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Abstract

Experimentation is at the core of research in the behavioral and neural sciences, yet observations 

can be expensive and time-consuming to acquire (e.g., MRI scans, responses from infant 

participants). A major interest of researchers is designing experiments that lead to maximal 

accumulation of information about the phenomenon under study with the fewest possible number 

of observations. In addressing this challenge, statisticians have developed adaptive design 

optimization methods. This letter introduces a hierarchical Bayes extension of adaptive design 

optimization that provides a judicious way to exploit two complementary schemes of inference 

(with past and future data) to achieve even greater accuracy and efficiency in information gain. 

We demonstrate the method in a simulation experiment in the field of visual perception.

1 Introduction

Accurate measurement is essential in the behavioral and neural sciences to ensure proper 

model inference. Efficient measurement in experimentation can also be critical when 

observations are costly (e.g., MRI scan fees) or time-consuming, such as requiring hundreds 

of observations from an individual to measure sensory (e.g., eyes, ears) abilities or weeks of 

training (e.g., mice). The field of design optimization (Atkinson & Donev, 1992; see section 

2 for a brief review) pursues methods of improving both, with adaptive optimization (e.g., 

DiMattina & Zhang, 2008, 2011) being one of the most promising approaches to date. These 

adaptive design optimization (ADO) methods capitalize on the sequential nature of 
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experimentation by seeking to gain as much information as possible from data across the 

testing session. Each new measurement is made using the information learned from previous 

measurements of a system so as to achieve maximal gain of information about the processes 

and behavior under study.

Hierarchical Bayesian modeling (HBM) is another approach to increasing the efficiency and 

accuracy of inference (Gelman, Carlin, Stern, & Rubin, 2004; Jordan, 1998; Koller & 

Friedman, 2009; Rouder & Lu, 2005). It seeks to identify structure in the data-generating 

population (e.g., the kind of groups to which an individual belongs) in order to infer 

properties of an individual given the measurements provided. It is motivated by the fact that 

data sets, even if not generated from an identical process, can contain information about 

each other. Hierarchical modeling provides a statistical framework for fully exploiting such 

mutual informativeness.

These two inference methods, ADO and HBM, seek to take full advantage of two different 

types of information, future and past data, respectively. Because both can be formulated in a 

Bayesian statistical framework, it is natural to combine them to achieve even greater 

information gain than either alone can provide. Suppose, for instance, that one has already 

collected data sets from a group of participants in an experiment measuring risk tolerance 

and data are about to be collected from another person. A combination of HBM and ADO 

allows the researcher to take into account the knowledge gained about the population in 

choosing optimal designs. The procedure should propose designs more efficiently for the 

new person than ADO alone, even when no data for that person have been observed.

Despite the intuitive appeal of this dual approach, to the best of our knowledge, a general, 

fully Bayesian framework integrating the two methods has not been published. In this letter, 

we provide one. In addition, we show how each method and their combination contribute to 

gaining the maximum possible information from limited data, in terms of Shannon entropy, 

in a simulation experiment in the field of visual psychophysics.

2 Paradigm of Adaptive Design Optimization

The method for collecting data actively for best possible inference, rather than using a data 

set observed in an arbitrarily fixed design, is known as optimal experimental design in 

statistics and goes back to the pioneering work in the 1950s and 1960s (Lindley, 1956; 

Chernoff, 1959; Kiefer, 1959; Box & Hill, 1967). Essentially the same technique has been 

studied and applied in machine learning as well, known as query-based learning (Seung, 

Opper, & Sompolinsky, 1992) and active learning (Cohn, Ghahramani, & Jordan, 1996). 

Since in most cases data collection occurs sequentially and optimal designs are best chosen 

upon immediate feedback from each data point, the algorithm is by nature adaptive—hence 

the term adaptive design optimization (ADO) that we use here.

The recent surge of interest in this field can be attributed largely to the advent of fast 

computing, which has made it possible to solve more complex and a wider range of 

optimization problems, and in some cases to do so in real-time experiments. ADO is gaining 

traction in neuroscience (Paninski, 2003, 2005; Lewi, Butera, & Paninski, 2009; DiMattina 

& Zhang, 2008, 2011), and a growing number of labs are applying it in various areas of 
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psychology and cognitive science, including retention memory (Cavagnaro, Pitt, & Myung, 

2009; Cavagnaro, Myung, Pitt, & Kujala, 2010), decision making (Cavagnaro, Gonzalez, 

Myung, & Pitt, 2013; Cavagnaro, Pitt, Gonzalez, & Myung, 2013), psychophysics (Kujala & 

Lukka, 2006; Lesmes, Jeon, Lu, & Dosher, 2006), and the development of numerical 

representation (Tang, Young, Myung, Pitt, & Opfer, 2010). In what follows, we provide a 

brief overview of the ADO framework.

ADO is formulated as a Bayesian sequential optimization algorithm that is executed over the 

course of an experiment.1 Specifically, on each trial of the experiment, on the basis of the 

present state of knowledge (prior) about the phenomenon under study, which is represented 

by a statistical model of data, the optimal design with the highest expected value of a utility 

function (defined below) is identified. The experiment is then carried out with the optimal 

design, and measured outcomes are observed and recorded. The observations are 

subsequently used to update the prior to the posterior using Bayes’ theorem. The posterior in 

turn is used to identify the optimal design for the next trial of the experiment. As depicted in 

the shaded region of Figure 1, these alternating steps of design optimization, measurement, 

and updating of the individual-level data model are repeated in the experiment until a 

suitable stopping criterion is met.

In formal statistical language, the first step of ADO, design optimization, entails finding the 

experimental design (e.g., stimulus) that maximizes a utility function of the following form 

(Chaloner & Verdinelli, 1995; Nelson, McKenzie, Cottrell, & Sejnowski, 2011; Myung, 

Cavagnaro, & Pitt, 2013),

(2.1)

where θ is the parameter of a data model (or measurement model) that predicts observed 

data given the parameter, and y(1:t) is the collection of past measurements made from the 

first to (t − 1)th trials, denoted by y(1:t−1), plus an outcome, y(t), to be observed in the 

current, tth trial conducted with a candidate design, dt. In this equation, note that the 

function p(y(t)|θ, dt) specifies the model’s probabilistic prediction of y(t) given the parameter 

θ and the design dt, and p(θ|y(1:t−1)) is the posterior distribution of the parameter given past 

observations, which has become the prior for the current trial. Finally, , 

referred to as the sample utility function, measures the utility of design dt, assuming an 

outcome, y(t), and a parameter value (often a vector), θ.

