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Abstract

We propose a time-domain approach to detect frequencies, frequency couplings, and phases using 

nonlinear correlation functions. For frequency analysis, this approach is a multivariate extension 

of discrete Fourier transform, and for higher-order spectra, it is a linear and multivariate 

alternative to multidimensional fast Fourier transform of multidimensional correlations. This 

method can be applied to short and sparse time series and can be extended to cross-trial and cross-

channel spectra (CTS) for electroencephalography data where multiple short data segments from 

multiple trials of the same experiment are available. There are two versions of CTS. The first one 

assumes some phase coherency across the trials, while the second one is independent of phase 

coherency. We demonstrate that the phase-dependent version is more consistent with event-related 

spectral perturbation analysis and traditional Morlet wavelet analysis. We show that CTS can be 

applied to short data windows and yields higher temporal resolution than traditional Morlet 

wavelet analysis. Furthermore, the CTS can be used to reconstruct the event-related potential 

using all linear components of the CTS.

1 Introduction

Tools that improve on the temporal or spatial resolution of existing human imaging 

technologies provide us with a better understanding of how neural activity shapes our 

behavior, as well as provides us with further insight into neurological diseases and disorders. 
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Electroencephalography (EEG) provides a noninvasive time-series measure of cortical brain 

activity with excellent temporal resolution. However, existing frequency analysis and 

analysis of frequency and phase couplings in the time domain are poorly understood (Hjorth, 

1970; Chan & Langford, 1982; Raghuveer & Nikias, 1985, 1986; Stankovic, 1994).

In a companion paper (Lainscsek & Sejnowski, 2015), we make the connection between 

nonlinear dynamics and spectral analysis using functional embeddings or delay differential 

equations (DDE) of time-series data. This idea was introduced by Lainscsek and Sejnowski 

(2013). We show how the properties of simple DDEs can be used for time-domain spectral 

and bispectral analysis. Considering a signal

(1.1)

where  is the signal under investigation and  is a probing signal, we demonstrate that the 

function L(Ω) for , where

(1.2)

can be used as a frequency detector, similar to the Goertzel algorithm (Goertzel, 1958; 

Jacobsen & Lyons, 2003). In the companion paper (Lainscsek & Sejnowski, 2015), we also 

give the theoretical basis for a novel time-domain bispectrum (TDB) B(Ω) for 

 where

(1.3)

EEG data often contain trials with artifacts, or data segments that cannot be used for 

analysis. A benefit of equations 1.2 and 1.3 is that they can be used on data sparsely sampled 

in time. Thus, given a sparse signal x(T), where T is the vector of times for which the signal 

is good, the probing signal D cos(ΩT + ϕ) can be used to detect the spectrum. Similarly, T 

can be used whenvery short segments of data need to be analyzed and there are multiple 

trials of the same experiment. Consider a signal x1(T1), x2(T2), …, xn(Tn), where all time 

series xi(Ti) are centered around the same event, a stimulus S for EEG data (see the upper 

plot in Figure 1).

Then all time vectors Ti can be considered equal in duration and the signal can be 

concatenated as x1(T), x2(T), …, xn(T) (see the middle plot in Figure 1). For a short data 

window that would be too short for frequency-domain spectral analysis, the data of all trials 

can be combined and the spectrum can be computed by using a probing signal with a time 

vector that consists of n repetitions of the time vector T for n data segments (see the lower 

plot in Figure 1). In this manner, a cross-trial spectrogram (CTS) can be computed using 

sliding short windows. This CTS version assumes phase coherency across the data 

segments. A cross-trial spectrogram can also be computed in a phase-independent manner 

by computing the spectrum of each time series in the data segment separately using equation 

1.2 and then taking the mean over those spectra. As in the companion paper, we demonstrate 
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the differences between the phase-dependent and the phase-independent versions of the CTS 

and the cross-trial bispectrum (CTB). However, in this letter, we use actual EEG data for 

comparing these novel applications to traditional wavelet and event-related spectral 

perturbation (ERSP) analyses.

