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Abstract

Cortical networks are hypothesized to rely on transient network activity to support short

term memory (STM). In this paper we study the capacity of randomly connected recur-

rent linear networks for performing STM when the input signals are approximately

sparse in some basis. We leverage results from compressed sensing to provide rigor-

ous non-asymptotic recovery guarantees, quantifying the impact of the input sparsity

level, the input sparsity basis, and the network characteristics on the system capac-

ity. Our analysis demonstrates that network memory capacities can scale superlinearly

with the number of nodes, and in some situations can achieve STM capacities that are

much larger than the network size. We provide perfect recovery guarantees for finite

sequences and recovery bounds for infinite sequences. The latter analysis predicts that

network STM systems may have an optimal recovery length that balances errors due to

omission and recall mistakes. Furthermore, we show that the conditions yielding opti-

mal STM capacity can be embodied in several network topologies, including networks

with sparse or dense connectivities.
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1 Introduction

————————-

Short term memory (STM) is critical for neural systems to understand non-trivial

environments and perform complex tasks. While individual neurons could potentially

account for very long or very short stimulus memory (e.g., through changing synaptic

weights or membrane dynamics, respectively), useful STM on the order of seconds is

conjectured to be due to transient network activity. Specifically, stimulus perturbations

can cause activity in a recurrent network long after the input has been removed, and

recent research hypothesizes that cortical networks may rely on transient activity to

support STM (Jaeger & Haas, 2004; Maass et al., 2002; Buonomano & Maass, 2009).

Understanding the role of memory in neural systems requires determining the fun-

damental limits of STM capacity in a network and characterizing the effects on that

capacity of the network size, topology, and input statistics. Various approaches to quan-

tifying the STM capacity of linear (Jaeger, 2001; White et al., 2004; Ganguli et al.,

2008; Hermans & Schrauwen, 2010) and nonlinear (Wallace et al., 2013) recurrent net-

works have been used, often assuming Gaussian input statistics (Jaeger, 2001; White

et al., 2004; Hermans & Schrauwen, 2010; Wallace et al., 2013). These analyses show

that even under optimal conditions, the STM capacity (i.e., the length of the stimulus

able to be recovered) scales only linearly with the number of nodes in the network.

While conventional wisdom holds that signal structure could be exploited to achieve

more favorable capacities, this idea has generally not been the focus of significant rig-

orous study.

Recent work in computational neuroscience and signal processing has shown that

many signals of interest have statistics that are strongly non-Gaussian, with low-dimensional

structure that can be exploited for many tasks. In particular, sparsity-based signal mod-

els (i.e., representing a signal using relatively few non-zero coefficients in a basis) have

recently been shown to be especially powerful. In the computational neuroscience lit-
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erature, sparse encodings increase the capacity of associative memory models (Baum

et al., 1988) and are sufficient neural coding models to account for several properties of

neurons in primary visual cortex (i.e., response preferences (Olshausen & Field, 1996)

and nonlinear modulations (Zhu & Rozell, 2013)). In the signal processing literature,

the recent work in compressed sensing (CS) (Candes et al., 2006; Ganguli & Sompolin-

sky, 2012) has established strong guarantees on sparse signal recovery from highly

undersampled measurement systems.

Ganguli & Sompolinsky (2010) have previously conjectured that the ideas of CS

can be used to achieve STM capacities that exceed the number of network nodes in an

orthogonal recurrent network when the inputs are sparse in the canonical basis (i.e. the

input sequences have temporally localized activity). While these results are compelling

and provide a great deal of intuition, the theoretical support for this approach remains

an open question as the results in (Ganguli & Sompolinsky, 2010) use an asymptotic

analysis on an approximation of the network dynamics to support empirical findings.

In this paper we establish a theoretical basis for CS approaches in network STM by

providing rigorous non-asymptotic recovery error bounds for an exact model of the

network dynamics and input sequences that are sparse in any general basis (e.g., si-

nusoids, wavelets, etc.). Our analysis shows conclusively that the STM capacity can

scale superlinearly with the number of network nodes, and quantifies the impact of the

input sparsity level, the input sparsity basis, and the network characteristics on the sys-

tem capacity. We provide both perfect recovery guarantees for finite inputs, as well as

bounds on the recovery performance when the network has an arbitrarily long input se-

quence. The latter analysis predicts that network STM systems based on CS may have

an optimal recovery length that balances errors due to omission and recall mistakes.

Furthermore, we show that the structural conditions yielding optimal STM capacity in

our analysis can be embodied in many different network topologies, including networks

with both sparse and dense connectivities.
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2 Background

2.1 Short Term Memory in Recurrent Networks

Since understanding the STM capacity of networked systems would lead to a bet-

ter understanding of how such systems perform complex tasks, STM capacity has

been studied in several network architectures, including discrete-time networks (Jaeger,

2001; White et al., 2004; Ganguli et al., 2008), continuous-time networks (Hermans &

Schrauwen, 2010; Büsing et al., 2010), and spiking networks (Maass et al., 2002; Mayor

& Gerstner, 2005; Legenstein & Maass, 2007; Wallace et al., 2013). While many differ-

ent analysis methods have been used, each tries to quantify the amount of information

present in the network states about the past inputs. For example, in one approach taken

to study echo state networks (ESNs) (White et al., 2004; Ganguli et al., 2008; Hermans

& Schrauwen, 2010), this information preservation is quantified through the correlation

between the past input and the current state. When the correlation is too low, that input

is said to no longer be represented in the state. The results of these analyses conclude

that for Gaussian input statistics, the number of previous inputs that are significantly

correlated with the current network state is bounded by a linear function of the network

size.

In another line of analysis, researchers have sought to directly quantify the degree to

which different inputs lead to unique network states (Jaeger, 2001; Maass et al., 2002;

Legenstein & Maass, 2007; Strauss et al., 2012). In essence, the main idea of this work

is that a one-to-one relationship between input sequences and the network states should

allow the system to perform an inverse computation to recover the original input. A

number of specific properties have been proposed to describe the uniqueness of the

network state with respect to the input. In spiking liquid state machines (LSMs), in

work by Maass et al. (2002), a separability property is suggested that guarantees dis-

tinct network states for distinct inputs and follow up work (Legenstein & Maass, 2007)

relates the separability property to practical computational tasks through the Vapnik-
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Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971). More recent work ana-

lyzing similar networks using separation properties (Wallace et al., 2013; Büsing et al.,

2010) gives an upper bound for the STM capacity that scales like the logarithm of the

number of network nodes.

In discrete ESNs, the echo-state property (ESP) ensures that every network state at

a given time is uniquely defined by some left-infinite sequence of inputs (Jaeger, 2001).

The necessary condition for the ESP is that the maximum eigenvalue magnitude of the

system is less than unity (an eigenvalue with a magnitude of one would correspond to

a linear system at the edge of instability). While the ESP ensures uniqueness, it does

not ensure robustness and output computations can be sensitive to small perturbations

(i.e., noisy inputs). A slightly more robust property looks at the conditioning of the

matrix describing how the system acts on an input sequence (Strauss et al., 2012). The

condition number describes not only a one-to-one correspondence, but also quantifies

how small perturbations in the input affect the output. While work by Strauss et al.

(2012) is closest in spirit to the analysis in this paper, it ultimately concludes that the

STM capacity still scales linearly with the network size.

Determining whether or not a system abides by one of the separability properties

depends heavily on the network’s construction. In some cases, different architectures

can yield very different results. For example, in the case of randomly connected spik-

ing networks, low connectivity (each neuron is connected to a small number of other

neurons) can lead to large STM capacities (Legenstein & Maass, 2007; Büsing et al.,

2010), whereas high connectivity leads to chaotic dynamics and smaller STM capaci-

ties (Wallace et al., 2013). In contrast, linear ESNs with high connectivities (appropri-

ately normalized) (Büsing et al., 2010) can have relatively large STM capacities (on the

order of the number of nodes in the network) (Ganguli et al., 2008; Strauss et al., 2012).

Much of this work centers around using systems with orthogonal connectivity matrices,

which leads to a topology that robustly preserves information. Interestingly, such sys-

tems can be constructed to have arbitrary connectivity while preserving the information
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Figure 1: The current state of the network encodes information about the stimulus his-
tory. Different stimuli (examples shown to the left), when perturbing the same sys-
tem (in this figure a three neuron orthogonal network) result in distinct states x =
[x1, x2, x3]

T at the current time (n = 50). The current state is therefore informative
for distinguishing between the input sequences.

preserving properties (Strauss et al., 2012).

While a variety of networks have been analyzed using the properties described

above, these analyses ignore any structure of the inputs sequences that could be used to

improve the analysis (Jaeger, 2001; Mayor & Gerstner, 2005). Conventional wisdom

has suggested that STM capacities could be increased by exploiting structure in the in-

puts, but formal analysis has rarely addressed this case. For example, work by Ganguli

& Sompolinsky (2010) builds significant intuition for the role of structured inputs in

increasing STM capacity, specifically proposing to use the tools of CS to study the case

when the input signals are temporally sparse. However, the analysis by Ganguli & Som-

polinsky (2010) is asymptotic and focuses on an annealed (i.e., approximate) version of

the system that neglects correlations between the network states over time. The present

paper can be viewed as a generalization of this work to provide formal guarantees for

STM capacity of the exact system dynamics, extensions to arbitrary orthogonal sparsity

bases, and recovery bounds when the input exceeds the capacity of the system (i.e., the

input is arbitrarily long).
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2.2 Compressed Sensing

In the CS paradigm, a signal s ∈ RN is sparse in a basis Ψ so that it can be approxi-

mately written as s ≈ Ψa, where most of the entries in a ∈ RN are zero. This signal

is observed through measurements x ∈ RM taken via a compressive (e.g., M � N )

linear operator:

x = As+ ε. (1)

Sparse coefficients representing the signal are recovered by solving the convex opti-

mization

â = arg min
a
||a||1 such that ||x−AΨa||2 ≤ ||ε||2 , (2)

where ||ε||2 is the magnitude of the measurement noise.

