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Abstract

Increased emphasis on circuit level activity in the brain makes it necessary to have methods to 

visualize and evaluate large scale ensemble activity, beyond that revealed by raster-histograms or 

pairwise correlations. We present a method to evaluate the relative similarity of neural spiking 

patterns by combining spike train distance metrics with dimensionality reduction. Spike train 

distance metrics provide an estimate of similarity between activity patterns at multiple temporal 

resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between 

multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality 

reduction is then used to project the data into concise representations suitable for clustering 

analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated 

using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how 

Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions 

for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in 

the absence of kinematic information. The algorithm enables exploration of virtually any type of 

neural spiking (time series) data, providing similarity-based clustering of neural activity states 

with minimal assumptions about potential information encoding models.
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1 Introduction

Examining network function at larger and larger scales is now recognized as an important 

next step to understand key principles of brain network function and will require new 

methods to visualize and perform statistical comparisons between activity patterns observed 

over large sets of neurons (Alivisatos et al., 2013). Neurons often display complex response 

properties reflecting multiple behavioral and cognitive parameters (Sanes and Donoghue, 

2000; Churchland et al., 2010; Rigotti et al., 2013). Characterizing these complex spiking 

patterns and describing how information from individual neurons is combined at the level of 

local ensembles and far-reaching networks is an ongoing challenge in neuroscience.
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Many experiments involve recording ensemble activity (often in multiple areas) under 

various behavioral or cognitive conditions. Data analysis typically involves comparing 

binned firing rates across conditions using standard statistical tests, or fitting neuronal 

responses using models such as cosines or Gaussian distributions (Georgopoulos et al., 

1982; Dushanova and Donoghue, 2010; Fluet et al., 2010; Li and DiCarlo, 2010; Pearce and 

Moran, 2012; Arimura et al., 2013). These methods often involve averaging across 

repetitions of a particular behavior, or otherwise summarizing neural activity patterns to a 

level where the ensemble properties are reduced to the equivalent of joint perievent 

histograms. This approach is prone to averaging out changes in a neural activity across 

trials. Furthermore, this level of data analysis and display becomes impractical as larger 

ensembles of neurons are recorded simultaneously. Methods to efficiently capture and 

display both spatial and temporal activity patterns in time series data are essential to both 

visualize and compare large-scale activity patterns and their relationship to behavior or 

activity in other brain areas.

At their core, most neural data analysis methods are interested in an assessment of 

similarity. For instance: when an experimental condition is changed, are neuronal spiking 

patterns similar or different, and what is the relative magnitude of the change? We have 

formulated a novel technique that provides a quantitative measure of similarity between 

neuronal firing patterns expressed on individual trials by either single neurons or ensembles. 

Our approach involves the combination of two key components: spike train distance metrics 

and dimensionality reduction.

Spike train metrics, as developed by Victor and Purpura, provide a measure of similarity 

between pairs of spike trains by calculating the most direct way to transform one spike train 

it another by inserting, deleting, or moving spikes such that both patterns coincide (Victor 

and Purpura, 1996, 1997; Victor, 2005). Adding up a cost assigned to each of these 

operations provides quantitative measure of the similarity between activity patterns. The use 

of spike train metrics makes it possible to analyze long time periods (on the order of 

seconds) while preserving structure inherent in millisecond scale spike timing. Changing the 

cost assigned to temporal shifts offers the opportunity to examine neural activity at multiple 

temporal resolutions.

Dimensionality reduction is often accomplished by model fitting, such as by fitting tuning 

functions. When the model relating neural observations with the behavior/stimulus is 

unknown, model-free methods such as principal component analysis can be used to gain 

insight into the relationship. Here we employ t-Distributed Stochastic Neighbor Embedding 

(t-SNE) (van der Maaten and Hinton, 2008) to project the high-dimensional space defined 

by pair-wise spike train distances into a low-dimensional representation which not only 

facilitates visualization, but also improves pattern discrimination. This method is well suited 

to this type of analysis because it is based on pair-wise similarity estimates and explicitly 

seeks to preserve the structure within local neighborhoods (in this case, clusters of 

individual trials with similar activity patterns).

The proposed algorithm transforms neural data to produce a low dimensional ‘Spike train 

SIMilarity Space’ (SSIMS) that represents the relationships between activity patterns 
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generated on individual trials. In the SSIMS projection, similar neural activity patterns 

cluster together, while increasingly different activity patterns are projected further apart. The 

degree of similarity between activity patterns of interest can be clearly visualized and 

quantified. Furthermore, SSIMS projections can be used to evaluate the similarity between 

training data and new samples, providing a direct basis for pattern classification (decoding). 

The goal of this report is to describe the method, illustrate its implementation, and examine 

the strengths and limitations of the approach.

We tested and validated the SSIMS algorithm using the activity of multiple single neurons 

recorded simultaneously in primate primary motor and premotor cortex, successfully 

separating neural activity patterns reflecting the behaviors performed in both a planar center-

out reaching task and a 3D reaching and grasping task. The method provides a useful 

framework for data analysis and visualization well suited to the study of large neuronal 

ensembles engaged in complex behaviors.

2 Description of the SSIMS algorithm

The goal of the SSIMS algorithm is to numerically quantify the similarity between multiple 

neural activity patterns. We define the ‘state’ of a given ensemble of neurons over a specific 

time period as the precise timing of each spike fired by each neuron; for example, if the 

patterns of activity for all neurons during two different time periods can be perfectly aligned, 

the corresponding ensemble states are considered to be identical.

The algorithm consists of two parts. First, pair-wise similarity estimates between spike trains 

are obtained using the distance metric proposed by Victor and Purpura, spikes necessary to 

transform one spike train into another (Victor and Purpura, 1996). This process results in a 

high-dimensional space representing pair-wise similarities between the sampled ensemble 

firing patterns (for example, a series of trials in a behavioral task). In order to facilitate 

statistical analysis and data visualization, the second part of the algorithm refines the high-

dimensional space defined in terms of these pair-wise distances using the t-SNE 

dimensionality reduction technique developed by van der Maaten and Hinton (2008). Within 

SSIMS projections, distances between points denote the degree of similarity between the 

ensemble firing patterns (putative network ‘states’) they represent; clustering of points that 

correlate with experimental labels (such as behavioral conditions) allows an unbiased 

assessment of the relationship between neural states within the context of the experimental 

variables.

