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Abstract

A recent model of intrinsic plasticity coupled to Hebbian synaptic plasticity

proposes that adaptation of a neuron’s threshold and gain in a sigmoidal re-

sponse function to achieve a sparse, exponential output firing rate distribution

facilitates the discovery of heavy-tailed or super-Gaussian sources in the neu-

ron’s inputs. We show that the exponential output distribution is irrelevant to

these dynamics and that, furthermore, while sparseness is sufficient, it is not

necessary. The intrinsic plasticity mechanism drives the neuron’s threshold

large and positive, and we prove that in such a regime, the neuron will find

super-Gaussian sources; equally, however, if the threshold is large and nega-

tive (an “anti-sparse” regime), it will also find super-Gaussian sources. Away

from such extremes, the neuron can also discover sub-Gaussian sources. By

examining a neuron with a fixed sigmoidal non-linearity and considering the

synaptic strength fixed point structure in the two-dimensional parameter space

defined by the neuron’s threshold and gain, we show that this space is carved

up into sub- and super-Gaussian-input-finding regimes, possibly with regimes

of simultaneous stability of sub- and super-Gaussian sources or regimes of in-

stability of all sources; a single Gaussian source may also be stabilised by the

presence of a non-Gaussian source. A neuron’s “operating point” (essentially

its threshold and gain coupled with its input statistics) therefore critically de-

termines its computational repertoire. Intrinsic plasticity mechanisms induce

trajectories in this parameter space but do not fundamentally modify it. Un-
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less the trajectories cross critical boundaries in this space, intrinsic plasticity is

irrelevant and the neuron’s non-linearity may be frozen with identical receptive

field refinement dynamics.
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1 Introduction

Neurons in early sensory pathways exhibit a wide variety of dynamics on dif-

ferent time scales, including adaptation to changes in input statistics (Kohn,

2007), changes in synaptic strengths leading to receptive field refinement (Katz

and Shatz, 1996), changes in intrinsic excitability (Zhang and Linden, 2003),

and homeostatic changes (Turrigiano and Nelson, 2004). A complete under-

standing of the functional properties of, for example, the early visual system

would require an understanding of how all these processes interact to perform

a transformation of ecologically relevant visual stimuli into dynamic neuronal

representations that ultimately subserve an animal’s behaviour (Simoncelli and

Olshausen, 2001; Carandini et al., 2005).

In a series of papers, Triesch has developed a set of related models of intrin-

sic plasticity coupled to Hebbian synaptic plasticity. Based on ideas of sparse

coding (Olshausen and Field, 1996, 1997; Baddeley et al., 1997; Lennie, 2003),

Triesch develops an intrinsic plasticity mechanism that modifies the parame-

ters defining the response or transfer function of a neuron so that its output

firing distribution becomes exponential, or as close to exponential as possible,

either in a rate-based setting (Triesch, 2007) or a spike-based setting (Savin

et al., 2010). An exponential distribution has maximum entropy under the con-

straint of a fixed mean, and so adapting a neuron’s output firing distribution

to exponential maximises information transfer and thus develops an efficient

neuronal code (cf. Attneave, 1954; Barlow, 1961; Laughlin, 1981; Atick, 1992;
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van Hateren, 1992; DeWeese, 1996; Olshausen and Field, 1996; Bell and Se-

jnowski, 1997; Wainwright, 1999; Brenner et al., 2000; Maravall et al., 2007).

When such an intrinsic plasticity mechanism is coupled to Hebbian synaptic

plasticity, Triesch finds (amongst other things) that the synaptic strength vec-

tor converges on a direction corresponding to heavy-tailed or super-Gaussian

sources (Triesch, 2007; Savin et al., 2010). Finding super-Gaussian sources is

a classic signature of independent component analysis (ICA; Hyvärinen et al.,

2001), an approach that has been employed extensively to find the independent

“components” of natural images (Bell and Sejnowski, 1997; Olshausen and

Field, 1997; van Hateren, 1998; Simoncelli and Olshausen, 2001; Hyvärinen

et al., 2009; Lyu and Simoncelli, 2009).

Being motivated by information-theoretic principles, Triesch only consid-

ers a sparse exponential output firing distribution, so the extent to which the

finding of heavy-tailed input distributions depends on this particular choice of

output firing distribution is unclear. Nor is it clear precisely in what way the

conjoint functioning of intrinsic and synaptic plasticity facilitates the discov-

ery of heavy-tailed input distributions. Triesch only examines whether intrinsic

plasticity is necessary for successful receptive field development in the case of

Földiák bar input (Földiák, 1990), with somewhat ambiguous results. If a

neuron has a fixed non-linearity defined by parameters taken from an adapting

non-linearity during the process of receptive field refinement, then the fixed

non-linearity will also develop an appropriate receptive field; however, if the

parameters are taken at the end point of the refinement process, then a cor-
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responding fixed non-linearity will not develop an appropriate receptive field

(Triesch, 2007; Savin et al., 2010).

Here, by employing Triesch’s novel and very stimulating approach as a

launching point, we examine in some detail whether and when simultaneous

intrinsic plasticity and synaptic plasticity are required for acquiring appropri-

ate fixed points of the synaptic strength vector. We are principally interested in

whether and when a single, isolated neuron with a fixed or adapting sigmoidal

non-linearity can extract the independent components from its inputs in a

manner similar to conventional ICA algorithms. As such, we typically use stan-

dard ICA-like inputs, i.e. inputs that are generated from centred, statistically-

independent and orthogonally-mixed sources with symmetric probability den-

sity functions (PDFs). Such assumptions about the inputs may lack biological

or ecological relevance, although centring can easily be achieved via separate

“on” and “off” channels for supra- and sub-mean firing, respectively (see, for

example, Savin et al., 2010). To overcome these standard criticisms, we will

follow Triesch and also consider Földiák bar inputs (Földiák, 1990), since such

inputs are neither centred nor white. The results for both types of input are,

in fact, qualitatively rather similar. Of course, in focusing on the capacity of

an isolated neuron with a fixed or adapting sigmoidal non-linearity to extract

independent components from it inputs, we are explicitly ignoring the very real

possibility that neurons may serve entirely different computational roles than

those considered here.

The structure of the remainder of our paper is as follows. First, in Sec-
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tion 2, we consider Triesch’s rate-based model (Triesch, 2007), in which the

neuron’s sigmoidal non-linearity may be characterised by its threshold and

gain. We show that intrinsic plasticity in the sparse coding regime leads to

the discovery of super-Gaussian inputs generally and not heavy-tailed inputs

specifically; if the inputs are all sub-Gaussian, then the strength vector does

not converge on any one of these inputs even though some inputs will have

heavier tails than others. By considering a sparse but not exponential out-

put firing rate distribution, we show that these super-Gaussian-input-finding

dynamics do not require an exponential output firing rate distribution but

only sparseness. We then relax sparseness by considering larger mean out-

put firing rates in an exponential output distribution and observe that such a

neuron switches from finding super-Gaussian inputs to finding sub-Gaussian

inputs. These results suggest that a sigmoidal non-linearity defined by thresh-

old and gain parameters performs ICA in a parameter-dependent manner. In

Section 3 we consider the performance of a fixed rather than an adapting non-

linearity. We consider an extension of our earlier model of adaptation to input

statistics (Elliott et al., 2008) by considering not only adaptation to chang-

ing input statistics but also adaptation to changes in synaptic strengths, in

order to maintain an approximately invariant output firing rate PDF. For cen-

tred, statistically-independent and orthogonally-mixed sources with synaptic

strengths normalised on the unit hypersphere, however, the mean and variance

of the (standard, linearly summed) total input to a neuron are in fact indepen-

dent of the neuron’s synaptic strengths and thus a neuron’s threshold and gain
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need not be changed in response to changes in synaptic strengths with such in-

puts. Via this round-about argument, we reduce to examining the fixed point

structure of the synaptic strength vector for a neuron with a fixed non-linearity

for whitened, statistically-independent inputs, but examining this structure in

the two-dimensional parameter space defined by the neuron’s threshold and

gain. We consider the stabilities of some specific sub- and super-Gaussian in-

put distributions in this parameter plane before proving that super-Gaussian

sources are always stable for any sufficiently large modulus threshold. A large,

positive threshold corresponds to a sparse firing regime, but a large, negative

threshold corresponds to an “anti-sparse” firing regime. Thus, while sparse-

ness is sufficient to discover super-Gaussian sources, it is not necessary. The

fixed point structure for threshold around zero is rather more complicated and

idiosyncratic, but it is in this regime that sub-Gaussian inputs may be sta-

ble. We observe regimes in which both sub- and super-Gaussian sources are

simultaneously stable and regimes in which neither are stable; we also observe

regimes in which a Gaussian source may be stabilised by non-Gaussian sources.

The conclusion of these considerations is that Triesch’s intrinsic plasticity algo-

rithm simply drives the neuron’s threshold to large values, in the process mak-

ing output firing sparse, and this is sufficient to find super-Gaussian sources.

However, the neuron’s threshold could be fixed at such a large value and it

would still find super-Gaussian sources, so intrinsic plasticity is not in fact

necessary. Moreover, by forcing the threshold large, Triesch’s algorithm misses

the sub-Gaussian-input-finding regime. In Section 4, we turn from standard
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ICA-like inputs to Földiák bar input (Földiák, 1990), which is not whitened,

centred or linearly-mixed. In this case, the threshold and gain in our model do

change as synaptic strengths change. We first obtain the stability regions in

the two-dimensional response parameter space in which appropriate, single-bar

receptive fields are developed for a fixed non-linearity. We may then plot the

trajectories of the threshold and gain parameters in this space in both Triesch’s

and our own model, observing how they change in relation to the single-bar

stability regions. Triesch’s model pushes these parameters to near criticality,

in the sense that they approach the boundary at which (putative) single-bar

receptive fields become unstable fixed points of the strength vector. Thus, we

explain why the response parameters may be fixed during refinement but not

when refinement is complete in Triesch’s model. Such criticality is not generic,

however, as we demonstrate a simpler system in which the fixed point values

of the threshold and gain do not approach critical boundaries in parameter

space. Our own model with Földiák bar input does not exhibit such dynamics,

and its non-linearity may therefore be frozen at any point along the parame-

ter trajectory, including its terminus. Finally, in Section 5, we discuss these

results.
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2 Sparseness, Exponential Firing Rates and

Heavy-Tailed Distributions

We begin by considering Triesch’s model of intrinsic plasticity coupled to Heb-

bian synaptic plasticity in a single, rate-based neuron (Triesch, 2007). Tri-

esch has extended his work to a spike-based framework including spike-timing-

dependent synaptic plasticity (Savin et al., 2010), but the key results are cap-

tured in a purely rate-based framework.

2.1 Implementation of Coupled Intrinsic and Synaptic

Plasticity

Let the neuron receive n inputs with activities ai, i = 1, . . . , n, through n

synapses of strengths vi, i = 1, . . . , n. The total input to the neuron is taken

for simplicity to be x = v·a, where v and a are the vectors of synaptic strengths

and input activities, respectively, and the “·” denotes the dot product. The

PDF of this total input x is denoted by fX(x). Triesch uses a sigmoidal non-

linearity for the neuron’s output firing rate or response function,

r(x) =
1

1 + e−(αx+β)
, (2.1)

but we prefer the equivalent although somewhat more intuitive parametrisation

(Elliott et al., 2008)

r(x) =
1

2
[1 + tanh 2γ(x − θ)] , (2.2)
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where θ is the neuron’s threshold or total input at semi-saturation, and γ is

the gain of the response function at semi-saturation. Eq. (2.2) is identical to

Eq. (2.1) when we set α = 4γ and β = −4γ θ. We denote the PDF of the

neuron’s output firing rate by fR(r). This output PDF depends on both the

PDF of the total synaptic input, fX(x), and the two response parameters γ

and θ. Because r(x) is a monotonic function in x, the PDFs fR(r) and fX(x)

are related through the equation fX(r) = dr(x)
dx

fR(r).

