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Abstract

We propose a statistical method for modeling the non-Paoissoiability of spike
trains observed in a wide range of brain regions. Centralutoapproach is the as-
sumption that the variance and the mean of interspike ialeare related by a power
function characterized by two parameters: the scale fastdrexponent. It is shown
that this single assumption allows the variability of spik&ins to have an arbitrary
scale and various dependencies on the firing rate in the spika statistics, as well as
in the interval statistics, depending on the two parameiéthe power function. We
also propose a statistical model for spike trains that etdibe variance-to-mean power
relationship, and based on this a maximum likelihood methdeéveloped for inferring
the parameters from rate-modulated spike trains. The gexgpmethod is illustrated on

simulated and experimental spike trains.

1 Introduction

The variability of neural firing is of central importance hetstudy of signal processing
that is carried out by the nervous system. The reliable tngsson of sensory sig-

nals, integration of neural information, and precise aardf neural-motor systems are
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significantly dependent on the variability of the neurap@sses to identical sensory or

behavioral variables, as well as on the average resptlﬂﬁ'eé;h’land Sejnowski, 1995;

de Ruyter van Steveninck etlal., 1997; Harris and Walpef§iShadlen and Newsome,
199 ;Ma_el_ah.. 2006; Lu et 13).

Two types of measurement, inter-spike interval (1SI) anklespount, are commonly

used to quantify the variability of spike trains. The vaiiidp of ISI, expressed in the
variance, quantifies how irregular the firing time is on a sharescale, characterized
by the typical ISI. Since the variance of ISI is computed witkingle spike trains, it
signifies intra-trial variability. The variance of the spikount across repeated observa-
tions, by contrast, quantifies the trial-to-trial variayiin relatively long time intervals.

These two quantities are by no means independent varidilesre closely related

Nawrot et al.| 2008). In general, the variances of both &8l spike count are scaled

by the mean, the degree of which may vary across differemt lpegions [(Kara et al.,
2000; Maimon and Assad, 2009).

In this article, we formulate a statistical framework for @eting the variability of

spike trains in terms of both the ISI and counting statist@sr approach is motivated

by an observation made by Troy and Robson (1992). They reghdhat for steady

discharges of X retinal ganglion cells of cats, in respops&dtionary visual patterns,
the standard deviation of ISl increases as approximatelgth power of the mean ISI.

Motivated by their observation, we make a single assumatimut the 1SI statistics:

Var(ISI) = ¢E(ISI)®, (1)

whereg is the scale factor controlling the overall variance of |8isda is the exponent

controlling how the variance is scaled by the mean. Pregenshould be emphasized

that this statistical assumption is a generalization offihéing of Troy and Robson

1992), in the sense tha{> 0) anda can take arbitrary values in theory. On the basis

of the power law[(ll), we show that this allows the spike trambave a wide range of
variability in the counting statistics, as well as in the &htistics observed across the
brain areas, dependin nda. By combining Eq.[(IL) with the time-rescaling trans-

formation (Barbieri et al., 2001), we propose a “generalizate-modulated renewal

process to model spike trains, and develop a maximum liketihmethod to infer)



anda from rate-modulated spike trains.
The rest of this article is organized as follows. In sectibw@ develop a statistical
method. In sectionl3, we illustrate our method on simulated experimental data.

Sectior4 contains discussions on the possible implicaidithe results.

2 Theory

2.1 Statistical assumption

Consider spike trains whose ISls are independent and addigtdistributed, with mean
u and variancer?. The central assumption in our approach is that the variaht®l

has a power function of the mean, in the form

o* = o, (2)

where¢ > 0 is the scale factor controlling the overall amplitude of gosver law, and
« is the exponent controlling how the variance is scaled byhgimy the mean. For
a = 2, the scale facton corresponds to the squared coefficient of variation, whose
value is unity for a Poisson process. By contrast, values of 2(< 2) imply that the
timing of spike tends to be over (under) dispersed for largams, and under (over)
dispersed for small means.