U(dt) in equation 2.1 is referred to as the expected utility function and is defined as the 

expectation of the sample utility function with respect to the data distribution p(y(t)|θ, dt) and 

the parameter prior p(θ|y(1:t−1)). Under the particular choice of the sample utility function, 

the expected utility U(dt) admits an information-theoretic interpretation. Specifically, the 

1In this letter, we consider a particular form of ADO that assumes the use of a Bayesian model and the information-theoretic utility 
(discussed further in the text). While this choice has straightforward justification from the Bayesian perspective as the quality of 
inference is evaluated on the level of a posterior distribution, there are other forms of ADO that assume a non-Bayesian model or 
achieve other types of optimality (e.g., minimum quadratic loss of a point estimate). Chaloner and Verdinelli (1995) provide a good 
review of various approaches to design optimization.
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quantity becomes the mutual information between the parameter variable Θ and the outcome 

variable Y(t) conditional design dt, that is, U(dt) = I(Θ; Y(t)|dt) (Cover & Thomas, 1991), 

which also represents the so-called Bayesian D-optimality (Chaloner & Verdinelli, 1995). 

Accordingly, the optimal design that maximizes U(dt), or , is the one that 

yields the largest information gain about the model parameter(s) upon the observation of a 

measurement outcome.2

The second, measurement step of ADO involves administering the optimal design  and 

observing the measurement outcome y(t), as illustrated in Figure 1. The third and final step 

of the ADO application is updating the prior p(θ|y(1:t−1)) to the posterior p(θ|y(1:t)) by Bayes’ 

theorem on the basis of the newly observed outcome y(t).

In implementing ADO, a major computational burden is finding the optimal design d*, 

which involves evaluating the multiple integrals in both the sample and the expected utility 

functions in equation 2.1 (integral is implicit in the sample utility). The integrals generally 

have no closed-form solutions and need to be calculated many times with candidate designs 

substituted during optimization. Furthermore, online data collection requires that the 

integration and optimization be solved numerically on the computer in real time. Advances 

in parallel computing (e.g., general-purpose GPU computing) have made it possible to solve 

some problems using grid-based algorithms. In situations in which grid-based methods are 

not suitable, several promising Markov chain Monte Carlo (MCMC) methods have been 

developed to perform the required computation (Müller, Sanso, & De Iorio, 2004; Amzal, 

Bois, Parent, & Robert, 2006; Cavagnaro et al., 2010; Myung et al., 2013).

3 Hierarchical Adaptive Design Optimization

As currently used, ADO is tuned to optimizing a measurement process at the individual 

participant level, without taking advantage of information available from data collected from 

previous testing sessions. Hierarchical Bayesian modeling (HBM; for theory, Good, 1965; 

de Finetti, 1974; Bernado & Smith, 1994; for application examples, Jordan, 1998; Rouder, 

Speckman, Sun, & Jiang, 2005; Rouder & Lu, 2005; Lee, 2006) not only provides a flexible 

framework for incorporating this kind of prior information but is also well suited for being 

integrated within the existing Bayesian ADO paradigm to achieve even greater efficiency of 

measurement.

The basic idea behind HBM is to improve the precision of inference (e.g., power of a test) 

by taking advantage of statistical dependencies present in data. For example, suppose that 

there are previous measurements taken from different individuals who are considered a 

random sample from a certain population. It is highly likely that measurements taken from a 

new individual drawn from the same population will share similarities with others. In this 

situation, adaptive inference will enjoy greater benefit when taking the specific data 

2In defining the mutual information here, we assume that the goal of ADO is to maximize the information about all parameter 
elements of a model jointly rather than some of them. In another situation, the model may be a mixture model whose parameter θ 
contains an indicator to a submodel, and the goal of ADO may be to maximize the information about the indicator variable (i.e., the 
problem of model discrimination; e.g., Cavagnaro et al., 2010). In this case, the required change is to redefine the sample utility 
function in equation 2.1 by integrating out the parameters of no interest (e.g., submodel parameters) from each of the distributions 
inside the logarithm.
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structure into account rather than starting with no such information. That is, data sets, as a 

collection, contain information about one another, lending themselves to more precise 

inference. Since individual data sets require themselves to be modeled (i.e., a measurement 

model), the statistical relationship among them needs to be modeled on a separate level, 

hence the model being hierarchical (for more examples of the upper-level structure in a 

hierarchical model, see Koller & Friedman, 2009; Gelman et al., 2004).

From the perspective of Bayesian inference, HBM is a way, given a certain data model, to 

form an informative prior for model parameters by learning from data. An informative prior, 

however, may be constructed not only from new empirical observations but also from 

established knowledge about the data-generating structure. Since the use of prior 

information is one of the major benefits of Bayesian optimal experimental design (Chaloner 

& Verdinelli, 1995), it is no surprise to find examples of using informative priors in the 

literature of design optimization. These applications focus on imposing theoretically sensible 

constraints on the prior in a conservative manner, in which the constraints are represented by 

a restricted support of the prior (Tulsyan, Forbes, & Huang, 2012), regularization (Woolley, 

Gill, & Theunissen, 2006), structured sparsity (Park & Pillow, 2012), and modeled 

covariance structure (Ramirez et al., 2011). Some of these studies employ hierarchical 

models because modeling a prior distribution with hyperparameters naturally entails 

hierarchical structure. Our study, by contrast, focuses on learning prior knowledge from 

data, which is useful when the phenomenon being modeled has yet to permit effective, 

theoretical (or algorithmic) constraints to be used as a prior or when, if certain constraints 

have already been incorporated, inference can further benefit from information elicited from 

a specific empirical condition.