2.1 Measuring the similarity between two spike trains

Victor and Purpura introduced cost-based metrics designed to evaluate the similarity 

between spike trains (Victor and Purpura, 1996). A given spike train, A, can be transformed 

into second spike train, B, using three basic operations: the addition of a spike, the deletion 

of a spike, or the shifting of a spike in time. Each of these operations is assigned a ‘cost’; the 

distance between the two spike trains is defined as the (minimum) summed cost of the 

operations needed to transform one into the other. The cost of spike insertion or deletion is 

set to 1, while the cost of shifting a spike in time is set to be proportional to the length of 

time the spike is to be shifted. This last value is defined using a parameter q, with the cost of 
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shifting a spike being qΔt. Note that displacing a spike by a time interval 1/q has a cost 

equivalent to deleting it. In this way, the value of q is related to the temporal precision of the 

presumed spike code, in the sense that it determines how far a spike can be moved in time 

while still considering it to be the ‘same’ spike (that is, without having to resort to removing 

it). Setting q = 0 makes the timing of a spike irrelevant, reducing all shifting costs to zero. In 

this case the distance function is effectively reduced to a difference in spike counts. In this 

way, this method can be used to probe possible values for the temporal resolution of neural 

data, from millisecond timing to pure rate codes.

2.2 Creating a similarity space based on pair-wise distances

Let us consider a set of n neurons, whose activities are simultaneously recorded over a set of 

m trials (with each neuron generating a spike train during each trial). Let Dspike(A, B) denote 

the spike train distance metric as defined by Victor and Purpura (1996): the minimum cost 

of transforming spike train A into spike train B. Let Si,j represent the spike train recorded 

from neuron j during the i-th trial. Let the pairwise similarity vector for spike train Si,j be 

defined as:

Thus, each spike train from a single neuron can be mapped to a m-dimensional space by 

representing it as a vector of pair-wise distances to the other spike trains fired by the same 

neuron. An ensemble pair-wise similarity vector for trial i is formed by concatenating the 

dpw vectors of the n neurons:

Thus, the neural activity for each individual trial is represented by a 1 × mn dimensional 

vector which includes m similarity measurements for each neuron. When the vectors for 

each of the m trials are combined into a matrix for an ensemble of n neurons, the result is an 

m × mn matrix we refer to as Densemble which constitutes a relational embedding of the 

entire data set. Note that in this formulation the information obtained from a given neuron is 

represented in a separate subset of dimensions of the matrix Densemble (instead of summing 

cost metrics across neurons to 155 obtain a single measure of ensemble similarity). The next 

part of the algorithm seeks to project Densemble into a lower dimensional space.

2.3 Dimensionality reduction with t-SNE

As we will show later, it is possible to create low dimensional representations based on 

neural ensemble pairwise similarity data that increase the accuracy of pattern classification, 

preserving nearest-neighbor relationships without information loss. The SSIMS method uses 

the t-SNE algorithm, which is particularly well suited to our approach because it explicitly 

models the local neighborhood around each point using pair-wise similarity measures (van 

der Maaten and Hinton, 2008). The general intuition for the algorithm is as follows: given a 

particular data point in a high dimensional space, one is interested in picking another point 

that is similar; that is, another point that is in the same ‘local neighborhood’. However, 
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instead of deterministically picking a single closest point, one selects the local neighbor in a 

stochastic manner, according to a probability (making the probability of selecting points that 

are close together high, and those that are very far apart low). The set of resulting 

conditional probabilities (given point A, what is the likelihood that point B is a local 

neighbor?) effectively represents similarity between data points. The local neighborhoods 

around each point are modeled as t-distributions. Rather than using a fixed value for the 

width of the distribution (σ) across the entire space, the algorithm uses multiple values of σ 

determined by the data density in the local neighborhood around each point. The span of 

each of these local neighborhoods is determined by the ‘perplexity’ parameter setting of the 

algorithm, which determines effective number of points to include. Note that if a given 

dataset contains a dense cluster and a sparse cluster, the size of the local neighborhoods in 

the sparse cluster will be larger than those in the dense cluster. This dynamic adaptation of 

local neighborhood size serves to mitigate the ‘crowding problem’, which arises when 

attempting to separate clusters with different densities using a single fixed neighborhood 

size (which potentially leads to over-sampling the dense cluster or under-sampling the 

sparse one). Probability distributions describing local neighborhoods are modeled using 

pair-wise distances, which can be evaluated regardless of the dimensionality of the space. It 

is therefore possible to compare the similarity of the local neighborhoods for high and low 

dimensional versions of a given dataset. By minimizing the difference between the two sets 

of conditional probabilities, the local neighborhood structure is preserved in the low-

dimensional mapping.

In order to reduce computational complexity, we perform a preliminary round of 

dimensionality reduction using principal component analysis (PCA) to project the Densamble 

matrix into a 100-dimensional space. The t-SNE algorithm then refines the resulting linear 

transform by minimizing the Kullback-Leibler divergence between local neighborhood 

probability functions for this starting point and progressively lower dimensional spaces via 

gradient descent. Using the terminology from the previous section, the final output of the t-

SNE algorithm is a mn × d matrix (the t-SNE transform), which projects the m × mn 

Densemble matrix into the desired d dimensional space (where n is the number of neurons and 

m is the number of spike trains).

2.4 Software, Hardware, and processing time

Calculations were performed using MatLab on a Mac workstation with a 2.93 GHz quad-

core Intel Xeon processor and 12GB of RAM. Using this hardware, producing a two-

dimensional representation of neural activity for ~100 trials based on the firing patterns of 

~100 neurons over one second took, on average, five seconds (including the processing time 

required to calculate all pair-wise distances between spike trains starting from a list of spike 

timestamps for each neuron). The source code used for data analysis will be made freely 

available for non-commercial use at the Donoghue lab website. The algorithm could be 

modified for near real-time discrete classification in the following manner: First, a training 

dataset with exemplars in each desired category would be collected. After calculating all 

pair-wise distances the t-SNE transform would be calculated as described above (taking only 

a few seconds after data has been collected). The resulting SSIMS space would provide a 

relational reference frame to interpret new incoming data. Note that once the t-SNE 
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transform is calculated, projecting new data samples into the resulting SSIMS representation 

would only take a fraction of the time since the gradient descent part of t-SNE is no longer 

required. It would still be necessary to calculate pair wise distances for new data samples, 

but this would involve only m operations per neuron in order to project a new trial into the 

original SSIMS representation (as opposed to the n × m2 operations needed to generate the 

initial embedding). Furthermore, pair-wise distance calculation is well suited to parallel 

computing and could be further optimized using multi-threading or specialized hardware. 

