes quantified by the signal-to-noise ratio (SNR), 

defined as

where Vij is the original, uncorrupted data point, and Ṽij is the noise-corrupted data point. 

For Gaussian noise with mean μ and variance σ2, noise for each data point was generated by 

the Matlab function, normrnd, with μ = Vij and σ set to 0.04, 0.05, 0.07, 0.1, 0.2, 0.3, 0.5, 

1.0, 1.5, and 2.0, respectively. These choices of σ produced data with an SNR ranging from 

0.17 to 225. For gamma noise with mean  (equation (5)), the Matlab function gamrnd was 

used, with  and α set to 0.1, 0.5, 0.25, 1.0, 2.5, 5.0, 10, 50, 100, 250, and 500, 

respectively (SNR of 0.1 to 500). For inverse Gaussian noise with mean μ (equation (7)), 

noise for each data point was generated by combining the Matlab functions makedist and 

random, with μ = Vij and λ set to 0.1, 0.2, 0.5, 0.75, 1, 2, 5, 7, 10, 12, 14, 16, 18, 20, 30, 40, 

and 100, respectively (SNR of 0.14 to 139).

The eight NMF algorithms described in this paper (Gaussian, , , , JG, 

, , and ) were then applied to each of the simulated data sets for extracting 

5 muscle synergies. In every extraction, the NMF update rules were implemented using 

Matlab (R2013b). The W and H matrices were initialized with random components drawn 

from a uniform distribution over (0, 1). Convergence was defined as having 20 consecutive 

iterations with a change of algorithm-specific R2 (Table 1) smaller than 10−8, but if 

convergence was not achieved within 500 iterations, the extraction was terminated. 

Extraction was repeated 20 times for each data set, each time with different initial random 

matrices. The extraction repetition with the smallest reconstruction error among the 20 

repetitions was then selected for performance evaluation. The ability of each algorithm in 

identifying the muscle synergies was quantified by the scalar product between the original 

and extracted synergy vectors (after the synergies were normalized to unit vectors), averaged 

over the 5 synergies. For the activation coefficients, performance was assessed by the 

Pearson’s correlation coefficient (ρ) between the components in the original H and those in 

the extracted H, again averaged over the 5 synergies.

For Gaussian-noise data sets, the Gaussian algorithm outperformed , JG and all IG-

based algorithms in the identification of both W and H (Fig. 8; *, p < 0.05; Student’s t-test). 

The superiority in performance of the Gaussian NMF over all other algorithms was 

especially obvious for the extraction of H (Fig. 8B). For the extraction of W, however, 

performances of Gaussian, , and  were comparable (Fig. 8A).

In data sets with simulated gamma noise, the gamma- and IG-based algorithms performed 

equally well, and better than Gaussian, in the identification of H over all tested noise 
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magnitudes (Fig. 9B). For W identification, the gamma- and IG-based algorithms were 

similar in performance when the SNR was above ≈ 3 (Fig. 9A). The gamma algorithms 

outperformed all other algorithms when noise magnitude was very high, the (Fig. 9A; +, p < 

0.05).

In data sets corrupted by inverse Gaussian noise, for W identification, not surprisingly the 

IG-based algorithms outperformed the gamma-based algorithms (Fig. 10A; *), which in turn 

outperformed the Gaussian (Fig. 10A; +, *). For H identification, while the performances of 

all signal-dependent noise NMFs were almost indistinguishable, they clearly did much better 

than the Gaussian (Fig. 10B, *).

Overall, the simulation results highlight the need for using the NMF algorithm derived from 

a noise distribution that matches the noise type of the data for the most accurate 

identification of both W and H. However, under certain conditions, even when the noise 

assumed by the NMF algorithm and the data noise type do not completely agree, the 

extracted results may still contain substantial information about the underlying data 

structure. We have seen, for instance, that in data with gamma noise, IG-based NMF 

algorithms could identify muscle synergies as well as gamma-based NMF algorithms could. 