3.1 Formulation

To integrate HBM into ADO, we first specify a common form of a hierarchical Bayes 

model. Suppose that an individual-level measurement model has been given as a probability 

density or mass function, p(yi|θi), given the parameter (vector), θi, for individual i, and the 

relationship among individuals is described by an upper-level model, p(θ1:n|η) (e.g., a 

regression model with η as coefficients), where θ1:n = (θ1, ···, θn) is the collection of model 

parameters for all n individuals. Also commonly assumed is conditional independence 

between individuals such that p(yi|θ1:n, y−.i) = p(yi|θi), where y−.i denotes the collection of 

data from all individuals except individual i (i.e., y1:n = (y1, ···, yn) minus yi). Then the joint 

posterior distribution of the hierarchical model given all observed data is expressed as

(3.1)

where p(η) is the prior distribution for the upper-level model’s parameter, η, and the 

marginal distribution p(y1:n) is obtained by integrating the subsequent expression over θ1:n 

and η.
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The model also needs to be expressed in terms of an entity about which the measurement 

seeks to gain maximal information. In most measurement situations, it is sensible to assume 

that the goal is to estimate the traits of a newly measured individual most accurately. 

Suppose that a measurement session is currently underway on the nth individual, and data 

from previous measurement sessions, y1:n−1, are available. Then the posterior distribution of 

θn for this particular individual given all available data is derived from equation 3.1 as

(3.2)

where the marginal distribution p(y1:n) is obtained by integrating the integrand further over 

θn. From a computational standpoint, it is advantageous to turn the above posterior 

distribution into a sequentially predictive form. Under the assumption of conditional 

independence, equation 3.2 can be rewritten as

(3.3)

where

(3.4)

is the posterior predictive distribution of θn given the data from previous measurement 

sessions, y1:n−1 (assuming that yn is yet to be observed).3 An interpretation of this form is 

that as far as θn is concerned, the predictive distribution in equation 3.4 fully preserves 

information in the previous data y1:n−1 and, in turn, serves as an informative prior for the 

current, nth individual, which is updated on actually observing yn.

Having established the basic building blocks of hierarchical adaptive design optimization 

(HADO), we now describe how measurement within the HADO framework is carried out. 

Suppose that a measurement has been taken in trial t − 1 for the nth individual, and the 

session is in need of an optimal design to make the next observation, , in trial t. Then the 

optimal design, , is the one that maximizes the following mutual information utility:

(3.5)

where y1:n−1 denotes the data from previous n − 1 measurement sessions, and  contains 

the nth individual’s measurements from past t − 1 trials (i.e., ) plus an observation, 

, that is to be made in trial t using a candidate design, dt. Note that this utility function of 

3Although the term predictive distribution is usually associated with a Bayesian model’s prediction of a future observation, it may 
also be used to mean the prediction of a future, latent variable in a hierarchical model, such as θn in the present context.
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HADO, similar as it may seem in its form to that of ADO in equation 2.1, takes all 

previously observed data into account through the hierarchical model, not just that from the 

current measurement session.

For HADO to be adaptive, Bayesian updating for posterior distributions inside the utility 

function is performed recursively on two different levels (see Figure 1). First, on the 

individual level (see the shaded region), updating is repeated over each measurement trial 

(i.e., to find the optimal design  after observing ) using equation 3.3 (i.e., Bayes’ 

theorem). Note that what is modified in equation 3.3 is only the individual data model (i.e., 

p(yn|θn)) with  augmented with a new measurement, . Next, when the session 

ends and a new one is to begin for the next participant (outside the shaded region), the 

hierarchical model is updated, again using Baye’s theorem, on the basis of all n sessions’ 

data, y1:n, and expressed in a posterior predictive form for θn+1 (see equation 3.4 with n + 1 

substituted for n). The session counter n now shifts to n + 1, the trial counter t is reset to 1, 

and the posterior predictive distribution becomes the prior for the new session to start with 

(i.e., ). This two-stage adaptation is a defining characteristic of 

HADO, hence the term hierarchical adaptive.

Although not implemented as an application example in this study, there are additional 

forms of HADO that are worth mentioning. The idea of combining the techniques of 

hierarchical Bayes and optimal experimental design is more general than described above. 

For example, suppose that one wants to understand the population-level parameters, but it is 

difficult to collect sufficient data from each individual (e.g., in developing a human-

computer interaction model that functions robustly in a general setting). This problem is best 

addressed by hierarchical modeling, but the application of hierarchical modeling alone is 

merely ad hoc in the sense that the acquisition of data is not planned optimally. In this case, 

introduction of ADO will make it possible to choose optimal designs adaptively, not only 

within but also across individual measurement sessions, so that the maximum possible 

information is gained about the population-level parameters. That is, it is possible for the 

algorithm to probe different aspects of individuals across sessions that best contribute to the 

goal of learning the common functioning, not necessarily learning that particular individual. 

In achieving this, the optimal design maximizes the following information-theoretic utility,

(3.6)

which measures the expected information gain from a design dt of the next trial about the 

population-level parameter(s) η. As with the preceding formulation, Bayesian updating 

needs to be performed on both individual and higher levels, but in this case, updating p(θn, 

η|·)

One may also want to optimize an experiment to infer both the higher-level structure and the 

individual-level attributes. The formal framework employed in our study is general enough 

to address this problem (i.e., meeting seemingly multiple goals of inference). The utility 
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function to maximize for an optimal design in the next trial is a slight modification of 

equation 3.6:

(3.7)

which equals  by the notation of mutual information (H denotes the random 

variable corresponding to η). A simple yet notable application example of this formulation is 

a situation in which the goal of an experiment is to select among multiple, alternative 

models, assuming that one of them is the underlying data-generating process for all 

individuals, and at the same time to estimate distinct parameter values for each individual. 

The utility that captures this goal is a special case of equation 3.7 in which the higher-level 

parameter η turns into a model index m and the corresponding integration is replaced by 

summation over the indexes. In fact, a similar approach to choosing optimal designs for 

model selection and parameter learning has been proposed previously (Sugiyama & Rubens, 

2008), but the current framework is more general in that any type of hierarchical structure 

can be inferred and the optimality of a design with respect to the goal is understood from a 

unified perspective.