The letter is organized as follows. Section 2 introduces the hardware used, the experimental 

setup, and the analysis; The results are described in section 3 and discussed in section 4.

2 Materials and Methods

2.1 Hardware

Electroencephalographic (EEG) data were collected using a 70-channel active electrode 

EEG system (Biosemi Inc. ActiveTwo, Amsterdam, Netherlands) consisting of a cap plus 

four EOG electrodes, temporal to both eyes and above and below the right eye; two EMG 

electrodes on the trapezius and right and left sternocleidomastoids; and two reference 

electrodes on the left and right mastoids. Data were recorded with a 512 Hz sampling rate 

and referenced to the averaged mastoid electrodes. Head position relative to the EEG 

sensors was determined with a electromagnetic motion tracking system (Polhemus, 

FSTRAK, Colchester, VT).

2.2 Participants

Nine healthy older adults (four females) participated in this study (mean ± SD age: 64.3 ± 

7.9 years). No participant had any neurological or psychiatric disease. All participants were 

right-hand dominant with normal or corrected-to-normal vision. All participants signed the 

informed-consent document approved by the human subjects Institutional Review Board of 

the University of California, San Diego.

2.3 Protocol

Participants reached for and grasped a virtual rectangular object (3.5 × 8.5 × 6 cm) with 

haptic feedback provided to the thumb and index finger by two 3-degree-of-freedom haptic 

robotic devices (Phantom Premium 1.0, Geomagic, Wilmington, MA). Participants placed 

the digits of their right hand on a virtual starting dock and at the sound of a tone reached for 

the object at a comfortable speed. The object was located 13 to 18 cm away in a virtual 

environment designed using custom scripts (Vizard, WorldViz LLC, Santa Barbara, CA; 

Snider, Plank, Lee, & Poizner, 2011). Participants were provided haptic as well as visual 

feedback of the dock so that they felt their hands resting on a solid surface. Overall, a 

maximum of 360 (10 blocks of 36 trials) trials were performed by each participant, with rest 

provided between blocks to limit fatigue. In this study, we considered EEG data from 50 

randomly selected trials from 1 second before the tone stimulus (S) to 1 second after the 

stimulus (see Lukos et al., 2013, for a detailed description of experimental procedures and 

behavioral results).

2.4 Data Processing and Analysis

In this study, we analyzed both raw and clean backprojected EEG data. To get clean data, 

raw EEG data were first imported into EEGLAB using Matlab (MathWorks, Natick, MA) 
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for processing (Delorme & Makeig, 2004). Data were then high-pass-filtered at 1 Hz to 

remove drift and low-pass-filtered at 55 Hz to remove line noise. EEG artifacts associated 

with eye and other muscle movement were removed using independent component analysis 

(ICA) (Jung et al., 2000). Based on the topography, spectra, and trial-to-trial characteristics 

of ICA components, nonartifactual components were selected and used to generate 

backprojected EEG data.

The rearranged EEG data (see Figure 1) from the Cz electrode were used for the cross-trial 

time-domain frequency analysis. We first evaluated the effect of the data window size on the 

performance of the phase-dependent CTS using 1 to 40 trials of varying sizes (i.e., 16 to 

1000 ms). The phase-dependent CTS can be used to detect frequencies with windows as 

small as 31 ms from a single trial and 16 ms with 40 trials of time series data sampled at 512 

Hz. We then computed CTS with data windows of only 100 ms in length with a window 

shift of 10 ms. This consisted of only 50 data points (the sampling rate was 512 Hz) for each 

trial. However, when we used 50 trials and realigned each data window as shown in Figure 

1, there were then 50 × 50 = 2500 data points in each data window. We compared this CTS 

to both traditional Morlet wavelet analysis (Mallat, 2008) and ERSP analysis (Makeig, 

1993). The computation time of all of these methods is very similar. The ERSP measures 

average dynamic changes in amplitude of the broadband EEG frequency spectrum as a 

function of time relative to an event of interest.

To compute an ERSP, we calculated baseline spectra from the EEG immediately preceding 

each event. The epoch was divided into overlapping data windows, and a moving average of 

the amplitude spectra of these was created. Each of these spectral transforms of individual 

response epochs was then normalized by dividing by their respective mean baseline spectra. 