It should be noted that even when the identified W is reasonably close to the original 

generating bases, the H identified by the same algorithm may not be as accurate (and vice 

versa). For example, in data with Gaussian noise, at SNR ≈ 10 the gamma-based 

algorithm performed at the same level as the Gaussian algorithm for W identification, and 

returned muscle synergies that matched the originals with scalar product > 0.8 (Fig. 8A); 

however, for H the extraction results from  were not only much worse than Gaussian, 

but also matched the original quite poorly (ρ ≈ 0.3) (Fig. 8B).

7 Some Recommendations

As argued by our extraction results from simulated data (Figs. 8, 9, 10), for a data set with 

known noise properties, using NMF algorithms derived from a noise distribution that 

matches that of the data should yield the most accurate estimations of both W and H. The 

noise distribution of the data can be determined using the exploratory approach outlined in 

§2.2.3 for the EMG data presented in this paper. However, if the noise characteristics of the 

data are not known or cannot be reasonably determined, it is preferable to first evaluate the 

algorithms on a data set with a clear prediction, based on the biology of the processes 

generating the data, of what the underlying W or H could be, and see which algorithm 

produces results that best match such predictions. The best-performing algorithm can then 

be used in other data sets of a similar nature for a further understanding of the biology. The 

noise distribution assumed by this best-performing algorithm would in turn allow an 

understanding of the noise structure of the data set. For the frog EMG data presented here, 2 

of the 3 best-performing algorithms (i.e., algorithms that discovered the most number of 

synergies shared between the intact and deafferented data, or features interpretable as CPG 

components, while explaining most of the variation in the data) were derived from the 

gamma noise distribution. These are the JG and  algorithms while  is the third 

best-performing algorithm. Thus, it is evident that signal-dependent noise in the EMGs is 

Devarajan and Cheung Page 22

Neural Comput. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



closer to the gamma than to the inverse Gaussian distribution. This also agrees with the 

empirical observation and conclusion in §2.2.3 that the gamma model provides a good fit to 

the mean-SD relationship of the EMG data.

Although we focused primarily on NMF algorithms for handling EMG data with signal-

dependent noise in this paper, other matrix factorization algorithms have been used for 

extracting muscle synergies in addition to NMF (Tresch et al., 2006). In a variety of 

applications, NMF has been shown to provide a parts-based, local representation of the data 

in contrast to the holistic representation provided by vector quantization and the distributed 

representation provided by principal component analysis (PCA) (Devarajan et al., 2008). 

PCA is based on the Gaussian model and requires non-overlapping, orthogonal components 

with mixed signs. On the other hand, independent component analysis (ICA) seeks a linear 

representation of non-Gaussian data such that the resulting components are statistically 

independent (Hyvärinen & Oja, 2000; Devarajan, 2011). The representation provided by 

ICA has been shown to capture the essential structure of the data in various applications 

involving blind source separation. Independence implies uncorrelatedness and in the case of 

the Gaussian distribution they are equivalent, implying independent principal components. 

Thus PCA and ICA require different but stronger assumptions, particularly with regards to 

application to EMG data. In general, PCA provides dimensionality reduction while ICA 

results in perceptually relevant components. NMF provides interpretable components, 

however it is limited by the non-negativity requirement on the input data and the resulting 

components. From an exploratory data analysis perspective, it is important to note that each 

of these methods comes with its owns merits and demerits and that the extent of its 

usefulness depends on the specific application at hand. When data occur naturally on the 

non-negative scale such as the EMG signals presented in this paper, it appears more intuitive 

and reasonable to apply a factorization that retains the non-negativity requirement on the 

resulting components (muscle synergies). These nonnegativity constraints are compatible 

with the intuitive notion of combining parts to form a whole. In NMF, these components are 

additive, linear combinations of the parts that are overlapping and non-orthogonal. The 

resulting “parts” extracted by NMF from the EMG data can naturally be interpreted as 

representations of motor primitives - or basic modules of motor control - whose existence 

has been demonstrated in physiological experiments (Bizzi and Cheung, 2013). Moreover, 

the extension of this approach to non-Gaussian models described in this paper is particularly 

relevant for applications involving signal dependent noise. Such modeling flexibility is not 

provided by other methods.