3.2 Implementation Considerations

In typical applications of hierarchical Bayes, posterior inference is conducted mainly to 

incorporate the data that have already been collected, and all the parameters of interest are 

updated jointly in a simulation-based method (e.g., via MCMC). This approach, however, is 

not well suited to HADO. Many applications of adaptive measurement require the search for 

an optimal design between trials to terminate in less than a second. To circumvent this 

computational burden, we formulated HADO, as described in the preceding section, in a 

natural way that suits its domain of application (experimentation), allowing the required 

hierarchical Bayes inference to be performed in two stages. Below we describe specific 

considerations for implementing these steps.

Once a numerical form of the predictive distribution (see equation 3.4) is available, updating 

the posterior distribution, equation 3.3, within each HADO measurement session concerns 

only the current individual’s parameter and data just as in the conventional ADO. 

Accordingly, the recursive updating on the individual level will be no more demanding than 

the corresponding operation in conventional ADO since they involve essentially the same 

computation. Beyond the individual level, an additional step is required to revise the 

posterior predictive distribution of θn given all previous data on the termination of each 

measurement session, which is shown outside the shaded area in Figure 1. The result 

becomes a prior for the next session, serving as an informative prior for the individual to be 

newly measured.4

Critical, then, to the implementation of HADO is a method for obtaining a numerical form 

of the predictive distribution of θn before a new measurement session begins for individual 

4The same two-level updating can also apply to the case where the inference involves the population-level parameters with optimal 
designs satisfying the utility function shown in equation 3.6 or 3.7 as long as the predictive distribution p(θn, η|y1:n−1) is computable.
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n. Fortunately, in most cases this distribution conforms to smoothness and structured 

sparsity (a prior distribution with a highly irregular shape is not sensible), being amenable to 

approximation. Furthermore, in modeling areas dealing with high-dimensional feature space, 

certain theoretical constraints that take advantage of such regularity are often already studied 

and modeled into a prior (Park & Pillow, 2012; Ramirez et al., 2011), which can also be 

used to represent the predictive distribution. Otherwise, various density estimation 

techniques with built-in regularization mechanisms (e.g., kernel density estimator) may be 

used to approximate the distribution (Scott, 1992). For a lower-dimensional case, a grid 

representation may be useful. In fact, grid-based methods can handle multidimensional 

problems with high efficiency when combined with a smart gridding scheme that exploits 

regularity (e.g., sparse grids; Pflüger, Peherstorfer, & Bungartz, 2010).

Another consideration is that the predictive distribution of θn must be obtained by 

integrating out all other parameters numerically, particularly other individuals’ parameters 

θis. If θis (or groups of θis) are by design conditionally independent in the upper-level model 

(p(θ1:n|η)p(η) in equation 3.4, it is possible to phrase the integral as repeated integrals that 

are easier to compute. Also, note that the shape of the integrands is highly concentrated, 

with a large number of observations per individual (i.e., large t), and the posterior predictive 

of θn tends to be localized as well with accumulation of data over many sessions (i.e., large 

n). Various techniques for multidimensional numerical integration are available that can 

capitalize on these properties. Monte Carlo integration based on a general sampling 

algorithm such as MCMC is a popular choice for high-dimensional integration problems 

(Robert & Casella, 2004). However, unless the integrand is highly irregular, multivariate 

quadrature is a viable option because, if applicable, it generally outperforms Monte Carlo 

integration in regard to efficiency and accuracy and, with recent advances, scales well to 

high-dimensional integration depending on the regularity (Griebel & Holtz, 2010; Holtz, 

2011; Heiss & Winschel, 2008).

Note that although an estimate of θn (e.g., posterior mean) is obtained at the end of the 

measurement session, the main purpose of posterior updating for θn within the session is to 

generate optimal designs. Thus, the resulting estimate of θn may not necessarily be taken as 

a final estimate, especially when the employed posterior predictive approximation is not 

highly precise. If needed, additional Bayesian inference based on the joint posterior 

distribution in equation 3.1 may be conducted after each test session with added data (see 

the top right box in Figure 1). This step will be particularly suitable when the upper-level 

structure (i.e., η) needs to be analyzed or precise estimates of all previously tested 

individuals’ parameters are required for a certain type of analysis (e.g., to build a classifier 

that categorizes individuals based on modeled traits in the parameters).

It is also notable, from a computational perspective, that the procedure inside the shaded 

area in Figure 1 requires online computation during the measurement session, whereas the 

posterior predictive calculation outside the area (i.e., computing its grid representation) is 

performed offline between sessions. In case multiple sessions need to be conducted 

continually without an interval sufficient for offline computation, the same predictive 

distribution may be used as a prior for these sessions; for example, offline computation is 
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performed overnight to prepare for the next day’s measurement sessions. This approach, 

though not ideal, will provide the same benefit of hierarchical modeling as data accumulate.

Finally, in applying HADO, we may want to consider two potential use cases. One is a 

situation in which there is no background database available a priori and therefore the 

hierarchical model in HADO might learn some idiosyncrasies from the first few data sets 

(i.e., small n). The more likely use case is where there is a fairly large number of pretested 

individuals who can be used to build and estimate the hierarchical model. While HADO can 

be applied to both cases, it would be no surprise that its benefit should be greater in the latter 

situation. Even so, the behavior of HADO with small n is worth noting here. First, if there 

exists a prior that has been used conventionally for the modeling problem, the prior of the 

upper-level structure in HADO should be set in such a way that when n = 0 or 1, it becomes 

comparable to that conventional prior if the hyperparameters are marginalized out. Second, 

unless the model is overly complex (e.g., in this context, the higher-level structure is highly 

flexible with too many parameters), Bayesian inference is generally robust against 

overfittting to idiosyncrasies in a small data sample because the posterior of model 

parameters given the data would not deviate much from the prior. Otherwise, if overfitting is 

suspected, HADO inference should start being applied and interpreted once an adequate 

sample is accumulated.

In sum, ADO for gaining maximal information from sequential measurements has been 

extended to incorporate the hierarchical Bayes model to improve information gain further. 