Triesch implements intrinsic plasticity by adapting the two parameters α

and β (or our γ and θ) to bring the output PDF fR(r) as close as possible,

according to some suitable measure, to some target output PDF, which we

denote by gR(r). Because some experimental evidence suggests that cortical

neurons exhibit an exponential output firing rate distribution (Baddeley et al.,

1997; but see Franco et al. (2007) and Lehky et al. (2011) for evidence for

sparse but non-exponential firing rate distributions), and because an expo-

nential distribution has maximum entropy on an unbounded interval, Triesch

sets gR(r) = µ̂−1 exp(−r/µ̂), where µ̂ is the neuron’s desired mean output fir-

ing rate.2 In earlier work, he simply adapts α and β so that the mean and

variance of the output firing rate match those of an exponential distribution

2Of course, r(x) in Eq. (2.1) is bounded in [0, 1] and so the corresponding

maximum entropy distribution is in fact the uniform distribution. However, a

uniform distribution on [0, 1] has a fixed mean of 1/2, while Triesch requires a

distribution with an adjustable mean.
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with parameter µ̂ (Triesch, 2005a). Later, he adapts α and β by minimising

the Kullback-Leibler divergence between fR(r) and gR(r) = µ̂−1 exp(−r/µ̂)

(Triesch, 2005b, 2007), defined by

D[fR‖gR] =

∫

dr fR(r) loge [fR(r)/gR(r)] . (2.3)

Implementing gradient descent in D[fR‖gR] by setting

dα

dt
= −εip

∂D
∂α

, (2.4)

dβ

dt
= −εip

∂D
∂β

, (2.5)

where εip is a “learning rate” that sets the overall rate of intrinsic plasticity, it

is routine to confirm Triesch’s results (Triesch, 2007),

∂D
∂α

= −
〈

α−1 + x [1 − 2 r(x)]
〉

X
+ µ̂−1 〈x r(x) [1 − r(x)]〉X , (2.6)

∂D
∂β

= −〈1 − 2 r(x)〉X + µ̂−1 〈r(x) [1 − r(x)]〉X , (2.7)

where 〈〉X denotes an average over the distribution of the total input x. For

an online or stochastic learning rule, this averaging may be discarded provided

that εip is small enough. In Eqs. (2.6) and (2.7) we have kept the contri-

butions from
∫

drfR(r) loge fR(r) (the first term on the right hand sides) and

∫

drfR(r) loge gR(r) (the second term on the right hand sides) separate for clar-

ity as we will consider a non-exponential target output firing rate PDF gR(r)

later. Similar expressions for the adaptation of the parameters γ and θ may

also be obtained either by directly recomputing ∂D/∂γ and ∂D/∂θ or much
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more simply by using the chain rule. We obtain

dγ

dt
≡ −εip

∂D
∂γ

= 4

(

dα

dt
− θ

dβ

dt

)

, (2.8)

dθ

dt
≡ −εip

∂D
∂θ

= −4 γ
dβ

dt
. (2.9)

Finally, Hebbian synaptic plasticity is implemented in the standard way,

by writing

dv

dt
= εsp Pv [a r(v · a)] , (2.10)

with the strength vector normalised on the unit hypersphere v · v = 1. The

projection matrix Pv = I − v vT, with I being the n × n identity matrix and

a superscript T denoting the transpose, implements multiplicative synaptic

normalisation by projecting any growth of the strength vector off this hyper-

sphere radially back onto it. When the synaptic plasticity learning rate εsp is

small enough so that large fluctuations are suppressed, Eq. (2.10) may safely

be replaced by

dv

dt
= εsp Pv 〈a r(v · a)〉A , (2.11)

where 〈〉A denotes an average over the multivariate PDF fA(a) defining the

n inputs’ joint activity patterns. The final, stable strength vector is then a

solution of Pv 〈a r(v · a)〉A = 0 (0 being the zero vector) when the output

response parameters γ and θ have stabilised, i.e. when dγ/dt and dθ/dt are

also (on average) zero.
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2.2 Sparse, Exponential Firing Finds Super-Gaussian

Sources

By considering the limit in which intrinsic plasticity is much faster than synap-

tic plasticity, or εip ≪ εsp, Triesch argues that the distribution of r(x) ≡ r(v·a)

will reach, or be as close as possible to, the target exponential distribution

gR(r) = µ̂−1 exp(−r/µ̂) before synaptic strengths can change significantly. If

the output firing rate is sparse, achieved by setting µ̂ ≪ 1, then 〈a r(v · a)〉A

will be dominated by those inputs that generate the largest responses r(x).

Such responses will arise for the input distributions with the heaviest tails

and thus we might expect that the combination of synaptic and intrinsic plas-

ticity will lead to the strength vector v converging on one of these inputs.

Triesch supports this argument in simulation, with µ̂ = 1/10, by considering

two independent inputs, one drawn from a Laplace distribution and the other

from a uniform distribution, and showing that his algorithm converges on the

Laplace input (Triesch, 2007). Similar results are in fact observed regardless

of the size of εip relative to εsp (Triesch, 2007). We shall explain this insen-

sitivity to the relative scales of εip and εsp in Section 3. This convergence to

the Laplace input generalises to the case in which the inputs are generated by

mixing sources s1, . . . , sn via an orthogonal mixing matrix M (with M
T
M = I),

so that a = Ms, where s is the vector of sources. In this case, the strength

vector converges on a row of M
−1, which is just the same as a column of M for

orthogonal M. The total input x = v ·a = vT
Ms then corresponds to precisely
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one source, so that the algorithm converges on the Laplace source when the

other sources are uniformly-distributed. With this understood, we will restrict

for simplicity to the unmixed case M = I in the following.

Does Triesch’s algorithm converge on the heaviest-tailed distribution specif-

ically, as competitive dynamics under synaptic normalisation may lead us to

suspect, or on any heavy-tailed distribution amongst the inputs more gener-

ally? The standard measure of the heaviness of a distribution’s tails is its

(excess) kurtosis or fourth order cumulant. A Laplace distribution has kurto-

sis 3 (so super-Gaussian) while a uniform distribution has kurtosis −6/5 (so

sub-Gaussian). A logistic or sech-squared distribution is also super-Gaussian,

but has a smaller kurtosis of +6/5 compared to the Laplace distribution’s kur-

tosis of 3. When we implement Triesch’s algorithm in the presence of these

two distinct super-Gaussian input distributions, we find that it converges on

either one of these inputs and not exclusively on the Laplace input with the

heavier tail (Fig. 1A–D), although the basin of attraction around the logis-

tic input is smaller than that around the Laplace input. Furthermore, if we

consider two differing sub-Gaussian inputs, say the uniform distribution and a

binary-valued distribution taking only the values of ±1 with probabilities 1/2,

which has the smallest possible value of −2 for its kurtosis,3 then we find that

3In order to avoid binary-valued inputs, we could consider two narrow Gaus-

sians centred around −1 and +1, suitably scaled and normalised to obtain

precisely unit variance, and then draw from one or other of these Gaussians
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Triesch’s algorithm converges on neither of these input channels (Fig. 1E–F).

Of course, sub-Gaussian inputs would not conventionally be regarded as heavy-

tailed, but differing sub-Gaussian inputs will have tails of differing heavinesses

and the heaviest-tailed inputs should induce the largest neuronal responses at

their extremes. Moreover, we might expect that a neuron’s gain should com-

pensate for tail heaviness, especially for fixed input mean and variance, by

adjusting the neuron’s dynamic range to the range of its input distribution so

that a more heavily-tailed distribution would induce a smaller gain, while a less

heavily-tailed distribution would induce a larger gain (cf. Kvale and Schreiner,

2004). These observations suggest that Triesch’s algorithm is not finding the

heaviest-tailed distributions in the inputs, as the exponentially-distributed out-

put firing rate argument might suggest, but rather is finding any specifically

super-Gaussian distribution in the inputs in general.

FIGURE 1 ABOUT HERE

It is worth noting here for later reference that the final values of the response

parameters γ and θ, shown in Fig. 1, are relatively insensitive to the precise

structure of the input statistics, i.e. the final values are all similar, regardless

of whether the algorithm converges on a Laplace input or a logistic input, or

indeed does not converge on a single input channel at all. Indeed, we see that

the final values are largely established before the strength vector begins to

converge on its final direction. As the strength vector converges on its final

equiprobably, but the result would be identical.
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direction, there are some changes in the response parameters, but the changes

are relatively small. Since the inputs are centred and whitened, their common

means and variances are zero and unity, respectively. These identical lowest-

order input statistics explain in part the relative insensitivity of γ and θ to

the input statistics. However, we also see from Eqs. (2.6) and (2.7) that the

evolution of α and β (and therefore γ and θ) is governed by both input and

output firing rates. In fact, the evolution of β is governed only by output firing

rates. Only the evolution of α has a contributing term that depends directly on

the input firing rate without accompanying, multiplying factors of the output

firing rate. Thus, the exponential output firing rate distribution with a fixed,

target mean must also contribute in part to the relative insensitivity of γ and

θ to the input statistics. Specifically, the choice of the target output mean µ̂

will certainly strongly influence the final value of the threshold θ.

2.3 Relaxing the Requirement for an Exponential Firing

Rate Distribution

To what extent does Triesch’s algorithm require that the intrinsic plasticity

mechanism generates an exponentially-distributed output firing rate distribu-

tion quite specifically as opposed merely to sparse output firing more generally?

To address this question, we now consider a non-exponential form for gR(r)

but one that nevertheless encodes the requirement for sparseness of the output

firing rate (cf. Franco et al., 2007; Lehky et al., 2011). Perhaps the simplest
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choice for gR(r) to achieve sparseness is

gR(r) =















g0 for 0 ≤ r < θ̂

g1 for θ̂ < r ≤ 1

, (2.12)

where θ̂ ∈ (0, 1) is a threshold that determines the transition point between

a higher likelihood, g0, for smaller r and a lower likelihood, g1, for larger r.

Normalising the PDF and setting its mean to µ̂ require that g0 and g1 are given

by

g0 = 1 +
1 − 2µ̂

θ̂
, (2.13)

g1 = 1 − 1 − 2µ̂

1 − θ̂
. (2.14)

The condition that g0 > g1 translates into µ̂ < 1/2, which is intuitive, while the

condition that g1 > 0 translates into θ̂ < 2µ̂. This latter condition can be satis-

fied simply by setting θ̂ = µ̂ and simultaneously removing a degree of freedom.

Although perhaps the simplest choice for gR(r), the hard threshold creates

difficulties in deriving ∂D/dα and ∂D/∂β. To derive ∂D/dα and ∂D/∂β we

therefore replace the step function with a sharp sigmoidal non-linearity,

gR(r) =
g1 + g0

2
− g0 − g1

2
tanh

[

2γ̂

g0 − g1

(

r − θ̂
)

]

, (2.15)

where γ̂ sets the sharpness of the transition around r = θ̂. Normalisation and

setting the mean of this distribution to µ̂ requires solving horribly implicit,

transcendental equations to obtain g0 and g1. However, for γ̂ ≫ 1 the solutions

in Eqs. (2.13) and (2.14) provide extremely good approximations that serve us

very well. Re-deriving the equations for α and β for this different choice of
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gR(r), we obtain

∂D
∂α

= −
〈

α−1 + x [1 − 2 r(x)]
〉

X

+

〈

x r(x) [1 − r(x)] γ̂ sech2

{

2γ̂

g0 − g1

[

r(x) − θ̂
]

}〉

X

, (2.16)

∂D
∂β

= −〈1 − 2 r(x)〉X

+

〈

r(x) [1 − r(x)] γ̂ sech2

{

2γ̂

g0 − g1

[

r(x) − θ̂
]

}〉

X

. (2.17)

Comparing these to Eqs. (2.6) and (2.7), the second terms on the right hand

sides of Eqs. (2.16) and (2.17) have each acquired an additional factor that

essentially acts like a Dirac delta function for γ̂ ≫ 1.

Implementing this modified form of Triesch’s algorithm, we find virtually

identical results to those discussed or obtained above with an exponentially-

distributed gR(r) (Fig. 2). The exponentially-distributed output firing rate is

therefore irrelevant to the precise details of these results, suggesting that sparse

output firing is much more important than the precise shape of the output firing

rate distribution for higher firing rates. We remark that for the conservative

choice of γ̂ = 10 used to generate Fig. 2, g0 and g1 cannot strictly be set

according to Eqs. (2.13) and (2.14), because this leads to a poorly normalised

target PDF in Eq. (2.15).4 Nevertheless, we see from Fig. 2C that the final

output PDF (which is necessarily normalised correctly because the multivariate

input PDF is correctly normalised) is in fact closer to the preferred, step PDF in

4We note in passing that Triesch’s choice gR(r) = µ̂−1 exp(−r/µ̂) is itself

not correctly normalised on the actual output interval r ∈ (0, 1), although the

error is small for µ̂ ≪ 1.
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Eq. (2.12) than to the more tractable, target PDF in Eq. (2.15). Regardless of

these details, the final output firing rate PDF, however it has been acquired, is

sparse but distinctly non-exponentially distributed, and this is all we require to

establish the irrelevance of a specifically exponentially-distributed output firing

rate distribution to the performance of Triesch’s model of intrinsic plasticity.

FIGURE 2 ABOUT HERE

2.4 Relaxing the Sparseness Requirement

To what extent, then, is sparseness, achieved by setting the desired mean

output firing rate to µ̂ = 1/10, critical to these results? Reverting back for

simplicity to the exponential form gR(r) = µ̂−1 exp(−r/µ̂) but instead setting

µ̂ = 1/2 to move the output neuron away from a sparse firing regime, we

find essentially opposite results to those above (Fig. 3). Now, super-Gaussian

inputs (or sources) are never found. Instead the algorithm only converges on

any one of the sub-Gaussian inputs (or sources) that may be present; when

sub-Gaussian inputs are not present, the algorithm does not converge on any

single input channel. Again, we note that although the final values of the

response parameters γ and θ differ from those obtained in the sparse coding

regime with µ̂ = 1/10 in Fig. 1, with µ̂ = 1/2 in Fig. 3 they are still relatively

insensitive to which of the sub-Gaussian inputs the algorithm converges or to

whether it converges to any single input channel at all. Their final values

are still, in this non-sparse regime, close to those established even before the
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strength vector has begun to converge on its final direction. Again, this is due

at least in part to the use of centred, whitened inputs.