Next, consider the spike count. L&y be the number of spikes in the counting
window of durationA. The variability of spike count is often measured by the Fano

factor, defined by the ratio of the variance to the mean:

Var(NA)
Fpn = ———= 3
A E(NA) ) ( )
where the expectation is computed over repeated obsemgatiGor a large count-
ing window A > p, the mean and variance df, are asymptotically evaluated as
E(NA) ~ A/p andVar(Na) ~ oA /i3, respectivelyl (Cax, 1962). Suppose that the

variance of ISls obeys Ed.I(2). Then, for lafyehe Fano factor exhibits the power law

Fa ~ ¢\, (4)



where

= )

is the mean firing rate, and the exponens related to that of the ISI statistics via the
scaling relation:
v=2—q. (6)

Eq. (4) describes the dependency of the Fano factor on thmatdameters and the mean
firing rate \. Fory = 0 (i.e., o = 2), the Fano factor does not depend ann other
words, the variance of the spike count is proportional tortiean. Ify > 0 (a < 2),
the Fano factor increases asncreases, while the Fano factor is inversely related to
if v <0 (x> 2).

The Fano factor depends on the length of the counting windowVhenA <«
i, the probability of two and more spikes is negligible, and #pike count can be
approximated by a Bernoulli random variable with probdiei P(Ny = 1) = AA
and P(Na = 0) = 1 — AA, respectively. The variance of the Bernoulli distribution
is AA(1 — A\A), so that for any values aof and ¢ the Fano factor approaches unity
Teich et al., 1997):

MM AA)
Jim P = Jim ——— =1, (7)

which is different from Eq.[(4). In the numerical studiesg@eted in sectiohl 3, we

chooseA so that an average of five spikes fall in the window, which iswggh for

Eq. (4) to apply.

2.2 Statistical model
2.1 Generalized rate-modulated renewal process

We construct a statistical model for spike trains whoseatmlity is characterized by
the variance-to-mean power law. Consider first the statjorenewal process, a class
of point processes in which ISIs are independent and idahtidistributed. LetX
be a random variable describing ISI. It follows from Hg. (Batt by rescaling ISI as
X — AX, A = 1/u being the mean firing rate, the parameters are rescalgd-asl

and¢ — A\?7*¢. Thus, a parametric probability density functigte; i, ¢) that has



meany and varianceou®, and is invariant under the rescaling, satisfies

flasp, ) = Af(Ax; X2720), (8)

where f(z; ¢) := f(x;1,¢). Eq. [8) suggests that one can always reparametrize an
arbitrary probability density function with unit mean aratnceyp, so that the variance
has the power function of the mean (2).

We extend the stationary renewal process defined by[Eq.q&),rate-modulated
process. LetV(t) be the number of spikes that have already occurred at #jraad

t; denote theth spike time. A point process is fully defined by a conditiongensity

function (Daley and Vere-Jones, 2003; Kass and Ventural 200

r(t; H(t)) = C}tiin)o P{N(t+ dt) —d]t\f(t) =1 H@#)}

, 9)

whereH (t) = {ti,ts,...,tnw) } denotes the history of spikes up to the timeFor a
renewal process whose IS| density function is giverf by, ¢), the conditional intensity

function, also called the hazard function, is given by

t—1Inw;
(it 8) = —— 0 (10)
L= Jive (0=t d)du
Let \(¢) > 0 be an instantaneous firing rate, and define
t
A(t) = / u)du, (11)
0

which is monotone and invertible. By rescaling the time> A(¢), we can obtain the

“conventional” rate-modulated renewal process (Barlsesl., 200 Berm'1r4_19J81;
Koyama and Kass, 2008; Koyama and Kostal, 2014; Nawro Jﬁm Pillov _ZQ_CJS
Reich et A 1998), whose conditional intensity functisgiven by

AW F(A(®) — Altv); @)

) —
titne, (At '
7(t; AN} 0) = _ ftm) AW) f(A(v) = Aty ); ¢)dv

(12)




Note that the expectation of EQ. {12) is equal to the follayin

At) = Elr(t; tne, {A0)}, 9)], (13)

where\(t) is also called the “marginal” intensity function, which doeot depend on

the past spikes. However, the Fano factor of the pro¢essdded not have the power

law with the exponent {

We generalize EqLL(12) such that the Fano factor has a powetiém of the firing

rate. Analogously with Eq[{8), by rescaling the parameter \(t)>~“¢, as well as

the timet — A(¢), the conditional intensity function of a “generalized"eahodulated

renewal process is obtained as

r(t;tne, {0}

¢, @) =

A F(A() — Altw); A)*9)

) -
L= J5 o A F(A@W) = Altnp) Mv)?2¢)dv

(14)

Eq. (13) is reduced to the conditional intensity functiosasated with Eq(8) if\(¢) =
A, and corresponds to Ed. (12)if= 2.