Conceptually, HADO improves the estimation of an individual data model by taking 

advantage of the mutual informativeness among individuals tested in the past. While there 

may be alternative approaches to forming an informative prior from past data for a Bayesian 

analysis, hierarchical Bayes is the method that enables both the generation of individual-

level data and the relationship among them to be modeled and inferred jointly in a 

theoretically justified manner. The formulation and implementation of HADO provided 

above exploit the benefits of both hierarchical Bayes and ADO by integrating them within a 

fully Bayesian framework.

4 Application Example

The benefits of HADO were demonstrated in a simulated experiment in the domain of visual 

perception. Visual spatial processing is most accurately measured using a contrast sensitivity 

test, in which sine wave gratings are presented to participants at a range of spatial 

frequencies (i.e., widths) and luminance contrasts (i.e., relative intensities). The objective of 

the test is to measure participants’ contrast threshold (detectability) across a wide range of 

frequencies, which together create a participant’s contrast sensitivity function (CSF). The 

comprehensiveness of the test makes it useful for detecting visual pathologies. However, 

because the standard methodology can require many hundreds of stimulus presentations for 

accurate threshold measurements, it is a prime candidate for the application of ADO and 

HADO.

Using the Bayesian framework described in section 2, Lesmes, Lu, Baek, and Albright 

(2010) introduced an adaptive version of the contrast sensitivity test called qCSF. Contrast 
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sensitivity, S(f), against grating frequency, f, was described using the truncated log parabola 

with four parameters (Watson & Ahumada, 2005):

(4.1)

where γmax is the peak sensitivity at the frequency fmax, β denotes the bandwidth of the 

function (full width at half the peak sensitivity), δ is the low-frequency truncation level, and 

all variables and parameters are on base 10 log scales. The optimal stimulus selection 

through ADO, along with the parametric modeling, was shown to reduce the number of 

trials (fewer than 100) required to obtain a reasonably accurate estimate of CSF at only 

minimal cost in parameter estimation compared to nonadaptive methods.

To demonstrate the benefits of HADO, the current simulation study considered four 

conditions in which simulated subjects were tested for their CSFs by means of four different 

measurement methods. We begin by describing how these conditions were designed and 

implemented.

4.1 Simulation Design

The two most interesting conditions were the ones in which ADO and HADO were used for 

stimulus selection. In the first, ADO condition, the qCSF method of Lesmes et al. (2010) 

was applied and served as the existing state-of-the-art technique against which, in the 

second, HADO condition, its hierarchical counterpart developed in our study was compared. 

If the prior information captured in the upper-level structure of the hierarchical model can 

improve the accuracy and efficiency of model estimation, then performance in the HADO 

condition should be better than that in the ADO (qCSF) condition. Also included for 

completeness were two other conditions to better understand information gain achieved by 

each of the two components of HADO: hierarchical Bayes modeling (HBM) and ADO. To 

demonstrate the contribution of HBM alone to information gain, in the third, HBM 

condition, prior information was conveyed through HBM but no optimal stimulus selection 

was performed during measurement (i.e., stimuli were not selected by ADO but sampled 

randomly). In the fourth, non-adaptive condition, neither prior data nor stimulus selection 

was used so as to provide a baseline performance level against which improvements of the 

other methods could be assessed.

The hierarchical model in the HADO condition had two layers. On the individual level, each 

subject’s CSF was modeled by the four-parameter, truncated log parabola specified in 

equation 4.1. The model provided a probabilistic prediction through a psychometric function 

so that the subject’s binary response to a presented stimulus (i.e., detection of a sinusoidal 

grating with chosen contrast and frequency) could be predicted as a Bernoulli outcome. The 

log-Weibull psychometric function in the model has the form

(4.2)
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where c and f denote the contrast and the spatial frequency, respectively, of a stimulus being 

presented (i.e., design variables) and S(f) is the contrast sensitivity (or the reciprocal of the 

threshold) at the frequency f (i.e., CSF) modeled by the truncated log parabola in equation 

4.1. The two parameters of the psychometric function, λ (lapse rate; set to .04) and κ 

(psychometric slope, set to 3.5), were given particular values following the convention in 

previous studies (Lesmes et al., 2010; Hou et al., 2010). On the upper level, the generation 

of a subject’s CSF parameters was described by a two-component, four-variate gaussian 

mixture distribution, along with the usual normal-inverse-Wishart prior on each component 

and the beta prior on mixture weights. Symbolically,

(4.3)

where the parameter values of the normal-inverse-Wishart prior (μ0 = (2, 0.40, 0.78, 0.5), κ0 

= 2, , ν0 = 5) were chosen on the following grounds. When there is little 

accumulation of data, the predictive distribution of CSF parameters should be comparable to 

the prior distribution used in the previous research (i.e., the prior of the nonhierarchical CSF 

model in Lesmes et al., 2010). The beta prior was set to α0 = β0 = 0.5. The choice of a two-

component mixture was motivated by the nature of the data, which are assumed to be 

collected from two groups under different ophthalmic conditions. In practice, when this type 

of information (i.e., membership to distinct groups) is available, the use of a mixture 

distribution will be a sensible approach to lowering the entropy of the entity under 

estimation. While a more refined structure might be plausible (e.g., CSFs covary with other 

observed variables), we did not further investigate the validity of alternative models since 

the current hypothesis (i.e., individuals are similar to each other in the sense that their CSFs 

are governed by a gaussian component in a mixture model) was simple and sufficient to 

show the benefits of HADO.

The procedure for individual-level measurement with optimal stimuli (see the shaded area in 

Figure 1) followed the implementation of qCSF (Lesmes et al., 2010) in which all required 

computations for design optimization and Bayesian updating were performed on a grid in a 

fully deterministic fashion (i.e., no Monte Carlo integration; see Lesmes et al., 2010 for 

detail). The posterior inference of the upper-level model, or the formation of a predictive 

distribution given the prior data (outside the shaded region in Figure 1), also involved no 

sampling-based computation. This was possible because the upper-level model (i.e., 

gaussian mixture) allowed for conditional independence between individuals so that the 

posterior predictive density (see equation 3.4) of a particular θn value could be evaluated as 

repeated integrals over individual θis. To increase the precision of grid representations of 

prior and posterior distributions, which are constantly changing with data accumulation, the 

grid was defined dynamically on a four-dimensional ellipsoid in such a way that the support 

of each updated distribution with at least 99.9% probability is contained in it. The grid on 

the ellipsoid was obtained by linearly transforming a grid on a unit 4-ball that had 20,000 

uniformly spaced points.
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The ADO (qCSF) condition shared the same individual data model as specified in the 

HADO condition, but the variability among individuals was not accounted for by an upper-

level model. Instead, each individual’s parameters were given a diffuse, gaussian prior 

comparable to the noninformative prior used previously in the field. The HBM condition 

took the whole hierarchical model from HADO, but the measurement for each individual 

was made with stimuli randomly drawn from a prespecified set. Finally, the nonadaptive 

method was based on the nonhierarchical model in ADO (qCSF) and used random stimuli 

for measurement.