FIGURE 3 ABOUT HERE

In order to examine the dependence of the final values of γ and θ on the

target output mean firing rate µ̂, we use Eqs. (2.8) and (2.9) to find the fixed

point locations for γ and θ for a given specification of the distribution fX(x)

and choice of µ̂. When the strength vector has converged on an input, the

distribution of the total input x to the neuron is precisely the distribution of

the input (or source) on which the strength vector has converged. We con-

sider two cases, one with a Laplace input and the other with a binary-valued

input, because the corresponding distributions are very different in terms of

their higher-order statistical structure, one being super-Gaussian and the other

being sub-Gaussian. For the Laplace input, we numerically evaluate the in-

tegrals over its PDF and then numerically find the fixed point locations for

dγ/dt = 0 and dθ/dt = 0 for different mean output firing rates µ̂ ∈ (0, 1). For

the binary-valued input, the integrals over its PDF collapse and we find that

the fixed point locations are the solutions of the two equations

µ̂ cosh[4γ(1 − θ)] − 4γµ̂ sinh[4γ(1 − θ)] = −µ̂ + 2γ, (2.18)

µ̂ cosh[4γ(1 + θ)] − 4γµ̂ sinh[4γ(1 + θ)] = −µ̂ − 2γ. (2.19)

Although we may obtain explicit solutions for θ in terms of γ, the resulting

equations in γ are transcendental and must be solved numerically. The fixed

point locations for γ and θ for these two forms of input statistics are shown
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in Fig. 4. We see that the corresponding solutions for the gain γ and the

corresponding solutions for the threshold θ for each form of input are very

similar, despite the inputs’ statistics being radically different in terms of the

higher-order statistical structure to which standard ICA algorithms are typi-

cally exquisitely sensitive. The fixed point locations are therefore at least in

part determined by the mean output firing rate µ̂, although the use of non-

zero-mean and non-whitened inputs would of course also affect their locations.

For smaller (sparser) values of µ̂, the thresholds are higher and the gains are

lower, while for larger (less sparse) values of µ̂, the thresholds are lower and

the gains are higher. Although the variations in the thresholds as a function

of µ̂ are quite large, those in the gains are quite small.

FIGURE 4 ABOUT HERE

3 Maintaining a Neuron’s Operating Point by

Adapting to Synaptic Strength Changes

Above, we examined Triesch’s model of intrinsic plasticity working in concert

with synaptic plasticity (Triesch, 2007). Although Triesch reported that his

model acts as a heavy-tailed distribution detector, based on the exponentially-

distributed output firing rate argument, we saw that the exponential output

distribution is, as a matter of fact, irrelevant to his results. Rather, sparseness

of output firing appears to be the critical property, and that instead of finding

the heaviest-tailed inputs from a set of inputs in the sparse firing regime, the

22



model actually finds any super-Gaussian input. When we then relaxed the

sparse firing requirement by increasing the mean output firing rate, we also

found that the model switches to a regime in which it finds sub-Gaussian

rather than super-Gaussian inputs. Finally, we observed that the fixed point

values of the response parameters γ and θ are relatively insensitive to the input

distribution. This is due in part to the use of standard, ICA-like inputs (i.e.

centred and whitened), but also because Triesch’s algorithm adapts γ and θ to

achieve a target output firing rate distribution with a given, specified mean µ̂,

and thus defined output firing rate statistics. By adopting a somewhat different

perspective, we now shed further light on these results and in the process show

that Triesch’s model of intrinsic plasticity is itself, somewhat ironically, entirely

irrelevant to almost all these results. Almost all these results are a direct

consequence of a non-linear response function, r(x), as the partitioning of the

dynamics into sub- and super-Gaussian-input-finding, with its suggestion of

ICA, might lead us to suspect.

3.1 Adapting θ and γ to the Statistics of a Neuron’s

Total Input

Consider a scenario in which a neuron is forced into a sparse firing regime

but receives only sub-Gaussian inputs, as in Fig. 1E, or contrariwise is forced

into a non-sparse firing regime but receives only super-Gaussian inputs, as in

Fig. 3E. In these cases, the strength vector will not converge on any one of
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its input channels. The neuron then discovers nothing about the regularities

in its environment precisely because it has adapted its output statistics in a

manner that largely ignores its input statistics. One of the major features of

sensory neurons, however, is that they adapt to their input statistics, changing

their thresholds and gains dynamically and rapidly as their input statistics

change (Barlow and Mollon, 1982; Shapley and Enroth-Cugell, 1984; Meister

and Berry, 1999; Kvale and Schreiner, 2004; Zaghloul et al., 2005; Bonin et al.,

2006; Dean et al., 2008).

In previous work, we proposed a phenomenological adaptation principle

that allows a neuron to maintain an (approximately) invariant output firing

rate PDF in the face of changing input statistics (Elliott et al., 2008). We

called this invariant output firing rate PDF the neuron’s “operating point”.

For total input x with mean µ and variance σ2, we showed that for a wide range

of simple input PDFs, if a neuron has response function r(x) with threshold

θ and gain γ as in Eq. (2.2) [or in fact any similarly parametrised response

function depending only on the particular combination γ(x− θ)], then setting

θ = µ + Θ σ, (3.1)

γ = Γ/σ, (3.2)

will leave the neuron’s output firing PDF invariant. The parameters Γ and

Θ are constants intrinsic to the neuron that determine the neuron’s preferred

operating point. For more general input statistics, these rules will result in

only approximate invariance, but we suggested that real neurons, in the face
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of intrinsic noise and stochasticity, may not need to maintain precise invariance

and that these rules may be good enough for most practical purposes (Elliott

et al., 2008).

In that work, we only considered adaptation to changes in the inputs’ statis-

tics encoded in the multivariate PDF fA(a), i.e. we essentially ignored the

synaptic strengths. This is because adaptation occurs on a time-scale much

faster than synaptic plasticity and we were concerned only with a model of

adaptation to changes in sensory input. The total input x = v ·a that the neu-

ron receives, however, corresponds to these sensory inputs a filtered through

the synaptic strengths v, and changes in synaptic strengths will of course also

modify the statistics of the total input x. We therefore propose as an alter-

native model of intrinsic plasticity that a neuron should set its threshold and

gain according to Eqs. (3.1) and (3.2) where µ and σ change not only as input

statistics change but also as synaptic strengths change. If the input statistics

are fixed, then changes in µ and σ will directly reflect changes in synaptic

strengths, and the neuron will adapt its response function to maintain an (ap-

proximately) invariant output PDF in the face of changes in synaptic strength

induced by ongoing synaptic plasticity.

Ironically, for whitened and centred inputs with synaptic strengths nor-

malised on the unit hypersphere v ·v = 1, with adaptation occurring essentially

instantaneously compared to the much slower changes in synaptic strengths, µ

and σ are independent of the synaptic strengths:

µ ≡ 〈v · a〉A = v · 〈a〉A ≡ 0, (3.3)
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and

σ2 ≡
〈

vT
(

aaT − µ2
I
)

v
〉

A

= vT
〈(

aaT − µ2
I
)〉

A
v

= vT
C v ≡ 1, (3.4)

since the covariance matrix C ≡ I for whitened inputs. Centring and whitening

therefore fix the very first and second order input statistics of the total input

x to which we propose that a neuron should adapt. Be that as it may, we are

forced to consider this white scenario if we are to shed further light on the

analysis in Section 2, because the inputs used in that case are zero-mean and

white. In Section 4, we will consider a standard problem in which centring

and whitening of the inputs is not performed, so that adaptation to synaptic

strength changes does occur. Such inputs are biologically much more realistic

than the standard, ICA-like, centred and whitened inputs, so our analysis in

Section 4 also permits us to consider these more realistic scenarios.

Although µ ≡ 0 and σ ≡ 1 for whitened inputs, the neuron must neverthe-

less maintain running estimates of µ and σ in order to set θ and γ appropriately

according to Eqs. (3.1) and (3.2). Defining the quadruple (µ, σ; Θ, Γ), which

reflects both the relevant total input statistics and the neuron’s preferred op-

erating point, it is easy to see that there is an equivalence, in terms of the

induced values of θ and µ, between different sets of quadruples:

(µ′, σ′; Θ′, Γ′) ←→
(

µ, σ;
µ′ − µ

σ
+

σ′

σ
Θ′,

σ

σ′
Γ′

)

. (3.5)

So, if the estimated total input mean µ′ and standard deviation σ′ at an oper-
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ating point defined by Θ′ and Γ′ are shifted over time to the actual total input

mean µ and standard deviation σ, then the neuron’s response function r(x)

would be unchanged if the neuron’s preferred operating point is also shifted

over time from Θ′ and Γ′ to Θ = µ′
−µ
σ

+ σ′

σ
Θ′ and Γ = σ

σ′
Γ′. If the response

function is unchanged, then of course the fixed points of the synaptic strength

vector under the synaptic plasticity rule in Eq. (2.11) would also be unchanged.

For whitened and centred inputs, we may therefore also ignore the processes

by which the neuron estimates µ and σ and simply examine the fixed point

structure induced by the synaptic plasticity rule in Eq. (2.11), for µ = 0 and

σ = 1, as a function of the operating point parameters Θ and Γ. In this white

case, we have simply γ = Γ and θ = Θ, so that

r(x) =
1

2
[1 + tanh 2Γ(x − Θ)] . (3.6)

In this section, it thus suffices to examine the dependence of the synaptic

strength vector’s fixed point locations and stabilities on this fixed response

non-linearity as a function of the operating point parameters Θ and Γ. This

analysis of course carries over to Triesch’s model with γ = Γ and θ = Θ but

with intrinsic plasticity switched off.

3.2 Super- and Sub-Gaussian Source Directions are

Stable and Unstable, Respectively, for Large |Θ|

For white and independent inputs, so that fA(a) =
∏n

i=1 fAi
(ai) where fAi

(ai)

is the PDF of input i, a simple and standard calculation shows that the n
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strength vectors v = ei, i = 1, . . . n, where the jth component of ei is δij

(the Kronecker delta function), are all fixed points of Eq. (2.11).5 This result

holds for any response function r(x), not just the sigmoidal response function

in Eq. (3.6). If the inputs are generated by orthogonally mixing independent

sources, then the fixed points are just the n columns of M. Again, we consider

only the M = I case for simplicity. To determine the stabilities of these fixed

points, we linearise Eq. (2.11) in perturbations around them as usual and find

that v = ei is linearly stable if

〈r′(ai) − ai r(ai)〉Ai
< 0, (3.7)

where r′(x) denotes the derivative of r(x) with respect to its argument, and

again this result is valid for any form of r(x). Of course, this is a classic result

in ICA (Hyvärinen et al., 2001). At these fixed points, the total input x is

precisely ai for some i ∈ {1, . . . , n} and fX(x) is precisely fA(ai). For notational

simplicity, in order to avoid having to specify input i, we will therefore consider

the quantity 〈r′(x) − x r(x)〉X with the understanding that x and X refer to

some particular input and its corresponding distribution. Since

r′(x) − x r(x) = e+x2/2 d

dx

[

e−x2/2 r(x)
]

, (3.8)

5There are also a further n, sign-reversed fixed points, v = −ei, i = 1, . . . n,

but we ignore this redundancy.
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if X has support on the whole real line R, then

〈r′(x) − x r(x)〉X = +

∫ +∞

−∞

dxfX(x)e+x2/2 d

dx

[

e−x2/2 r(x)
]

= −
∫ +∞

−∞

dx r(x)e−x2/2 d

dx

[

e+x2/2fX(x)
]

. (3.9)

In particular, if X is Gaussian, then fX(x) = exp(−x2/2)/
√

2π and Eq. (3.9)

vanishes identically. Again, this is a classic result in ICA: the Gaussian dis-

tribution partitions the space of input (or source) distributions into sub- and

super-Gaussian distributions (Hyvärinen et al., 2001).

Our task, then, is to examine the dependence of the sign of the quantity

〈r′(x) − x r(x)〉X for the particular choice of r(x) in Eq. (3.6) on the operating

point parameters Θ and Γ (or, equivalently, on θ and γ). We write ∆X(Γ, Θ) =

〈r′(x) − x r(x)〉X for ease of reference. The constant term 1/2 in r(x) can be

ignored because it drops out of ∆X(Γ, Θ) due to the vanishing of its derivative

and the centring of the input. Because the distribution fX(x) for ICA-like

inputs is usually assumed to be symmetric around x = 0 (so that all odd-

order moments vanish), and since tanh is anti-symmetric, we in fact need only

consider Θ ∈ [0,∞):

∆X(Γ, +Θ) =
1

2

∫ +∞

−∞

dxfX(x)e+x2/2 d

dx

{

e−x2/2 tanh [2Γ(x − Θ)]
}

=
1

2

∫ +∞

−∞

dxfX(x)e+x2/2 d

dx

{

e−x2/2 tanh [2Γ(x + Θ)]
}

,

≡ ∆X(Γ,−Θ), (3.10)

where the second line follows from the change of variable x → −x. The fixed

points therefore have the same stabilities for either +Θ or −Θ.
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The simplest scenario to consider is when the input is binary-valued, corre-

sponding to a sub-Gaussian input, and has the advantage of being analytically

completely tractable. The details may be found in Appendix A. For Θ around

zero, this sub-Gaussian source is stable, while for Θ large enough, it is unsta-

ble. For any given value of Γ, we denote the solutions of ∆X(Θ, Γ) = 0, at

which transitions in source stability in the Θ–Γ plane occur, as Θ0(Γ). In the

limit Γ → ∞, we find that for the positive solution, Θ0(Γ) → 1, as shown in

Appendix A. Fig. 5 illustrates these results by explicitly plotting ∆X(Γ, Θ)

against Θ for selected values of Γ (Fig. 5A) and showing the region in the

relevant part of the Θ–Γ plane in which this binary-valued, sub-Gaussian in-

put is stable (Fig. 5B, shaded region). As Γ increases from zero, the interval

around Θ = 0 in which the input is stable initially decreases before increasing

somewhat and then asymptoting to unity.