Parallel streams could also be used to independently update the t-SNE transform 

incorporating new data, providing updated SSIMS embeddings on demand. Overall, the 

limiting factor on processing time would be the duration of the time window to be analyzed, 

which would depend on the precise nature of the spiking patterns being classified. The 

results presented in the following sections suggest that an 8-way classification with >95% 

accuracy could be accomplished in under one second.

3 SSIMS algorithm validation using primate cortical ensemble activity

Performance of the algorithm was evaluated using cortical ensemble activity recorded in 

rhesus macaques (Macaca mulatta) using 96 channel chronically implanted micro-electrode 

arrays. Details of the implantation procedure are described in Suner et al. (2005) and Barrese 

et al. (2013). All procedures were approved by the Brown University Institutional Animal 

Care and Use Committee. Two datasets were used to illustrate the implementation of the 

method and its properties. The first consisted of neural data recorded in primary motor 

cortex (MI) from a monkey performing a planar center-out reaching task. The second dataset 

consisted of neural data recorded in ventral premotor cortex (PMv) from a monkey 

performing a naturalistic reaching and grasping task that involved intercepting and holding 

moving objects in a 3D workspace.

3.1 Electrophysiological Recording

During each recording session, signals from up to 96 electrodes were amplified (gain 5000), 

bandpass filtered between 0.3 kHz and 7.5 kHz, and recorded digitally at 30 kHz per 

channel using a Cerebus acquisition system (Blackrock Microsystems, Salt Lake City, UT). 

Waveforms were defined in 1.6 ms data windows starting 0.33 ms before the voltage 

crossed a threshold of at least −4.5 times the channel root mean square variance. These 

waveforms were then sorted using a density clustering algorithm (Vargas-Irwin and 

Donoghue, 2007), the results of which were reviewed using Offline Sorter (Plexon, Dallas 

TX) to eliminate any putative units with multiunit signals (defined by interspike intervals 

(ISI) <1 ms) or signal to noise ratios (SNR) less than 1.5.

3.2 Center-out (COUT) task

One monkey was operantly trained to move a cursor that matched the monkey’s hand 

location to targets projected onto a horizontal reflective surface in front of the monkey. The 

monkey sat in a primate chair with the right arm placed on individualized, cushioned arm 

troughs secured to links of a two-joint exoskeletal robotic arm (KINARM system; BKIN 

technologies, Kingston ON, Canada; Scott, 1999) underneath an image projection surface 

that reflected a computer monitor display. The shoulder joint was abducted 85° so that 
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shoulder and elbow movements were made in an approximately horizontal plane. The 

shoulder and elbow joint angles were digitized at 500 Hz by the motor encoders at the joints 

of the robotic arm. The x and y positions of the hand were computed using the standard 

forward kinematic equations and sampled at 200 Hz. For more details on the experimental 

setup using the KINARM exoskeleton, refer to Rao and Donoghue (2014). Neural data was 

simultaneously recorded from a chronically implanted microelectrode array in the upper 

limb area of primary motor cortex. To initiate a trial, the monkey was trained to acquire a 

target in the center of the workspace. A visual cue was used to signal movement direction 

during an instructed delay (with duration 1 – 1.6 s) to one of eight radially distributed targets 

on a screen. At the end of the instructed delay period, the central target was extinguished, 

instructing the monkey to reach towards the previously cued target. Movement onset was 

defined as the time when the cursor left the central target. The trajectories for each of the 

eight movement directions are shown in Figure 1.

3.3 Center-out task: Single neuron properties

We first validated the algorithm by generating SSIMS projections for individual neurons 

over a time window of one second starting 100 ms before movement onset (using q = 10, 

such that 1/q = 100 ms, SSIMS dimensionality = 2 and t-SNE perplexity = 30). Figure 2 

shows two samples of single-neuron SSIMS projections, as well as traditional raster plots. 

While the raster plots clearly convey the changes in the mean firing rate averaged across 

trials, it is difficult to discriminate the variability in the firing patterns for each movement 

direction.

The SSIMS plot represents the spike train for each trial as a single point. This representation 

shows that the firing patterns for the neuron in Figure 2A are more tightly clustered for the 

315° direction (representing a greater degree of similarity). Further-more, the figure reveals 

that the firing patterns are most similar between 315° and 270° reaches. It is also possible to 

identify individual 0° trials where this neuron fires in a manner very similar to 315° trials. 

Note that, in this case, the direction presenting the most tightly clustered firing pattern is not 

the direction of with the highest firing rate (0°), which would be labeled as the ‘preferred 

direction’ if firing rates were parameterized with a standard cosine fit. Also note that the 

most tightly clustered pattern does not correspond to the direction with lowest firing rate, as 

might be expected if a Poisson noise model is assumed. The neuron shown in Figure 2B is 

also difficult to describe in terms of standard models, since the timing of the peak in firing 

rate appears to change as a function of direction. The preferred direction for this neuron 

would there-fore change as a function of time if it were evaluated using short time windows. 

The SSIMS algorithm is able to display spiking patterns over a time frame encompassing the 

entire movement. The resulting plot clearly shows that the greatest difference in spiking 

patterns exists between 225°, 270°, and 315° reaches compared to 0° and 45°, with the 

remaining directions roughly in the middle. This layout reflects the relationships between 

the neural activity patterns observed across reach directions that would be difficult to 

capture using standard tuning functions.

We tested for significant direction-related clustering at the level of single neurons by 

comparing the distribution of SSIMS distances within and between directions using a 
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Kruskal-Wallis test. Neurons were identified as being directionally selective when the 

median SSIMS distance was smaller between trials in the same direction compared to trials 

in different directions. A 10D SSIMS projection was used for this operation, to encompass 

high dimensional features not visible in 2D projections. Eighty-three out of 103 recorded 

neurons (~81%) were determined to be directionally selective using this method (Kruskall-

Wallis p < 0.001). For comparison, a Kruskall-Wallis test performed directly on the firing 

rates for the same time period only produced p values < 0.001 for 70% of the neurons.