There is substantial evidence from the signal processing and computational neuro-

science communities that many natural signals are sparse in an appropriate basis (Ol-

shausen & Field, 1996; Elad et al., 2008). The recovery problem above requires that the

system knows the sparsity basis Ψ to perform the recovery, which neural systems may

not know a priori. We note that recent work has shown that appropriate sparsity bases

can be learned from example data (Olshausen & Field, 1996), even in the case where the

system only observes the inputs through compressed measurements (Isely et al., 2011).

While the analysis doesn’t depend on the exact method for solving the optimization in

equation (2), we also note that this type of optimization can be solved in biologically

plausible network architectures (e.g., (Rozell et al., 2010; Rhen & Sommer, 2007; Hu

et al., 2012; Balavoine et al., 2012, 2013; Shapero et al., 2011)).

The most common sufficient condition in CS for stable recovery is known as the

Restricted Isometry Property (RIP) (Candes & Tao, 2006). Formally, we say that RIP-

(2K, δ) holds for A in the basis Ψ if for any vector s that is 2K-sparse in Ψ we have

7



that

C (1− δ) ≤ ||As||22 / ||s||
2
2 ≤ C (1 + δ) (3)

holds for constants C > 0 and 0 < δ < 1. Said another way, the RIP guarantees that all

pairs of vectors that are K-sparse in Ψ have their distances preserved after projecting

through the matrixA. This can be seen by observing that for a pair ofK-sparse vectors,

their difference has at most 2K nonzeros. In this way, the RIP can be viewed as a type of

separation property for sparse signals that is similar in spirit to the separation properties

used in previous studies of network STM (Jaeger, 2001; White et al., 2004; Maass et al.,

2002; Hermans & Schrauwen, 2010).

When A satisfies the RIP-(2K, δ) in the basis Ψ with ‘reasonable’ δ (e.g. δ ≤
√

2 − 1) and the signal estimate is ŝ = Ψâ, canonical results establish the following

bound on signal recovery error:

||s− ŝ||2 ≤ α ||ε||2 + β

∣∣∣∣ΨT (s− sK)
∣∣∣∣
1√

K
, (4)

where α and β are constants and sK is the best K-term approximation to s in the basis

Ψ (i.e., using the K largest coefficients in a) (Candes, 2006). Equation (4) shows that

signal recovery error is determined by the magnitude of the measurement noise and

sparsity of the signal. In the case that the signal is exactly K-sparse and there is no

measurement noise, this bound guarantees perfect signal recovery.

While the guarantees above are deterministic and non-asymptotic, the canonical CS

results state that measurement matrices generated randomly from “nice” independent

distributions (e.g., Gaussian, Bernoulli) can satisfy RIP with high probability when

M = O(K logN) (Rauhut, 2010). For example, random Gaussian measurement matri-

ces (perhaps the most highly used construction in CS) satisfy the RIP condition for any

sparsity basis with probability 1−O(1/N) whenM ≥ Cδ−2K log (N). This extremely
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favorable scaling law (i.e., linear in the sparsity level) for random Gaussian matrices is

in part due to the fact that Gaussian matrices have many degrees of freedom, resulting

in M statistically independent observations of the signal. In many practical examples,

there exists a high degree of structure in A that causes the measurements to be corre-

lated. Structured measurement matrices with correlations between the measurements

have been recently studied due to their computational advantages. While these matrices

can still satisfy the RIP, they typically require more measurement to reconstruct a sig-

nal with the same fidelity and the performance may change depending on the sparsity

basis (i.e., they are no longer “universal” because they don’t perform equally well for

all sparsity bases). One example which arises often in the signal processing community

is the case of random circulant matrices (Krahmer et al., 2012), where the number of

measurements needed to assure that the RIP holds with high probability for temporally

sparse signals (i.e., Ψ is the identity) increases to M ≥ Cδ−2K log4 (N). Other struc-

tured systems analyzed in the literature include Toeplitz matrices (Haupt et al., 2010),

partial circulant matrices (Krahmer et al., 2012), block diagonal matrices (Eftekhari

et al., 2012; Park et al., 2011), subsampled unitary matrices (Bajwa et al., 2009), and

randomly subsampled Fourier matrices (Rudelson & Vershynin, 2008). These types

of results are used to demonstrate that signal recovery is possible with highly under-

sampled measurements, where the number of measurements scales linearly with the

“information level” of the signal (i.e., the number of non-zero coefficients) and only

logarithmically with the ambient dimension.
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3 STM Capacity using the RIP

3.1 Network Dynamics as Compressed Sensing

We consider the same discrete-time ESN model used in previous studies (Jaeger, 2001;

Ganguli et al., 2008; Ganguli & Sompolinsky, 2010; White et al., 2004):

x[n] = f (Wx[n− 1] + zs[n] + ε̃[n]) , (5)

where x[n] ∈ RM is the network state at time n, W is the (M ×M ) recurrent (feed-

back) connectivity matrix, s[n] ∈ R is the input sequence at time n, z is the (M × 1)

projection of the input into the network, ε̃[n] is a potential network noise source, and

f : RM → RM is a possible pointwise nonlinearity. As in previous studies (Jaeger,

2001; White et al., 2004; Ganguli et al., 2008; Ganguli & Sompolinsky, 2010), this

paper will consider the STM capacity of a linear network (i.e., f (x) = x).

The recurrent dynamics of Equation (5) can be used to write the network state at

time N :

x[N ] = As+ ε, (6)

where A is a M × N matrix, the kth column of A is W k−1z, s = [s[N ], . . . , s[1]]T ,

the initial state of the system is x[0] = 0, and ε is the node activity not accounted for by

the input stimulus (e.g. the sum of network noise terms ε =
∑N

k=1W
N−kε̃[k]). With

this network model, we assume that the input sequence s is K-sparse in an orthonormal

basis Ψ (i.e., there are only K nonzeros in a = ΨTs).

3.2 STM Capacity of Finite-Length Inputs

We first consider the STM capacity of a network with finite-length inputs, where a

length-N input signal drives a network and the current state of the M network nodes
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at time N is used to recover the input history via Equation (2). If A derived from the

network dynamics satisfies the RIP for the sparsity basis Ψ, the bounds in Equation (4)

establish strong guarantees on recovering s from the current network statesx[N ]. Given

the significant structure in A, it is not immediately clear that any network construction

can result in A satisfying the RIP. However, the structure in A is very regular and in

fact only depends on powers ofW applied to z:

A =

[
z | Wz | W 2z | . . . | WN−1z

]
.

Writing the eigendecomposition of the recurrent matrix W = UDU−1, we re-write

the measurement matrix as

A = U

[
z̃ | Dz̃ | D2z̃ | . . . | DN−1z̃

]
,

where z̃ = U−1z. Rearranging, we get

A = UZ̃

[
d0 | d | d2 | . . . | dN−1

]
= UZ̃F (7)

where Fk,l = dl−1k is the kth eigenvalue of W raised to the (l − 1)th power and Z̃ =

diag (U−1z).

While the RIP conditioning of A depends on all of the matrices in the decomposi-

tion of Equation 7, the conditioning of F is the most challenging because it is the only

matrix that is compressive (i.e., not square). Due to this difficulty, we start by speci-

fying a network structure for U and Z̃ that preserves the conditioning properties of F

(other network constructions will be discussed in Section 4). Specifically, as in (White

et al., 2004; Ganguli et al., 2008; Ganguli & Sompolinsky, 2010) we choose W to be

a random orthonormal matrix, assuring that the eigenvector matrix U has orthonormal

columns and preserves the conditioning properties of F . Likewise, we choose the feed-

forward vector z to be z = 1√
M
U1M , where 1M is a vector of M ones (the constant

11



√
M simplifies the proofs but has no bearing on the result). This choice for z assures

that Z̃ is the identity matrix scaled by
√
M (analogous to (Ganguli et al., 2008) where

z is optimized to maximize the SNR in the system). Finally, we observe that the richest

information preservation apparently arises for a real-valued W when its eigenvalues

are complex, distinct in phase, have unit magnitude, and appear in complex conjugate

pairs.

For the above network construction, our main result shows that A satisfies the RIP

in the basis Ψ (implying the bounds from Equation (4) hold) when the network size

scales linearly with the sparsity level of the input. This result is made precise in the

following theorem:

Theorem 3.1. Suppose N ≥ M , N ≥ K and N ≥ O(1).1 Let U be any unitary

matrix of eigenvectors (containing complex conjugate pairs) and set z = 1√
M
U1M so

that Z̃ = diag (U−1z) = 1√
M
I . For M an even integer, denote the eigenvalues of

W by {ejwm}Mm=1. Let the first M/2 eigenvalues
(
{ejwm}M/2

m=1

)
be chosen uniformly at

random on the complex unit circle (i.e., we chose {wm}M/2
m=1 uniformly at random from

[0, 2π)) and the other M/2 eigenvalues as the complex conjugates of these values (i.e.,

for M/2 < m ≤ M , ejwm = e−jwm−M/2). Under these conditions, for a given RIP

conditioning δ < 1 and failure probability η, if

M ≥ C
K

δ2
µ2 (Ψ) log4 (N) log(η−1), (8)

for a universal constant C, then for any s that is K-sparse (i.e., has no more than K

non-zero entries)

(1− δ) ≤ ||AΨs||22 / ||s||
2
2 ≤ (1 + δ)

1The notation N ≥ O(1) means that N ≥ C for some constant C. For clarity, we do not keep track
of the constants in our proofs. The interested reader is referred to (Rauhut, 2010) for specific values of
the constants.
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with probability exceeding 1− η.

The proof of this statement is given in Appendix 6.1 and follows closely the ap-

proach in (Rauhut, 2010) by generalizing it to both include any basis Ψ and account for

the fact that W is a real-valued matrix. The quantity µ (·) (known as the coherence)

captures the largest inner product between the sparsity basis and the Fourier basis, and

is calculated as:

µ (Ψ) = max
n=1,...,N

sup
t∈[0,2π]

∣∣∣∣∣
N−1∑
m=0

Ψm,ne
−jtm

∣∣∣∣∣ . (9)

In the result above, the coherence is lower (therefore the STM capacity is higher) when

the sparsity basis is more “different” from the Fourier basis.