To increase the realism of the simulation, we used real data collected from adults who 

underwent CSF measurement. There were 147 data sets, 67 of which were from individuals 

whose tested eye was diagnosed as amblyopic (poor spatial acuity). The remaining 80 data 

sets were from tests on nondiseased eyes. Thirty-six of these individuals took the qCSF test 

(300 trials with optimal stimuli), and 111 were administered the nonadaptive test (700 to 900 

trials with random stimuli). The number of measurements obtained from each subject was 

more than adequate to provide highly accurate estimates of their CSFs.

To compare the four methods, we first used a leave-one-out paradigm, treating 146 subjects 

as being previously tested and the remaining subject as a new individual to be measured 

subsequently. We further assumed that in each simulated measurement session, artificial 

data are generated from an underlying CSF (taken from the left-out subject’s estimated CSF) 

with one of the four methods providing stimuli. If HADO is applied, this situation represents 

a particular state in the recursion of measurement sessions shown in Figure 1; that is, the 

session counter is changing from n = 146 to n = 147 to test a new, 147th subject. It does not 

matter whether the previously collected data were obtained by using HADO, since their 

estimation precision was already very high as a result of using the brute-force large number 

of trials.

One may wonder how HADO would perform if it were applied when there is a small 

accumulation of data (i.e., when n is small). As mentioned earlier, Bayesian inference is 

robust against overfitting to idiosyncrasies in a small sample, especially when the model is 

not very complex (here, the higher-level structure is relatively simple). To demonstrate this, 

an additional simulation in the HADO condition was performed with small ns being 

assumed.

Finally, since the observations from each simulated measurement session were random 

variates generated from a probabilistic model, to prevent the comparison of performance 

measures from being masked by idiosyncrasies, 10 replications of the 147 leave-one-out 

sessions were run independently and the results were averaged over all individual sessions 

(10 × 147 = 1,470 measurement sessions were conducted in total).

4.2 Results

The whole simulation procedure was implemented on a machine with two quad-core Intel 

2.13GHz XEON processors and one Nvidia Tesla C2050 GPU computing processor running 

Matlab. Grid-based computing for utility function evaluations and Bayesian updating was 

parallelized through large GPUArray variables in Matlab. As a result, each intertrial 
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computing process, including stimulus selection, Bayesian updating, and grid adaptation, 

took 90 milliseconds on average, and hierarchical model updating with 146 previous data 

sets took about 11 seconds, which was six to eight times faster than the same tasks processed 

by fully vectorized Matlab codes running on CPUs.

Performance of the four methods of measurement and inference described in the preceding 

section was assessed in three ways: information gain, accuracy of parameter estimation, and 

accuracy of amblyopia classification. These evaluation measures were calculated across all 

trials in each simulated measurement session. For information gain, the degree of 

uncertainty about the current, nth subject’s parameters on observing trial t’s outcome was 

measured by the differential entropy (extension of the Shannon entropy to the continuous 

case):

(4.4)

Use of the differential entropy, which is not bounded in either direction on the real line, is 

often justified by choosing a baseline state and defining the observed information gain as the 

difference between two states’ entropies. In the present context, it is

(4.5)

where H0(Θ0) denotes the entropy of a baseline belief about θ in a prior distribution so that 

IGt(Θ0, Θn)may be interpreted as the information gain achieved on trial t during the test of 

subject n relative to the baseline state of knowledge. In the current simulation, we took the 

entropy of the noninformative prior used in the conditions with no hierarchical modeling 

(i.e., ADO and nonadaptive) as H0(Θ0). Note that the information gain defined here is a 

cumulative measure over the trials in a session in the sense that 

 where the quantity being 

summed is information gain upon trial s relative to the state before that trial.

Shown in Figure 2 is the cumulative information gain observed in each simulation condition 

designed to evaluate the performance of the four different methods. Each of the four curves 

corresponds to information gain (y-axis) in each condition over 200 trials (x-axis) relative to 

the noninformative, baseline state (0 on the y-axis). The information gain measures were 

averaged over all 1,470 individual measurement sessions in each condition. Then we further 

normalized the measures by dividing them by the average information gain at the 200th trial 

achieved by the crude, nonadaptive method in order to take the value of 1 as a baseline level 

of performance against which to compare the performance of the other methods.

First, the results demonstrate that the HADO achieves higher information gain than the 

conventional ADO. The contribution of hierarchical modeling is manifested at the start of 

each session as a considerable amount of information (0.4) in the HADO condition (solid 

curve) than no information (zero) in the ADO condition (dashed curve). As expected, this is 

because HADO benefits from the mutual informativeness between individual subjects, 
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which is captured by the upper-level structure of the hierarchical model and makes it 

possible for the session to begin with significantly greater information. As the session 

continues, HADO needs 43 trials on average to reach the baseline gain level (dotted, 

horizontal line), whereas ADO (qCSF) requires 62 trials. The clear advantage diminishes as 

information accumulates further over the trials since the measure would eventually converge 

to a maximum as data accumulate.

The HBM condition (dash-dot curve), which employs the hierarchical modeling alone and 

no stimulus selection technique, enjoys the prior information provided by the hierarchical 

structure at the start of a session and exhibits greater information gain than the ADO method 

until it reaches trial 34. However, due to the lack of stimulus optimization, the speed of 

information gain is considerably slower, taking 152 trials to attain baseline performance. 