The magnitude of directional selectivity for individual neurons was evaluated using a 

nearest neighbor (NN) classifier implemented using leave-one-out cross validation. Each 

trial was classified based on the direction of the nearest neighbor in the 10D SSIMS 

projection. The percent of correctly classified trials was used as a measure of directional 

information for a given neuron. The distribution of average single-neuron classification 

results is shown in Figure 3A. These values were used to rank the neurons from most to least 

informative.

Ensemble decoding was performed using two different strategies: neurons were added to the 

decoding ensemble from most to least informative (providing an approximate upper bound 

for classification) or in the reverse order (to generate an approximate lower bound). 

Classification accuracy (using a KNN classifier with k = 1, implemented with leave-one-out 

cross validation) is shown as a function of ensemble size for both curves in Figure 3B. 

Figure 3C–F displays the relationship between ensemble activity in each of the 8 movement 

directions as neurons are progressively added. Although classification was performed in a 

10-dimensional space, the SSIMS algorithm was used to project the data down to two 

dimensions for ease of visualization (classification using 2 or 3D SSIMS produced similar 

results on average, but with greater variability). Note that when the entire ensemble is used, 

the shape of the clusters matches the directions of movement, generating a circular pattern 

where clusters are arranged from 0 to 315 degrees. This structure emerges solely from the 

relationship between the firing patterns, since clustering is performed without any 

information about the movement direction associated with each trial. Color coding is added 

after the fact for visualization; this information about the task is not utilized by the SSIMS 

algorithm.

3.4 Free Reach-to-Grasp (FRG) task

In the Free Reach-to-Grasp (FRG) task, monkeys were required to intercept and hold objects 

swinging at the end of a string (Figure 4A). After successfully holding an object for one 

second, they received a juice reward and were required to release the object to initiate a new 

trial. The objects were presented at different positions and speeds. Three different objects 

were used (one at a time) in order to elicit different grasping strategies. The first object was 

a vertical plate 10 cm high by 7 cm wide by 0.3 cm thick. The second object was a vertical 

18 cm long cylinder with a 2.5 cm diameter. The third object was a horizontal disk 7.5 cm in 

diameter and 0.3 cm thick. The monkey’s movements were measured using an optical 

motion capture system (Vicon Motion Systems Ltd. UK) to track reflective markers attached 

to the skin as described in Vargas-Irwin et al. (2010). For this dataset we measured grip 

aperture (the distance between markers placed on the distal interphalangeal joint of the index 
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finger and thumb) as well as wrist flexion/extension and ulnar/radial deviation subsampled 

at 24 Hz (Figure 4B–D). Object contact was detected using capacitative switches built into 

the objects.

3.5 Free Reach-to-Grasp task: Single neuron properties

Spike trains, one second in duration, were recorded from PMv and centered on each 

successful object contact event (where the grip was maintained for at least one second). 

Neural activity and kinematics were collected for a total of 90 trials (30 with each object). 

SSIMS projections for classification were derived from the neural data using q = 10, such 

that 1/q = 100 ms, SSIMS dimensionality = 10 and t-SNE perplexity = 30.

Single unit properties were tested using the same strategy employed in the center-out task. 

We tested for significant grasping-related clustering by comparing the distribution of SSIMS 

distances within and between categories using a Kruskal-Wallis test. Neurons were 

identified as being object selective when the median SSIMS distance was smaller between 

trials with the same object compared to trials with different objects. Forty-seven out of 126 

recorded neurons (~37%) were determined to be selective using this method (Kruskall-

Wallis p < 0.001). For comparison, a Kruskall-Wallis test performed directly on the firing 

rates for the same time period only produced p values < 0.001 for 19% of the neurons. As 

with the center-out data, the magnitude of directional selectivity for individual neurons was 

evaluated using a nearest neighbor (NN) classifier implemented using leave-one-out cross 

validation. Single-unit classification results are summarized in Figure 5A. These values were 

used to rank the neurons from most to least informative. Classification accuracy (using a NN 

classifier) is shown as a function of ensemble size in Figure 5B (for neurons added from best 

to worst, or in the inverse order).

Figure 5C–F displays the relationship between ensemble activity patterns associated with the 

three objects as neurons are progressively added to the ensemble (for ease of visualization 

2D SSIMS projections are shown). The target object clearly emerges as the dominant feature 

in the SSIMS projections; this can bee seen in the post-hoc color coding. Note that this result 

does not imply that other kinds of information – such as hand position – are not represented 

in the neural data. With greater numbers of neurons cluster separation and classification 

performance gradually increase. A NN classifier (implemented with leave-one-out cross 

validation) applied to the full ensemble SSIMS projections correctly identified the target 

object in ~96% of the trials, exceeding results obtained using a similar classifier applied 

directly on all kinematic measurements shown in Figure 4 spanning the same time duration 

(89% correct). Measuring additional kinematics and or dynamics could potentially narrow 

the gap between neural and kinematic classification. However, our results demonstrate that 

the SSIMS algorithm is capable of capturing grasp-related activity patterns with fidelity on 

par with detailed kinematic measurements. The method can successfully discriminate 

activity patterns in complex tasks involving many interacting degrees of freedom, and is 

therefore a potentially useful tool for the analysis of high-dimensional motor, sensory, or 

cognitive neural responses.
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3.6 Comparison with other methods

The SSIMS algorithm combines spike train similarity metrics with t-SNE in order to 

generate low-dimensional representations of neural spiking data. It is possible to generate 

similar outputs by combining different pre-processing and dimensionality reduction 

techniques. In order to examine the contributions different approaches, we tested two pre-

processing methods with three dimensionality reduction algorithms. The preprocessing 

methods analyzed were spike train similarity metrics (SIM) and binned spike counts (SC), 

while the dimensionality reduction algorithms were t-SNE, multidimensional scaling 

(MDS), and principal component analysis (PCA). Each combination was evaluated using a 

NN classifier (as described in previous sections) for both the COUT and FRG task data. 