The main observation of the result above is that STM capacity scales superlinearly

with network size. Indeed, for some values of K and µ (Ψ) it is possible to have STM

capacities much greater than the number of nodes (i.e., N � M ). To illustrate the

perfect recovery of signal lengths beyond the network size, Figure 2 shows an example

recovery of a single long input sequence. Specifically, we generate a 100 node random

orthogonal connectivity matrix W and generate z = 1√
M
U1M . We then drive the

network with an input sequence that is 480 samples long and constructed using 24

non-zero coefficients (chosen uniformly at random) of a wavelet basis. The values at

the non-zero entries were chosen uniformly in the range [0.5,1.5]. In this example

we omit noise so that we can illustrate the noiseless recovery. At the end of the input

sequence, the resulting 100 network states are used to solve the optimization problem in

Equation 2 for recovering the input sequence (using the network architecture in (Rozell

et al., 2010)). The recovered sequence, as depicted in Figure 2, is identical to the input

sequence, clearly indicating that the 100 nodes were able to store the 480 samples of

the input sequence (achieving STM capacity higher than the network size).

Directly checking the RIP condition for specific matrices is NP-hard (one would

need to check every possible 2K-sparse signal). In light of this difficulty in verifying
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recovery of all possible sparse signals (which the RIP implies), we will explore the qual-

itative behavior of the RIP bounds above by examining in Figure 3 the average recovery

relative MSE (rMSE) in simulation for a network with M nodes when recovering input

sequences of length N with varying sparsity bases. Figure 3 uses a plotting style sim-

ilar to the Donoho-Tanner phase transition diagrams (Donoho & Tanner, 2005) where

the average recovery rMSE is shown for each pair of variables under noisy conditions.

While the traditional Donoho-Tanner phase transitions plot noiseless recovery perfor-

mance to observe the threshold between perfect and imperfect recovery, here we also

add noise to illustrate the stability of the recovery guarantees. The noise is generated as

random additive Gaussian noise at the input (ε̃ in Equation (5)) to the system with zero

mean and variance such that the total noise in the system (ε in Equation (6)) has a norm

of approximately 0.01. To demonstrate the behavior of the system, the phase diagrams

in Figure 3 sweep the ratio of measurements to the total signal length (M /N ) and the

ratio of the signal sparsity to the number of measurements (K/M ). Thus at the upper

left hand corner, the system is recovering a dense signal from almost no measurements

(which should almost certainly yield poor results) and at the right hand edge of the plots

the system is recovering a signal from a full set of measurements (enough to recover the

signal well for all sparsity ranges). We generate ten random ESNs for each combination

of ratios (M /N , K/M ). The simulated networks are driven with input sequences that

are sparse in one of four different bases (Canonical, Daubechies-10 wavelet, Symlet-3

wavelet and DCT) which have varying coherence with the Fourier basis. We use the

node values at the end of the sequence to recover the inputs.2

In each plot of Figure 3, the dashed line denotes the boundary where the system is

able to essentially perform perfect recovery (recovery error≤ 1%) up to the noise floor.

Note that the area under this line (the white area in the plot) denotes the region where the

system is leveraging the sparse structure of the input to get capacities of N > M . We

2For computational efficiency, we use the TFOCS software package (Becker et al., 2011) to solve the
optimization problem in Equation (2) for these simulations.
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Figure 2: A length 480 stimulus pattern (left plot) that is sparse in a wavelet basis drives
the encoding network defined by a random orthogonal matrix W and a feed-forward
vector z. The 100 node values (center plot) are then used to recover the full stimulus
pattern (right plot) using a decoding network which solves Equation (2).

also observe that the dependence of the RIP bound on the coherence with the Fourier

basis is clearly shown qualitatively in these plots, with the DCT sparsity basis showing

much worse performance than the other bases.

3.3 STM Capacity of Infinite-Length Inputs

After establishing the perfect recovery bounds for finite-length inputs in the previous

section, we turn here to the more interesting case of a network that has received an

input beyond its STM capacity (perhaps infinitely long). In contrast to the finite-length

input case where favorable constructions for W used random unit-norm eigenvalues,

this construction would be unstable for infinitely long inputs. In this case, we take

W to have all eigenvalue magnitudes equal to q < 1 to ensure stability. The matrix

constructions we consider in this section are otherwise identical to that described in the

previous section.

In this scenario, the recurrent application ofW in the system dynamics assures that

each input perturbation will decay steadily until it has zero effect on the network state.

While good for system stability, this decay means that each input will slowly recede
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Figure 3: Random orthogonal networks can have a STM capacity that exceeds the num-
ber of nodes. These plots depict the recovery relative mean square error (rMSE) for
length-1000 input sequences from M network nodes where the input sequences are
K-sparse. Each figure depicts recovery for a given set of ratios M/N and K/M . Re-
covery is near perfect (rMSE ≤ 1%; denoted by the dotted line) for large areas of each
plot (to the left of the N = M boundary at the right of each plot) for sequences sparse
in the canonical basis or various wavelet basis (shown here are 4 level decomposi-
tions in Symlet-3 wavelets and Daubechies-10 wavelets). For bases more coherent with
the Fourier basis (e.g., discrete cosine transform-DCT), recovery performance above
N = M can suffer significantly. All the recovery here was done for noise such that
‖ε‖2 ≈ 0.01.

into the past until the network activity contains no useable memory of the event. In

other words, any network with this decay can only hope to recover a proxy signal that

accounts for the decay in the signal representation induced by the forgetting factor q.

Specifically, we define this proxy signal to beQs, whereQ = diag ([1, q, q2, . . .]). Pre-

vious work (Ganguli et al., 2008; Jaeger, 2001; White et al., 2004) has characterized

recoverability by using statistical arguments to quantify the correlation of the node val-

ues to each past input perturbation. In contrast, our approach is to provide recovery

bounds on the rMSE for a network attempting to recover the N past samples of Qs,

which corresponds to the weighted length-N history of s. Note that in contrast to the

previous section where we established the length of the input that can be perfectly re-

covered, the amount of time we attempt to recall (N ) is now a parameter that can be

varied.

Our technical approach to this problem comes from observing that activity due to

inputs older than N acts as interference when recovering more recent inputs. In other

words, we can group older terms (i.e., from farther back than N time samples ago)
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with the noise term, resulting again in A being an M by N linear operation that can

satisfy RIP for length-N inputs. In this case, after choosing the length of the memory

to recover, the guarantees in Equation (4) hold when considering every input older than

N as contributing to the “noise” part of the bound.

Specifically, in the noiseless case where s is sparse in the canonical basis (µ (I) =

1) with a maximum signal value smax, we can bound the first term of Equation (4) using

a geometric sum that depends on N , K and q. For a given scenario (i.e., a choice of

q, K and the RIP conditioning of A), a network can support signal recovery up to a

certain sparsity level K∗, given by:

K∗ =
Mδ2

C logγ (N)
, (10)

where γ is a scaling constant (e.g., γ = 4 using the present techniques, but γ = 1 is

conjectured (Rudelson & Vershynin, 2008)). We can also bound the second term of

Equation (4) by the sum of the energy in the past N perturbations that are beyond this

sparsity level K∗. Together these terms yield the bound on the recovery of the proxy

signal:

||Qs−Qŝ||2 ≤ βsmax ||U ||2
(

qN

1− q

)
+

βsmax√
min [K∗, K]

(
qmin[K∗,K] − qK

1− q

)
(11)

+ αεmax ||U ||2

∣∣∣∣ q

1− q

∣∣∣∣ .
The derivation of the first two terms in the above bound is detailed in Appendix 6.3, and

the final term is simply the accumulated noise, which should have bounded norm due

to the exponential decay of the eigenvalues ofW .

Intuitively, we see that this approach implies the presence of an optimal value for

the recovery length N . For example, choosing N too small means that there is useful

signal information in the network that the system is not attempting to recover, resulting
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in omission errors (i.e., an increase in the first term of Equation (4) by counting too

much signal as noise). On the other hand, choosing N too large means that the sys-

tem is encountering recall errors by trying to recover inputs with little or no residual

information remaining in the network activity (i.e., an increase in the second term of

Equation (4) from making the signal approximation worse by using the same number

of nodes for a longer signal length).

The intuitive argument above can be made precise in the sense that the bound in

Equation (11) does have at least one local minimum for some value of 0 < N < ∞.

First, we note that the noise term (i.e., the third term on the right side of Equation (11))

does not depend on N (the choice in origin does not change the infinite summation),

implying that the optimal recovery length only depends on the first two terms. We

also note the important fact that K∗ is non-negative and monotonically decreasing with

increasing N . It is straightforward to observe that the bound in equation Equation (11)

tends to infinity as N increases (due to the presence of K∗ in the denominator of the

second term). Furthermore, for small values of N , the second term in Equation (11) is

zero (due to K∗ > K), and the first term is monotonically decreasing with N . Taken

together, since the function is continuous inN , has negative slope for smallN and tends

to infinity for large N , we can conclude that it must have at least one local minima in

the range 0 < N <∞. This result predicts that there is (at least one) optimal value for

the recovery length N .

The prediction of an optimal recovery length above is based on the fact that the

error bound in Equation (11)), and it is possible that the error itself will not actually

show this behavior (since the bound may not be tight in all cases). To test the qualitative

intuition from Equation (11), we simulate recovery of input lengths and show the results

in Figure 4. Specifically, we generate 50 ESNs with 500 nodes and a decay rate of q

=0.999. The input signals are length-8000 sequences that have 400 nonzeros whose

locations are chosen uniformly at random and whose amplitudes are chosen from a

Gaussian distribution (zero mean and unit variance). After presenting the full 8000
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Figure 4: The theoretical bound on the recovery error for the past N perturbations
to a network of size M has a minimum value at some optimal recovery length. This
optimal value depends on the network size, the sparsity K, the decay rate q, and the
RIP conditioning of A. Shown on the right is a simulation depicting the MSE for both
the theoretical bound (red dashed line) and an empirical recovery for varying recovery
lengths N . In this simulation K = 400, q = 0.999, M = 500. The error bars for the
empirical curve show the maximum and minimum MSE. On the left we show recovery
(in orange) of a length-8000 decayed signal (in black) when recovering the past 500
(top), 4000 (middle), and 8000 (bottom) most recent perturbations. As expected, at N
= 4000 (approximately optimal) the recovery has the highest accuracy.

samples of the input signal to the network, we use the network states to recover the

input history with varying lengths and compared the resulting MSE to the bound in

Equation (11). Note that while the theoretical bound may not be tight for large signal

lengths, the recovery MSE matches the qualitative behavior of the bound by achieving

a minimum value at N > M .