Summary and Conclusions

In this paper, we proposed a comprehensive extension of methods for handling data with 

signal-dependent noise in NMF. We outlined three novel algorithms based on dual KL and J-

divergence for the gamma and inverse Gaussian models. A rigorous proof of monotonicity 

of updates has been provided for each algorithm. In addition, algorithm-specific measures 

for quantifying the variation explained by the chosen model have been proposed. Using 

EMG as well as simulated data, we demonstrated superior performance of these algorithms 

in delineating muscle synergies by systematically comparing them with existing approaches 

for signal-dependent noise. It is evident from the methods and results presented that there is 
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a need for more general models for data in which the variance of the signal depends on its 

mean. It is not entirely surprising that, among all algorithms considered, those based on 

signal-dependent noise clearly outperformed the Gaussian model. However, among all 

algorithms considered based on signal-dependent noise, those based on dual KL and J-

divergence showed the best overall performance, both in terms of selecting the appropriate 

model for a given data set and the fraction of variation in the data that was explained by the 

chosen model. For each data set considered, all three proposed algorithms explained the 

variation in the data better than existing methods. The variability in the explained variation 

was also observed to be the smallest for the proposed algorithms. In particular, muscle 

synergies extracted by J-divergence were the most physiologically interpretable and 

corroborated with previous findings. The proposed methods therefore provide useful 

alternatives to current approaches in handling signal-dependent noise and would augment 

the literature on this topic.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

We present detailed proofs of the Theorems stated in Section 3. In the proof of each 

Theorem, we will make use of an auxiliary function similar to the one used in the 

Expectation-Maximization (EM) algorithm (Dempster et al., 1977; Lee & Seung, 2001). 

Note that for h real, G(h, h′) is an auxiliary function for F(h) if G(h, h′) ≥ F(h) and G(h, h) = 

F(h) where G and F are scalar valued functions. Also, if G is an auxiliary function, then F is 

non-increasing under the update .

Proof of Theorem 1

The cost function (27) can be re-written as

(38)

Its auxiliary function is

(39)

Devarajan and Cheung Page 24

Neural Comput. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  such that Σa γa = 1.

Note that −log(Σa WiaHaj) ≤ − Σaγa (log WiaHaj − log γa). Therefore, 

 and G(Haj, Haj) = F(Haj). The minimizer of F (Haj) is obtained by 

solving . Using (39), we get

(40)

Solving the above equation results in the update rule for H given in (28). Similarly, we can 

re-write the cost function (27) in terms of Wia and obtain the update rule given in (29).

Proof of Theorem 2

The cost function (30) can be re-written as

(41)

Its auxiliary function is

(42)

where γa is as defined in the proof of Theorem 2.

Note that . Therefore,  and 

G(Haj, Haj) = F(Haj). The minimizer of F (Haj) is obtained by solving . 

Using (42), we get

(43)

Solving the above equation results in the update rule for H givenin (31). Similarly, we can 

re-write the cost function (30) in terms of Wia and obtain the update rule given in (32).
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Proof of Theorem 3

The cost function (33) can be re-written as

(44)

Its auxiliary function is

(45)

where γa is as defined in the proof of Theorem 2.

Note that . Therefore,  and 

G(Haj, Haj) = F(Haj). The minimizer of F (Haj) is obtained by solving . 

Using (45), we get

(46)

Solving the above equation results in the update rule for H given in (34). Similarly, we can 

re-write the cost function (33) in terms of Wia and obtain the update rule given in (35).
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Figure 1. 
Illustration of the mean-variance relationship for the frog EMG data. Plot of the logarithm of 

the estimated standard deviation against the logarithm of the estimated mean for moving 

windows across time for each behavior of selected muscles and frogs. Each panel displays 

the mean-variance relationship for a particular behavior. A, Intact Jump B, Deafferented 

Jump C, Intact Swim D, Deafferented Swim. In each panel, the black solid line represents a 

linear fit to the data and estimates of the slope, root mean squared error (RSE) and adjusted 

R2 are listed at the top of each panel.
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Figure 2. 
Selecting the number of muscle synergies for the JG algorithm using AIC. To determine the 

model order, the number of muscle synergies extracted was successively increased from 1 to 