Each pre-processing method was evaluated at two temporal accuracy settings (100msec 

bins, equivalent to 1/q = 100msec, and 10msec bins, equivalent to 1/q = 10msec). In all 

comparisons one second of neural data was used. Each dimensionality reduction algorithm 

was used to generate a 10D space (well-suited for classification) as well as a 2D space (for 

ease of visualization). Additionally, we ran the NN classifier on data without the benefit of 

dimensionality reduction as a baseline comparison. Results are summarized in Table 1.

Across all of the comparisons evaluated, methods using spike counts produced, on average, 

67% correct classification (s.dev = 20), while methods based on spike train similarity 

averaged 80%. Methods including PCA averaged 65% (s.dev = 24), while the average for 

MDS was 74% (s.dev = 20), and the average for t-SNE was 83% (s.dev = 17). For any given 

task, dimensionality, and temporal accuracy, the combination of techniques used in the 

SSIMS algorithm (SIM + t-SNE) produced the highest accuracy observed, with the 

exception of COUT, 2D, and 100msec, where it was 1% below t-SNE + spike counts.

Overall, similarity metrics tended to outperform spike counts and produce representations 

which were more stable across different dimensionality settings. The largest differences 

between dimensionality reduction algorithms were observed in the 2D spaces, where t-SNE 

was clearly superior. For 10D spaces the performance of different algorithms was relatively 

similar (especially when using spike train similarity as a preprocessing step). This pattern 

suggests that even for cases where discrete classification accuracy for MDS and t-SNE is 

roughly equivalent, t-SNE consistently produces more informative 2D plots for visualization 

purposes. Samples of 2D plots produced using different methods are shown in Figs. 6 and 7. 

Note that PCA fails to capture the circular arrangement of targets in the COUT task (Fig. 6 ). 

This pattern is revealed by MDS, but the clusters tend to be more diffuse than those obtained 

using t-SNE. The differences are more pronounced for the FRG task, where only the full 

SSIMS algorithm shows a clear recognizable pattern in 2D (Fig. 7).

3.7 Effects of Parameter Setting on SSIMS algorithm performance

We tested the performance of the SSIMS algorithm under a range of parameter settings 

spanning a range of spike train durations, temporal offsets, dimensionality, temporal 

resolution (q values), and perplexity. Algorithm performance was evaluated based on 

classification accuracy of either reaching direction in the COUT task or target object for 

grasping in the FRG task. In both cases, a nearest neighbor classifier with leave-one-out 

cross validation was applied as previously described.
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For both of the tasks examined, accurate pattern classification (greater than 85% correct) 

was observed for a wide range of time windows (Figure 8). For the COUT task, the most 

informative time period for direction classification was around the time of start of 

movement. In the FRG task, the most informative period for grip classification was roughly 

500 ms before contact with the object, coinciding with the transport phase that includes hand 

pre-shaping. The duration of the time window analyzed had a relatively small effect on 

performance. During the most informative time periods, time windows of as short as 200 ms 

were sufficient for accurate classification. Extending the time window by an order of 

magnitude (up to 2 s) did not adversely affect performance. These results show that the 

SSIMS method is suitable for exploring neural data at a broad range of time scales.

We also examined the effect of SSIMS dimensionality and temporal accuracy (q value) on 

classification performance. For this part of the analysis, we selected fixed 1-second time 

windows coinciding with highly informative periods in each task: starting 100 ms before 

movement onset for COUT and 500 ms before object contact for FRG. While holding spike 

train duration and temporal offset constant, we examined classification performance as a 

function of dimensionality and q (Figure 9). For both of the tasks, dimensionality reduction 

did not have an adverse effect on classification, suggesting that the low dimensional spaces 

successfully characterize the patterns present in the original high dimensional pair-wise 

similarity matrix. In the COUT task, 2 dimensions were sufficient for accurate decoding, 

while in the FRG task performance was more stable with 3 or more dimensions. We 

explicitly tested clustering without the benefit of dimensionality reduction (labeled as 

‘FULL’ dimensionality in Figure 9); for both tasks a modest but consistent increase in 

classification was observed when dimensionality reduction was applied (more pronounced 

for the FRG task). Adjusting the temporal resolution of the algorithm (q value) produced 

different effects in the two tasks examined. Recall that q determines the cost of shifting, 

such that a shift of more than 1/q has a cost equivalent to removing a spike and inserting a 

new one. This cutoff determines when the algorithm treats spikes as temporally shifted 

versions of each other, rather than unrelated events. Changing the value of q had a relatively 

small effect on classification accuracy for the COUT task. However, there was a gradual 

trend towards better classification for temporal accuracy values of 250 ms. The FRG task 

displayed a clearer effect of temporal resolution, with a consistent increase in classification 

accuracy for 1/q values around 100 ms. Overall, incorporating spike timing provided better 

performance than assuming a pure rate code (setting q = 0). This finding demonstrated the 

advantage of incorporating spike timing information rather than only spike counts.

We also tested the effect of varying the perplexity setting in t-SNE (which determines the 

effective number of neighbors for each point). Algorithm performance did not vary for 

perplexity values between 1 and 50 (data not shown).

4 Algorithm validation using synthetic data

In the two data sets analyzed, classification accuracy showed systematic variation as a 

function of the q settings in the SSIMS algorithm. However, the true degree of temporal 

accuracy for the behaviors examined is not known. In order to test whether the SSIMS 

algorithm is sensitive to the temporal resolution of spiking patterns, we conducted additional 
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tests using synthetic spike trains with predetermined degrees of temporal precision. 

Artificial data was generated based on eight one-second spike trains recorded from a sample 

neuron recorded in the COUT data set (one spike train for each movement direction). In 

order to simulate a stochastic response, synthetic spike trains were generated by applying a 

random jitter to each recorded spike train (drawn from a uniform distribution) and then 

removing a percentage of the spikes (chosen randomly between 0 and 20%). The magnitude 

of the introduced jitter was used as a model for the temporal accuracy of the neural code. 

Fifty-one synthetic datasets were generated with jitter values ranging from 1 to 500 ms. 

Each dataset included 20 samples for each of the eight directions. Sample spike trains with 

varying levels of jitter are shown in (Figure 10).