4 Other Network Constructions

4.1 Alternate Orthogonal Constructions

Our results in the previous section focus on the case where W is orthogonal and z

projects the signal evenly into all eigenvectors ofW . When eitherW or z deviate from

this structure the STM capacity of the network apparently decreases. In this section
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we revisit those specifications, considering alternate network structures allowed under

these assumptions as well as the consequences of deviating from these assumptions in

favor of other structural advantages for a system (e.g., wire length, etc.).

To begin, we consider the assumption of orthogonal network connectivity, where

the eigenvalues have constant magnitude and the eigenvectors are orthonormal. Con-

structed in this way, U exactly preserves the conditioning of Z̃F . While this construc-

tion may seem restrictive, orthogonal matrices are relatively simple to generate and en-

compass a number of distinct cases. For small networks, selecting the eigenvalues uni-

formly at random from the unit circle (and including their complex conjugates to ensure

real connectivity weights) and choosing an orthonormal set of complex conjugate eigen-

vectors creates precisely these optimal properties. For larger matrices, the connectivity

matrix can instead be constructed directly by choosingW at random and orthogonaliz-

ing the columns. Previous results on random matrices (Diaconis & Shahshahani, 1994)

guarantee that as the size ofW increases, the eigenvalue probability density approaches

the uniform distribution as desired. Some recent work in STM capacity demonstrates

an alternate method by which orthogonal matrices can be constructed while constrain-

ing the total connectivity of the network (Strauss et al., 2012). This method iteratively

applies rotation matrices to obtain orthogonal matrices with varying degrees of connec-

tivity. We note here that one special case of connectivity matrices not well-suited to

the STM task, even when made orthogonal, are symmetric networks, where the strictly

real-valued eigenvalues generates poor RIP conditioning for F .

While simple to generate in principle, the matrix constructions discussed above are

generally densely connected and may be impractical for many systems. However, many

other special network topologies that may be more biophysically realistic (i.e., block di-

agonal connectivity matrices and small-world3 networks (Mongillo et al., 2008)) can be

constructed so thatW still has orthonormal columns. For example, consider the case of

3Small-world structures are typically taken to be networks where small groups of neurons are densely
connected amongst themselves, yet sparse connections to other groups reduces the maximum distance
between any two nodes.
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Figure 5: Possible network topologies which have orthogonal connectivity matrices.
In the general case, all nodes are connected via non-symmetric connections. Modular
topologies can still be orthogonal if each block is itself orthogonal. Small world topolo-
gies may also have orthogonal connectivity, especially when a few nodes are completely
connected to a series of otherwise disjoint nodes.

a block diagonal connection matrix (illustrated in Figure 5), where many unconnected

networks of at least two nodes each are driven by the same input stimulus and evolve

separately. Such a structure lends itself to a modular framework, where more of these

subnetworks can be recruited to recover input stimuli further in the past. In this case,

each block can be created independently as above and pieced together. The columns

of the block diagonal matrix will still have unit norm and will be both orthogonal to

vectors within its own block (since each of the diagonal sub-matrices are orthonormal)

and orthogonal to all columns in other blocks (since there is no overlap in the non-zero

indices).

Similarly, a small-world topology can be achieved by taking a few of the nodes in

every group of the block diagonal case and allowing connections to all other neurons

(either unidirectional or bidirectional connections). To construct such a matrix, a block

diagonal orthogonal matrix can be taken, a number of columns can be removed and

replaced with full columns, and the resulting columns can be made orthonormal with

respect to the remaining block-diagonal columns. In these cases, the same eigenvalue

distribution and eigenvector properties hold as the fully connected case, resulting in
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the same RIP guarantees (and therefore the same recovery guarantees) demonstrated

earlier. We note that this is only one approach to constructing a network with favorable

STM capacity and not all networks with small-world properties will perform well.

Additionally, we note that as opposed to networks analyzed in prior work (in partic-

ular the work in (Wallace et al., 2013) demonstrating that random networks with high

connectivity have short STM), the average connectivity does not play a dominant role in

our analysis. Specifically, it has been observed in spiking networks that higher network

connectivity can reduce the STM capacity so that is scales only with log(M) (Wal-

lace et al., 2013)). However, in our ESN analysis, networks can have low connectivity

(e.g. 2x2 block-diagonal matrices - the extreme case of the block diagonal structure de-

scribed above) or high connectivity (e.g. fully connected networks) and have the same

performance.

4.2 Suboptimal Network Constructions

Finally, we can also analyze some variations to the network structure assumed in this

paper to see how much performance decreases. First, instead of the deterministic con-

struction for z discussed in the earlier sections, there has also been interest in choos-

ing z as i.i.d. random Gaussian values (Ganguli et al., 2008; Ganguli & Sompolinsky,

2010). In this case, it is also possible to show that A satisfies the RIP (with respect

to the basis Ψ and with the same RIP conditioning δ as before) by paying an extra

log(N) penalty in the number of measurements. Specifically, we have also established

the following theorem:

Theorem 4.1. Suppose N ≥M , N ≥ K and N ≥ O(1). Let U be any unitary matrix

of eigenvectors (containing complex conjugate pairs) and the entries of z be i.i.d. zero-

mean Gaussian random variables with variance 1
M

. For M an even integer, denote the

eigenvalues ofW by {ejwm}Mm=1. Let the first M/2 eigenvalues ({ejwm}M/2
m=1) be chosen

uniformly at random on the complex unit circle (i.e., we chose {wm}M/2
m=1 uniformly at
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random from [0, 2π)) and the otherM/2 eigenvalues as the complex conjugates of these

values. Then, for a given RIP conditioning δ and failure probability N− log4N ≤ η ≤ 1
e
,

if

M ≥ C
K

δ2
µ2 (Ψ) log5 (N) log(η−1), (12)

A satisfies RIP-(K, δ) with probability exceeding 1− η for a universal constant C.

The proof of this theorem can be found in Appendix 6.2. The additional log factor in

the bound in (12) reflects that a random feed-forward vector may not optimally spread

the input energy over the different eigen-directions of the system. Thus, some nodes

may see less energy than others, making them slightly less informative. Note that while

this construction does perform worse that the optimal constructions from Theorem 3.1,

the STM capacity is still very favorable (i.e., a linear scaling in the sparsity level and

logarithmic scaling in the signal length).

Second, instead of orthogonal connectivity matrices, there has also been interest

in network constructions involving non-orthogonal connectivity matrices (perhaps for

noise reduction purposes (Ganguli et al., 2008)). When the eigenvalues ofW still lie on

the complex unit circle, we can analyze how non-orthogonal matrices affect the RIP re-

sults. In this case, the decomposition in Equation (7) still holds and Theorem 3.1 still ap-

plies to guarantee that F satisfies the RIP. However, the non-orthogonality changes the

conditioning ofU and subsequently the total conditioning ofA. Specifically the condi-

tioning of U (the ratio of the maximum and minimum singular values σ2
max/σ

2
min = γ)

will effect the total conditioning ofA. We can use the RIP of F and the extreme singu-

lar values ofU to bound how closeUF is to an isometry for sparse vectors, both above

by

||UFs||22 ≤ σ2
max ||Fs||

2
2 ≤ σ2

maxC(1 + δ) ||s||22 ,
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and below by

||UFs||22 ≥ σ2
min ||Fs||

2
2 ≥ σ2

minC(1− δ) ||s||22 .

By consolidating these bounds, we find a new RIP statement for the composite matrix

C ′ (1− δ′) ||s||22 ≤ ||UFs||
2
2 ≤ C ′ (1 + δ′) ||s||22

where σ2
minC(1− δ) = C ′(1− δ′) and σ2

maxC(1 + δ) = C ′(1 + δ′). These relationships

can be used to solve for the new RIP constants:

δ′ =

γ−1
γ+1

+ δ

1 + δ γ−1
γ+1

C ′ =
1

2
C
(
σ2
max + σ2

min + δ(σ2
max − σ2

min)
)

These expressions demonstrate that as the conditioning of U improves (i.e. γ → 1),

the RIP conditioning does not change from the optimal case of an orthogonal network

(δ′ = δ). However, as the conditioning of U gets worse and γ grows, the constants

associated with the RIP statement also get worse (implying more measurements are

likely required to guarantee the same recovery performance).

The above analysis primarily concerns itself with constructions where the eigen-

values of W are still unit norm, however U is not orthogonal. Generally, when the

eigenvalues of W differ from unity and are not all of equal magnitude, the current

approach becomes intractable. In one case, however, there are theoretical guarantees:

when W is rank deficient. If W only has M̃ unit-norm eigenvalues, and the remain-

ing M − M̃ eigenvalues are zero, then the resulting matrix A is composed the same

way, except that the bottom M − M̃ rows are all zero. This means that the effective

24



measurements only depend on an M̃ ×N subsampled DTFT

x[N ] = UZ̃Fs+ ε

= UZ̃

 F̃

0M−M̃,N

 s+ ε

= UZ̃1:M̃ F̃ s+ ε

where F̃ is matrix consisting of the non-zero rows of F . In this case we can choose

any M̃ of the nodes and the previous theorems will all hold, replacing the true number

of nodes M with the effective number of nodes M̃ .