13; at each number of synergies, the AIC was calculated using equation (37). A, Plot of AIC 
against the number of muscle synergies extracted for both the intact (black solid) and 

deafferented (dotted) jump (4 frogs; mean ± SD). B, Plot of AIC for intact (solid black) and 

deafferented (dotted) swim. The model order with minimum AIC was found to be 3 for 

jump, and 4 for swim (*).
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Figure 3. 
The number of muscle synergies selected for the different NMF algorithms. For each 

behavior (A, intact and deafferented jump; B, intact and deafferented swim) and each 

algorithm, the number of muscle synergies selected for each frog was determined by 

selecting the rank with minimum AIC. Note that the selected numbers for all behaviors and 

algorithms were quite consistent across animals.
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Figure 4. 
Signal-dependent noise NMFs outperformed the Gaussian NMF. In this application, we are 

primarily interested in each algorithm’s ability to identify structures shared between the 

intact and deafferented data sets; thus, our measures of algorithm performance are based on 

quantifying the similarity between the intact and deafferented muscle synergies. For both the 

scalar-product (A and C) and principal-angle (B and D) measures, overall the seven NMFs 

based on signal-dependent noise outperformed the Gaussian NMF in their ability to extract 

features shared between data sets. In each graph, the level of similarity achieved by the 

Gaussian algorithm (black) is marked by a horizontal black dotted line for ease of visual 

inspection.
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Figure 5. 
Muscle synergies extracted by the JG algorithm were physiologically interpretable. A, Intact 

(black) and deafferented (white) muscle synergies for swimming (frog 2) returned by the 

Gaussian algorithm. The scalar product similarity between each synergy pair is indicated 

above the pair. The intact and deafferented synergies for pair 4 were totally dissimilar. B, 

Intact (black) and deafferented (white) muscle synergies for swimming (frog 2) returned by 

the JG algorithm. Here, even in the least similar pair (pair 4, scalar product = 0.62), the sets 

of muscles found to be active in the intact and deafferented synergies were still identical. C, 

The correlation coefficient between the activation of muscle synergy 3 (the extension 

synergy) and those of muscle synergies 1, 2, and 4, respectively, before (black) and after 

(white) deafferentation. Note that the correlation between synergies 3 and 4 increased 5-fold 
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after deafferentation. This suggests that sensory feedback is essential in triggering or 

maintaining the activation of synergy 4 during the flexion phase of the swim cycle.
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Figure 6. 
Comparison of results using NMF algorithms derived from the same noise distribution. We 

performed a comparison of the muscle synergies extracted by different NMF algorithms 

from the same EMG data set in order to understand the effects of the NMF-noise distribution 

and the cost function employed on the muscular compositions of the extracted muscle 

synergies. A, In each frog, the set of muscle synergies extracted by each algorithm was 

matched to the set returned by the gamma-based  algorithm (*), and their similarity 

was quantified by the scalar product values averaged across the synergy set. Shown in the 

plot are values averaged across frogs (N = 4; mean ± SD). Values for the  were 1.0 by 

definition. In this comparison, scalar product values from the gamma algorithms tended to 

be higher than those from the Gaussian or IG-based algorithms. This difference is especially 

obvious for the intact jump and deafferented jump data sets. B, Same as A, except that the 

comparison was performed by matching synergies of each algorithm to synergies returned 

by the IG-based  algorithm (*). In this comparison, scalar product values from IG-

based algorithms tended to be higher than those from the Gaussian or gamma-based 

algorithms. Again, this difference is especially obvious for the intact jump and deafferented 

jump data sets.
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Figure 7. 
Both the noise distribution and the cost function employed for formulating the NMF update 

rules could influence the muscular compositions of the extracted muscle synergies. Here we 

show the muscle synergies extracted from one particular data set (frog 2, deafferented jump) 

by different NMF algorithms. The results returned by the four gamma-based algorithms 

were almost identical (as suggested by Fig. 6). However, the gamma-synergies were clearly 

different from the Gaussian and IG-based synergies. Also, the muscle synergies returned by 

the three IG-based synergies were also somewhat different from each other. Thus, both the 

noise distribution and the cost function used for deriving the NMF update rules could 

influence the structures of the basis vectors extracted.
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Figure 8. 
Gaussian NMF outperformed the signal-dependent noise NMFs in data sets corrupted by 