Each synthetic dataset (representing neural codes with varying degrees of temporal 

consistency) was evaluated in separate runs of the SSIMS algorithm using values of the q 

parameter ranging from 0 to 1000, resulting in values of 1/q ranging from 1000 (effectively 

infinite) to 1 ms. For all tests performed, the algorithm yielded above chance classification 

(with a minimum of 40%, significantly above the expected chance value of 12.5% for eight 

categories). For jitter values of up to 100 ms, the peak in classification as a function of 1/q 

closely matched the true temporal accuracy (jitter) of the synthetic data (Figure 11A). This 

observation shows that the SSIMS algorithm can be used to detect precise temporal patterns 

in spiking data and estimate their precision. As temporal codes progressively deteriorate (at 

higher jitter values), classification accuracy becomes less sensitive to the q parameter setting 

(Figure 11B). These findings suggest that optimization of q is not critical for rate-based 

codes, but can become an important factor in the discrimination of activity patterns where 

information is contained in the timing of individual spikes.

5 Discussion

Although neuronal spiking patterns contain large amounts of information, parameterizing 

the outputs of individual neurons is challenging, since their activity often reflects complex 

interactions of multiple (often unknown) variables and noise, leading to trial-by-trial 

variation that is difficult to characterize. Furthermore, the response properties of individual 

neurons are not stationary, but instead are subject to rapid context-dependent changes 

(Donoghue et al., 1990; Sanes et al., 1992; Hepp-Reymond et al., 1999; Moore et al., 1999; 

Li et al., 2001; Tolias et al., 2005; Stokes et al., 2013). Limiting data analysis to sub-

populations of neurons that can be described using relatively simple models may severely 

distort conclusions drawn from an experiment and disregard important relationships that 

emerge at large scales. With technological advancements allowing for the simultaneous 

recording of ensembles approaching thousands of neurons, addressing these challenges is 

becoming increasingly important (Grewe et al., 2010; Ahrens et al., 2012, 2013). The 

SSIMS algorithm allows the direct comparison of neuronal firing patterns with minimal 

assumptions regarding the specific nature of neural encoding of the underlying behavioral 

task or stimulus presentation. Using a similarity-based methodology circumvents the 

problems of over and under-parameterization: in effect, the templates used to evaluate 

spiking activity are supplied by the neuronal data. This relational approach is solely based 

on the intrinsic properties of neural activity, and does not require a direct mapping between 

neuronal firing patterns and extrinsic variables (measured in the external world). As 
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highlighted in a recent review by Lehky et al., intrinsic, unlabeled, relational, approaches to 

neural data analysis provide robust, physiologically plausible encoding models (Lehky et al., 

2013). Our results demonstrate the flexibility of intrinsic coding implemented in the SSIMS 

framework. We were able to apply an almost identical analysis (differing only in the number 

of categories to discriminate) for neural activity elicited in very different behavioral contexts 

without having to adjust any parameters relating firing patterns to extrinsic variables. 

Avoiding the need for ‘extrinsic labeling’ is one of the main features that makes this kind of 

model appealing from a biological standpoint (Lehky et al., 2013).

Our results also demonstrate how accurate movement decoding (of either reach direction 

and grip type) can be achieved by applying relatively simple algorithms (such as nearest 

neighbor classifiers) to SSIMS representations. The algorithm can successfully discriminate 

between ensemble spiking patterns associated with a planar 8-directional reaching task, 

accurately reflecting the relationships between reach directions (Figure 3). SSIMS 

projections can also be used to separate three different grasping strategies used in the Free 

Reach-to-Grasp task, despite the higher number of degrees of freedom engaged (Figure 5). 

In both tasks, stable cluster separation was achieved over a broad range of physiologically 

relevant parameter settings (Figures 8, 9). Classification accuracy was consistently improved 

by the application of dimensionality reduction as well as the inclusion of spike timing 

information (Figure 9). This finding highlights the advantages of the two core techniques 

that form the basis of the SSIMS algorithm. Evaluating neural data under various parameter 

settings can potentially reveal features related to the inherent dimensionality as well as spike 

timing precision. In the COUT task, optimal pattern classification was observed with 

temporal accuracy settings of approximately 250 ms; whereas in the FRG task, classification 

peaked for 1/q values of approximately 100 ms. Although these observations suggest a 

greater degree of temporal accuracy for spiking during grasping than reaching behaviors, it 

must be stressed that the values represent only 2 datasets collected from different animals. 

Further research involving the comparison of multiple subjects engaged in both tasks would 

be required to explore this hypothesis. Although pursuing this inquiry is outside the scope of 

the current manuscript, this finding shows how the application of the SSIMS method can be 

used to fuel data-driven hypothesis generation. The SSIMS algorithm provides outputs that 

can be conveniently visualized and quantitatively evaluated. Visual examination of the 

ensemble SSIMS plots makes it easy to fine-tune algorithm performance: for example, given 

the overlap between the categories in Figure 3F, we could reasonably expect 100% correct 

classification for a 4-directional decoder. Of course, this prediction assumes that the 

properties of the data being recorded are stable over time, an ongoing challenge for on-line 

neural control (Barrese et al., 2013). SSIMS visualization may also prove useful in this 

respect, providing and intuitive display of the trial by trial variation of single-unit or 

ensemble neural activity patterns which would make it easier to detect and address 

variations in decoder performance. This kind of application may be a valuable tool for the 

challenge of developing reliable neuromotor prosthetics.

Relationship to existing neural dimensionality reduction algorithms

Evaluating the information content of neuronal ensembles using machine-learning methods 

for classification and decoding is a widely used strategy. This approach often includes an 
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implicit element of dimensionality reduction: for example, estimating the 2D position of the 

arm using a Kalman filter (Wu et al., 2006) is a dimensionality reduction operation guided 

by kinematic parameters. Other algorithms such as population vector decoding 

(Georgopoulos et al., 1986) can also be viewed as a kinematic-dependent supervised form of 

dimensionality reduction (since preferred directions must be assigned beforehand). Methods 

like these require parametrization of neural data with respect to an externally measured 

covariate. By contrast, relational, intrinsic decoding methods such as SSIMS perform 

dimensionality reduction in an unsupervised way, with no reference to continuous kinematic 

variables (Lehky et al., 2013).