2.2 Likdihood function

Using the conditional intensity function (114), the probapidensity of the spike trains

{tz} = {tl,tg, ceey

p({t:}; {AD)}, 0

X exp

Q)

n

t,} in the interval(0, 7'] can be expressed as

(t) [ rtistic ANB)}, 6, 0)

=2

l

r(ustn ), (A}, ¢, a)du| Po((tn, T1),  (15)

whereP,(t,) is the probability of the first spike occurring at timg Fy((¢,,, 7)) is the

probability of no spikes occurring in the interva),, 7], and the exponential factor rep-

nes,

resents the probability of there being no spikes in eacinsptie interval(Daley and Vere-Jo

2003;

Kass and Vent

r

.2

01). Substituting Eql (14) into @§) yields the more

L In fact, this transformation results in the Fano factor geirconstant, whose value is determined by

é.



tractable form (see AppendiX A):

p{t:};{AD)}, 0, a)

n

= Pi(ty) [AE) F(A) — Altima); A(t:)*0) Pol(ta, T]).  (16)

1=2

For spike trains consisting ¥/ repeated trials{t/}}., := {t1,...,#) }}L,, the log

likelihood function of(¢, «), given{\(¢)}, is obtained as

nj

L(¢, s A0} L) = D> {logA(#]) +log f(ul; &)}

j=1 i=2

M
+Z{logP1(t{) +logP0((t£L,T])}, a7)
j=1

wheree! = \(t/)2~*¢ andu! = A(t)) — A(t/_,). In the following analysis, we assume
that there are many spikes in each tfia] > 1), so that the last two terms in E@. {17)
are negligible.

I the firing rate () is not known, an estimated firing ralé¢t) may be used, and
the maximum likelihood estimator (MLE(){&, &) is obtained by maximizing Eql_(1L7)
with respect tq ¢, «). The MLE does not generally admit closed form solutions, and
is obtained by maximizing the log likelihood function nuncatly. In the numerical
studies, we use a rectangular sliding windbw (27) to comp(tte and use a MATLAB
function “f m nsear ch” to maximize Eq.[(1l7). We will discuss alternative methods
for estimating\(¢), and for estimating¢, o) together with\(¢) rather than separately,
in sectior 4.

The numerical studies in the following section show that diegribution of ¢ is
right-skewed because > 0, but thatlog ¢ is approximately normally distributed (fig-
ure[2b). Therefore, we consider the variancej et log ¢. By differentiating the log

likelihood (17) with respect tg(= log ¢) and«, the observed information matrix is



obtained as

825 %L
T, ) = a2L aazaLa
Inda a2
ML 2 0% -
= Z gf—logﬂ z,£f>+£f log f(ul;&]) pA], (18)
‘o i o] o¢!
where
. 1 —log A(t]
A = og A(;) ‘ (19)

—log \(#]) {log A(])}?

Note that the rank of matrixd? is 1, but the rank off (1, o) generally becomesl%Fur-

ther, if the probability density functiori satisfies the regularity conditions that ensure

asymptotic normality of parameter estimator Il r, 2002), the asymp-

totic variance matrix of the MLE is given by (7, @)~!, with which the confidence

intervals forn and& are constructed as

== (J(ﬁ, d)—l)11 (20)
and
a£2/(J0.a)1), (21)

wherez is the critical value.

2.3 Choiceof 1Sl density function

The ISI density functiorf (z; ¢) is one of the building blocks of the proposed statistical
model. Any ISI density function with a finite variance repets a generalized rate-

modulated renewal proce§s14). Presently, we use a Tweistli®ution, a special case

of an exponential dispersion model (Jorgensen, 11987, 190§ is a two-parameter

distribution, consisting of a linear exponential familytivan additional dispersion pa-
rameter. These distributions play an important role inisias, because they are the
response distributions for generalized linear model h and Nelder, 1989). A

Tweedie distribution is an exponential dispersion modat tras scale invariancel (8),

v

2 The rank ofJ(n, «) becomes 1 when the firing rate is constant.



and includes probability distributions commonly used fesctibing the ISI variability,
such as the gamma (far= 2) and inverse Gaussian (far= 3) distributions as special
cases. These properties make a Tweedie distribution aoudehoice forf (z; ¢).