FIGURE 5 ABOUT HERE

For other input distributions, we must typically resort to numerical meth-

ods to obtain the solutions of ∆X(Θ, Γ) = 0. For “simple” input distributions,

such as the Laplace, sech-squared or uniform distributions considered above,

the qualitative features of the results for the binary-valued distribution carry

over directly, except that the stabilities of sub- and super-Gaussian inputs are

reversed in the Θ–Γ plane (Fig. 6). In particular, simple super-Gaussian inputs

are unstable for Θ around zero and stable for large Θ, while this is reversed for

simple sub-Gaussian inputs. We also see from Fig. 6 that as Γ becomes large,
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Θ0(Γ) always asymptotes to a constant value. For the binary-valued distribu-

tion, this value is unity. This asymptotic behaviour is not difficult to under-

stand; the details may be found in Appendix B. Writing limΓ→∞ Θ0(Γ) = Θ∗

0,

for the Laplace, logistic and uniform distributions, we find that Θ∗

0 = 1/
√

2,

Θ∗

0 ≈ 0.9321 and Θ∗

0 = 1, respectively, in agreement with the asymptotic

behaviours observed in Fig. 6.

FIGURE 6 ABOUT HERE

Although we shall see that the trends in the stabilities of simple sub- and

super-Gaussian inputs around Θ = 0 are not generic, the trends for large Θ

are generic. That is, any super-Gaussian (respectively, sub-Gaussian) input,

for Θ large enough, is stable (respectively, unstable). We provide the details

of the proof of this result in Appendix C. The key step is to view r(x) on a

large enough scale so that it may be approximated as a step function. We find

that the stability of a source direction is then dominated by the kurtosis of

the source’s distribution, with super-Gaussian sources (with positive kurtosis)

being stable and sub-Gaussian sources (with negative kurtosis) being unstable.

3.3 Source Stability for Θ Near Zero is Highly

Idiosyncratic and Distribution-Dependent

In contrast to the behaviour of ∆X(Θ, Γ) for large Θ, its behaviour for Θ

around zero observed above for simple distributions is not generic. We can see

this by explicitly constructing some rather more complicated sub- and super-
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Gaussian input distributions. Writing fL(x) = exp(
√

2 |x|)/
√

2 and fG(x) =

exp (−x2/2) /
√

2π for the Laplace and Gaussian distributions, respectively, we

may, for example, consider the PDFs

f+(x) =
1

3
σ+ [fL(σ+x − 1) + fL(σ+x) + fL(σ+x + 1)] , (3.11)

f−(x) =
1

4
σ− [fG(σ−x − 6) + fG(σ−x − 2)

+ fG(σ−x + 2) + fG(σ−x + 6)] , (3.12)

where σ+ =
√

5/3 and σ− =
√

21 ensure that these distributions are nor-

malised correctly, to unit integral, zero mean and unit variance. The PDF

f+(x) corresponds to a super-Gaussian distribution with kurtosis 21/25, while

f−(x) corresponds to a sub-Gaussian distribution with kurtosis −544/441. For

these two distributions, Fig. 7 shows graphs of ∆X(Θ, Γ) as a function of Θ

for particular choices of Γ, and also shows the solutions of ∆X(Θ, Γ) = 0 in

the Θ–Γ plane. Although the tendency for super-Gaussian (respectively, sub-

Gaussian) inputs to be unstable (respectively, stable) in the vicinity of Θ = 0 is

still observed, the dynamics are now interrupted by “oscillations” of reversing

stability for larger values of Γ. We can obtain essentially as many such oscilla-

tions as we please by considering sufficiently complicated input distributions.

For the particular choices of distributions used in Fig. 7, the behaviour at pre-

cisely Θ = 0 does respect that observed for simpler distributions. However,

even this is not generic: we can write down super-Gaussian distributions that

are stable at Θ = 0 and sub-Gaussian distributions that are unstable there. As

Γ increases, the solutions in Θ of ∆X(Θ, Γ) = 0 undergo bifurcations, giving
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rise to new pairs of solutions. If a single pair is created, then this pair must

straddle Θ = 0 since solutions for Θ must occur in ±Θ pairs.6 Such a new

solution pair will change the stability of the input at Θ = 0 at the correspond-

ing critical value of Γ at which the new pair arose. By the same argument,

however, if an even number of pairs is created, then the stability of the input

at Θ = 0 will not change. This reasoning explains why the stability of the

input at Θ = 0 cannot be generic, in terms of being set entirely by the sign of

the input distribution’s kurtosis. Finally, for these more complicated distribu-

tions, the solutions Θ∗

0 for the limit Γ → ∞ will in general occur in multiple

pairs and not just a single pair. The number of such pairs for this limit will,

of course, give the number of bifurcations in the solutions as Γ increases from

zero. For f+(x), these solutions are ±0.1355, ±0.5525 and ±1.2780, while for

f−(x), they are ±0.3452, ±0.5767 and ±1.0955, agreeing with Fig. 7.

FIGURE 7 ABOUT HERE

For Γ large enough, for two inputs with distributions governed by the PDFs

in Eqs. (3.11) and (3.12), the values of Θ∗

0 enumerated above reveal intervals

in Θ in which both inputs are simultaneously stable despite being super- and

sub-Gaussian inputs, and intervals in which neither input is stable. Consider

starting at large Θ and slowly dialling it down towards zero. For Θ > 1.2780

the super-Gaussian input is stable and the sub-Gaussian input in unstable.

6If an odd number of pairs is created, then one of the pairs must straddle

zero.
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For 1.0955 < Θ < 1.2780 neither input is stable, the super-Gaussian input

having turned unstable at the upper value while the sub-Gaussian input will

become stable only at the lower value. For 0.5767 < Θ < 1.0955, the sub-

Gaussian input is stable while the super-Gaussian input remains unstable.

For 0.5525 < Θ < 0.5767, again neither input is stable, the sub-Gaussian

input having become unstable at the upper limit while the super-Gaussian

input has yet to become stable again. For 0.5525 < Θ < 0.3452, the super-

Gaussian input is stable again while the sub-Gaussian input remains unstable.

For 0.1355 < Θ < 0.3452, both inputs are simultaneously stable. Finally,

for 0 ≤ Θ < 0.1355, only the sub-Gaussian input is stable. Such complexity

is not unique to the large Γ regime (compare Fig. 7B and Fig. 7D for, say,

Γ = 4), nor is it particular to these more complicated distributions. For

example, focusing on the lines corresponding to ∆X(Θ, Γ) = 0 for the Laplace

and uniform distributions in Fig. 6D, we can see that for Γ / 0.9, there is an

interval in Θ in which neither input is stable, while for Γ ' 0.9, there is an

interval in Θ in which both inputs are stable.

It is instructive to examine how the basins of attraction around fixed points

change as we approach a regime in which, say, both a Laplace and a uniform

input are stable. Picking the line Γ = 2 in Fig. 6D, we find that the uniform

input becomes stable at Θ ≈ 0.9769 while the Laplace input becomes unstable

at Θ ≈ 0.7783. Writing v = (cos φ, sin φ)T for n = 2 inputs, the Hebbian
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learning rule in Eq. (2.11) becomes

dφ

dt
= εsp 〈(−a1 sin φ + a2 cos φ) r (a1 cos φ + a2 sin φ)〉A , (3.13)

where, say, i = 1 corresponds to the Laplace input and i = 2 to the uniform

input; the angle φ is the angle between the strength vector and the Laplace

input. The basins of attraction around the two inputs’ fixed points at φ = 0

and φ = π/2 (ignoring the other, sign-reversed fixed points) can be easily

visualised by plotting dφ/dt as a function of φ, as shown in Fig. 8. At Θ = 1,

the Laplace input is stable and the strength vector will converge on it from

any initial direction (except from precisely φ = π/2 for the averaged rule).

However, incipient bifurcations are apparent, as can be seen by comparing the

Θ = 1 curve in Fig. 8A to the Θ = 1.5 curve in Fig. 8B, this latter being shown

as a reference point well away from any critical behaviour. At Θ = 0.98, these

bifurcations have already occurred, leading to the creation of new, stable fixed

points not associated with the two inputs. At these bifurcations, the basin

of attraction of the Laplace input suddenly collapses, reducing in size to a

relatively small angular range in synaptic strength space. As Θ passes through

Θ ≈ 0.9769, the uniform input becomes stable. At Θ = 0.97, the fixed points

not associated with either of the two inputs are still present, but by Θ = 0.95,

they have disappeared, leaving only the stable fixed points associated with the

inputs. Thus, over a rather small interval of Θ, the uniform input becomes

stable while simultaneously the Laplace input, although remaining stable, loses

a large angular range of its basin of attraction. Given a random starting
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direction in synaptic strength space, the stable uniform input is therefore much

easier to find than the stable Laplace input, in this parameter range.

FIGURE 8 ABOUT HERE

3.4 Stabilising a Single Gaussian Source Direction

As mentioned earlier, ∆X(Γ, Θ) vanishes identically for a Gaussian input in

virtue of Eq. (3.9). This classic result in ICA owes its origin to the whiten-

ing of the inputs, because the whitened multivariate Gaussian distribution is

spherically symmetric and thus there is no possibility for the Hebbian learning

rule in Eq. (2.11) to break the symmetry between the inputs and converge

on any single one of them. Indeed, any direction in synaptic strength space

could in principle correspond to an input direction. Even if a single input is

Gaussian with all other inputs being non-Gaussian, the Gaussian input would

typically drop out entirely from a standard ICA learning rule. For example,

under the maximisation of kurtosis or the maximisation of negentropy with

a cubic non-linearity as an approximation to negentropy (Hyvärinen et al.,

2001), the average learning rule may be written as

dv

dt
= εsp k Pv

n
∑

i=1

κi (v · mi)
3
mi, (3.14)

where the vectors mi, i = 1, . . . , n, are the n columns of the orthogonal mixing

matrix M, κi is the kurtosis of source i, and k = ±1 according to whether the

sources are super-Gaussian (+1) or sub-Gaussian (−1); Pv is again the projec-

tion operator implementing v · v = 1. If all sources are Gaussian, then dv/dt
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vanishes identically, but if a single source is Gaussian, then its contribution

to the right hand side of Eq. (3.14) drops out completely and v will never

converge on the corresponding column of M. Nevertheless, for the ICA rule

in Eq. (3.14), a single Gaussian source remains a fixed point of the dynamics

but is cubicly unstable. Only by reversing the sign of the learning rule and

destabilising all other non-Gaussian sources would it be possible to stabilise

the single Gaussian source.

This non-convergence of an ICA learning rule to a Gaussian input is not, in

fact, the case for Eq. (2.11) with the form of response function, r(x), considered

here. Although the stability of a Gaussian input is linearly indeterminate

because ∆X(Γ, Θ) ≡ 0, if we extend the stability analysis out to higher order,

then we find that a Gaussian input (or source, with orthogonal mixing) can be

a stable fixed point of the strength vector. Consider n = 2 inputs for simplicity

and again write v = (cos φ, sin φ)T, with the φ = 0 direction corresponding to

a Gaussian input and the orthogonal direction to some other, non-Gaussian

input. Expanding the right hand side of the Hebbian learning rule to cubic

order around φ = 0, we have that

〈(−a1 sin φ + a2 cos φ) r (a1 cos φ + a2 sin φ)〉A = ξ1φ +
1

3!
ξ3φ

3 + O(φ5), (3.15)

where

ξ1 =
〈

r′(a1) − a1r(a1)
〉

A1

, (3.16)

ξ3 =
〈

a1r(a1) + 3a2
1 r′(a1) − 4r′(a1) − 6a1r

′′(a1) + (3 + κ2) r′′′(a1)
〉

A1

,

(3.17)
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where κ2 is the kurtosis of the non-Gaussian input and 〈〉A1
means an average

over the Gaussian distribution of the i = 1 input. Of course, ξ1 ≡ 0, as

expected. Moreover, all the terms except the κ2 term reduce to zero in ξ3 over

a Gaussian average, and we are left with ξ3 = κ2 Ξ (Γ, Θ), where

Ξ (Γ, Θ) =
1√
2π

∫ +∞

−∞

dx r(x) x(x2 − 3) exp
(

−x2/2
)

. (3.18)

We again have a symmetry under a change in sign of Θ, so that Ξ (Γ, +Θ) =

Ξ (Γ,−Θ), and in the limit of large Γ, we have

lim
Γ→∞

Ξ (Γ, Θ) =
1√
2π

(

Θ2 − 1
)

exp
(

−Θ2/2
)

. (3.19)

The sign of Ξ (Γ, Θ) in conjunction with the sign of the other input’s kurtosis

determines the stability of the Gaussian input. In Fig. 9 we show the zero

contour of Ξ (Γ, Θ) in the Θ–Γ plane, dividing the plane into a region around

Θ = 0 in which Ξ (Γ, Θ) < 0 and its complement away from Θ = 0 in which

Ξ (Γ, Θ) > 0. We see this zero contour asymptoting to the line Θ = 1 in the

large Γ limit, consistent with Eq. (3.19). For Ξ (Γ, Θ) < 0, a super-Gaussian

input will stabilise the Gaussian input while a sub-Gaussian input will desta-

bilise it; and vice versa for Ξ (Γ, Θ) > 0. Roughly speaking, then, if Θ is large

enough, a super-Gaussian input will be stable but the Gaussian input will be

unstable, while if Θ is small enough, a simple super-Gaussian input may be

unstable but the Gaussian input will be stable. This may appear reminiscent

of the scenario described above in which the sign of the ICA learning rule

must be reversed in order to destabilise the non-Gaussian sources and sta-

bilise the otherwise cubicly-unstable Gaussian source. Here, roughly speaking,
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for the regime in which a super-Gaussian input is stable, a single Gaussian

source is unstable and vice versa; similarly for a sub-Gaussian input. The

key difference, however, is the existence of multistable regimes in which both

super- and sub-Gaussian inputs may be simultaneously stable, and the highly

distribution-dependent behaviour of the inputs’ stabilities in the vicinity of

Θ = 0. By comparing Fig. 9 to Figs. 6 and 7, we can see that there are regions

of parameter space in which, say, a super-Gaussian input and a Gaussian input

can be simultaneously stable.