The nonadaptive approach (dotted curve), with neither prior information nor design 

optimization, shows the lowest level of performance.

Information gain analyzed above may be viewed as a summary statistic, useful for 

evaluating the measurement methods under comparison. Not surprisingly, we were able to 

observe the same profile of performance differences in estimating the CSF parameters. The 

accuracy of a parameter estimate was assessed by the root mean squared error (RMSE) 

defined by

(4.6)

where ψ̂(t) is the estimate of one of the four CSF parameters (e.g., γmax) for a simulated 

subject, which was obtained as the posterior mean after observing trial t’s outcome, ψtrue is 

the true data-generating parameter value for that subject, and the factor of 20 is multiplied to 

read the measure on the decibel (dB) scale as the parameter values are base 10 logarithms. 

The expectation is assumed to be over all subjects and replications, and hence was replaced 

by the sample mean over 1470 simulated sessions.

Results from the second analysis, comparing parameter estimation error for each of the four 

models, are shown in Figure 3. Error was quantified in terms of RMSE (y-axis, described 

above) over 200 trials (x-axis) for each of the four parameters. As with the case of 

information gain, HADO benefits from the informative prior through the hierarchical model 

as well as the optimal stimuli through design optimization, exhibiting the lowest RMSE of 

all methods from the start to the end of a session. This holds for all four parameters. The 

benefit of the prior information is also apparent in the HBM condition, making the estimates 

more accurate than with the uninformed, ADO method for the initial 40 to 80 trials, but the 

advantage is eclipsed in further trials by the effect of design optimization in ADO.

Since accurate CSF measurements are often useful for screening eyes for disease, we 

performed yet another test of each method’s performance, in which the estimated CSFs were 

put into a classifier for amblyopia. Despite various choices of a possible classifier (e.g., 

support vector machine, nearest neighbor), the logistic regression model built on selected 

CSF traits (Hou et al., 2010), which had been shown to be effective in screening amblyopia, 
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sufficed for our demonstration. Performance of each measurement method in classifying 

amblyopia was assessed in the leave-one-out fashion as well by first fitting the logistic 

regression model using the remaining 146 subjects’ CSF estimates (assumed to be the same 

regardless of the method being tested) and then entering the left-out, simulated subject’s 

CSF estimate (obtained with the method evaluated in the simulation) into the classifier to 

generate a prediction. The given, actual label (i.e., amblyopic or normal eye) of the left-out 

subject, which had been provided by an actual clinical diagnosis, was taken as the true value 

against which the classification result in each simulation condition was scored.

Not surprisingly, classification accuracy increases with the accumulation of measurement 

data in all methods. This is seen in Figure 4, which shows the percentage of correct 

amblyopia classifications out of all cases of amblyopic eyes over the first 100 measurement 

trials (i.e., hit rates).5 As was found with the preceding tests, HADO demonstrates superior 

performance, requiring only a small number of trials to produce highly accurate 

classification results. Most notably, it takes on average 30 trials for HADO to correctly 

classify an amblyopic eye 90% of the time, whereas the hierarchical adaptive method 

(ADO) requires 53 trials to achieve the same level of accuracy, otherwise reaching 82% 

accuracy with the same 30 trials.

In the early trials of ADO and HADO, there can be considerable fluctuation in classification 

accuracy. This is not due to a small sample size (proportions out of 670 amblyopic eyes have 

sufficiently small standard errors), but rather to the adaptive method itself. Seeking the 

largest possible information gain, the algorithm is highly exploratory in choosing a stimulus 

that would yield a large change in the predicted state of the tested individual. This 

characteristic especially stands out in early trials of the classification task by causing some 

of the amblyopic eyes near the classifier’s decision bound to alternate between the two sides 

of the bound across one trial to another. This effect remains even after taking proportions 

out of the large sample (670) because, with little accumulation of observations, selecting 

optimal stimuli in early trials is systematic without many possible paths of the selection. 

Although this can lead to short-term drops in accuracy, the benefits of early exploration pay 

dividends immediately and over the long term.

Finally, to see how this application of HADO performs when there is a small accumulation 

of data, an additional simulation was conducted with small ns (n = 4, 10, 40) assumed in the 

HADO condition. For each of the same 147 simulated subjects (times 10 independent 

replications) as used before, HADO was used to estimate its CSF by assuming that only n, 

rather than all 146, subjects had been previously tested to be included in the hierarchical 

model estimation. Among the n (4, 10 or 40) data sets, half were randomly drawn from the 

normal-eye group and the other half from the amblyopic group.

The results are in Figure 5, which displays the RMSE measures for estimating the peak 

sensitivity parameter (other evaluation measures exhibit a similar pattern, leading to the 

5Classification results for normal eyes are not shown since the prior of CSF parameters was specified in a way that the classifier with 
any of the methods would categorize a subject as being normal when there is little or no accumulation of data (i.e., a bias was built in 
to avoid false alarms). In addition, the results are shown only up to 100 trials to provide a better view of performance differences 
across methods.
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same interpretation). For comparison, the data from the ADO and full HADO conditions are 

also plotted. CSF estimation by HADO with n as small as 4 is no worse, and in fact slightly 

more efficient, than that of ADO with a diffuse prior, as shown by the RMSEs when n = 4 

(dash-dot curve) is consistently lower than those of ADO (dotted curve) over trials. Visual 

inspection of the distribution of individual estimates over all subjects and replications 

showed no larger dispersion than the case of estimates by ADO at all trials. As n increases 

or more data from additional subjects are available, the efficiency of HADO estimation 

becomes higher (dashed and thin solid curves for n = 10 and n = 40), approaching the 

performance level of HADO with full data sets (thick solid curve). These results indicate 

that the Bayesian estimation of this hierarchical model is robust enough to take advantage of 

even a small sample of previously collected data. However, as noted in section 3.2, the 

effect of small n may depend on the model employed, suggesting that the above observation 

would not generalize to all potential HADO applications.

