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Abstract

Data sets with high dimensionality such as natural images, speech, and text have been analyzed 

with methods from condensed matter physics. Here we compare recent approaches taken to relate 

the scale invariance of natural images to critical phenomena. We also examine the method of 

studying high-dimensional data through specific heat curves by applying the analysis to 

noncritical systems: 1D samples taken from natural images and 2D binary pink noise. Through 

these examples, we concluded that due to small sample sizes, specific heat is not a reliable 

measure for gauging whether high-dimensional data are critical. We argue that identifying order 

parameters and universality classes is a more reliable way to identify criticality in high-

dimensional data.

1 Introduction

Scale-free structures are ubiquitous in nature. The best-understood examples of these 

structures are in critical phenomena, which occur in the neighborhood of a second-order 

phase transition. At critical points, the scale of large fluctuations becomes infinite while at 

the same time, small fluctuations persist (Wilson, 1979). The system is characterized by an 

order parameter, and long-range fluctuations of the order parameter at the critical point are 

studied using the renormalization group (Wilson & Kogut, 1974). The hallmark of the 

theory of critical phenomena was to show that criticality falls into universality classes 

dictated by the symmetry and dimensionality of the problem (Ma, 1976). Systems in the 

same universality class behave the same way regarding correlation functions at long 

distances even though they could have very different microscopic degrees of freedom. 

Scale-free structures also exist in high-dimensional data; natural images are the most 

prominent example (Field, 1987; Ruderman & Bialek, 1994). The key question is how the 

scale invariance in these systems relates to the theory of critical phenomena.

The issue of scale invariance in high-dimensional data is important from both information 

theory and machine learning and also from the neuroscience perspective. From the machine 

learning perspective, understanding scale-free structures is important in efficient coding and 

in the quest for finding generative models (Ackley, Hinton, & Sejnowski, 1979; Hinton & 

Salakhutdinov, 2006). Furthermore, the neural representations of inputs are related to their 

statistical structure (Barlow, 1961; Simoncelli & Olshausen, 2001), and understanding their 

scale invariance may shed light on the way the cortex processes them. With the goal of 

understanding further the scale invariance in these systems, we examine the reliability of 

studying criticality in high-dimensional data through the qualitative behavior of specific heat 

curves.
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2 Review of Critical Phenomena Concepts

In this section, we review some of the key concepts of the theory of critical phenomena in 

condensed matter physics. The field of condensed matter physics deals with emergent 

properties of large number of particles interacting with each other. The most prominent 

example of emergence is symmetry breaking, which is ubiquitous in nature, underlying 

different phases of matter. Symmetry breaking happens when the equilibrium phase that a 

system with large number of particles settles into has a reduced symmetry compared to the 

symmetries that underlie its dynamics. An example of symmetry breaking is a magnet, 

which has the same energy under a global rotation of all magnetic moments; however, as the 

magnetic system is cooled down, there is a temperature (the critical temperature) at which 

all the magnetic elements begin to align themselves in a particular direction. The “order” in 

the broken symmetry state is quantified by order parameter, which is the average 

magnetization in the case of a magnet. The phase transitions are classified by whether the 

order parameter changes discontinuously (first-order phase transition) or continuously 

(second-order phase transition), where in the first case, the first derivative of free energy 

(with respect to temperature) is discontinuous at the transition point, and in the second case, 

the second derivative has discontinuity. The order parameter is zero at the second-order 

phase transition, but the system is highly fluctuating, deciding which direction to pick. 