5 Discussion

We have seen that the tools of the CS literature can provide a way to quantify the STM

capacity in linear networks using rigorous non-asymptotic recovery error bounds. Of

particular note is that this approach leverages the non-Gaussianity of the input statistics

to show STM capacities that are superlinear in the size of the network and depend

linearly on the sparsity level of the input. This work provides a concrete theoretical

understanding for the approach conjectured in (Ganguli & Sompolinsky, 2010) along

with a generalization to arbitrary sparsity bases and infinitely long input sequences.

This analysis also predicts that there exists an optimal recovery length that balances

omission errors and recall mistakes.

In contrast to previous work on ESNs that leverage nonlinear network computations

for computational power (Jaeger & Haas, 2004), the present work uses a linear network

and nonlinear computations for signal recovery. Despite the nonlinearity of the recov-

ery process, the fundamental results of the CS literature also guarantee that the recovery

process is stable and robust. For example, with access to only a subset of nodes (due to

failures or communication constraints), signal recovery generally degrades gracefully
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by still achieving the best possible approximation of the signal using fewer coefficients.

Beyond signal recovery, we also note that the RIP can guarantee performance on many

tasks (e.g. detection, classification, etc.) performed directly on the network states (Dav-

enport et al., 2010). Finally, we note that while this work only addresses the case where

a single input is fed to the network, there may be networks of interest that have a number

of input streams all feeding into the same network (with different feed-forward vectors).

We believe that the same tools utilized here can be used in the multi-input case, since

the overall network state is still a linear function of the inputs.
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6 Appendix

6.1 Proof of RIP

In this appendix, we show that the matrix A = UZ̃F satisfies the RIP under the

conditions stated in Equation (8) of the main text in order to prove Theorem 3.1. We

note that (Rauhut, 2010) shows that for the canonical basis (Ψ = I), the bounds for M

can be tightened toM ≥ max
{
C K
δ2

log4N, C ′K
δ2

log η−1
}

using a more complex proof

technique than we will employ here. For η = 1
N

, the result in (Rauhut, 2010) represents

an improvement of several log(N) factors when restricted to only the canonical basis

for Ψ. We also note that the scaling constant C found in the general RIP definition of

Equation (3) of the main text is unity due to the
√
M scaling of z.

While the proof of Theorem 3.1 is fairly technical, the procedure follows very

closely the proof of Theorem 8.1 from (Rauhut, 2010) on subsampled discrete time

26



Fourier transform (DTFT) matrices. While the basic approach is the same, the novelty

in our presentation is the incorporation of the sparsity basis Ψ and considerations for a

real-valued connectivity matrixW .

Before beginning the proof of this theorem, we note that because U is assumed

unitary, ‖AΨs‖2 = ‖Z̃FΨs‖2 for any signal s. Thus, it suffices to establish the

conditioning properties of the matrix Â := Z̃FΨ. For the upcoming proof, it will be

useful to write this matrix as a sum of rank-1 operators. The specific rank-1 operator that

will be useful for our purposes is XlX
H
l with XH

l := FH
l Ψ, the conjugate of the l-th

row ofFΨ, whereFH
l :=

[
1, ejwl , · · · , ejwl(N−1)

]
∈ CN is the conjugated l-th row of

F . Because of the way the “frequencies” {wm} are chosen, for any l > M
2

,Xl = X∗
l−M

2

.

The l-th row of Â is z̃lXH
l where z̃l is the l-th diagonal entry of the diagonal matrix

Z̃, meaning that we can use the sum of rank-1 operators to write the decomposition

ÂHÂ =
∑M

l=1 |z̃l|2XlX
H
l . If we define the random variable B := ÂHÂ − I and the

norm ‖B‖K := sup
y isK-sparse

yHBy

yHy
, we can equivalently say that Â has RIP conditioning

δ if

‖B‖K :=
∥∥∥ÂHÂ− I

∥∥∥
K

=

∥∥∥∥∥
M∑
l=1

|z̃l|2XlX
H
l − I

∥∥∥∥∥
K

≤ δ.

To aid in the upcoming proof, we make a few preliminary observations and rewrite

the quantities of interest in some useful ways. First, because of the correspondences

between the summands in ÂHÂ (i.e. Xl = X∗l−M/2), we can rewrite ÂHÂ as

ÂHÂ =

M/2∑
l=1

|z̃l|2XlX
H
l +

M/2∑
l=1

|z̃l|2
(
XlX

H
l

)∗
,

making clear the fact that there are only M
2

independent wm’s. Under the assumption of

27



Theorem 3.1, z̃l = 1√
M

for l = 1, · · · ,M . Therefore,

E

M/2∑
l=1

|z̃l|2XlX
H
l

 =

M/2∑
l=1

|z̃l|2E
[
XlX

H
l

]
=

M/2∑
l=1

1

M
ΨHE

[
FlF

H
l

]
Ψ =

1

2
I,

where it is straightforward to check that E
[
FlF

H
l

]
= I . By the same reasoning, we

also have E
[∑M/2

l=1 |z̃l|2
(
XlX

H
l

)∗]
= 1

2
I . This implies that we can rewriteB as

B =
M∑
l=1

(
|z̃l|2XlX

H
l

)
− I

=

M/2∑
l=1

|z̃l|2XlX
H
l −

1

2
I

+

M/2∑
l=1

|z̃l|2
(
XlX

H
l

)∗ − 1

2
I


=: B1 +B2.

The main proof of the theorem has two main steps. First, we will establish a bound

on the moments of the quantity of interest ‖B‖K . Next we will use these moments to

derive a tail bound on ‖B‖K , which will lead directly to the RIP statement we seek.

The following two lemmas from the literature will be critical for these two steps.

Lemma 6.1 (Lemma 8.2 of (Rauhut, 2010)). Suppose M ≥ K and suppose we have a

sequence of (fixed) vectors Yl ∈ CN for l = 1, · · · ,M such that κ := maxl=1,··· ,M ‖Yl‖∞ <

∞. Let {ξl} be a Rademacher sequence, i.e., a sequence of i.i.d. ±1 random variables.

Then for p = 1 and for p ∈ R and p ≥ 2,

(
E

[∥∥∥∥∥
M∑
l=1

ξlYlY
H
l

∥∥∥∥∥
p

K

])1/p

≤ C ′C1/pκ
√
p
√
K log(100K)

√
log(4N) log(10M)

×

√√√√∥∥∥∥∥
M∑
l=1

YlY H
l

∥∥∥∥∥
K

,

where C,C ′ are universal constants.

Lemma 6.2 (Adapted from Proposition 6.5 of (Rauhut, 2010)). Suppose Z is a random
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variable satisfying

(E [|Z|p])1/p ≤ αβ1/pp1/γ,

for all p ∈ [p0, p1], and for constants α, β, γ, p0, p1. Then, for all u ∈ [p
1/γ
0 , p

1/γ
1 ],

P
[
|Z| ≥ e1/γαu

]
≤ βe−u

γ/γ.

Armed with this notation and these lemmas, we now prove Theorem 3.1:

Proof. We seek to show that under the conditions onM in Theorem 3.1,P [‖B‖K > δ] ≤

η. SinceB = B1 +B2 and {‖B1‖K ≤ δ/2}∩{‖B2‖K ≤ δ/2} ⊂ {‖B‖K ≤ δ}, then,

P [‖B‖K > δ] ≤ P [‖B1‖K > δ/2] + P [‖B2‖K > δ/2] .

Thus, it will suffice to bound P [‖B1‖K > δ/2] ≤ η/2 since B2 = B∗1 implies that

P [‖B2‖K > δ/2] ≤ η/2. In this presentation we let C,C ′ be some universal constant

that may not be the same from line to line.

To begin, we use Lemma 6.1 to bound Ep := (E [‖B1‖pK ])1/p by setting Yl = z̃∗lXl

for l = 1, · · · , M
2

. To meet the conditions of Lemma 6.1 we use a standard “sym-

metrization” manipulation (see Lemma 6.7 of (Rauhut, 2010)). Specifically, we can

write:

Ep = (E [‖B1‖pK ])1/p

≤ 2

E
∥∥∥∥∥∥

M/2∑
l=1

ξlYlY
H
l

∥∥∥∥∥∥
p

K

1/p

= 2

E
∥∥∥∥∥∥

M/2∑
l=1

ξl|z̃l|2XlX
H
l

∥∥∥∥∥∥
p

K

1/p

,

where now the expectation is over the old random sequence {wl}, together with a
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newly added Rademacher sequence {ξl}. Applying the law of iterated expectation and

Lemma 6.1, we have for p ≥ 2:

Ep
p := E [‖B1‖pK ] (13)

≤ 2pE

E
∥∥∥∥∥∥

M/2∑
l=1

ξl|z̃l|2XlX
H
l

∥∥∥∥∥∥
p

K

| {wl}

 (14)

≤
(

2C ′C1/p√pκ
√
K log(100K)

√
log(4N) log(5M)

)p
E


∥∥∥∥∥∥
M/2∑
l=1

|z̃l|2XlX
H
l

∥∥∥∥∥∥
p/2

K


≤

(
C1/p√pκ

√
C ′K log4(N)

)p
E


∥∥∥∥∥∥

M/2∑
l=1

(
|z̃l|2XlX

H
l −

1

2
I

)∥∥∥∥∥∥
K

+
1

2
‖I‖K

p/2


≤
(
C1/p√pκ

√
C ′K log4(N)

)p√√√√√E
∥∥∥∥∥∥

M/2∑
l=1

(
|z̃l|2XlXH

l −
1

2
I

)∥∥∥∥∥∥
K

+
1

2

p
≤

(
C1/p√pκ

√
C ′K log4(N)

)p√(
Ep +

1

2

)p
.

In the first line above, the inner expectation is over the Rademacher sequence {ξl}

(where we apply Lemma 6.1) while the outer expectation is over the {wl}. The third line

uses the triangle inequality for the ‖ · ‖K norm, the fourth line uses Jansen’s inequality,

and the fifth line uses triangle inequality for moments norm (i.e., (E [|X + Y |p])1/p ≤

(E [|X|p])1/p + (E [|Y |p])1/p). To get to log4N in the third line, we used our assumption

that N ≥ M , N ≥ K and N ≥ O(1) in Theorem 3.1. Now using the definition of κ

from Lemma 6.1, we can bound this quantity as:

κ := max
l
‖Yl‖∞ = max

l
|z̃l|‖Xl‖∞ =

1√
M

max
l
‖Xl‖∞ =

1√
M

max
l,n
|〈Fl,Ψn〉| ≤

µ(Ψ)√
M

.