Gaussian noise. We evaluated the performance of each algorithm in simulated data sets (N = 

10) generated by known W (15 × 5 matrix) and H (5 × 5000 matrix), but corrupted by 

random Gaussian noise at different signal-to-noise ratios (SNR). A, Performance of NMF 

algorithms in identifying the basis vectors (W). Performance of each algorithm in each data 

set was quantified by the scalar product between the extracted vectors and the original 

vectors, averaged across the 5 basis vectors in the W matrix. Shown in the plot are mean 

scalar product values, defined as above, averaged across 10 simulated data sets. The 

Gaussian NMF algorithm outperformed all IG-based NMF algorithms and 2 of the gamma-

based NMF algorithms (  and JG) over a wide range of SNR (*; Student’s t-test; p < 

0.05). B, Performance of NMF algorithms in identifying the coefficients (H). Performance 

of each algorithm in each data set was quantified by the Pearsons correlation coefficient (ρ) 

between the extracted coefficients and the original coefficients (over a total of 5 × 5000 = 

25,000 values). Shown in the plot are ρ values averaged across the 10 simulated data sets. 

The Gaussian NMF algorithm outperformed all of the gamma- and IG-based NMF 

algorithms over almost all tested SNR (*; p < 0.05).
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Figure 9. 
Gamma-based NMF algorithms outperformed the Gaussian NMF algorithm in data sets 

corrupted by gamma noise. We evaluated the performance of each algorithm in simulated 

data sets (N = 10) generated by known W (15 × 5 matrix) and H (5 × 5000 matrix), but 

corrupted by random gamma noise at different signal-to-noise ratios (SNR). A, Performance 

of NMF algorithms in identifying the basis vectors (W). Performance of each algorithm in 

each data set was quantified by the scalar product between the extracted vectors and the 

original vectors, averaged across the 5 basis vectors in the W matrix. Shown in the plot are 

mean scalar product values, defined as above, averaged across 10 simulated data sets. 

Gamma-based algorithms outperformed the Gaussian algorithm (but not the IG-based 

algorithms) at moderate noise magnitude (*; Student’s t-test; p < 0.05); but at high noise 

magnitudes, the gamma algorithms performed better than both Gaussian- and IG-NMF 

algorithms (+; p < 0.05). B, Performance of the NMF algorithms in identifying the 

coefficients (H). Performance of each algorithm in each data set was quantified by the 

Pearsons correlation coefficient (ρ) between the extracted coefficients and the original 

coefficients (over a total of 5 × 5000 = 25,000 values). Shown in the plot are ρ values 

averaged across the 10 simulated data sets. Gamma-based algorithms outperformed the 

Gaussian algorithm, but not the IG-based algorithms, at moderate noise levels (*; p < 0.05).
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Figure 10. 
The inverse Gaussian NMF algorithms outperformed the Gaussian- and gamma-based NMF 

algorithms in data sets corrupted by inverse Gaussian noise. We evaluated the performance 

of each algorithm in simulated data sets (N = 10) generated by known W (15 × 5 matrix) and 

H (5 × 5000 matrix), but corrupted by random inverse Gaussian (IG) noise at different 

signal-to-noise ratios (SNR). A, Performance of NMF algorithms in identifying the basis 

vectors (W). Performance of each algorithm in each data set was quantified by the scalar 

product between the extracted vectors and the original vectors, averaged across the 5 basis 

vectors in the W matrix. Shown in the plot are mean scalar product values, defined as above, 

averaged across 10 simulated data sets. At moderate noise levels, IG-based algorithms 

clearly outperformed both the Gaussian and gamma algorithms (*; Student’s t-test; p < 

0.05); at high and low noise levels, IG-based algorithms still performed better than the 

Gaussian (but not the gamma) algorithm (+; p < 0.05). B, Performance of the NMF 

algorithms in identifying the coefficients (H). Performance of each algorithm in each data 

set was quantified by the Pearsons correlation coefficient (ρ) between the extracted 

coefficients and the original coefficients (over a total of 5 × 5000 = 25,000 values). Shown in 

the plot are ρ values averaged across the 10 simulated data sets. IG-based algorithms 

outperformed the Gaussian NMF over a wide range of SNR (*; p < 0.05).
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Table 1