These fluctuations are visualized by large clusters ordered in one direction while being 

surrounded by clusters ordered in a different direction. In the thermodynamic limit (for 

infinite systems), the sizes of the largest clusters become infinite, while inside them, smaller 

fluctuations of all sizes persist. The size of the largest cluster is a measure of the correlation 

length in the system. At the critical point, the correlation length is infinite, and the 

thermodynamic state is known as the critical state; it is scale free because of the infinite 

correlation length. The scale invariance appears in the correlation functions, taking algebraic 

form, and the exponents characterizing the algebraic correlation functions at critical points 

are known as critical exponents. Critical points fall into universality classes even for systems 

with different microscopic degrees of freedom, such that critical states that are in the same 

universality class have the same critical exponents. In the quest to relate the scale invariance 

of high-dimensional data to critical phenomena, an important step is to identify an order 

parameter that has critical fluctuations and also the universality class of the system.

3 Criticality in Natural Images

We focus on natural images to frame the issues. We start by comparing two recent studies in 

analyzing the scale invariance of natural images (Stephens, Mora, Tkačik, & Bialek, 2013; 

Saremi & Sejnowski, 2013). In the first approach, grayscale images were studied using 

thermodynamic quantities after first transforming them into an Ising system by binarizing 

images. We summarize the formalism in Stephens et al. (2013) for clarity, adopting a 

notation similar to that of Saremi and Sejnowski (2013). When we denote the grayscale 

image as the matrix I, the image is transformed to the binary image Θ (see Figure 1),

(3.1)
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where θ is the step function. In this way, the grayscale image database is transformed to an 

Ising system, where at each site i, the pixel value is either 0 or 1, depending on whether the 

pixel intensity is below or above the median intensity. The ensemble Θ has the following 

properties: (1) by construction, there are equal numbers of zeros and ones on average, and 

the average magnetization is zero (magnetic variables are obtained by changing variables 0 

→ −1, 1 → 1), and (2) the spin correlation function in the ensemble decays with the distance 

as a power law, and with an exponent similar to the corresponding exponent for images I. 

These two facts motivated the search in Stephens et al. (2013) for signs of criticality by 

taking samples of size N = n × n from ensemble Θ and systematically increasing n. For a 

system of size N, the space of all possible configurations ΩN has 2N elements. The 

distribution P(ω) (ω ∈ ΩN) was estimated by taking samples from the ensemble Θ. 

Assuming the system is in equilibrium, P(ω) is related to the energy E(ω) of the 

configuration ω by the Boltzmann distribution:

(3.2)

where Z is the normalizing constant, known as the partition function, and the temperature 

was taken to be T = 1 for the ensemble Θ. Knowing P(ω) at T = 1, the distribution at a 

different temperature T is given by

(3.3)

(3.4)

The entropy S(T) and the specific heat C(T) can then be constructed from the distribution 

PT(ω):

(3.5)

(3.6)

Stephens et al. (2013) observed that the peak in C(T)/N versus T increased with N, while the 

width became narrower and the location of the peak moved closer to T = 1. Their analysis is 

reproduced here in Figure 2 for the van Hateren database (van Hateren & van der Schaaf, 

1998). Since ΩN grows exponentially with N, this analysis is feasible only for systems of 

size (for square systems) N = {2 × 2, 3 × 3, 4 × 4}. The conclusion was that in the 

thermodynamic limit (N → ∞), C(T)/N diverges at or near T = 1, which would imply that 

the original system Θ was at or near a critical point.

Next we outline the approach in Saremi and Sejnowski (2013). Images were mapped to a 

stack of binary layers ℬλ (bit planes) obtained uniquely through the relation
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(3.7)

where L is the bit length of the representation (L = 15 for the van Hateren database). A 

grayscale [0, 1, …, 2L − 1] image was thus replaced with L images, each being binary {0, 1} 

(see Figure 1). This representation imposes a hierarchy in intensities, which was emphasized 

schematically by taking λ = 1 to be the “top” layer and λ = 15 the “bottom” one. Going from 

the top to the bottom layer, there was a qualitative change from order to disorder. Changing 

to magnetic variables, the average magnetization of the top layers was close to −1, and the 

bottom ones were close to 0, with a sharp transition near λ = 6 reminiscent of a second-order 

phase transition (Saremi & Sejnowski, 2013). The scaling exponent of the power spectrum 

for layers near λ = 6 was close to that of the 2D ferromagnetic Ising model at its critical 

point. It was therefore argued that the scaling of natural images has its roots in the layers 

close to the phase transition (λ = 6).