Exponential dispersion models have a probability densifion of the form,

F (@1, 6) = cla, 6) exp [%{xe - fs<e>}} , 22)

wheref is the canonical parameter, anfb) is the cumulant function, with derivatives
being the cumulants of the distribution. In particular,ntean and variance are given
by 1 = £(0) ando? = ¢i(6), respectively. The mapping frotto the I1SI mean. is
invertible, and is writterk(#) = V' (u) for a suitable functiorV/ (1), called the variance
function. A Tweedie distribution is identified by a partiaulchoice of the variance
function, asV (u) = u®. By equatingi(0) = du/df = p® and solving foru andx, 0
andx are obtained as

ptme—1 1
g o Pl (23)
logp a=1
and
p2me—1 2
wo)={ 7o 77 (24)
logp a=2

where we chose(0) = 0 andp = 1 até = 0, without loss of generality. The factor
c(x, ¢) in Eq. (22), which is determined by the normalization coiodit does not have

a closed form, except for in special cases. We compute it noalky, using series

expansion and the Fourier inversion formula (Dunn and SnRAA%, 2008).

3 Reaults

In this section, we demonstrate with simulations that tleppsed statistical modél(114)
describes spike trains that have a wide range of variapditgracterized by and ¢.
We illustrate on simulated and experimental data that der@émce method is capable

of estimatingy and¢ from rate-modulated spike trains.



3.1 Simulation study

First, we simulate spike trains. The probability of a spikewring in a short interval

(t,t + dt] is given by the conditional intensity function (14):
PAN(t+dt)=N(t) = Litnw, {A0)}, ¢, a} = r(titne, {A(D)}, ¢, a)di+o(dt). (25)

Spike trains are simulated by discretizing the time into Istmias (¢ = 10~°), and

evaluating Eq.[(25) in each bin. We use the firing rate fumcti®
.27
A(t) =40 + 20 sin ﬁt’ (26)

and generat@/ spike trains in the time intervale (0, 1]. In order to compute the firing
rate and the Fano factor, we use a sliding window of durafioa 0.125, in which an
average of five spikes are expected to fall. Ngt(t) denote the number of spikes of the
jth spike train in the counting window centered afl he firing rateS\(t) and the Fano

factorFA(t) in this window are computed, by averaging across trials, as

) = 3 SN0 /4 (27)
and
. 1 M . L/«
Falt) = 5 A0 - A0AY A (28)

Figure[l displays the raster plots of 20 spike trains,é,ﬂd) computed with\/ = 10*
for differenta and¢. We see thatv and ¢ differentiate the variability of spike trains
in different manners, as described in HJ. (4)scales the overall variability of spike
trains, whilea controls the dependency on the firing rate. The Fano factovessely
related to the firing rate for = 3 (Figure[1b). Forx = 2, in which case the proposed
model [14) corresponds to the “conventional” rate-modaenewal process ([12), the
Fano factor is almost constant, irrespective of the firing (Rigurd_1a). Forr = 2 and

¢ = 1, the spike trains become the inhomogeneous Poisson prgtgase1a2).

We simulated)/ spike trains, from which the MLE4, ¢) was computed. We re-

peated the simulation0? times. Figurd 2 shows that andlog ¢ are approximately

10



normally distributed, and that they are correlated. Fialotsa andlog ¢ against
the number of spike traind/ (open circles). It is observed thétandlogq? converge
to the true values a8/ increases. The errors inandlog ¢ are decomposed into the
bias and variance, which are shown in figure 3bc. Figlre 4aisghe MLEa of the
exponent against the true value, ranging frara- 2 to 3, wherea was computed with
M = 50 (open circles). The MLE approximately matches the truee/aitthis range.

For comparison, we computed an empirical estimatexofog ¢), using linear re-
gression of{log F (t)} on {log A(t)} from Egs. [@) and[{6). The results are plotted
in figured 3 andl4 (crosses). It is confirmed that the bias aridnee of ¢, log g%) are

smaller than those predicted by the empirical estimates.

3.2 Experimental data

We apply our method to two experimental datasets. One dalalseled “nsa2004.1", is
publicly available from the Neural Signal Archive (Brittenal ,;O_Qld). The spike data

was recorded from 216 neurons in the visual cortical area Millolt rhesus macaques.

The recordings were obtained while a visual stimulus, timgj of a dynamic random

dot pattern, was presented. Further experimental det@ilde found in Britten et
1992). The other dataset, labeled “ia-1", is availablerfine CRCNS data sharing
website (Rokem et al., 2009). Spike trains were recordech 8 auditory receptor

cells of grasshoppers, while an auditory stimulus comgjstif random amplitude mod-

ulations of wave was presented. See Rokemlet al. (2006) for details.

