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Abstract

We propose a statistical method for modeling the non-Poisson variability of spike

trains observed in a wide range of brain regions. Central to our approach is the as-

sumption that the variance and the mean of interspike intervals are related by a power

function characterized by two parameters: the scale factorand exponent. It is shown

that this single assumption allows the variability of spiketrains to have an arbitrary

scale and various dependencies on the firing rate in the spikecount statistics, as well as

in the interval statistics, depending on the two parametersof the power function. We

also propose a statistical model for spike trains that exhibits the variance-to-mean power

relationship, and based on this a maximum likelihood methodis developed for inferring

the parameters from rate-modulated spike trains. The proposed method is illustrated on

simulated and experimental spike trains.

1 Introduction

The variability of neural firing is of central importance in the study of signal processing

that is carried out by the nervous system. The reliable transmission of sensory sig-

nals, integration of neural information, and precise control of neural-motor systems are
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significantly dependent on the variability of the neural responses to identical sensory or

behavioral variables, as well as on the average responses (Mainen and Sejnowski, 1995;

de Ruyter van Steveninck et al., 1997; Harris and Wolpert, 1998; Shadlen and Newsome,

1998; Ma et al., 2006; Lu et al., 2013).

Two types of measurement, inter-spike interval (ISI) and spike count, are commonly

used to quantify the variability of spike trains. The variability of ISI, expressed in the

variance, quantifies how irregular the firing time is on a short timescale, characterized

by the typical ISI. Since the variance of ISI is computed within single spike trains, it

signifies intra-trial variability. The variance of the spike count across repeated observa-

tions, by contrast, quantifies the trial-to-trial variability in relatively long time intervals.

These two quantities are by no means independent variables,but are closely related

(Nawrot et al., 2008). In general, the variances of both ISI and spike count are scaled

by the mean, the degree of which may vary across different brain regions (Kara et al.,

2000; Maimon and Assad, 2009).

In this article, we formulate a statistical framework for modeling the variability of

spike trains in terms of both the ISI and counting statistics. Our approach is motivated

by an observation made by Troy and Robson (1992). They reported that for steady

discharges of X retinal ganglion cells of cats, in response to stationary visual patterns,

the standard deviation of ISI increases as approximately the 3/2 power of the mean ISI.

Motivated by their observation, we make a single assumptionabout the ISI statistics:

Var(ISI) = φE(ISI)α, (1)

whereφ is the scale factor controlling the overall variance of ISIs, andα is the exponent

controlling how the variance is scaled by the mean. Presently, it should be emphasized

that this statistical assumption is a generalization of thefinding of Troy and Robson

(1992), in the sense thatφ(> 0) andα can take arbitrary values in theory. On the basis

of the power law (1), we show that this allows the spike trainsto have a wide range of

variability in the counting statistics, as well as in the ISIstatistics observed across the

brain areas, depending onφ andα. By combining Eq. (1) with the time-rescaling trans-

formation (Barbieri et al., 2001), we propose a “generalized” rate-modulated renewal

process to model spike trains, and develop a maximum likelihood method to inferφ
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andα from rate-modulated spike trains.

The rest of this article is organized as follows. In section 2, we develop a statistical

method. In section 3, we illustrate our method on simulated and experimental data.

Section 4 contains discussions on the possible implications of the results.

2 Theory

2.1 Statistical assumption

Consider spike trains whose ISIs are independent and identically distributed, with mean

µ and varianceσ2. The central assumption in our approach is that the varianceof ISI

has a power function of the mean, in the form

σ2 = φµα, (2)

whereφ > 0 is the scale factor controlling the overall amplitude of thepower law, and

α is the exponent controlling how the variance is scaled by changing the mean. For

α = 2, the scale factorφ corresponds to the squared coefficient of variation, whose

value is unity for a Poisson process. By contrast, values ofα > 2(< 2) imply that the

timing of spike tends to be over (under) dispersed for large means, and under (over)

dispersed for small means.