Non-supervised dimensionality reduction techniques based on principal component analysis 

(PCA) have also been successfully used to produce concise representations of neural 

ensemble activity without a priori knowledge of external variables (Churchland et al., 2007, 

2010, 2012; Mante et al., 2013). This approach has revealed structured transitions from 

movement preparation to execution not evident using traditional analysis methods focusing 

on single-unit changes in firing rate. Several studies have applied relational encoding 

methods using multidimensional scaling (MDS) to examine cortical ensemble activity in the 

primate visual system (Young and Yamane, 1992; Rolls and Tovee, 1995; Op de Beeck et 

al., 2001; Kayaert et al., 2005; Kiani et al., 2007; Lehky and Sereno, 2007). Murata and 

colleagues have also employed similar methods to examine grasp-related encoding in area 

AIP (Murata et al., 2000). These studies have successfully generated low-dimensional 

spaces representing relational coding of different objects and grip strategies.

One key difference between the SSIMS algorithm and other methods is the combination of 

dimensionality reduction with spike train similarity metrics. Instead of representing neuronal 

activity in terms of firing rates (either binned, or smoothed using a kernel function) the 

SSIMS algorithm applies dimensionality reduction to sets of pair-wise distances between 

spike trains, allowing for retention of millisecond-level spike timing information. Although 

it is still necessary to specify a time window, the precise timing of each spike is taken into 

account; it is therefore possible to examine relatively large time windows without sacrificing 

temporal resolution. Previous work on spike train metrics revealed no net benefits from the 

application of dimensionality reduction, aside from convenient visualization (Victor and 

Purpura, 1997). Our method differs from previous applications in terms of how information 

from individual neurons is combined. Instead of collapsing ensemble similarity measures by 

shifting spikes between neurons, our approach keeps information from each neuron 

segregated until the dimensionality reduction step. Our choice of dimensionality reduction 

algorithm (t-SNE, as described in van der Maaten and Hinton, 2008) also differs from 

traditional approaches by using dynamic density estimation to minimize the differences 

between local neighborhoods in the high and low dimensional spaces.

We directly compared the SSIMS algorithm to methods using MDS or PCA implemented on 

data represented in terms of spike counts as well as spike train similarity metrics. Our results 

show an increase in the accuracy of pattern recognition associated with both components of 

the SSIMS algorithm (Figs. 6 and 7, Table 1). The combination of spike train similarity with 

t-SNE allow the SSIMS algorithm to effectively use dimensionality reduction to enhance 

pattern recognition, improving performance compared to the alternative methods tested.
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Limitations and future work

The main application for the SSIMS method is the comparison of discrete experimental 

conditions with the goal of clustering similar activity patterns. SSIMS coordinates are 

determined by the relative similarity of the activity patterns analyzed. It is therefore not 

possible to directly map SSIMS projections generated from different ensembles into the 

same space (for example, from different subjects, or different brain areas). However, 

normalized clustering statistics (for example the ratio between within and between-cluster 

distances) could be used to compare SSIMS representations from different ensembles. 

Decoding results (such as the nearest-neighbor classifier demonstrated here) can also be 

used to quantify and compare the separation between activity patterns from different 

sources.

Although the SSIMS method provides useful visualization and quantification of the main 

trends present in the data, it should not be regarded as a comprehensive representation of all 

the information contained in a given set of neural activity patterns. For example, time-

varying continuous variables may fail to produce clear clusters unless there are underlying 

repeating motifs centered around the time epochs of interest. Furthermore, while low 

dimensional representations may reveal the principal organizing patterns for a dataset, more 

subtle trends may not be evident without taking into account higher dimensional spaces. 

Note that while this may hinder visualization, the statistical techniques described for cluster 

evaluation can be used to determine the optimal dimensionality to discriminate patterns in a 

given task.

For the current implementation of the algorithm, it is necessary to align spike trains using an 

external reference event, which inevitably introduces temporal jitter related to the sensor and 

detection system used. Metrics based on inter-spike intervals could help mitigate possible 

misalignments (Victor and Purpura, 1996). Future versions of the algorithm may also refine 

spike train alignment using other biological signals, such as local field potentials (for 

example, in addition to comparing the timing of spikes, it may be useful to compare their 

phase alignment with respect to ongoing oscillations at specific frequencies). The current 

metric also lacks an explicit model of potential interactions between different neurons. 

Incorporating similarity between pairs or neurons, or measures of synchrony between them 

could potentially expand the sensitivity of the algorithm. Tracking the evolution of SSIMS 

cluster statistics using sliding time windows, will also be also possible to see how particular 

activity patterns converge or diverge over time, providing insight into ensemble dynamics.

The t-SNE algorithm is well suited for the separation and classification of neural activity 

patterns based on pair-wise similarity metrics because of the emphasis it places on 

comparisons among neighboring points. However, the dynamic density estimation used to 

define local neighborhoods can potentially have a normalization effect on the variance of 

individual clusters. Therefore, if the goal of the analysis is to estimate the inherent 

variability of neural responses in different conditions, it may be better to perform the 

comparison using other dimensionality reduction methods (or foregoing dimensionality 

reduction altogether).
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Note that to demonstrate the application of SSIMS for classification we used a simple NN 

method. NN, however, is not a part of the main SSIMS algorithm. Of course, more 

sophisticated classifiers could be applied to the SSIMS output, likely providing further 

improvements in decoding accuracy.

Conclusion

Understanding the relationship between patterns of activity emerging in large scale neural 

recordings is a key step in understanding principles of biological information processing. 

The SSIMS algorithm provides a widely applicable framework for neural data analysis 

allowing both straightforward visualization of of an arbitrary number of simultaneously 

recorded spike trains and a way to perform precise statistical comparisons between activity 

patterns. By combining spike train metrics that capture precise spike timing and a 

dimensionality reduction technique based on pair-wise similarity, we have demonstrated that 

SSIMS is an effective analytical tool in two dramatically different non-human primate 

experimental paradigms.