FIGURE 9 ABOUT HERE

3.5 Understanding Coupled Intrinsic and Synaptic Plas-

ticity: Dynamics in the θ–γ Plane

We may now use our results in this section further to illuminate Triesch’s

model of intrinsic plasticity coupled to Hebbian synaptic plasticity. We may

summarise our analysis in this section by stating that for the sigmoidal re-

sponse non-linearity in Eq. (3.6), the directions in synaptic strength space cor-

responding to the inputs (or to the underlying sources for orthogonal mixing)

are always fixed points of the synaptic strength vector. This is in fact true for

any response non-linearity, because of the assumption of centred, whitened,

statistically-independent input distributions. However, the stabilities of the

inputs depend in a highly sensitive manner on the response non-linearity and

therefore, for our choice of r(x) in Eq. (3.6), on the operating point parameters
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Γ and Θ. Despite this sensitivity, we have proved one general property: for Θ

large enough, super-Gaussian inputs are stable while sub-Gaussian inputs are

unstable. For large, positive Θ, the response r(x) will be suppressed for all but

the largest inputs that can overcome the neuron’s large firing threshold. Large,

positive Θ therefore corresponds to a sparse firing regime. But, there is a sym-

metry between large, positive Θ and large, negative Θ. For large, negative Θ,

super-Gaussian inputs are also stable with sub-Gaussian inputs unstable. A

large, negative Θ essentially sets the firing threshold so low that the neuron

is hyper-excitable. Almost all inputs saturate its output, and only a few very

strongly negative inputs can pull the total input well below the neuron’s low

firing threshold and prevent it from firing strongly. We may refer to this fir-

ing scenario as an “anti-sparse” firing regime. Sparseness (or perhaps better,

hypo-excitability) in these approaches is therefore not a necessary condition for

the stability of super-Gaussian inputs: anti-sparseness, or hyper-excitability, is

also a possibility. Since γ → Γ and θ → Θ with white inputs, these conclusions

of course carry over directly to the neuron with gain γ and threshold θ in the

response function in Eq. (2.2). In Section 2, we showed that the exponential

output firing rate distribution is not critical to Triesch’s results. In this sec-

tion, we have therefore also shown en passant that sparseness of output firing

is not critical either. While this is a mathematical and not a biological state-

ment, we note that increased excitability in neurons is commonly observed, for

example as a result of homeostatic plasticity (Turrigiano and Nelson, 2004).

Furthermore, changes in the excitability of neurons are believed to underlie, in
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part, memory allocation processes (Silva et al., 2009). Increased excitability

does not necessarily correspond to hyper-excitability, of course. However, how

negative Θ must be in order to stabilise a super-Gaussian source via the hyper-

excitability discussed here will be highly distribution-dependent, and it may

not necessarily be so negative as to be biologically implausible as a scenario.

Nevertheless, hyper-excitability to the extent of almost always complete satu-

ration of a neuron’s output firing rate is implausible and constitutes a merely

mathematical solution without a corresponding biological reality.

How the neuron’s threshold θ and gain γ are set is essentially irrelevant: for

any given values of these response parameters, the stabilities of the inputs will

be uniquely determined by the response function r(x) and the input statistics.

Although Triesch uses an intrinsic plasticity mechanism, based on adapting the

output firing rate distribution to a sparse exponential distribution (enforcing

µ̂ ≪ 1), all this mechanism achieves is to move the threshold of the neuron to

a regime that is “large enough” in the above sense. Furthermore, for the white

and centred inputs scenario considered in this section, it is clear that identical

outcomes, in terms of finding stable synaptic strength vectors, would be ob-

tained whether or not intrinsic plasticity is operating. If a neuron possesses a

fixed threshold and a fixed gain corresponding to those final values that are

obtained by a neuron employing intrinsic plasticity, then the stabilities of the

former neuron’s inputs would be identical to those of the latter’s. This ex-

plains, furthermore, the insensitivity of Triesch’s results to the relative sizes of

εsp and εip.
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For εip ≫ εsp, the neuron moves very quickly to relatively final values of

θ and γ. Hebbian synaptic plasticity therefore operates in the presence of an

essentially fixed non-linearity, and the fixed points stabilities’ are set almost

immediately by this non-linearity. Any slight shifts in θ and γ that do occur

as the neuron focuses down on a single input are unlikely to move the neuron

out of the large θ, super-Gaussian-input-finding regime. For εip ∼ εsp, the

response non-linearity drifts as the synaptic strengths change. However, the

locations of the fixed points never change despite this drifting non-linearity,

because of the assumption of whitened, independent inputs. In this regime, it

is likely that the strength vector and the response parameters will converge to

their final states roughly simultaneously. The scenario in which εip ≪ εsp is,

however, much more interesting, from a dynamical point of view. Here, the

synaptic strength vector will be able to converge to stable fixed points before

the response non-linearity changes much. Therefore, the Hebbian learning rule

merely serves to provide a read-out of the stable fixed points as the response

non-linearity slowly adapts. In this case, although the final outcome will still

be identical to the εip ≫ εsp and εip ∼ εsp cases in terms of the final stabilities

of the inputs, the intermediate dynamics could see the synaptic strength vector

jumping rapidly between different sets of inputs as the inputs’ stabilities change

because of slowly changing θ and γ. In particular, the strength vector could

jump between sub- and super-Gaussian inputs as θ moves from a small θ regime

to a large θ regime even when parameter regimes do not exist in which sub-

and super-Gaussian inputs are simultaneously stable.
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4 Földiák Bars

In the previous section, we essentially considered how the operating point pa-

rameters Γ and Θ (or equivalently γ and θ for fixed first and second order total

input statistics µ and σ2) in the fixed response non-linearity in Eq. (3.6) affect

the stabilities of the fixed points corresponding to the neuron’s inputs. Unsur-

prisingly, such a neuron performs ICA in the presence of centred, whitened and

statistically-independent inputs (or sources), but its operating point parame-

ters critically determine the stabilities of sub- and super-Gaussian inputs in a

manner that is highly sensitive to the details of the inputs’ distributions. The

assumption of centred and whitened inputs under a synaptic strength vector

normalised on the unit hypersphere v ·v = 1, however, results in the mean and

variance of the total input x = v · a reducing to constants, µ = 0 and σ2 = 1,

and so independent of changes in synaptic strengths. We could not, therefore,

examine the role of adaptation to synaptic strength changes. In this section,

we relax the assumptions of centring and whitening so that µ and σ2 become

strength-dependent. As synaptic strengths change, a neuron’s threshold and

gain will also change because of the intrinsic plasticity mechanism proposed in

Eqs. (3.1) and (3.2).

Again following Triesch (2007), in order to facilitate further comparison,

we consider the Földiák bars problem (Földiák, 1990). The inputs to a single

neuron are taken as the activities of an N × N array of input units forming

a simple model of the retina. With Triesch, we set N = 10. To construct an
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input pattern, each row or column of this retina is set independently of all other

rows and columns to be active (unit input) with probability 1/N or inactive

(zero input) with probability 1 − 1/N . Activities do not sum, so that the

input unit at the intersection of an active row and an active column supplies

only unit activity to the neuron. This non-summation at intersections turns

the Földiák bars problem into a classic problem in non-linear ICA: while the

“source” columns and rows are activated independently, they are not mixed

together linearly. Once such an input pattern is generated on the input array,

Triesch (2007) also normalises the total, linearly-summed activity over the

retina to unity (i.e.
∑

i ai = 1), and we follow. Such normalisation of course

constitutes a much more significant non-linearity than non-summation because

each column’s or row’s actual activity level is effectively sensitive to how many

other rows and columns are active and to the number of intersections between

active rows and columns. The desired outcome of Hebbian synaptic plasticity

in this bars problem is that the neuron should develop a receptive field that is

tuned to a single row or a single column in the retinal array.

4.1 Receptive Field Development for a Fixed Response

Non-Linearity

Before examining the impact of either Triesch’s or our own model of intrin-

sic plasticity on the emergence of an appropriate receptive field structure, we

first consider the development of the neuron’s receptive field in the presence
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of the fixed response non-linearity with fixed threshold θ and fixed gain γ in

Eq. (2.2). Specifically, we scan over the θ–γ plane to determine in which region

(or regions) single-bar receptive fields are stable fixed points of the strength

vector. An analytical or even purely numerical characterisation of the fixed

points of this high-dimensional, non-linear problem is hard and we will endeav-

our to undertake this task elsewhere. For our current purposes, it suffices to

run simulations in order to examine the stability of single-bar receptive fields.

We consider a sample of points in the θ–γ plane. At each of these points we run

10 simulations in each of which we set the initial strength vector very close to a

putative single bar receptive field. For each simulation, we determine whether

the strength vector converges precisely on this putative single-bar receptive

field or moves away to some other receptive field structure. Because learning

rates and convergence times depend on the precise details of the response non-

linearity, we increase the learning rate and increase simulation times for larger

values of the threshold θ, thereby ensuring that we do not accidentally mis-

classify single-bar receptive fields as stable merely because the strength vector

has barely moved away from them because of very slow learning.

The results are shown in Fig. 10. In the upper right hand corner of the

displayed θ–γ plane, shaded in darker grey, single-bar receptive fields are stable

fixed points of the synaptic strength vector. There is a minimum value of θ,

around θ ∼ 0.08, below which putative single-bar receptive fields are unstable

for all values of γ. In the thin sliver of parameter space shaded in lighter

grey, putative single-bar receptive fields are not stable, but instead multi-bar
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receptive fields are. A multi-bar receptive field corresponds to a strength vector

tuned to at least two separate bars, of any orientation. In the unshaded region

of parameter space, neither single-bar nor multi-bar receptive fields are stable.

Instead, the synaptic strength vector converges on a state in which all elements

are of equal size, i.e. v → ω ≡ (1, . . . , 1)T/N . In this state, because of the

input normalisation
∑

i ai = 1, the neuron’s total input x =
∑

i viai always

take the value 1/N whenever at least one bar is present on the input array, i.e.

the neuron responds with the same output to any (non-zero) number of bars.

In fact, v = ω is a stable fixed point of the strength vector in all displayed

regions of the θ–γ plane, not just the unshaded region, as can be confirmed by

taking an initial strength vector close to ω and determining whether it then

converges on or moves away from ω. Therefore, in the darker grey region,

both ω and single-bar receptive fields are stable. However, as we move from

bottom left to top right of the displayed θ–γ plane, the basin of attraction of

the v = ω stable fixed point shrinks. That is, for simulations based on random

initial strength vectors, we are overwhelmingly more likely to find single-bar

fixed points than all-equal fixed points in the darker grey region of response

parameter space.

FIGURE 10 ABOUT HERE

We note the broad, qualitative similarity between the stable single-bar re-

gion in Fig. 10 and the stable, super-Gaussian input regions in Fig. 6, despite

the absence of centring and whitening in the former compared to the latter. In
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the latter case, there is an invariance under +Θ ↔ −Θ, because of the standard

assumption that input PDFs are symmetric with all odd-order moments van-

ishing. However, for Földiák bars, the total input is always non-negative and

the mean total input is positive, breaking any possible symmetry +θ ↔ −θ.

For θ < 0, we find that v = ω is always stable and putative single-bar receptive

fields are always unstable. As a result, we have shown only the θ ≥ 0 region.

4.2 Receptive Field Development with Triesch’s Model

of Intrinsic Plasticity

Having characterised the single-bar stability regions in the θ–γ plane under a

fixed response non-linearity, we may now consider Hebbian synaptic plasticity

coupled to a mechanism for intrinsic plasticity that causes the non-linearity

to adapt. As with our discussion above in Section 3, an adaptive response

non-linearity will have no fundamental impact on Hebbian synaptic plasticity

unless the stabilities (or indeed existence) of fixed points of the strength vector

change as the non-linearity changes.

Under Triesch’s model of intrinsic plasticity with gR(r) = µ̂−1 exp(−r/µ̂),

sparseness of output firing is again imposed by setting µ̂ ≪ 1. Triesch (2007)

typically sets µ̂ = 1/(2N) = 0.05 for the Földiák bars problem, although he

also considers other values, showing qualitatively very similar results unless

the sparseness condition is violated. In Fig. 11, we show the evolution of the

response parameters θ and γ in Triesch’s model, with µ̂ = 0.05, and setting
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the initial values to θ = 0 and γ = 1/4. We also show the development of

the neuron’s receptive field over time, where each time step corresponds to one

presentation of retinal activity. The initial strength vector is set randomly,

with each component drawn from the same uniform distribution, and then

normalised. We consider slow Hebbian learning, with εsp = 10−4, and fast in-

trinsic plasticity, with εip = 10−2. During the first approximately 0.6×106 time

steps, the strength vector remains unstructured, but after an initial increase

in θ and a large increase in γ (not shown in Fig. 11), the threshold gradually

decreases while the gain continues to increase significantly. At around 0.6×106

times steps, the gain reaches its maximum and starts falling while the threshold

reaches its minimum and starts rising. It is at this point that the receptive field

of the neuron begins to refine, converging on a single-bar fixed point. As the

receptive field converges, θ and γ stabilise around their final values, although

subject to noise.