Algorithm-specific Proportion of Explained Variation R2

Algorithm R2

Gaussian

, 

JG

, 

Neural Comput. Author manuscript; available in PMC 2017 August 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Devarajan and Cheung Page 41

Table 2

The proportion of explained variation (R2) achieved by the NMF algorithms in four different frog behaviors at 

the rank determined by the JG algorithm

Algorithm Intact Jump r = 3 Deaff. Jump r = 3 Intact Swim r = 4 Deaff. Swim r = 4

Gaussian 87.69 ± 1.21 87.38 ± 1.04 85.43 ± 1.83 87.89 ± 4.51

91.97 ± 1.48 90.58 ± 1.17 87.17 ± 1.13 90.11 ± 2.47

91.97 ± 1.48 90.58 ± 1.17 87.16 ± 1.13 90.11 ± 2.47

98.93 ± 0.35 98.74 ± 0.11 96.46 ± 0.41 97.62 ± 0.77

JG 97.85 ± 0.64 97.41 ± 0.29 93.56 ± 0.55 95.50 ± 1.38

90.97 ± 2.06 88.72 ± 0.58 86.67 ± 0.87 89.49 ± 2.30

90.89 ± 2.07 88.68 ± 0.52 86.50 ± 0.83 89.43 ± 2.25

99.79 ± 0.11 99.77 ± 0.05 98.94 ± 0.30 99.37 ± 0.22
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Table 3

The proportion of explained variation (R2) achieved by the NMF algorithms at the ranks with minimum AIC

Algorithm Behavior Rank (N= 4; median ± SD) R2 (N = 4; mean ± SD)

Gaussian Intact Jump 3 ± 0.58 85.16 ± 4.08

Deaff. Jump 2 ± 0.50 82.91 ± 3.52

Intact Swim 1 ± 0.00 56.78 ± 4.89

Deaff. Swim 1 ± 0.00 56.58 ± 12.33

Intact Jump 2 ± 0.50 86.66 ± 3.64

Deaff. Jump 2 ± 0.50 85.22 ± 1.09

Intact Swim 2 ± 0.00 76.66 ± 3.68

Deaff. Swim 2 ± 0.00 80.00 ± 5.07

Intact Jump 2 ± 0.50 86.66 ± 3.64

Deaff. Jump 2 ± 0.50 85.22 ± 1.09

Intact Swim 2 ± 0.00 76.66 ± 3.69

Deaff. Swim 2 ± 0.00 80.00 ± 5.07

Intact Jump 2 ± 0.50 98.21 ± 0.77

Deaff. Jump 2 ± 0.50 98.05 ± 0.17

Intact Swim 2 ± 0.50 92.81 ± 2.80

Deaff. Swim 2 ± 0.50 94.78 ± 2.70

JG Intact Jump 3 ± 0.50 98.05 ± 0.79

Deaff. Jump 3 ± 0.50 97.61 ± 0.47

Intact Swim 4 ± 0.50 93.03 ± 1.28

Deaff. Swim 4 ± 0.50 95.18 ± 1.05

Intact Jump 10 ± 0.96 99.07 ± 0.38

Deaff. Jump 11 ± 1.41 98.84 ± 0.54

Intact Swim 11 ± 0.82 99.25 ± 0.34

Deaff. Swim 12 ± 1.29 99.61 ± 0.30

Intact Jump 9 ± 0.82 98.41 ± 0.45

Deaff. Jump 10 ± 1.73 98.67 ± 0.49

Intact Swim 11 ± 0.96 98.50 ± 0.46

Deaff. Swim 10 ± 1.50 98.95 ± 0.43

Intact Jump 10 ± 1.50 99.98 ± 0.02

Deaff. Jump 10 ± 1.41 99.98 ± 0.01

Intact Swim 11 ± 0.58 99.92 ± 0.03

Deaff. Swim 11 ± 1.41 99.97 ± 0.02
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