The techniques described can be employed beyond the motor domain, providing a way to 

quantify the relationship between perceptual or cognitive states where kinematics do not 

provide an intuitive topography. Additionally applying unsupervised clustering algorithms 

(such as k-means) to SSIMS data could reveal clusters of similar neural activity patterns 

without any a priori knowledge of the behavioral context. Using these tools, it may be 

possible to automatically identify recurring network states as well as the transitions between 

them, providing an intuitive framework to represent the high level flow of neural 

computation.
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Figure 1. Center out task kinematics
The trajectories show the position of the tip of the index finger as the monkey performs a 

center-out motion to 8 peripheral targets (labeled from 0 to 315°). The trajectories shown 

were taken from a 1-second time window starting 100ms before movement onset 

(corresponding to the main time period used for neural data analysis).
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Figure 2. Single neuron SSIMS in the Center-out task
A. The outer plots show traditional raster-histograms (50 ms bins) for each of the 8 

movement directions (radially arranged to represent their relative position on the workspace 

as shown in Fig. 1). The central plot shows the SSIMS representation for the same data. 

Each trial shown in the raster plots corresponds to a single point in the SSIMS 

representation. Color coding is used to match SSIMS points with the corresponding 

movement directions. A KNN classifier operating on the SSIMS representation of this single 
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unit was capable of correctly predicting the direction of 41% of the trials (see main text for 

details). B. Similar comparison with a second neuron.
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Figure 3. Center out task: From single neurons to ensembles
A. Single neuron performance in 8-direction classification (10D SSIMS, NN classification 

using data from individual neurons separately). Classification accuracy using the combined 

data from all neurons is highlighted with a red star for comparison. Green triangles denote 

the 95% confidence interval of the chance distribution (calculated over 10,000 random 

shuffles of the trial labels). B. Classification performance as a function of ensemble size 

(10D SSIMS). Neurons were ranked according to single-unit NN results and added to the 

decoding ensemble from best to worst (black) or worst to best (red). The median value 
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between these two extremes is shown in blue, representing the expected trend for randomly 

chosen neurons. C–F. SSIMS projections for various ensemble sizes (2D SSIMS). Color 

coding denotes reach direction using the same conventions as figure 2 (directions are also 

highlighted in panel F).
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Figure 4. Free Reach-to-Grasp task kinematics
A. Diagram of the target objects (not to scale). Each one was presented at the end of a string 

moving through points in the workspace. B–D. Hand kinematics measured using optical 

motion capture spanning one second centered on object contact. Color coding matches 

object color in panel A (blue = vertical plate, red = cylinder, green = disk). Grip aperture 

was measured as the distance between markers placed on the distal-most joints of the index 

and thumb. Wrist u/r dev = ulnar/radial deviation; f/e = flexion/extension.
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Figure 5. FRG task: from single neurons to ensembles
A. Single neuron performance in 3-object classification (10D SSIMS, NN classification 

using data from individual neurons separately). Classification accuracy using the combined 

data from all neurons is highlighted with a red star for comparison. Green triangles denote 

the 95% confidence interval of the chance distribution (calculated over 10,000 random 

shuffles of the trial labels). B. Classification performance as a function of ensemble size 

(10D SSIMS). Neurons were ranked according to single-unit NN results and added to the 

decoding ensemble from best to worst (black) or worst to best (red). The median value 
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between these two extremes is shown in blue, representing the expected trend for randomly 

chosen neurons C–F. SSIMS projections for various ensemble sizes (2D SSIMS).Color 

denotes the object being grasped (blue = vertical plate, red = cylinder, green = disk).
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Figure 6. Neural data visualization: COUT task
Top row shows results using tSNE for the dimensionality reduction step (A,B), middle row 

represents MDS (C,D) and bottom row PCA (E,F). Left column shows results for methods 

using spike train similarity as a pre-processing step (A,C,E), right column shows results for 

methods based on spike counts (B,D,F).
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Figure 7. Neural data visualization: FRG task
Top row shows results using tSNE for the dimensionality reduction step (A,B), middle row 

represents MDS (C,D) and bottom row PCA (E,F). Left column shows results for methods 

using spike train similarity as a pre-processing step (A,C,E), right column shows results for 

methods based on spike counts (B,D,F).
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Figure 8. Effect of spike train duration and temporal offset on SSIMS
A. Effects of temporal offset and spike train duration on COUT direction classification. The 

abscissa is the start time for the window used to generate the SSIMS projection (centered 

around start of movement; negative values are before the onset of movement). The ordinate 

varies the length of the time window. These results were obtained holding q = 10 

(corresponding to a temporal precision of 0.1 s), perplexity = 30, and SSIMS dimensionality 

= 10. B. Effects of temporal offset and spike train duration on FRG grip classification (same 

conventions as A).
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Figure 9. Effect of dimensionality and q on SSIMS
A. Effect of q and dimensionality on direction classification in the COUT task. In the 

‘FULL’ dimensionality condition classification was performed directly on the pairwise 

distance matrices without applying t-SNE. Infinite temporal resolution corresponds to 

setting q = 0 (pure rate code). The following parameters were held constant: window start 

time = −0.1 s, spike train duration = 1 s. The marginal distribution averaging percent 

correctly classified trials across dimensions is shown above each plot. B. Effect of q and 

dimensionality on grip classification in the FRG task. Same conventions as A. Window start 

time = −0.5 s, spike train duration = 1 s.
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Figure 10. Synthetic spike trains
Eight different spike trains recorded in primary motor cortex served as templates for 

synthetic data generation. For each synthetic dataset each spike train was jittered and 

randomly subsampled removing between 0 and 20% of the spikes. Samples of spike trains 

jittered by ±1, 10, and 100 ms are shown in A, B, and C, respectively.
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Figure 11. Estimating the temporal accuracy of neural codes
A. Classification accuracy (using a nearest neighbor classifier implemented using leave-one-

out cross validation) is plotted as a function of the jitter used to generate the synthetic data 

(y-axis) and the q value setting for the SSIMS algorithm (x-axis). Classification results 

shown are the average value obtained across 20 iterations of synthetic data generation. For 

each synthetic dataset (row) the jitter value is highlighted by a circle. Similarly, the value of 

1/q yielding the highest NN classification is highlighted with a ‘+’ sign. B. 3D projection of 

the data presented in panel A. This view highlights the large effects of q parameter settings 

on classification of spiking patterns with high temporal accuracy (small jitter). The same 

variation in q has a much less pronounced effect on low accuracy temporal codes (with 

hundreds of milliseconds of jitter).
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