Both datasets were divided into sub-datasets, consisfimgudtiple spike trains
recorded from one cell under identical stimulus conditioe selected sub-datasets
containing> 50 trials, and with the mean firing rate 10 spikes/s, due to the sufficiency
of spikes for the analysis. Consequently, 193 sub-daté&setsa2004.1 and 138 sub-
datasets for ia-1 were used. Representative sub-datasetsd2004.1 and ia-1 are
shown in Figuré®, together with the estimated firing rat® and Fano factofx (¢),
computed with the sliding window whose lengthwas taken so that an average of five
spikes are encompassed.

For each sub-dataset, we obtained the I\/(IdE.gE). Figure[6a shows a scatter plot

of (&, log g%) (open circles stand for nsa2004.1 and crosses stand fQr iaBhE mean

11



and standard deviations of the MLE ate= 2.43 + 0.38 andlog ¢ = 1.52 + 1.69 for
nsa2004.1, and = 2.96 + 0.58 andlog ¢ = 3.37 + 2.46 for ia-1. It is observed that
a large portion of ther are greater than two, and that on averagef ia-1 is greater
than that of nsa2004.1. This indicates that the firing véitglbends to decrease as the
firing rate increases, and that this tendency is strongea-ih than in nsa2004.1. In
order to confirm this result, we estimated the exponewitthe Fano factor empirically
for each sub-dataset, by performing linear regressidfic@f £a (1)} on{log \(¢)} (see
Figure[$a2,b2). The estimated exponentsrey = —0.17 £+ 0.51 for nsa2004.1 and
4 = —0.94 + 0.33 for ia-1. Figure_6b plotsy againsta in each of the sub-datasets,

showing that the individual sub-datasets scatter arouadirib [6).

4 Discussion

This article was concerned the variability of spike trahsscribed by the power mean-
variance relationshig{1). It was shown that this singleuagstion allows the spike
trains to have a wide range of variability, characterizedpbgnd a. By combining
the power law with the time-rescaling transformation, wepmsed generalized rate-
modulated renewal processes, based on which a statistethboh was developed for
inferring (¢, «) from rate-modulated spike trains.

In our method, the firing ratea(t) was estimated separately from, «), using a

rectangular counting window. We could use other methodsh st kernel density

estimators or spline methods, which produce more preciseestimates (Kass etlal.,

X

2003; Shimazaki and Shinomoto, 2010). Alternatively, oras mstimate\(¢) together

with (¢, «), rather than separately. A principled method is to adoptyeBian frame-
work, introducing a prior process of(¢) for regularization and computing the pos-

terior process. Parameters of the prior process(and) can be simultaneously op-

timized, by maximizing the marginal likelihood or the euwe (Cunningham et al.,

2008; Koyama and Shinomoto, 2005; Koyama etlal., 2013), kvmay improve the

statistical efficiency.

It is often assumed that the variance of spike counts is ptigmal to their mean

verbeck, 2009), where the coefficient of proportionalityhich corresponds to the

Fano factor) may differ from unity due to a deviation from $&mn spiking. In our

12



formulation, this assumption is relaxed, and we adopt oaettre ratio of the count

variance to the mean changes with the firing rate (Bq. (4))hvs observed in a wide

range of brain regions (Kara et/ al., 2000).

The degree of irregularity of neural firing, which is measlig I1SI statistics such as

thelocal variation Ly, (Shinomoto et all, 2003), is generally maintaimesivo cortical

areas, while the firing rate varies in time (Maimon and sw; Shinomoto et

2009). This implies that the exponent of the power Iaiv (2)hia S| statistics iy ~

2, from which a linear relationship between the mean and meeaof spike counts
(v =~ 0) is expected. On the other hand, steady discharges of Xateganglion cells,

in response to stationary visual patterns, approximategydhe power law withy ~

3 (Troy and Robsan, 1992), implying that a fixed ratio of theiasace to the mean

spike count no longer holds, but that the spike counts aseMagable at higher rates
Berry and Meister, 1998; Reich et al., 1998).
In the nervous system, neurons produce an action potegtiatdgrating presynap-

tic inputs within tens of milliseconds, in which typicallyfew spikes come from each
presynaptic neuron. This implies that the variance of spikents in the integration time

exhibits the power law, so that the presynaptic inputs Iseyrel-dependent noisei that

may be relevant to the computation carried out by the nersgstem. Ma et all (2006)

hypothesized that the Poisson-like statistics in the nese® of populations of corti-
cal neurons may represent probability distributions okerstimulus, and implemented
Bayesian inferences using linear combinations of the resg® A necessary condition

in their hypothesis, which makes the Bayesian inferencesiple, is that the variance

of spike counts is proportional to the mean spike coynt(0). lLu et al. (2013) showed

that in controlling dynamical systems with noisy signatggise control is achievable if
the control signal has sub-Poisson noige(0), while it is not achievable if the control
signal has Poisson or supra-Poisson néise 0).