FIGURE 11 ABOUT HERE

It is highly illuminating to plot the evolution of θ and γ in the θ–γ plane

with the stability regions shaded as in Fig. 10. We do this in Fig. 12, for the

same mean output firing rate µ̂ = 0.05 used in Fig. 11, but also for two other

values of µ̂, corresponding to the non-sparse µ̂ = 0.5 and the even sparser

µ̂ = 0.005. The initial value of θ is set to zero in all cases, while the initial

gain is set to γ = 1/4. At time step 104, θ and γ have reached the values

indicated by the small solid dots in the figure. Notice that their locations are
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outside the single-bar stability region. If the non-linearities were frozen in these

states, then the strength vectors in each case would converge on ω. Under

intrinsic plasticity, however, the (θ, γ) pairs track north-west in the plane,

finally reaching the locations indicated by the large, open circles. For µ̂ = 0.05,

this location corresponds to the minimum in θ and maximum in γ at around

0.6×106 times steps seen in Fig. 11; for the other values of µ̂, similar dynamics

occur, with minima in θ and maxima in γ being attained. In all cases, at these

locations, the synaptic strength vector is still essentially unstructured. For the

sparse values of µ̂, the response non-linearity is, however, inside the single-bar

stability region, while for the non-sparse value of µ̂, it is inside the multi-

bar stability region. For the sparse values, the strength vectors subsequently

converge on single-bar fixed points as the (θ, γ) pairs track south-east in the

plane, following trajectories that are very similar, but in reverse, to their earlier,

north-west trajectories. The reverse trajectories may be distinguished from the

earlier trajectories by the presence of greater levels of noise in the latter. From

Fig. 11 it is clear that these reverse trajectories require many more time steps

than the earlier trajectories to complete. While there are not enough time steps

in the north-west trajectories for the strength vector even to begin to move

away from its unstructured state, there are enough time steps in the south-east

trajectories for convergence to single-bar receptive fields. This is not a result

of employing such a low synaptic plasticity learning rate, εsp = 10−4. If instead

we set εsp = 10−2, keeping εip unchanged at 10−2, then we observe identical

dynamics, except that the (θ, γ) pair does not track so far north-west in the
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plane. Convergence on single-bar fixed points always occurs on the reverse

trajectories, and these trajectories always terminate in the same location of the

θ–γ plane for any given value of µ̂. For sparse values of µ̂, these trajectories in

fact always terminate at, or very close to, the boundary separating the single-

bar and multi-bar stability regions. For the non-sparse value of µ̂, once the

(θ, γ) pair enters the multi-bar stability region, it never leaves it. By taking

µ̂ large enough, we could obtain trajectories that never enter the multi-bar or

single-bar stability regions. We note the strong dependence of the terminal,

fixed point values of θ and γ on the choice of µ̂ and in particular that smaller

values of µ̂ induce larger thresholds θ, despite identical input statistics for

Földiák bar inputs, confirming that both input and output statistics contribute

to the final values of θ and γ in Triesch’s model.

FIGURE 12 ABOUT HERE

Triesch (2007) reports that intrinsic plasticity is not entirely necessary for

developing single-bar receptive fields on the Földiák bars problems, because if

θ and γ are frozen at any intermediate values during which single-bar recep-

tive fields begin to emerge (corresponding to the reverse trajectories described

above), then such receptive fields will always develop from a random initial

strength vector. However, he reports that if instead the non-linearity is frozen

with values of θ and γ corresponding to their final values, then single-bar recep-

tive fields do not emerge. In fact, we find that multi-bar rather than single-bar

receptive fields develop. Fig. 12 confirms and elaborates on these observations.
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For the sparse values of µ̂, the (θ, γ) pairs are always inside the single-bar

stability region on the reverse trajectories before final stabilisation. Thus, any

fixed non-linearity on these portions of the trajectories will, by definition of the

single-bar stability region, lead to the robust development of single-bar recep-

tive fields. However, with the (θ, γ) pairs instead frozen at the terminal values,

the response non-linearity is very close to the boundary between multi-bar and

single-bar stability. Here, the basin of attraction of single-bar receptive fields is

smaller than the basin of attraction of multi-bar receptive fields. For a random

initial synaptic strength vector with a fixed non-linearity sitting at or close to

this boundary, the synaptic strength vector is much more likely to converge to

multi-bar than single-bar receptive fields.

It is intriguing that Triesch’s intrinsic plasticity algorithm leads to fixed

point or terminal values of θ and γ that appear in some sense to be “critical”

in the Földiák bars problem, being at or very close to the boundary partitioning

the θ–γ plane into stable and unstable putative single-bar fixed point regions.

It is clear from Fig. 12 that this “criticality” is not exact, in the sense that

the terminal values do not follow exactly the single-bar stability curve that

partitions the plane. In order to understand this feature fully, it would be

necessary to derive analytically the equation of the partitioning curve and

to derive the equations for the fixed point values of θ and γ as a function

of µ̂ from Eqs. (2.8) and (2.9) (coupled with Eq. (2.10) since the synaptic

strength vector evolves too) after averaging over the Földiák bar input patterns.

Such an undertaking would be formidably hard if not intractable. However, if
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this feature is generic, then we would expect such criticality to arise in other,

simpler problems, and in particular for those considered in Sections 2 and 3.

In Fig. 4 we plotted the fixed point or terminal values of θ and γ as a function

µ̂ for a Laplace input, while in Fig. 6A we plotted the stability region in the

Θ–Γ plane for a Laplace input. Since the inputs are centred and whitened in

that case, we have θ ≡ Θ and γ ≡ Γ. Thus, in Fig. 13 we plot the terminal

values of θ and γ in the θ–γ plane as a function of µ̂ (taking µ̂ down to 10−3

instead of 10−2 as in Fig. 4) with the partitioning stability curve also drawn.

We clearly see no indication of criticality for this much simpler system. For

µ̂ ' 0.16, a Laplace input is outside the stability region and is thus unstable,

while for µ̂ / 0.16, the terminal values of the (θ, γ) pairs traverse well inside

the Laplace stability region, exhibiting no tendency to remain at or near to

the boundary region. The criticality exhibited in the Földiák bars problem is

therefore not a general feature of Triesch’s model of intrinsic plasticity coupled

to synaptic plasticity: the final, adapted values of the neuron’s threshold and

gain do not in general home in on critical regions in parameter space in which

strength vector fixed points are close to changing stability (or ceasing to exist).

FIGURE 13 ABOUT HERE
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4.3 Receptive Field Development with Adaptation to

Changes in Synaptic Strengths

We now consider our own model of intrinsic plasticity, based on adapting to

synaptic strength changes in order to keep a neuron’s operating point ap-

proximately invariant, described by Eqs. (3.1) and (3.2). As the mean µ and

variance σ2 of the total input x = v · a change due to synaptic plasticity

(the retinal input statistics do not change because the retinal stimuli are al-

ways Földiák bars), the threshold θ and gain γ change according to Eqs. (3.1)

and (3.2). Since adaptation is typically a very fast process, in principle µ and

σ2, and thus θ and γ, should change effectively instantaneously compared to

the much slower changes in synaptic strength. For simplicity, however, we

instead maintain a running average of the statistical quantities of interest so

that they change quickly enough compared to synaptic strength changes but

not instantaneously. To compute the running average of some time-dependent

quantity h(t), we employ a process with a memory governed by a time scale

τad,

〈h(t)〉 =
1

τad

∫ t

−∞

dt′ h(t′) exp [− (t − t′) /τad] , (4.1)

which is equivalent to the differential update rule

d〈h(t)〉
dt

= εad [h(t) − 〈h(t)〉] , (4.2)

where εad = 1/τad is the update or learning rate. We set εad = 10−4 in order

to obtain good averages without large moment-to-moment fluctuations, and as

above set the synaptic plasticity rate to εsp = 10−4. Although εsp = εad, we
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find that adaptation occurs quickly enough and that it is not usually necessary

to set εsp ≪ εad.

Unlike Triesch’s model of intrinsic plasticity in which only the mean output

firing rate parameter µ̂ can be adjusted, we have two degrees of freedom in set-

ting the neuron’s preferred operating point via the two parameters Θ and Γ.

We could in principle set Θ and Γ so that θ and γ take any desired values given

estimates of µ and σ when the neuron’s receptive field is in an initially random,

unstructured state. However, in order to facilitate comparison of our model

of intrinsic plasticity to Triesch’s model, we instead set the neuron’s operating

point so that its initial threshold and gain are close to those in Triesch’s model

at the north-west termini of the trajectories in Fig. 12, indicated by the large,

open circles in that figure. We may then directly compare how the adapta-

tion processes in both models change a neuron’s response non-linearity as the

neuron refines its receptive field down to single bars or multi-bars.

Such an example is shown in Fig. 14. We set Γ and Θ so that the neuron’s

initial threshold and gain approximately coincide with the north-west terminus

of the µ̂ = 0.05 trajectory in Fig. 12, or equivalently with the maximum of γ and

minimum of θ at around 0.6×106 time steps in Fig. 11. In Fig. 14, we reproduce

the evolution of θ and γ from Fig. 11 and show on the same graph the evolution

of θ and γ in our model, taking the starting time of the latter to be 0.6 × 106

time steps for direct comparison of the parameters’ respective evolutions in

both models. We also show the emergence of the single-bar receptive field in

our model at the same time steps as those in Triesch’s model, except displaced
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by the temporal offset of 0.6×106 time steps. We see that the threshold in our

model does not increase so much as in Triesch’s model during receptive field

refinement; indeed, it exhibits a maximum before falling somewhat. Likewise,

the gain in our model does not decrease so much as in Triesch’s model. In

Triesch’s model, there are larger fluctuations around the final, stable value of

θ than around γ. On the contrary, in our model, the fluctuations around the

fixed point values of γ are larger than those around θ. This is because γ is a

determined by a second-order statistic, σ2, whereas θ is principally determined

by a first-order statistic, µ, and the estimation of second-order statistics in

inevitably more noisy than that of first-order statistics. Despite the synaptic

plasticity learning rates being set equal in both models, our model’s receptive

field is slightly less well developed than that of Triesch’s at 6.0 × 106 times

steps (even accounting for the temporal offset). This is because of the second-

order statistic: we can see from the gains in Fig. 14 that the gain in our model

converges to its final value (modulo noise) somewhat later than the gain in

Triesch’s model.

FIGURE 14 ABOUT HERE

Fig. 15 plots the evolution of the (θ, γ) pair in the θ–γ plane for our model

as Fig. 12 does for Triesch’s model. In Fig. 15, we consider three different

operating points approximately coinciding with Triesch’s north-west termini

for µ̂ = 0.5, µ̂ = 0.05 (from Fig. 14) and µ̂ = 0.005. We notice that the tra-

jectories in the θ–γ plane are significantly different between the two models.
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In particular, for the µ̂ = 0.05 and µ̂ = 0.005 (or equivalent) trajectories, for

which stable single-bar receptive fields are formed, in our model the final, fixed

point values of θ and γ do not encroach on the boundary separating the single-

bar and multi-bar stability regions. The non-linearity may, then, in our model

be frozen at any point on these trajectories and single-bar receptive fields will

always develop. While Triesch’s intrinsic plasticity algorithm pushes θ larger

and larger during receptive field refinement in order to generate sparser and

sparser output firing, our model demonstrates no such tendency. Rather than

adapting the neuron’s output firing rate PDF to an exponential distribution,

our adaptation mechanism modifies the neuron’s threshold and gain in an at-

tempt to maintain an approximately invariant output firing rate PDF despite

the changes in synaptic strength that occur while the neuron’s receptive field

develops and refines. The two computational principles – maintaining an in-

variant output PDF and adapting towards an exponential output PDF – are

radically different in motivation, and each may serve different roles in different

contexts. As least in this Földiák bars setting, however, our model’s dynamics

do not lead to final response non-linearities that reach the stability boundary

and do not, therefore, suffer from the risk of catastrophic, destabilising fluc-

tuations that could drive the receptive field from a single-bar to a multi-bar

state.

FIGURE 15 ABOUT HERE
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5 Discussion

By using Triesch’s (2007) model of intrinsic plasticity coupled to synaptic plas-

ticity as a vehicle, we have essentially explored the fixed point structure of the

synaptic strength vector of a neuron with a sigmoidal response non-linearity

for a variety of different input distributions. In particular, much of our analysis

above has examined a fixed rather than an adapting non-linearity. For centred,

statistically-independent and orthogonally-mixed sources, the fixed points of

the strength vector under any response non-linearity are well-known to be the

columns of the mixing matrix itself, or just the directions in synaptic strength

space singling out individual inputs in the absence of mixing (Hyvärinen et al.,

2001). Moreover, the linear stabilities of these fixed points are always deter-

mined by Eq. (3.7), again for any (sufficiently well-behaved) response non-

linearity (Hyvärinen et al., 2001). For a sigmoidal non-linearity with fixed

threshold θ and gain γ, or operating point parameters Θ and Γ (since θ = Θ

and γ = Γ for whitened inputs and with v · v = 1), it has therefore sufficed

to consider the stabilities in the θ–γ plane of inputs with different probability

distributions. Any intrinsic plasticity mechanism that modifies the parameters

defining the neuron’s response non-linearity induces a trajectory of the neuron

through the θ–γ plane. If the neuron does not cross any critical boundaries

during this process, then the intrinsic plasticity is irrelevant: the stable fixed

points of the strength vector do not change. But if the neuron crosses critical

boundaries, then it can move between different input stability regions.
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The key general result of our analysis is that for θ (or Θ) of large enough

modulus, whitened inputs with super-Gaussian distributions are always stable

fixed points of the strength vector, while sub-Gaussian inputs are always un-

stable. A large, positive threshold corresponds to a hypo-excitable neuron, or a

sparse coding regime; while a large, negative threshold corresponds to a hyper-

excitable neuron, or an anti-sparse coding regime. By enforcing sparseness with

µ̂ ≪ 1 in an exponential output firing rate distribution, Triesch’s model of in-

trinsic plasticity forces θ to become large and positive, and so the neuron may

traverse into the super-Gaussian-input-finding regime. This is not, however,

guaranteed. We saw that the final, fixed point values of θ and γ in Triesch’s

model are relatively insensitive to the input distributions for ICA-like inputs.