The link between these two approaches is as follows. A binary image obtained by 

thresholding based on its median intensity (see equation 3.1) is approximately equal to the 

disjunction of layers above the median layer μ = L − log2 median(I)), by applying the logical 

OR operator. This is so because in binary representation, if any of the units above μ are 

active, it makes the value bigger than the median value. However, this is approximate 

because μ may not necessarily be an integer. In the van Hateren database, the median 

intensity lies, on average, between layers 5 and 6 (μ = 5.7 ± 0.46). Therefore:

(3.8)

In short, the binary ensemble obtained through I → θ (I − median(I)) can be obtained by 

nonlinear mixing of bit planes ℬλ above the phase transition with the OR operator (see 

Figure 1). This mixing, however, changes the scaling exponent of the power spectrum. For a 

scale-invariant system, in Fourier space, the power spectrum has the scaling form 1/|k|α, as |

k| → 0.. The exponent α for layer λ = 6 is close to 1.75 (which is the exponent of the 2D 

Ising critical system); however, it is closer to 2 for binary images Θ. Is it possible that both 

ℬ6 and Θ are close to a critical point? If that is the case, we know from the theory of critical 

phenomena that they must belong to different universality classes, since they have different 

scaling behaviors. Addressing the universality class of Θ remains an interesting problem 

from the perspective of critical phenomena. However, comparing the two approaches 

inspired us to examine the formalism developed in Stephens et al. (2013) by studying 

noncritical Ising systems: a one-dimensional system extracted from natural images and two-

dimensional binary pink noise. These exhibit (see Figures 3 and 4) qualitative behavior 

similar to that in Figure 2, which questions the reliability of specific heat curves for gauging 

criticality.
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4 Specific Heat Curves for Noncritical Systems

4.1 1D Samples from Natural Images

Here we construct a one-dimensional ensemble extracted from natural images. The database 

was constructed by sampling 1D stripes from median-thresholded images Θ. They are 

sampled at random locations and random orientations (either horizontal or vertical). We 

examined this system for 1D samples of N = {2, 3, …, 16}. The results for the specific heat 

curves are given in Figure 3a. What is surprising is that a qualitative behavior similar to 

samples taken from Θ (see Figure 2) is observed here: the size of the peak C(T)/N increases 

by increasing N (see Figure 3b), the width becomes narrower (see Figure 3c), and the 

location of the peak shifts toward T = 1 (see Figure 3d). However, interactions in natural 

images are local, and we know from the theory of critical phenomena that a one-dimensional 

system with local interactions cannot go through a phase transition. The advantage of 

studying 1D ensemble is that we could study the finite size scaling of the peak and the width 

(see Figure 2) to see if the increase in peak and the decrease in the width saturate for larger 

systems. However in this case, the saturation does not occur up to system of size N = 16.

To demonstrate clearly the lack of long-range correlations in the 1D system, the power 

spectrum as a function of spatial frequency k (for the original gray scale samples and after 

binarization) is given in Figure 3e. It shows that over long distances (low spatial 

frequencies), the 1D system behaves similar to the white noise. It also shows the large effect 

that binarization has (special to 1D) in the intermediate scales in flattening the slope of 

power versus spatial frequency.

4.2 2D Binary Pink Noise

We generated pink noise from the gaussian white noise, followed by low-pass-filtering the 

Fourier components by 1/kα/2; the resulting samples in real space were then thresholded by 

their median intensity to get binary samples. The power spectrum of the resulting ensemble 

(denoted by ℘α) is 1/kα. The specific heat curves for different values of α, together with 

representative samples, are given in Figure 4 for systems of sizes N = {2 × 2, 3 × 3m 4 × 4}. 