By analyzing a stochastic leaky integrate-and-fire model,provided a possible

mechanistic explanation for the origin of the power law (I)hvwarious exponents

3 With a temporal resolution of this integration time, spikarts may be described as

AN()
T A(t) + (1),

where¢(t) is a white noise witE[¢(t)] = 0 andE[£(2)E(s)] = oA ()Y FLS(t — ).

13



Koyama, 2014).« = 3 may imply a supra-threshold firing regime, in which firing is

driven by excitatory inputyy = 2 may be interpreted as a sub-threshold firing regime,
in which the membrane potential fluctuates below the thieshoda = 1 may emerge
when firing is strongly caused by large fluctuations of the fmeme potential. There-
fore, itis speculated that the “intrinsic” exponent mayeeflelectrophysiological prop-
erties of individual cells or dynamical states of netwokksj may vary across different
brain areas. The proposed statistical framework offersstesyatic way to explore the

diversity of the variability of neural responses.

A Derivation of thelikelihood function

In this appendix, we derive Eq. (16) from EQ.{15). Using Edl)( the second factor in
the rhs of Eq.[(15) is rewritten as

n

[t tior X)), 6, )

=2

H A(t:) FA(t:) = Atioa); A(t:)* )

=2

x ] ll—li )‘(U)f(A(U)_A(ti—l)Q)‘(v)2_a¢)dU] - (29)

Taking the derivative of the logarithm of the last factor ig. £29) leads to

ilog [1 - /t A() f(A(v) = Alti-r); A(0)2_%)61?1]

dt;
Al ) (A(ti) — Altic1); A(B)*9)
1 JE A F(A () = Altir); Aw)2 ) do
= (tlutl—lv{)‘(t)}v ,Oé) (30)

where the last equality comes from Eiq.]J(14). Thus, we obtain

n

H ll—li )‘(U)f(/\(v)—A(ti_l);)\(v)Z_O‘gb)dv]
- eXP(‘/tn (st {A(E )},<b,oz)du>. (31)

14



Substituting Eqs[(29) and (31) into EQ.{15) leads to Eq).(16
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Figure 1: Raster plots of 20 spike trains simulated using B and[(2b) and esti-
mated Fano factoFx (t), for differenta and¢. The Fano factor is almost constant for
a = 2 (al,2,3), while it is inversely related to the firing rate tor= 3 (b1,2,3). The
overall Fano factor increases @increases, for fixed.
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Figure 2: Histograms af (a) andlog ¢ (b), obtained byl0?® repeated simulations, with
M = 100 spike trains. Bothy andlogqb are approximately normally distributed. (c)
presents a scatter plot 0f, log ¢), showing thaty andlog ¢ are linearly related.
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Figure 3: Estimates ofr andlog ¢ as functions of the number of spike traing.
Results in this figure were computed by averaging acto$sepeated simulations for
eachM. Open circles and crosses represent the MLE and the enipstmate, re-
spectively. The true parameters are= 3 andlog¢ = log40(~ 3.69), represented
by dashed lines in (a). (a) presents the mean and 2SDawfdlog . The errors im
andlog ¢ are decomposed into the squared bias (b) and variance (t).tBobias and
variance decrease as the number of spike trainsicreases. The bias and variance of
the MLEs are smaller than those of the empirical estimates.
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Figure 4. Plot of the MLE (open circles) and empirical estien@rosses) of against

the true value, fol/ = 50 spike trains. The mean and 2SD error bar were computed by
averaging across0® repeated simulations. The dashed line represents the atue.v
The bias of the empirical estimate increasesvascreases, while the mean afap-
proximately matches the true value.
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Figure 5: Representative sub-datasets for nsa2004.1rjdXpraia-1 (b1). (Top) raster
plot of 20 spike trains; (middle) estimated firing rate (tleeibontal bar indicates the
length of the counting window); (bottom) the Fano factor.eTFano factor is plotted
against the firing rate on a log-log scale (a2 for nsa2004dlbénfor ia-1), on which

linear regression was performed to obtain the expofient
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Figure 6: Scatter plot ofy, log ¢) (a) and @, 4) (b). Open circles represent nsa2004.1
and crosses represent ia-1. The solid line in (b) repregbetscaling relation[ (6),
around which the individual sub-datasets scatter.
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