5 Discussion

This study demonstrates how hierarchical Bayes modeling can be integrated into adaptive 

design optimization to improve the efficiency and accuracy of measurement. When applied 

to the problem of estimating a contrast sensitivity function (CSF) in visual psychophysics, 

HADO achieved an average decrease of 38% (from 4.9 dB to 3.1 dB) in error of CSF 

parameter estimation and an increase of 10% (from 82% to 90%) in accuracy of eye disease 

screening over conventional ADO, under the scenario that a new session could afford to 

make only 30 measurement trials. In addition, efficiency of testing improved by an average 

of 43% in the sense that the required number of trials to reach a criterion of 90% screening 

accuracy decreased from 53 to 30 trials.

Although the simulation study served the purpose of demonstrating the benefit of the 

hierarchical adaptive methodology, the full potential of HADO should be greater than that 

shown in our particular example. The level of improvement possible with HADO depends 

on the sophistication of the hierarchical model itself. In our case, the model was based on a 

simple hypothesis that a newly tested individual belongs to the population from which all 

other individuals have been drawn. Although the model has flexibility in defining the 

population as a mixture distribution, it conveys no further specific information about the 

likely state of a new individual (e.g., his or her membership to a mixture component is 

unknown).

There are various situations in which hierarchical modeling can take better advantage of the 

data-generating structure. For example, although modeled behavioral traits vary across 

individuals, they may covary with other variables that can be easily observed, such as 

demographic information (e.g., age, gender, occupation) or other measurement data (e.g., 

contrast sensitivity correlates with measures of visual acuity—eye chart test). In this case, a 

general multivariate regression or ANOVA model may be employed as the upper-level 

structure to use such auxiliary information to define a more detailed relationship between 

individuals. This greater detail in the hierarchical model should promote efficient 

measurement by providing more precise information about the state of future individuals.
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In many areas of behavioral science, more than one test measures the same condition or 

phenomenon (e.g., memory, depression, attitudes). Often these tests are related to each other 

and modeled within a similar theoretical framework. In such situations, a hierarchical model 

provides a well-justified way to integrate those models in such a way that behavioral traits 

inferred under one model are informative about those estimated by another. Yet another 

situation in which hierarchical modeling would be beneficial is when a measurement is 

made after some treatment and it is sensible or even well known that the follow-up test has a 

particular direction of change in its outcome (i.e., increase or decrease). Taking this scenario 

one step further, a battery of tests may be assumed to exhibit profiles that are characteristic 

of certain groups of individuals. The upper-level structure can also be modeled (e.g., by an 

autoregressive model) to account for such transitional variability in terms of the parameters 

of the measurement model. With these kinds of structure built in the hierarchical model, 

HADO can be used to infer quickly the state of new individuals.

An assumption of the approaches to higher-level modeling discussed so far is that the most 

suitable data-generating structure is already known. In fact, sufficient data are needed to 

determine which structure is best suited. To be more precise, the optimally complex 

structure for the best possible inference depends on the amount of information available; an 

arbitrarily complex model that is not validated by data will lead to suboptimal inference. For 

this reason, HADO will perform best when the hierarchical model evolves along with the 

accumulation of data. Larger data sets make it possible to evaluate better alternative 

modeling hypotheses, and analysis methods such as Bayesian model choice (Kass & 

Raftery, 1995) or cross-validation can be performed to guide model revision. In effect, the 

upper-level model will evolve by incorporating an increasingly richer structure (e.g., finer 

subgroup distinctions or better selected predictor variables in a regression model).

The notion of model evolution fits with recent advances in nonparametric Bayes methods 

that essentially seek to enable a statistical model to adapt itself to the amount of information 

in the data by adding more and more components with no preset limit (MacEachern, 2000; 

Rasmussen & Williams, 2006; Teh & Jordan, 2010). This methodology can stretch the 

extent of model evolution further and will be especially suited to HADO because most 

modern measurement processes are computer based, so data collection and organization are 

effortless, allowing the method to quickly exploit a massive amount of data.

The technique of optimal experimental design or active learning has been applied to a 

number of modeling problems in neuroscience and machine learning (Wu, David, & Gallant, 

2006; Lewi et al., 2009; DiMattina & Zhang, 2011; Cohn et al., 1996; Tong & Koller, 2002; 

Settles, 2010). These models usually deal with a large number of features in order to predict 

or describe response variables, resulting in a large number of parameters to infer (e.g., 

neural receptive field modeling; Wu et al., 2006). A consequence is the use of various 

methods for improving generalizability by imposing certain constraints (Ramirez et al., 

2011; Park & Pillow, 2012)), which may be directly or indirectly interpreted as a prior from 

the Bayesian perspective. In other words, a prior is used to reduce the variance of a model. 

However, as this type of a prior is theoretically derived, it is by nature conservative in order 

not to introduce bias. In this case, HADO may be employed to enhance inference by 

learning further prior knowledge from specific empirical conditions. This information may 
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be encapsulated into the existing, constrained structure of a model. To this end, different 

forms of HADO described in section 3.1 will be useful. Computational complexity, 

particularly numerical integration over many parameters, will be challenging. Nonetheless, 

this should not be considered a hindrance. As discussed in section 3.2, recent technical 

advances in both algorithms and hardware as well as inherent regularity in each problem can 

be taken advantage of to achieve adequate approximations with practical running time.

Science and society benefit when data collection is efficient with no loss of accuracy. The 

proposed HADO framework, which judiciously integrates the best features of design 

optimization and hierarchical modeling, is an exciting new tool that can significantly 

improve the current state of the art in experimental design, enhancing both measurement and 

inference. This theoretically well-justified and widely applicable experimental tool should 

help accelerate the pace of scientific advancement in behavioral and neural sciences.
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Figure 1. 
Schematic illustration of the steps involved in ADO (shaded region only) and hierarchical 

ADO (HADO; whole diagram). See text for further details.
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Figure 2. 
Information gain over measurement trials achieved by each of the four measurement 

methods.

Kim et al. Page 23

Neural Comput. Author manuscript; available in PMC 2014 December 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Accuracy of parameter estimation over measurement trials achieved by each of the four 

measurement methods.
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Figure 4. 
Accuracy of amblyopia classification over measurement trials achieved by each of the four 

measurement methods.
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Figure 5. 
Effect of the size of previously collected data sets on HADO estimation accuracy of the peak 

sensitivity parameter.
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