For a range of α, the specific heat curves have similar qualitative behavior to the ensemble 

Θ obtained from images. We suspect that as in the 1D case, the specific heat behavior is an 

artifact of P(ω) for small system sizes. This remains an open problem from an analytical 

point of view, especially since the “pseudo-critical” behavior of specific heat curves were 

not seen for all values of α. To check the robustness of these results, we also studied the 

specific heat for samples after high-pass-filtering them (see Figure 4.) Some examples of the 

pink noise samples and their high-pass-filtered version are given in Figure 4.

5 Discussion

The focus of this letter is on natural images, but the issues are general and relevant to other 

systems including data from ganglion cells in the retina (Schneidman, Berry, Segev, & 

Bialek, 2006; Tkačik, Schneidman, Berry, & Bialek, 2009; Ganmor, Segev, & Schneidman, 

2011). We examined the methods developed in Stephens et al. (2013) by applying them to 

1D binary samples and 2D binary pink noise, and found that the analysis of the specific heat 

curves may lead to false positives in gauging whether a system is critical. Identifying an 
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order parameter and the universality class is essential in addressing criticality in these 

systems. However, it could be that some of these systems have a universality class of their 

own, which would also be very interesting. This is a difficult problem, since in physics, 

order parameters are usually dictated by symmetries in the system. But in the case of neural 

activities, for example, it is not clear what the underlying symmetries in the process of 

generating spiking activities are. Regarding natural images, the issue of universality class 

and order parameter remains open despite the attempts made in Saremi and Sejnowski 

(2013) in addressing the issue. We expand on this in an upcoming article.

Finally, we mention the work of Macke, Opper, and Bethge (2011), where the divergence of 

specific heat was reported for “dichotomized gaussian” samples. In that work, the 

connectivity is all to all, but a short-range connectivity constructed with their method could 

also lead to the pseudo-divergence of the specific heat, which would strengthen the results 

we have reported here.
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Figure 1. 
Example of an image I from the van Hateren database. Its median thresholded image Θ and 

the bit planes {ℬ4, ℬ5, ℬ6} are shown. θ (I − median (I)) ≃ ℬ1 ∨ ℬ2 ∨ … ∨ ℬ6 is also 

demonstrated, which is a good approximation for this example as μL − log2 median (I)) = 

5.9447 is close to 6.
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Figure 2. 
The specific heat curves C/N calculated the ensemble Θ= θ(I − median(I)). They are plotted 

versus temperature T for systems of size N = {2 × 2, 3 × 3, 4 × 4}. The ensemble Θ is at T = 

1.
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Figure 3. 
Studying 1D samples from the ensemble Θ for systems of linear size N = {2, 3, …, 16}. (a) 

C/N is plotted versus T. The dashed curves are the gaussian fit around the peak. (b) Finite 

size scaling. The peak of C/N is plotted versus 1/N. (c) Here the width σT (obtained from the 

gaussian fit near the peak) is plotted versus 1/N. (d) The location of the peak is plotted 

versus 1/N. Unlike the curves in panels b and c, it saturates in the large N limit. (e) The 

power spectrum of 1D stripes with 1000 pixels before (in gray) and after binarization (in 

black) are given. The data points for binarized samples are shifted up by 14.7.
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Figure 4. 
(Left) Here C/N is calculated for the 2D binary pink noise (black curves) and taking samples 

with sizes N = {2 × 2, 3 × 3, 4 × 4}. The pink noise ensemble is at T = 1. The red curves are 

the corresponding curves after high-pass-filtering the samples. (Middle) Binary pink noise 

samples (500 × 500) with the exponent α obtained by thresholding the gaussian pink noise. 

(Right) High-pass-filtered binary pink noise samples obtained by high-pass-filtering 

gaussian pink noise before thresholding.
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