Normalized response transforms for many trials were then averaged to produce an average 

ERSP. We calculated ERSP using a fast Fourier transform on EEGLAB with default 

parameters.

We also discuss a method for interpreting nonlinear couplings in EEG data and demonstrate 

a potential application of the phase-dependent CTS in the reconstruction of salient event-

related potential characteristics.

3 Results

As a proof of concept, Figure 2 shows the traditional Morlet wavelet spectrogram, phase-

dependent CTS, phase-independent CTS, and CTB from nine participants. All three methods 

identify theta (4–8 Hz) and alpha (8–12 Hz) activity after the tone stimulus. However, in 

contrast to Morlet wavelets, CTS is able to provide finer temporal resolution and suggests 

increased phase coherence at 200 ms after the tone stimulus, based on the phase-independent 

CTS. The correlation coefficient between Figures 2b and 2c is 0.6 on average, with 

correlations ranging from 0.1 in C004 to 0.9 in C006, suggesting large variations in the 

overall phase coherence across participants. Furthermore, Figure 3 shows all four methods 

on the raw, unprocessed EEG data. The mean correlation coefficient between Figures 3b and 

3c is also 0.6, suggesting phase coherence, consistent with clean EEG data. The similarity 
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between clean and raw EEG data is evident in the CTB, as frequency couplings are indicated 

in the delta, low theta, and alpha frequency ranges approximately 200 ms after the stimuli.

Furthermore, the use of specific time and frequency windows of interest allows coherence 

analysis using the phase-dependent and phase-independent CTS. Using four clinically 

relevant frequency bands, theta (3–8 Hz), alpha (8–12 Hz), and low (12–20 Hz) and high 

(20–30 Hz) beta, we can examine changes in phase coherence before and after the stimulus. 

As seen in Figure 4, there is significant coherence in theta, alpha, and beta bands after the 

tone (i.e., mean correlation ranges from 0.59 to 0.82), which is in contrast to data before the 

tone (mean correlation ranges from 0.17 to 0.26). Applying the same methodology to raw 

data demonstrated similar results, with cross-correlations between the phase-dependent and 

phase-independent CTS ranging from 0.56 to 0.80, further demonstrating the robustness of 

this measure to noise in certain experimental circumstances and populations.

We found phase-dependent CTS to be consistent with ERSP analysis for both clean and raw 

data (see Figure 5), as the stimuli elicited an increase in low-frequency neural activity, in 

delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–12 Hz) bands (see Figure 2). Comparing 

clean to raw EEG data demonstrates similarities in the dominant frequencies detected in the 

signal, particularly in the lower frequencies. As expected, the time course of the event-

related potential (ERP) is dominated by high-frequency noise and drift in the raw data, but 

reveals what may be interpreted as an auditory N1 (negative 100 ms latency ERP) and a 

positive event-related potential with a 200 ms latency after the stimuli in clean EEG data 

(Luck, 2005).

In addition, using only the phase-independent CTS, we can reconstruct salient features of the 

event-related potential (see Figure 6). Increasing the size of the data window from 50 to 200 

ms leads to nearly a three-fold increase in cross-correlation between the original and 

reconstructed ERP (i.e., R = 0.22 to 0.65). Thus, using only a subset of linear features from 

the phase-independent CTS can still provide a significant amount of information about the 

underlying EEG signal.

4 Discussion

CTS analysis can distinguish changes in frequency in a broadband physiological signal 

using only sparse, short time segments. In contrast to traditional wavelet and ERSP analysis, 

the current CTS analysis is capable of using shorter data windows and thus allows finer 

temporal resolution in the frequency analysis of EEG signals. However, further work 

remains to assess the sensitivity of this method on broadband systems and similarities and 

contrasts to other existing frequency analysis methods. This time-domain frequency analysis 

tool appears to be promising for use in future applications of noisy and complex signals, 

such as EEG, where a measure of rapid changes in frequency is desired.