Therefore, we have the following implicit bound on the moments of the random variable
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of interest

Ep ≤ C1/p√p

√
C ′Kµ(Ψ)2 log4(N)

M

√
Ep +

1

2
.

The above can be written asEp ≤ ap

√
Ep + 1

2
, where ap = C1/p√p

√
4C′Kµ(Ψ)2 log4(N)

M
.

By squaring, rearranging the terms and completing the square, we have Ep ≤
a2p
2

+

ap

√
1
2

+
a2p
4

. By assuming ap ≤ 1
2
, this bound can be simplified to Ep ≤ ap. Now, this

assumption is equivalent to having an upper bound on the range of values of p:

ap ≤
1

2
⇔ √

p ≤ 1

2C1/p

√
M

4C ′Kµ(Ψ)2 log4(N)

⇔ p ≤ M

16C2/pC ′Kµ(Ψ)2 log4(N)
.

Hence, by using Lemma 6.2 with α =

√
C′Kµ(Ψ)2 log4(N)

M
, β = C, γ = 2, p0 = 2,

and p1 = M
16C2/pC′Kµ(Ψ)2 log4(N)

we obtain the following tail bound for u ∈ [
√

2,
√
p1]:

P

‖B1‖K ≥ e1/2

√
C ′Kµ(Ψ)2 log4(N)

M
u

 ≤ Ce−u
2/2.

If we pick δ < 1 such that

e1/2

√
C ′Kµ(Ψ)2 log4(N)

M
u ≤ δ

2
(15)

and u such that

Ce−u
2/2 ≤ η

2
⇔ u ≥

√
2 log(2Cη−1),

then we have our required tail bound of P [‖B1‖K > δ] ≤ η/2. First, observe that
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Equation (15) is equivalent to having

M ≥ CKµ(Ψ)2 log4(N) log(η−1)

δ2
.

Also, because of the limited range of values u can take (i.e., u ∈ [
√

2,
√
p1]), we require

that

√
2 log(2Cη−1) ≤

√
M

16C2/pC ′Kµ(Ψ)2 log4(N)
=
√
p1

⇔ M ≥ CKµ(Ψ)2 log4(N) log(η−1),

which, together with the earlier condition on M , completes the proof.

6.2 RIP with Gaussian feed-forward vectors

In this appendix we extend the RIP analysis of Appendix 6.1 to the case when z is

chosen to be a Gaussian i.i.d. vector, as presented in Theorem 4.1. It is unfortunate that

with the additional randomness in the feed-forward vector, the same proof procedure as

in Theorem 3.1 cannot be used. In the proof of Theorem 3.1, we showed that the ran-

dom variable ‖Z1‖K has p-th moments that scale like αβ1/pp1/2 (through Lemma 6.1)

for a range of p which suggests that it has a sub-gaussian tail (i.e., P [‖Z1‖K > u] ≤

Ce−u
2/2) for a range of deviations u. We then used this tail bound to bound the prob-

ability that ‖Z1‖K exceeds a fixed conditioning δ. With Gaussian uncertainties in the

feed-forward vector z, Lemma 6.1 will not yield the required sub-gaussian tail but in-

stead gives us moments estimates that result in sub-optimal scaling ofM with respect to

N . Therefore, we will instead follow the proof procedure of Theorem 16 from (Tropp

et al., 2009) that will yield the better measurement rate given in Theorem 4.1.

Let us begin by recalling a few notations from the proof of Theorem 3.1 and by

introducing further notations that will simplify our exposition later. First, recall that we
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let XH
l be the l-th row of FΨ. Thus, the l-th row of our matrix of interest Â = Z̃FΨ

is z̃lXH
l where z̃l is the l-th diagonal entry of the diagonal matrix Z̃. Whereas before,

z̃l = 1√
M

for any l = 1, · · · ,M , here it will be a random variable. To understand the

resulting distribution of z̃l, first note that for the connectivity matrix W to be real, we

need to assume that the second M
2

columns of U are complex conjugates of the first

M
2

columns. Thus, we can write U = [UR | UR] + j [UI | −UI ], where UR,UI ∈

RM×M
2 . Because UHU = I , we can deduce that UT

RUI = 0 and that the `2 norms of

the columns of both UR and UI are 1√
2
.4

With these matrices UR,UI , let us re-write the random vector z̃ to illustrate its

structure. Consider the matrix Û := [UR | UI ] ∈ RM×M , which is a scaled unitary

matrix (because we can check that ÛT Û = 1
2
I). Next, consider the random vector

ẑ := ÛTz. Because Û is (scaled) unitary and z is composed of i.i.d. zero-mean

Gaussian random variables of variance 1
M

, the entries of ẑ are also i.i.d. zero-mean

Gaussian random variables, but now with variance 1
2M

. Then, from our definition of U

in terms of UR and UI , for any l ≤ M
2

, we have z̃l = ẑl − jẑl+M
2

and for l > M
2

, we

have z̃l = ẑl−M
2

+ jẑl. This clearly shows that each of the first M
2

entries of z̃ is made

up of 2 i.i.d. random variables (one being the real component, the other imaginary), and

that the other M
2

entries are just complex conjugates of the first M
2

. Because of this, for

l ≤ M
2

, |z̃l|2 = |z̃l+M
2
|2 = ẑ2l + ẑ2

l+M
2

is the sum of squares of 2 i.i.d. Gaussian random

variables.

From the proof of Theorem 3.1, we also denoted

Z := ÂHÂ− I =

M/2∑
l=1

|z̃l|2XlX
H
l −

1

2
I

+

M/2∑
l=1

|z̃l|2
(
XlX

H
l

)∗ − 1

2
I

 =: Z1 + Z2.

4 This can be shown by writing

UHU =

([
UT

R

UT
R

]
− j

[
UT

I

−UT
I

])
([UR | UR] + j [UI | −UI ])

=
([

UT
RUR UT

RUR

UT
RUR UT

RUR

]
+
[

UT
I UI −UT

I UI

−UT
I UI UT

I UI

])
+ j

([
UT

RUI −UT
RUI

UT
RUI −UT

RUI

]
+
[

UT
I UR UT

I UR

−UT
I UR −UT

I UR

])
.

Then by equating the above to I + j0, we arrive at our conclusion.
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It is again easy to check that E
[∑M/2

l=1

(
|z̃l|2XlX

H
l

)]
= E

[∑M/2
l=1

(
|z̃l|2

(
XlX

H
l

)∗)]
=

1
2
I . Finally, Â has RIP conditioning δ whenever ‖Z‖K ≤ δ with ‖Z‖K := sup

y isK-sparse

yHZy

yHy
.

Before moving on to the proof, we first present a lemma regarding the random

sequence |zl|2 that will be useful in the sequel.

Lemma 6.3. Suppose for l = 1, · · · , M
2

, |z̃l|2 = ẑ2l +ẑ2l+M/2 where ẑl for l = 1, · · · ,M

is a sequence of i.i.d. zero-mean Gaussian random variables of variance 1
2M

. Also

suppose that η ≤ 1 is a fixed probability. For the random variable maxl=1,··· ,M/2 |z̃l|2,

we have the following bounds on the expected value and tail probability of this extreme

value:

E
[

max
l=1,··· ,M/2

|z̃l|2
]
≤ 1

M

(
log

(
C1M

2

)
+ 1

)
, (16)

P
[

max
l=1,··· ,M/2

|z̃l|2 >
C2 log (C ′2Mη−1)

M

]
≤ η. (17)

Proof. To ease notation, every index l used as a variable for a maximization will be

taken over the set l = 1, . . . , M
2

without explicitly writing the index set. To calculate

E [maxl |z̃l|2], we use the following result that allows us to bound the expected value of

a positive random variable by its tail probability (see Proposition 6.1 of [Rauhut]):

E
[
max
l
|z̃l|2

]
=

∫ ∞
0

P
[
max
l
|z̃l|2 > u

]
du. (18)

Using the union bound, we have the estimate P [maxl |z̃l|2 > u] ≤ M
2
P [|z̃1|2 > u]

(since the |z̃l|2 are identically distributed). Now, because |z̃1|2 is a sum of squares of

two Gaussian random variables and thus is a (generalized) χ2 random variable with 2

degrees of freedom (which we shall denote by χ2),5 we have

P
[
|z̃1|2 > u

]
= P [χ2 > 2Mu] =

1

Γ(1)
e
−2Mu

2 = C1e
−Mu,

5 The pdf of a χ2 random variable χq with q degrees of freedom is given by p(x) =
1

2q/2Γ(q/2)
xq/2−1e−x/2. Therefore, it’s tail probability can be obtained by integration: P [χq > u] =∫∞

u
p(x)dx.
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where Γ(·) is the Gamma function and the 2Mu appears instead of u in the exponential

because of the standardization of the Gaussian random variables (initially of variance

1
2M

). To proceed, we break the integral in (18) into 2 parts. To do so, notice that if

u < 1
M

log
(
C1M
2

)
, then the trivial upper bound of P [maxl |z̃l|2 > u] ≤ 1 is a better

estimate than C1M
2
e−Mu. In other words, our estimate for the tail bound of maxl |z̃l|2 is

not very good for small u but gets better with increasing u. Therefore, we have

E
[
max
l
|z̃l|2

]
≤

∫ 1
M

log(C1M
2 )

0

1 du+

∫ ∞
1
M

log(C1M
2 )

C1M

2
e−Mu du

=
1

M
log

(
C1M

2

)
− C1M

2

[
1

M
e−Mu

]∣∣∣∣∞
1
M

log(C1M
2 )

=
1

M
log

(
C1M

2

)
+
C1

2
e− log(C1M

2 ) =
1

M

(
log

(
C1M

2

)
+ 1

)
.