This is partly because ICA-like inputs have zero mean and unit variance, but

also because the choice of µ̂ ≪ 1 tends to drive θ large. However, precisely

what constitutes the large threshold regime is, as we have seen, exquisitely

sensitive to the details of the input statistics. Essentially, the maximum value

of µ̂ that enforces “sparseness” will itself be highly distribution-dependent,

although undoubtedly taking µ̂ very small will suffice for all but the most con-

trived input distributions. The finding of super-Gaussian inputs in the large

modulus θ regime is not a result, however, that requires any specification of the

output firing rate PDF. Although large, positive θ does constitute a sparse fir-

ing regime, an exponential output firing rate distribution is entirely irrelevant

to this regime. Any (non-trivial) output firing rate distribution with an ad-

justable mean would drive θ large when the mean is taken to be small enough.
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It is the setting of µ̂ ≪ 1 that is, as it were, doing the “heavy lifting” in driv-

ing θ large, not the shape of the output distribution per se. And just as the

exponential output firing rate distribution is irrelevant to the performance of

Triesch’s intrinsic plasticity mechanism in terms of finding super-Gaussian in-

puts, so too, in fact, is sparseness. This is because both sparse and anti-sparse

output firing regimes induce the stability of super-Gaussian inputs. In other

words, a neuron can learn as much about its inputs by the rare absence of ac-

tivity when it is hyper-excitable as it can by the rare presence of activity when

it is hypo-excitable. Although extreme degrees of hyper-excitability may be

biologically implausible, from a purely mathematical point of view, sparseness

of output firing does not uniquely result in super-Gaussian-input-finding.

An intrinsic plasticity mechanism that drives θ large also risks failing to

find sub-Gaussian inputs. Although the response parameter regimes in which

sub-Gaussian inputs are stable appear very sensitive to the precise details of

the input distributions except for simple, standard sub-Gaussian distributions

such as the uniform distribution, nevertheless, if sub-Gaussian inputs are to be

stable fixed points of the strength vector, then θ must be away from the large

modulus regime and so somewhere around zero. Moreover, super-Gaussian

inputs can also be stable for θ closer to zero.

For centred, statistically-independent and orthogonally-mixed sources, a

neuron with a sigmoidal response non-linearity essentially does ICA, and the

neuron’s operating point (its values of Θ and Γ) critically determines its com-

putational repertoire, i.e. which inputs are stable and which are unstable fixed
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points of the strength vector. In many respects, perhaps such a result should

not be too surprising, given that many results in ICA are valid for any response

non-linearity (Hyvärinen et al., 2001). However, in contrast to standard im-

plementations of ICA, a neuron with a sigmoidal response non-linearity can

exhibit parameter regimes in which both sub- and super-Gaussian sources are

stable; in which neither sub- nor super-Gaussian sources are stable; in which a

single, Gaussian source can be extracted without destabilising all other sources.

Indeed, such behaviour is very sensitive to the structure of the possibly many

sub- or super-Gaussian sources providing input to a neuron, since each partic-

ular source carves the Θ–Γ (or θ–γ) plane into its own distinct but contiguous

regions of stability and instability. The intersections between such patchworks

of stability and instability for different sources will determine those regions in

the Θ–Γ plane in which different sources (possibly sub- and super-Gaussian)

will be simultaneously stable, and those regions in which no source is stable.

Conventional ICA learning algorithms tend to be extremely non-linear,

based on information-theoretic principles that, for example, maximise kurtosis,

negentropy or mutual information (Hyvärinen et al., 2001). From a neurobi-

ological perspective, these learning algorithms may be criticised because they

may seem difficult to implement in real, neuronal substrates. Furthermore,

for any given sign of the learning rule, conventional ICA algorithms stabilise

either super-Gaussian sources or sub-Gaussian sources, but not both. If input

distributions consist of a mixture of sub- and super-Gaussian inputs, then only

one class of input will be stable, with the sign of the learning rule having to be
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reversed for the other class to be stable. Such sign changes may appear unnat-

ural: a neuron would have to switch from Hebbian to anti-Hebbian plasticity.

To be sure, ICA is a powerful body of cognate techniques, although most of the

results in ICA owe their origins to two major, vastly simplifying assumptions:

the statistical independence of the sources and their linear (or more specifically,

their orthogonal) mixing. These assumptions are so strong that they perform

all the work in establishing the fixed point structures of ICA learning rules for

any (sufficiently well-behaved) response non-linearity. This is why it should

not be surprising that a sigmoidal non-linearity essentially does ICA. But the

differences between conventional ICA approaches and ICA as performed by

a sigmoidal non-linearity are remarkable. A sigmoidal response non-linearity,

while coarse, may nevertheless be a good, first approximation to real neuronal

transfer functions, unlike most ICA non-linearities. Furthermore, its thresh-

old and gain parameters are biologically well-motivated and are the targets of

adaptation processes in real neurons, while no such equivalents exist in stan-

dard ICA non-linearities. It is these very response parameters that, moreover,

allow such a neuron to stabilise super-Gaussian sources, sub-Gaussian sources

and even a Gaussian source without the sign of the learning rule having to be

changed by fiat. It is remarkable that such a simple, two-parameter system

can essentially perform ICA but without any of the standard criticisms that

can be levelled at standard ICA. Whether the two major assumptions of ICA

have any relevance for the inputs to real neurons is unclear, but it is certainly

intriguing that real neurons could perform ICA without any of the standard
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complications of conventional ICA.

A critical question is to what extent do these results and observations de-

pend on the precise form of the sigmoidal response non-linearity in Eq. (2.2)?

In subsequent work, Triesch extended his analysis from a rate-based neuron

(Triesch, 2007) to a spiking neuron (Savin et al., 2010), reporting essentially

identical results. The spiking probability of the neuron used in this later work

consists of a product of a term imposing a refractory period and a term de-

pending on the neuron’s membrane potential. This latter term contains three

parameters that are targets for intrinsic plasticity, two of them being essen-

tially threshold and gain parameters (relative to the membrane potential) and

a third being an overall scale. During intrinsic plasticity, the threshold param-

eter is driven more negative, making it harder to depolarise the membrane,

so taking the neuron into a sparse firing regime. The refractoriness term es-

sentially imposes saturation of the spiking rate. Thus, although mathemat-

ically rather more complicated, the transfer function of this neuron will not

be too dissimilar from a sigmoidal non-linearity with threshold and gain at

the rate-based level. In deriving the super-Gaussian behaviour for large mod-

ulus thresholds, the key step was to look at the response function on a large

enough scale so that the transition from no response to saturated response

could be regarded as approximately a step function. We would therefore expect

any reasonably well-behaved saturating non-linearity with parameters that are

threshold-like and gain-like to exhibit similar dynamics, and Triesch’s more-

complicated non-linearity supports this expectation. We would expect any
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saturating non-linearity to exhibit a regime of super-Gaussian-input-finding

for large enough threshold. Conversely, the dynamics around zero threshold

are likely to be highly idiosyncratic, depending both on the precise details of

the input statistics as above, and on the precise nature of the non-linearity. It

will be interesting to examine these issues more extensively in later work.

We have seen that both Triesch’s and our own intrinsic plasticity mech-

anisms induce trajectories in the θ–γ plane, and that independently of any

intrinsic plasticity mechanism, this plane is carved into stable and unstable

input regions, both for classic, ICA-like inputs (i.e. whitened, independent and

linearly-mixed) and for other types of inputs (e.g., for Földiák bars, which

are neither whitened nor linearly-mixed). Triesch’s mechanism pushes a neu-

ron into a large θ regime in order to achieve sparseness, but these dynamics

are largely insensitive to the precise details of the input statistics, at least for

centred, whitened, ICA-like inputs. While our own mechanism is constructed

specifically to permit adaptation to changing input statistics (Elliott et al.,

2008), including the generalisation proposed here of adapting to changes in

a neuron’s own synaptic strengths in order to attempt to maintain an ap-

proximately invariant output PDF, nevertheless, a neuron’s dynamics will be

determined by its operating point parameters Θ and Γ, which are set irrespec-

tive of input statistics. Although there can be interesting interactions between

synaptic plasticity and intrinsic plasticity as a neuron traverses the θ–γ plane,

particularly when intrinsic plasticity is much slower than synaptic plasticity, in

both models intrinsic plasticity plays second fiddle to the underlying synaptic
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strength fixed point structure induced in the θ–γ plane by Hebbian synap-

tic plasticity. Certainly, achieving an approximately exponential output firing

rate PDF or maintaining an approximately invariant output firing rate PDF

may have important computational roles in downstream neuronal processing

or for coding efficiency. However, such subsequent processing does not feature

in either Triesch’s or our own analysis. Thus, intrinsic plasticity may appear

as something of a distraction from the computational properties of neurons

with fixed response non-linearities. Such a view, however, would be unfor-

tunate. Besides exploring the downstream implications of intrinsic plasticity,

there are more direct possibilities to evaluate. For example, if µ̂ is set too

small in Triesch’s model or Θ is set too large in our own model, both types of

neuron would fail to converge on inputs when all inputs are sub-Gaussian. A

very powerful strategy for a neuron to adopt, therefore, would be to attempt

to determine whether its synaptic strength vector has converged on a state

that provides information about the statistical regularities in its inputs and if

not, then modify its own operating point accordingly. Although the θ–γ plane

would still be carved into distinct stability regions by the underlying Hebbian

plasticity rule in conjunction with the input statistics, the neuron would then

actively search for regions of this plane in which its strength vector could con-

verge on states that are informative. It will be fascinating to pursue this and

similar ideas in future work.
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Appendix A Analysis of ∆X(Γ, Θ) for

Binary-Valued Inputs

For binary-valued inputs, the integral defining ∆X(Γ, Θ) collapses, and we

obtain

∆X(Γ, Θ) =
1

2
Γ

[

sech2 2Γ (Θ + 1) + sech2 2Γ (Θ − 1)
]

− 1

4
[tanh 2Γ (Θ + 1) − tanh 2Γ (Θ − 1)] . (A.1)

For Θ = 0, we then have ∆X(Γ, 0) ∝ 2Γ sech2 2Γ − tanh 2Γ, and it is easy to

see that ∆X(Γ, 0) < 0 for Γ > 0. Thus, for Θ around zero, this sub-Gaussian

input is stable. Examining the limit of large Θ by writing tanh y ∼ 1 − 2e−2y

for large y, we find that

∆X(Γ, Θ) ∼ e−4ΓΘ (4Γ cosh 4Γ − sinh 4Γ) . (A.2)

Since the right hand side is positive, this sub-Gaussian input is unstable for

Θ large enough. The solutions of ∆X(Γ, Θ) = 0 give the locations of the

transitions between stability and instability in the Θ–Γ plane. We may find

the values of Θ as a function of Γ, call them Θ0(Γ), at which these transitions

occur. Writing χ = exp[4Γ Θ0(Γ)] and y = exp(4Γ), then χ and hence Θ0(Γ)

can be found from the solutions of the quadratic equation a2χ
2 +a1χ+a0 = 0,

65



where a2 ≡ a0 and

a1 = 16Γy2 + (1 − y4),

a0 = y
[

4Γ(1 + y2) + (1 − y2)
]

, (A.3)

or

Θ0(Γ) =
1

4Γ
loge

−a1 ±
√

(1 − y2)2 [

(1 − y2)2 − 64Γ2y2
]

2a0

. (A.4)

The positive square root gives the single, Θ0(Γ) > 0 solution. It is easy to see

that

lim
Γ→∞

Θ0(Γ) = 1, (A.5)

so that in this limit, the transitions in stability occur precisely at Θ0 = ±1.

Appendix B Asymptotic Behaviour of Θ0(Γ)

for Large Γ

In order to obtain the asymptotic behaviour of Θ0(Γ) for large Γ, we observe

that

lim
Γ→∞

r(x) = H (x − Θ) ,

lim
Γ→∞

r′(x) = δ (x − Θ) ,

where H(x) and δ(x) are, respectively, the Heaviside step and Dirac delta

functions. In this limit (assuming interchange of the order of the limit and

integration), the integral defining ∆X(Θ, Γ) simplifies, giving

lim
Γ→∞

∆X(Θ, Γ) = fX(Θ) −
∫

∞

Θ

dx x fX(x). (B.1)
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Writing limΓ→∞ Θ0(Γ) = Θ∗

0, we then have that Θ∗

0 is a solution of

fX (Θ∗

0) =

∫

∞

Θ∗

0

dx x fX(x). (B.2)

Notice that this equation is valid whether X has support on the whole of R

or only on a subset of R, for if Θ∗

0 were to fall outside of the support of X,

then fX(Θ∗

0) ≡ 0 while the integral on the right hand side of Eq. (B.2) must be

positive (for distributions fX(x) that are symmetric around x = 0, as assumed

here). The solutions of Eq. (B.2) must occur in pairs with opposite signs, and

in general there may be more than precisely one pair of solutions. Usually, we

must solve Eq. (B.2) numerically in order to obtain its solutions.