Furthermore, CTS analysis provides a measure of phase coherence that can be applied to 

quantify EEG phase coherence changes due to experimentally controlled stimuli in clinically 

relevant frequencies that may be applicable to differentiating between patients with and 

without neurological disorders (Farmer, 2002; Tcheslavski & Beex, 2006; Doesburg, 2009). 

In contrast to traditional wavelet analysis, CTS can be applied to sparse data, similar to 
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discrete Fourier transform (DFT), as long as the data satisfy the restrictions of the Nyquist 

theorem (Nyquist, 1928). In contrast to traditional ERSP analysis, CTS uses the data of each 

data window of many trials simultaneously to compute the spectrogram, while ERSP 

averages over individual spectra. Therefore, CTS can use shorter data windows if enough 

trials are available, while ERSP is restricted to the minimum window length for each 

spectrum. Similar to Thompson’s multiple-window time-frequency analysis (Xu, Haykin, & 

Racine, 1999), phase-independent CTS allows time-frequency phase coupling to be obtained 

from a single realization, but with improved temporal and frequency resolutions.

The CTB computes a time-domain bispectrum across channels or trials in a linear way and 

provides a novel tool for interpreting bicorrelations and higher-order statistics in EEG 

(Lainscsek & Sejnowski, 2015). The use of new methods that incorporate not only second-

order but also higher-order statistics allows applications to noisy nonlinear systems 

(Principe, 2010).

5 Conclusion

We have introduced a new set of time-domain tools to analyze the frequency content and 

frequency coupling in stochastic signals: the time-domain spectrum (TDS), the time-domain 

bispectrum (TDB), the time-domain cross-trial (or cross-channel) spectrogram (CTS), and 

the time-domain crosstrial (or cross-channel) bispectrogram (CTB). In addition, the CTS has 

a phase-dependent and a phase-independent realization. Together, this time-domain toolbox 

provides higher temporal resolution and increased phase coupling information, and it allows 

an easy and straightforward implementation of higher-order spectra across time compared 

with frequency-based methods such as Morlet wavelet analysis and cross-spectral analysis.
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Figure 1. 
Realignment of data for the computation of a cross-trial spectrogram (CTS) that assumes 

some phase coherence in the data. First, the data are realigned around the stimulus S. Then 

for each data window, the data are concatenated and a new time vector is generated. The 

concatenated data are then the signal  in equation 1.1, and the new time vector is the time 

in the probing signal.
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Figure 2. 
Frequency spectra time-locked to a stimuli onset (dashed white line) in the Cz electrode for 

the (a) Morlet wavelet spectrogram, (b) phase-dependent cross-trial spectrogram (CTS), (c) 

phase-independent CTS, and (d) cross-trial bispectrum (CTB), based on 50 randomly 

selected trials.

Lainscsek et al. Page 9

Neural Comput. Author manuscript; available in PMC 2015 March 24.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 3. 
Frequency spectra of raw, unprocessed EEG data from the previously selected trials in 

Figure 2 time-locked to a stimuli onset (dashed white line) in the Cz electrode, for the (a) 

Morlet wavelet spectrogram, (b) phase-dependent cross-trial spectrogram (CTS), (c) phase-

independent CTS, and (d) cross-trial bispectrum (CTB).
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Figure 4. 
Coherence analysis before and after the stimulus (S) in raw and clean EEG data in theta (3–8 

Hz), alpha (8–12 Hz), and low (12–20 Hz) and high (20–30 Hz) beta frequency bands using 

the cross-correlation between the phase-dependent and phase-independent CTS.
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Figure 5. 
Event-related potentials (ERP) and event-related spectral perturbations (ERSPs) on (a, b) 

raw and (c, d) clean data, demonstrating low-frequency activity after the stimuli (S) in both 

raw and clean EEG data.
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Figure 6. 
Event-related potential (ERP) time-locked to stimuli (top) and representative ERP 

reconstructions using 50, 100, 150, and 200 ms data windows. As the data windows 

increase, more of the lower-frequency characteristics of the ERP such as the negative drift 

prior to the tone onset are recovered, as measured by the increased cross-correlation between 

the original and the reconstructed ERP.
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