This is the bound in expectation that we seek for in Equation (18).

In the second part of the proof that follows, C,C ′ denote universal constants. Es-

sentially, we will want to apply Lemma 6.2 that is used in Appendix 6.1 to obtain our

tail bound. In the lemma, the tail bound of a random variable X can be estimated once

we know the moments ofX . Therefore, we require the moments of the random variable

maxl |z̃l|2. For this, for any p > 0, we use the following simple estimate:

E
[
max
l
|z̃l|2p

]
≤ M

2
max
l
E
[
|z̃l|2p

]
=
M

2
E
[
|z̃1|2p

]
, (19)

where the first step comes from writing the expectation as an integral of the cumula-

tive distribution (as seen in Equation (18)) and taking the union bound, and the sec-

ond step comes from the fact that the |z̃l|2 are identically distributed. Now, |z̃1|2 is a

sub-exponential random variable since it is a sum of squares of Gaussian random vari-

ables (Vershynin, 2012).6 Therefore, for any p > 0, it’s p-th moment can be bounded

6 A sub-exponential random variable is a random variable whose tail probability is bounded by
exp−Cu for some constant C. Thus, a χ2 random variable is a specific instance of a sub-exponential
random variable.
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by

E
[
|z̃1|2p

]1/p ≤ C ′

M
C1/pp,

where the division by M comes again from the variance of the Gaussian random vari-

ables that make up |z̃1|2. Putting this bound with Equation (19), we have the following

estimate for the p-th moments of maxl |z̃l|2:7

E
[
max
l
|z̃l|2p

]1/p
≤ C ′

M

(
CM

2

)1/p

p.

Therefore, by Lemma 6.2 with α = C′

M
, β = CM

2
, and γ = 1, we have

P
[
max
l
|z̃l|2 >

eC ′u

M

]
≤ CM

2
e−u.

By choosing u = log
(
CM
2
η−1
)
, we have our desired tail bound of

P
[
max
l
|z̃l|2 >

C2 log (C ′2Mη−1)

M

]
≤ η.

Armed with this lemma, we can now turn out attention to the main proof. As stated

earlier, this follows essentially the same form as (Tropp et al., 2009) with the primary

difference of including the results from Lemma 6.3. As before, becauseP [‖Z‖K > δ] ≤

P [‖Z1‖K > δ/2]+P [‖Z2‖K > δ/2] with Z2 = Z∗1 , we just have to consider bounding

the tail bound P [‖Z1‖K > δ/2]. This proof differs from that in Appendix 6.1 in that

here, we will first show that E [‖Z1‖K ] is small when M is large enough and then show

that Z1 does not differ much from E [‖Z1‖K ] with high probability.

7We remark that this bound gives a worse estimate for the expected value as that calculated before
because of the crude bound given by Equation (19).
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Expectation

In this section, we will show that E [‖Z1‖K ] is small. This will basically follow from

Lemma 6.1 in Appendix 6.1 and Equation (16) in Lemma 6.3. To be precise, the re-

mainder of this section is to prove:

Theorem 6.1. Choose any δ′ ≤ 1
2
. If M ≥ C3Kµ(Ψ)2 log5N

δ′2
, then E [‖Z‖K ] ≤ δ′.

Proof. Again, C is some universal constant that may not be the same from line to line.

We follow the same symmetrization step found in the proof in Appendix 6.1 to arrive

at:

E := E [‖Z1‖K ] ≤ 2E

E
∥∥∥∥∥∥

M/2∑
l=1

ξl|z̃l|2XlX
H
l

∥∥∥∥∥∥
K

|{wl}, z̃

 ,
where the outer expectation is over the Rademacher sequence {ξl} and the inner expec-

tation is over the random “frequencies” {wl} and feed-forward vector z̃. As before, for

l = 1, · · · , M
2

, we set Yl = z̃∗lXl. Observe that by definition κ := maxl=1,··· ,M/2 ‖Yl‖∞ =

maxl |z̃l|‖Xl‖∞ and thus is a random variable. We then use Lemma 6.1 with p = 1 to

get

E ≤ 2C
√
K log(100K)

√
log(4N) log(5M)E

κ
√√√√√
∥∥∥∥∥∥
M/2∑
l=1

|z̃l|2XlXH
l

∥∥∥∥∥∥
K


≤

√
4CK log4(N)

√
E [κ2]

√√√√√E
∥∥∥∥∥∥

M/2∑
l=1

|z̃l|2XlXH
l

∥∥∥∥∥∥
K


≤

√
4CK log4(N)

√
E [κ2]

√
E +

1

2
, (20)

where the second line uses the Cauchy-Schwarz inequality for expectations and the

third line uses triangle inequality. Again, to get to log4N in the second line, we used

our assumption that N ≥ M , N ≥ K and N ≥ O(1) in Theorem 4.1. It there-

fore remains to calculate E [κ2]. Now, κ = maxl |z̃l|‖Xl‖∞ ≤ maxl |z̃l|maxl ‖Xl‖∞.
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First, we have maxl ‖Xl‖∞ = maxl,n |〈Fl,Ψn〉| ≤ µ(Ψ). Next, (16) in Lemma 6.3

tells us that E
[
maxl=1,··· ,M/2 |z̃l|2

]
≤ 1

M

(
log
(
C1M
2

)
+ 1
)
. Thus, we have E [κ2] ≤

µ(Ψ)2

M

(
log
(
C1M
2

)
+ 1
)
. Putting everything together, we have

E = E [‖Z1‖K ] ≤

√
CK log4(N)

(
log
(
C1M
2

)
+ 1
)
µ(Ψ)2

M

√
E +

1

2
.

Now, the above can be written asE ≤ a
√
E + 1

2
, where a =

√
CK log4(N)(log(C1M

2 )+1)µ(Ψ)2

M
.

By squaring it, rearranging the terms and completing the squares, we have E ≤ a2

2
+

a
√

1
2

+ a2

4
. By supposing a ≤ 1

2
, this can be simplified as E ≤ a. To conclude, let us

choose M such that a ≤ δ′ where δ′ ≤ 1
2

is our pre-determined conditioning (which

incidentally fulfills our previous assumption that a ≤ 1
2
). By applying the formula for

a, we have that if M ≥ C3Kµ(Ψ)2 log5(N)
δ′2

, then E ≤ δ′.

Tail Probability

To give a probability tail bound estimate to Z1, we use the following lemma found

in (Tropp et al., 2009; Rauhut, 2010):

Lemma 6.4. Suppose Yl for l = 1, · · · ,M are independent, symmetric random vari-

ables such that ‖Yl‖K ≤ ζ <∞ almost surely. Let Y =
∑M

l=1 Yl. Then for any u, t > 1,

we have

P [‖Y ‖K > C(uE [‖Y ‖K ] + tζ)] ≤ e−u
2

+ e−t.

The goal of this section is to prove:

Theorem 6.2. Pick any δ ≤ 1
2

and suppose N− log4(N) ≤ η ≤ 1
e
. Suppose M ≥

C4Kµ(Ψ)2 log5N log η−1

δ2
, then P [‖Z1‖K > δ] ≤ 8η.
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Proof. To use Lemma 6.4, we want Yl to look like the summands of

Z1 =

M/2∑
l=1

(
|z̃l|2XlX

H
l − E

[
|z̃l|2XlX

H
l

])
.

However, this poses several problems. First, they are not symmetric8 and thus, we need

to symmetrize it by defining

Ỹl = |z̃l|2XlX
H
l − |z̃′l|2X ′l(X ′l)H

∼ ξl
(
|z̃l|2XlX

H
l − |z̃′l|2X ′l(X ′l)H

)
where z̃′, X ′l are independent copies of z̃ and Xl respectively, and ξl is an independent

Rademacher sequence. Here, the relationX ∼ Y for two random variablesX, Y means

that X has the same distribution as Y . To form Ỹl, what we have done is take each

summand of Z1 and take it’s difference with an independent copy of itself. Because Ỹl

is symmetric, adding a Rademacher sequence does not change its distribution and this

sequence is only introduced to resolve a technicality that will arise later on. If we let

Ỹ :=
∑M/2

l=1 Ỹl, then the random variables Ỹ (symmetrized) and Z1 (un-symmetrized)

are related via the following estimates (Rauhut, 2010):

E
[
‖Ỹ ‖K

]
≤ 2E [‖Z1‖K ] , (21)

P [‖Z1‖K > 2E [‖Z1‖K ] + u] ≤ 2P
[
‖Ỹ ‖K > u

]
. (22)

However, a second condition imposed on Yl in Lemma 6.4 is that ‖Yl‖K ≤ ζ < ∞

almost surely. Because of the unbounded nature of the Gaussian random variables

z̃l and z̃′l in Ỹl, this condition is not met. Therefore, we need to define a Yl that is

conditioned on the event that these Gaussian random variables are bounded. To do so,

8A random variable X is symmetric if X and −X has the same distribution.
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define the following event:

F =

{
max

{
max
l
|z̃l|2, max

l
|z̃′l|2

}
≤ C2 log (C ′2Mη−1)

M

}
.

Using Equation (17) in Lemma 6.3, we can calculate P [F c], where F c is the com-

plementary event of F :

P [F c] = P
[
max

{
max
l
|z̃l|2, max

l
|z̃′l|2

}
>
C2 log (C ′2Mη−1)

M

]
≤ P

[
max
l
|z̃l|2 >

C2 log (C ′2Mη−1)

M

]
+ P

[
max
l
|z̃′l|2 >

C2 log (C ′2Mη−1)

M

]
≤ 2η.