Appendix C Stability of Source Directions for

Large Θ

For Θ ≫ 0, the interval over which r(x) switches from 0 to 1 is, compared

to Θ, small and can be ignored (regardless of the size of Γ: smaller Γ simply

means considering even larger Θ). In this large Θ regime, we may then write

r(x) ≈ H(x − Θ). Then, from Eq. (3.9),

∆X (Θ, Γ) ≈ −
∫

∞

Θ

dx e−x2/2 d

dx

[

e+x2/2fX(x)
]

. (C.1)

Expanding fX(x) in its cumulants up to fourth order, we have

fX(x) =
1

2π

∫

dω e−iωx exp

[

−1

2
ω2 +

κ

4!
ω4 − · · ·

]

, (C.2)

where κ is the fourth order cumulant or (excess) kurtosis. Since Eq. (C.1) is

sensitive only to x ≫ 0 as Θ ≫ 0, we need evaluate fX(x) in Eq. (C.2) only for
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large x. In this regime, the integral in Eq. (C.2) is dominated by the behaviour

of the integrand around ω = 0. Thus, we may write

fX(x) ≈ 1

2π

∫

dω e−iωx e−ω2/2
(

1 +
κ

4!
ω4

)

=
1√
2π

e−x2/2
[

1 +
κ

4!

(

x4 − 6x2 + 3
)

]

,

for large x. So,

∆X (Θ, Γ) ≈ − 1√
2π

∫

∞

Θ

dx e−x2/2 d

dx

[

1 +
κ

4!

(

x4 − 6x2 + 3
)

]

≈ − 1√
2π

κ

3!

∫

∞

Θ

dx x3 e−x2/2. (C.3)

Thus, the kurtosis κ of any input distribution determines the sign of ∆X (Θ, Γ)

for large Θ and, in particular, for a super-Gaussian distribution, with κ > 0,

the input is stable, while for a sub-Gaussian distribution, with κ < 0, the input

is unstable.
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Földiák, P. 1990. Forming sparse representations by local anti-Hebbian learn-

ing. Biological Cybernetics, 64, 165–170.

Franco, L., Rolls, E.T., Aggelopoulos, N.C., Jerez, J.M. 2007. Neuronal se-

lectivity, population sparseness, and ergodicity in the inferior temporal

visual cortex. Biological Cybernetics, 96, 547-560.

Hyvärinen, A., Karhunen, J., E., Oja. 2001. Independent Component Analysis.

NY: Wiley.

70



Hyvärinen, A., Hurri, J., P.O., Hoyer. 2009. Natural Image Statistics: A

Probabilistic Approach to Early Computational Vision. London: Springer.

Katz, L.C., Shatz, C.J. 1996. Synaptic activity and the construction of cortical

circuits. Science, 274, 1133–1138.

Kohn, A. 2007. Visual adaptation: Physiology, mechanisms, and functional

benefits. Journal of Neurophysiology, 97, 3155–3164.

Kvale, M.N., Schreiner, C.E. 2004. Short-term adaptation of auditory recep-

tive fields to dynamic stimuli. Journal of Neurophysiology, 91, 604–612.

Laughlin, S. 1981. A simple coding procedure enhances a neuron’s information

capacity. Zeitschrift fur Naturforschung C, 36, 910–912.

Lehky, S.R., Kiani, R., Esteky, H., Tanaka, K. 2011. Statistics of visual

responses in primate inferotemporal cortex to object stimuli. Journal of

Neurophysiology, 106, 1097–1117.

Lennie, P. 2003. The cost of neural computation. Current Biology, 13, 493–497.

Lyu, S., Simoncelli, E.P. 2009. Nonlinear extraction of independent compo-

nents of natural images using radial gaussianization. Neural Computation,

21, 1485–1519.

Maravall, M., Petersen, R.S., Fairhall, A.L., Arabzadeh, E., Diamond, M.E.

2007. Shifts in coding properties and maintenance of information trans-

mission during adaptation in barrel cortex. PLoS Biology, 5, 0323–0334.

71



Meister, M., Berry, M.J. 1999. The neural code of the retina. Neuron, 22,

435–450.

Olshausen, B.A., Field, D.J. 1996. Emergence of simple-cell receptive field

properties by learning a sparse code for natural scenes. Nature, 381, 607–

609.

Olshausen, B.A., Field, D.J. 1997. Sparse coding with an overcomplete basis

set: A strategy employed by V1? Vision Research, 37, 3311–3325.

Savin, C., Joshi, P., Triesch, J. 2010. Independent component analysis in

spiking neurons. PLoS Computational Biology, 6, e1000757.

Shapley, R., Enroth-Cugell, C. 1984. Visual adaptation and retinal gain con-

trol. Progress in Retinal Research, 3, 263–346.

Silva, A.J., Zhou, Y., Rogerson, T., Shobe, J. Balaji, J. 2009. Molecular and

cellular approaches to memory allocation in neural circuits. Science, 326,

391–395.

Simoncelli, E.P., Olshausen, B.A. 2001. Natural image statistics and neural

representation. Annual Review of Neuroscience, 24, 1193–1216.

Triesch, J. 2005a. Synergies between intrinsic and synaptic plasticity in indi-

vidual neurons. Pages 1417–1424 of: Saul, L.K., Weiss, Y., Bottou, L.

(eds), Advances in Neural Information Processing Systems 17. Cambridge,

MA: MIT Press.

72



Triesch, J. 2005b. A gradient rule for the plasticity of a neuron’s intrinsic

excitability. Pages 65–70 of: Duch, W., Kacprzky, J., Oja, E. Zadrozny,

Proceedings of the International Conference on Artificial Neural Networks

(ICANN). Berlin: Springer.

Triesch, J. 2007. Synergies between intrinsic and synaptic plasticity mecha-

nisms. Neural Computation, 19, 885–909.

Turrigiano, G.G., Nelson, S.B. 2004. Homeostatic plasticity in the developing

nervous system. Nature Reviews Neuroscience, 5, 97–107.

van Hateren, J.H. 1992. A theory maximizing sensory information. Biological

Cybernetics, 68, 23–29.

van Hateren, J.H. 1998. Independent component filters of natural images com-

pared with simple cells in primary visual cortex. Proceedings of the Royal

Society of London Series B, 265, 359–366.

Wainwright, M.J. 1999. Visual adaptation as optimal information transmission.

Vision Research, 39, 3960–3974.

Zaghloul, K.A., Boahen, K., Demb, J.B. 2005. Contrast adaptation in sub-

threshold and spiking responses of mammalian y-type retinal ganglion

cells. Journal of Neuroscience, 24, 860–868.

Zhang, W., Linden, D.J. 2003. The other side of the engram: Experience-

driven changes in neuronal intrinsic excitability. Nature Reviews Neuro-

science, 4, 885–900.

73



Figure Captions

Figure 1: The evolution of the strength vector and response parameters in

Triesch’s model of intrinsic plasticity in the presence of two different input

distributions for a sparse firing regime, with µ̂ = 1/10. A, C and E show the

evolution of the angle φ between the strength vector and the input indicated

by the solid line; the dotted line indicates the other, orthogonal input. B, D

and F show the evolution of the threshold θ and gain γ in the simulations

shown in A, C and E, respectively. A and B show results for a Laplace and

a logistic input, as do C and D; E and F show results for a uniform and a

binary-valued input. The model converges on any super-Gaussian input, not

specifically the input with the heaviest tail. A and B show the model finding

the Laplace input while C and D show it finding the logistic input when both

inputs are super-Gaussian. Note that the final values of the threshold and

gain are largely set before the strength vector moves towards a specific input,

although there are small changes as the strength vector converges on a specific

input. E and F show the model not converging on an input in the presence of

two sub-Gaussian inputs. The learning rates are set as εsp = εip = 10−4, while

initially we set θ = 0 and γ = 1/16.

Figure 2: The performance of Triesch’s model of intrinsic plasticity with a

modified, non-exponential output firing rate PDF, given by Eq. (2.15), but still

with sparse output firing, determined by µ̂ = 1/10. We have set the sharp-
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ness to γ̂ = 10. The modified model still finds super-Gaussian sources. The

formats of A and B are identical to A and B in Fig. 1. C shows the final out-

put firing rate PDF for final values of the threshold and gain after the model

has converged on the Laplace input. For comparison the target PDF given in

Eq. (2.15) is shown, as is the step PDF given in Eq. (2.12). εsp, εip and initial

values of θ and γ are set as in Fig. 1.

Figure 3: Triesch’s model of intrinsic plasticity in the presence of non-sparse

output firing, with µ̂ = 1/2. The format of this figure is identical to that

in Fig. 1 except that input distributions differ between the respective panels.

For µ̂ = 1/2, the model converges on any sub-Gaussian input but does not

converge on super-Gaussian inputs.

Figure 4: Fixed point solutions for the threshold θ and gain γ in Triesch’s

model of intrinsic plasticity as a function of the mean output firing rate µ̂ for

gR(r) = µ̂−1 exp(−r/µ̂), for two differing forms of input statistics. The solu-

tions for θ and γ are obtained from Eqs. (2.8) and (2.9) using either a single

Laplace input or a single binary-valued input. The values of γ obtained for

these two radically differing forms of inputs (lines labelled “γ”) are very simi-

lar, as are the values obtained for θ (lines labelled “θ”). The principal factor

determining the fixed point values of γ and θ is therefore the mean output

firing rate, µ̂, and not the input statistics.
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Figure 5: Stability regions, determined by the sign of ∆X(Γ, Θ), for a binary-

valued input. A plots ∆X(Γ, Θ) against Θ for three different values of Γ, as

indicated. B plots the sign of ∆X(Γ, Θ) in the Θ–Γ plane. The shaded region

corresponds to ∆X(Γ, Θ) < 0 and thus a binary-valued input being stable.

Figure 6: Stability regions, determined by the sign of ∆X(Γ, Θ), for other in-

put distributions, as indicated. Shaded regions always correspond to ∆X(Γ, Θ) <

0 and thus stability of the input. A shows a Laplace input; B a logistic input;

C a uniform input. D shows the zero contours on the same graph for the four

indicated inputs, in order to facilitate comparison.

Figure 7: The behaviour of ∆X(Γ, Θ) in the small Θ region is not generic. A

and B show ∆X(Γ, Θ) for the super-Gaussian PDF f+ in Eq. (3.11), while C

and D show ∆X(Γ, Θ) for the sub-Gaussian PDF f− in Eq. (3.12). As usual,

shaded regions are stable.

Figure 8: dφ/dt as a function φ for a neuron with a Laplace and a uniform

input, where φ is the angle between the strength vector and the Laplace input.

In A, Θ approaches and passes through the point Θ ≈ 0.9769 at which the uni-

form distribution becomes stable. During this process, the basin of attraction

around the Laplace input collapses. For reference, B shows a point well away

from such critical behaviour, when the Laplace distribution is deeply stable.

In both graphs, Γ = 2.
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Figure 9: The sign of the function Ξ (Γ, Θ), which in part determines the

stability of a single Gaussian input, in the Θ–Γ plane.

Figure 10: Stability regions in the θ–γ plane for Földiák bars. The vector

ω = (1, . . . , 1)T/N is stable everywhere. Single bar fixed points are stable in

the darker grey region. Multi-bars fixed points are stable in the thin, lighter

grey slither. These stability regions are obtain in simulation as described in

the main text.

Figure 11: Evolution of the threshold and gain in Triesch’s model of intrinsic

plasticity for Földiák bar inputs. Also shown are graphical representations of

the strength vector (as an array over the 10 × 10 array of inputs) at the indi-

cated times points, during the key period between 0.6×106 and 6.0×106 time

steps when the strength vector converges on a single bar. In these graphical

representations, a white cell represents an input unit with the largest synaptic

strength while a black cell represents an input unit with zero synaptic strength.

The learning rates are set as εsp = 10−4 and εip = 10−2, while the initial thresh-

old and gain are set as θ = 0 and γ = 1/4.

Figure 12: The evolution of the threshold and gain from Fig. 11, for µ̂ = 0.05,

plotted in the θ–γ plane, with the stability regions for the strength vector

shaded as in Fig. 10. Also shown are results for µ̂ = 0.5 and µ̂ = 0.005, as
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indicated. The small black dots show the location of the (θ, γ) pair at 104

time steps. The large, open circles show the north-west termini of the (θ, γ)

trajectories in the θ–γ plane. Subsequent receptive field refinement begins as

the (θ, γ) trajectories reverse and head in a south-east, increasing-threshold

direction.

Figure 13: The fixed point values of the threshold and gain in the θ–γ plane

as a function of µ̂ in Triesch’s model of intrinsic plasticity with a single Laplace

input. The shaded region shows the area of stability of a Laplace input. The

dashed arrow labelled “µ̂ ↓” indicates the direction of decreasing µ̂ along the

line showing these fixed point values.

Figure 14: Evolution of the threshold and gain in our model of adaptation

to synaptic strength changes for Földiák bar inputs. Also shown for reference

are the threshold and gain in Triesch’s model, from Fig. 11, for µ̂ = 0.05. The

upper gain line and the lower threshold line represent results from our model.

We have set the initial values of θ and γ in our model to coincide with the

north-west terminus values in Triesch’s model for µ̂ = 0.05. Since these values

are attained at around 0.6×106 time steps, we have offset time by this amount

in displaying the threshold and gain in our model in order to facilitate more

direct comparison. We also show the refinement of the receptive field, similarly

displaced, in our model.

78



Figure 15: The evolution of the threshold and gain in our model of adaptation

to synaptic strength changes for Földiák bar inputs plotted in the θ–γ plane, as

in Fig. 12. Three trajectories are shown, with different initial values of θ and γ

selected to lie inside the large open circles corresponding with the north-west

termini of the trajectories in Fig. 12.
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Figure 1. NECO-12-13-2027
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Figure 2. NECO-12-13-2027
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Figure 3. NECO-12-13-2027
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