Conditioned on event F , the ‖ · ‖K norm of Ỹl is well-bounded:

∥∥∥Ỹl∥∥∥
K

=
∥∥|z̃l|2XlX

H
l − |z̃′l|2X ′l(X ′l)H

∥∥
K
≤ 2 max

{
max
l
|z̃l|2, max

l
|z̃′l|2

}∥∥XlX
H
l

∥∥
K

=
2C2 log (C ′2Mη−1)

M
sup

y isK-sparse

{
yHXlX

H
l y

yHy

}
≤ 2C2 log (C ′2Mη−1)

M
sup

y isK-sparse

{
‖Xl‖2∞

‖y‖21
‖y‖22

}
≤ 2KC2 log (C ′2Mη−1)

M
max
l
‖Xl‖2∞ ≤

CKµ(Ψ)2 log (C ′2Mη−1)

M
:= ζ,

where in the last line we used the fact that the ratio between the `1 and `2 norms of an

K-sparse vector is K, and the estimate we derived for maxl ‖Xl‖2∞ in Appendix 6.1.

We now define a new random variable that is a truncated version of Ỹl which takes

for value 0 whenever we fall under event F c, i.e.,

Yl := Ỹl IF = ξl
(
||z̃l|2XlX

H
l − |z̃′l|2X ′l(X ′l)H

)
IF ,

where IF is the indicator function of event Fl. If we define Y =
∑M/2

l=1 Yl, then the

random variables Y (truncated) and Ỹ (un-truncated) are related by (Tropp et al., 2009)
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(see also Lemma 1.4.3 of (De La Peña & Giné, 1999))

P
[
‖Ỹ ‖K > u

]
≤ P [‖Y ‖K > u] + P [F c] . (23)

When z̃, z̃′, Xl, X
′
l are held constant so only the Rademacher sequence ξl is random,

then the contraction principle (Tropp et al., 2009; Ledoux & Talagrand, 1991) tells us

that E [‖Y ‖K ] ≤ E
[
‖Ỹ ‖K

]
. Note that the sole reason for introducing the Rademacher

sequences is for this use of the contraction principle. As this holds point-wise for all

z̃, z̃′, Xl, X
′
l , we have

E [‖Y ‖K ] ≤ E
[
‖Ỹ ‖K

]
. (24)

We now have all the necessary ingredients to apply Lemma 6.4. First, by choosing

δ′ ≤ 1
2
, from Theorem 6.1, we have that E [‖Z‖K ] ≤ δ′ whenever M ≥ C3Kµ(Ψ)2 log5N

δ′2
.

Thus, by chaining (24) and (21), we have

E [‖Y ‖K ] ≤ E
[
‖Ỹ ‖K

]
≤ 2E [‖Z1‖K ] ≤ 2δ′.

Also, with this choice of M , we have

ζ =
CKµ(Ψ)2 log (C ′2Mη−1)

M
≤ Cδ′2 log (C ′2Mη−1)

log5N
.

Using these estimates for ζ and E [‖Y ‖K ], and choosing u =
√

log η−1 and t = log η−1,

Lemma 6.4 says that

P
[
‖Y ‖K > C ′

(
2δ′
√

log η−1 +
Cδ′2 log (C ′2Mη−1) log η−1

log5N

)]
≤ 2η.

Then, using the relation between the tail probabilities of Y and Ỹ (23) together with
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our estimate for P [F c], we have

P
[
‖Ỹ ‖K > C ′

(
2δ′
√

log η−1 +
Cδ′2 log (C ′2Mη−1) log η−1

log5N

)]
≤ 2η + P [F c] ≤ 4η.

Finally, using the relation between the tail probabilities of Ỹ and Z (22), we have

P
[
‖Z1‖K > 2δ′ + 2C ′δ′

√
log η−1 +

CC ′δ′2 log (C ′2Mη−1) log η−1

log5N

]
≤ 8η,

where we used the fact that E [‖Z1‖K ] ≤ δ′. Then, for a pre-determined conditioning

δ ≤ 1
2
, pick δ′ = δ

3C′′
√

log η−1
for a constant C ′′ which will be chosen appropriately later.

With this choice of δ′ and with our assumptions that δ ≤ 1
2

and η ≤ 1
e
, the three terms

in the tail bound becomes

2δ′ =
δ

3C ′′
√

log η−1
≤ 1

C ′′
δ

3
,

2C ′δ′
√

log η−1 =
2C ′

C ′′
δ

3
,

CC ′δ′2 log (C ′2Mη−1) log η−1

log5N
=

CC ′δ2(log(C ′2M) + log η−1)

9 (C ′′)2 log5N

≤ CC ′(log(C ′2M) + log η−1)

3 (C ′′)2 log5N

δ

3
.

As for the last term, if η ≥ 1
C′2M

, then CC′(log(C′2M)+log η−1)

3(C′′)2 log5N
≤ 2CC′ log(C′2M)

3(C′′)2 log5N
≤ 2CC′

3(C′′)2

(where we further supposed that N ≥ O(1)). If N− log4N ≤ η ≤ 1
C′2M

(where the lower

bound is from the theorem assumptions), then CC′(log(C′2M)+log η−1)

3(C′′)2 log5N
≤ 2CC′ log η−1

3(C′′)2 log5N
≤

2CC′

3(C′′)2
. By choosing C ′′ appropriately large, we then have

P
[
‖Z1‖K >

δ

3
+
δ

3
+
δ

3

]
≤ 8η.

Putting the formula for δ′ into M ≥ C3Kµ(Ψ)2 log5N
δ′2

completes the proof.
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6.3 Derivation of recovery bound for infinite length inputs

In this appendix we derive the bound in Equation (11) of the main text. The approach

we take is to bound the individual components of Equation (4) of the main text. As

the noise term due to noise in the inputs is unaffected, we will bound the noise term

due to the unrecovered signal (the first term in Equation (4) of the main text) by the

component of the input history that is beyond the attempted recovery, and we will bound

the signal approximation term (the second term in Equation (4) of the main text) by the

quality of the signal recovery possible in the attempted recovery length. In this way

we can observe how different properties of the system and input sequence affect signal

recovery.

To bound the first term in Equation (4) of the main text (i.e., the omission errors due

to inputs beyond the recovery window), we first write the current state at any time N∗

as

x[N∗] =
N∗∑
n=0

WN∗−nzs[n].

We only wish to recover the past N ≤ N∗ time steps, so we break up the summation

into components of the current state due to “signal” (i.e., signal we attempt to recover)

and “noise” (i..e, older signal we omit from the recovery):

x[N∗] =
N∗∑

n=N∗−N+1

WN∗−nzs[n] +
N∗−N∑
n=0

WN∗−nzs[n]

=
N∗∑

n=N∗−N+1

WN∗−nzs[n] + ε

= As+ ε2.

From here we can see that the first summation is the matrix multiply As as is dis-

cussed in the paper. The second summation here, ε2, essentially acts as an additional

noise term in the recovery. We can further analyze the effect of this noise term by un-
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derstanding that ε2 is bounded for well behaved input sequences s[n] (in fact all that

is needed is that the maximum value or the expected value and variance are reason-

ably bounded) when the eigenvalues of W are of magnitude q ≤ 1. We can explicitly

calculate the worst case scenario bounds on the norm of ε2,∣∣∣∣∣
∣∣∣∣∣
N∗−N∑
n=0

WN∗−nzs[n]

∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
N∗−N∑
n=0

U (qD)N
∗−nU−1zs[n]

∣∣∣∣∣
∣∣∣∣∣
2

≤ ||U ||2

∣∣∣∣∣
∣∣∣∣∣
N∗−N∑
n=0

(qD)N
∗−nU−1zs[n]

∣∣∣∣∣
∣∣∣∣∣
2

,

where D = diag(d1, . . . , dM) is the diagonal matrix containing the normalized eigen-

values of W . If we assume that z is chosen as mentioned as in Section 3.2 so that

U−1z =
(

1/
√
M
)

1, the eigenvalues of W are uniformly spread around a complex

circle of radius q, and that s[n] ≤ smax for all n, then we can bound this quantity as

∣∣∣∣∣
∣∣∣∣∣
N∗−N∑
n=0

WN∗−nzs[n]

∣∣∣∣∣
∣∣∣∣∣
2

≤ smax√
M
||U ||2

∣∣∣∣∣
∣∣∣∣∣
N∗−N∑
n=0

(qD)N
∗−n 1

∣∣∣∣∣
∣∣∣∣∣
2

=
smax√
M
||U ||2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


∑N∗−N

n=0 qN
∗−ndN

∗−n
1

...∑N∗−N
n=0 qN

∗−ndN
∗−n

M


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

=
smax√
M
||U ||2

√√√√ M∑
k=1

∣∣∣∣∣
N∗−N∑
n=0

qN∗−ndN
∗−n

k

∣∣∣∣∣
2

≤ smax ||U ||2

∣∣∣∣∣
N∗−N∑
n=0

qN
∗−n

∣∣∣∣∣
≤ smax ||U ||2

∣∣∣∣qN − qN∗1− q

∣∣∣∣
where dk is the kth normalized eigenvalue of W . In the limit of large input signal

lengths (N∗ →∞), we haveN∗ � N and so qN � qN
∗ , which leaves the approximate
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expression

||ε2||2 ≤ smax ||U ||2

∣∣∣∣ qN1− q

∣∣∣∣ .
To bound the second term in Equation (4) of the main text (i.e., the signal approx-

imation errors due to imperfect recovery), we must characterize the possible error be-

tween the signal (which is K-sparse) and the approximation to the signal with the K∗

largest coefficients. In the worst case scenario, there are K −K∗ + 1 coefficients that

cannot be guaranteed to be recovered by the RIP conditions, and these coefficients all

take the maximum value smax. In this case, we can bound the signal approximation

error as stated in the main text:

β√
K∗
‖s− sS∗‖1 ≤

β√
K∗

K∑
n=K∗+1

|qnsmax|

=
βsmax√
K∗

(
qK
∗ − qK

1− q

)
.

In the case where noise is present, we can also bound the total power of the noise

term,

α

∥∥∥∥∥
N+N∗∑
k=0

W kzε̃[k]

∥∥∥∥∥
2

2

,

using similar steps. Taking εmax as the largest possible input noise into the system, we

obtain the bound

α

∥∥∥∥∥
N+N∗∑
k=0

W kzε̃[k]

∥∥∥∥∥
2

2

< αεmax ||U ||2

∣∣∣∣ q

1− q

∣∣∣∣
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