Next, consider the spike count. LetN∆ be the number of spikes in the counting

window of duration∆. The variability of spike count is often measured by the Fano

factor, defined by the ratio of the variance to the mean:

F∆ :=
Var(N∆)

E(N∆)
, (3)

where the expectation is computed over repeated observations. For a large count-

ing window∆ ≫ µ, the mean and variance ofN∆ are asymptotically evaluated as

E(N∆) ∼ ∆/µ andVar(N∆) ∼ σ2∆/µ3, respectively (Cox, 1962). Suppose that the

variance of ISIs obeys Eq. (2). Then, for large∆ the Fano factor exhibits the power law

F∆ ∼ φλγ, (4)
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where

λ :=
E(N∆)

∆
(5)

is the mean firing rate, and the exponentγ is related to that of the ISI statistics via the

scaling relation:

γ = 2− α. (6)

Eq. (4) describes the dependency of the Fano factor on the ISIparameters and the mean

firing rateλ. For γ = 0 (i.e.,α = 2), the Fano factor does not depend onλ; in other

words, the variance of the spike count is proportional to themean. Ifγ > 0 (α < 2),

the Fano factor increases asλ increases, while the Fano factor is inversely related toλ

if γ < 0 (α > 2).

The Fano factor depends on the length of the counting window∆. When∆ ≪

µ, the probability of two and more spikes is negligible, and the spike count can be

approximated by a Bernoulli random variable with probabilitiesP (N∆ = 1) = λ∆

andP (N∆ = 0) = 1 − λ∆, respectively. The variance of the Bernoulli distribution

is λ∆(1 − λ∆), so that for any values ofα andφ the Fano factor approaches unity

(Teich et al., 1997):

lim
∆→0

F∆ = lim
∆→0

λ∆(1− λ∆)

λ∆
= 1, (7)

which is different from Eq. (4). In the numerical studies presented in section 3, we

choose∆ so that an average of five spikes fall in the window, which is enough for

Eq. (4) to apply.

2.2 Statistical model

2.1 Generalized rate-modulated renewal process

We construct a statistical model for spike trains whose variability is characterized by

the variance-to-mean power law. Consider first the stationary renewal process, a class

of point processes in which ISIs are independent and identically distributed. LetX

be a random variable describing ISI. It follows from Eq. (2) that by rescaling ISI as

X → λX, λ = 1/µ being the mean firing rate, the parameters are rescaled asµ → 1

andφ → λ2−αφ. Thus, a parametric probability density functionf(x;µ, φ) that has
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meanµ and varianceφµα, and is invariant under the rescaling, satisfies

f(x;µ, φ) = λf(λx;λ2−αφ), (8)

wheref(x;φ) := f(x; 1, φ). Eq. (8) suggests that one can always reparametrize an

arbitrary probability density function with unit mean and varianceφ, so that the variance

has the power function of the mean (2).

We extend the stationary renewal process defined by Eq. (8), to a rate-modulated

process. LetN(t) be the number of spikes that have already occurred at timet, and

ti denote theith spike time. A point process is fully defined by a conditional intensity

function (Daley and Vere-Jones, 2003; Kass and Ventura, 2001),

r(t;H(t)) = lim
dt→0

P{N(t+ dt)−N(t) = 1;H(t)}

dt
, (9)

whereH(t) = {t1, t2, . . . , tN(t)} denotes the history of spikes up to the timet. For a

renewal process whose ISI density function is given byf(x;φ), the conditional intensity

function, also called the hazard function, is given by

r(t; tN(t), φ) =
f(t− tN(t);φ)

1−
∫ t

tN(t)
f(u− tN(t);φ)du

. (10)

Let λ(t) > 0 be an instantaneous firing rate, and define

Λ(t) =

∫ t

0

λ(u)du, (11)

which is monotone and invertible. By rescaling the timet → Λ(t), we can obtain the

“conventional” rate-modulated renewal process (Barbieriet al., 2001; Berman, 1981;

Koyama and Kass, 2008; Koyama and Kostal, 2014; Nawrot et al., 2008; Pillow, 2008;

Reich et al., 1998), whose conditional intensity function is given by

r(t; tN(t), {λ(t)}, φ) =
λ(t)f(Λ(t)− Λ(tN(t));φ)

1−
∫ t

tN(t)
λ(v)f(Λ(v)− Λ(tN(t));φ)dv

. (12)
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Note that the expectation of Eq. (12) is equal to the following:

λ(t) = E[r(t; tN(t), {λ(t)}, φ)], (13)

whereλ(t) is also called the “marginal” intensity function, which does not depend on

the past spikes. However, the Fano factor of the process (12)does not have the power

law with the exponent (6).1

We generalize Eq. (12) such that the Fano factor has a power function of the firing

rate. Analogously with Eq. (8), by rescaling the parameterφ → λ(t)2−αφ, as well as

the timet → Λ(t), the conditional intensity function of a “generalized” rate-modulated

renewal process is obtained as

r(t; tN(t), {λ(t)}, φ, α) =
λ(t)f(Λ(t)− Λ(tN(t));λ(t)

2−αφ)

1−
∫ t

tN(t)
λ(v)f(Λ(v)− Λ(tN(t));λ(v)2−αφ)dv

. (14)

Eq. (14) is reduced to the conditional intensity function associated with Eq. (8) ifλ(t) =

λ, and corresponds to Eq. (12) ifα = 2.

2.2 Likelihood function

Using the conditional intensity function (14), the probability density of the spike trains

{ti} := {t1, t2, . . . , tn} in the interval(0, T ] can be expressed as

p({ti}; {λ(t)}, φ, α)

= P1(t1)

n
∏

i=2

r(ti; ti−1, {λ(t)}, φ, α)

× exp

[

−

∫ tn

t1

r(u; tN(u), {λ(t)}, φ, α)du

]

P0((tn, T ]), (15)

whereP1(t1) is the probability of the first spike occurring at timet1, P0((tn, T ]) is the

probability of no spikes occurring in the interval(tn, T ], and the exponential factor rep-

resents the probability of there being no spikes in each interspike interval (Daley and Vere-Jones,

2003; Kass and Ventura, 2001). Substituting Eq. (14) into Eq. (15) yields the more

1 In fact, this transformation results in the Fano factor being a constant, whose value is determined by
φ.
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tractable form (see Appendix A):

p({ti}; {λ(t)}, φ, α)

= P1(t1)

n
∏

i=2

λ(ti)f(Λ(ti)− Λ(ti−1);λ(ti)
2−αφ)P0((tn, T ]). (16)

For spike trains consisting ofM repeated trials,{tji}
M
j=1 := {tj1, . . . , t

j
nj
}Mj=1, the log

likelihood function of(φ, α), given{λ(t)}, is obtained as

L(φ, α; {λ(t)}, {tji}
M
j=1) =

M
∑

j=1

nj
∑

i=2

{

log λ(tji ) + log f(uj
i ; ξ

j
i )
}

+

M
∑

j=1

{

logP1(t
j
1) + logP0((t

j
n, T ])

}

, (17)

whereξji = λ(tji )
2−αφ anduj

i = Λ(tji )− Λ(tji−1). In the following analysis, we assume

that there are many spikes in each trial(nj ≫ 1), so that the last two terms in Eq. (17)

are negligible.

If the firing rateλ(t) is not known, an estimated firing ratêλ(t) may be used, and

the maximum likelihood estimator (MLE)(φ̂, α̂) is obtained by maximizing Eq. (17)

with respect to(φ, α). The MLE does not generally admit closed form solutions, and

is obtained by maximizing the log likelihood function numerically. In the numerical

studies, we use a rectangular sliding window (27) to computeλ̂(t), and use a MATLAB

function “fminsearch” to maximize Eq. (17). We will discuss alternative methods

for estimatingλ(t), and for estimating(φ, α) together withλ(t) rather than separately,

in section 4.

The numerical studies in the following section show that thedistribution of φ̂ is

right-skewed becauseφ > 0, but thatlog φ̂ is approximately normally distributed (fig-

ure 2b). Therefore, we consider the variance ofη̂ = log φ̂. By differentiating the log

likelihood (17) with respect toη(= log φ) andα, the observed information matrix is
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obtained as

J(η, α) = −





∂2L
∂η2

∂2L
∂η∂α

∂2L
∂η∂α

∂2L
∂α2





= −
M
∑

j=1

nj
∑

i=2

{

ξji
2 ∂2

∂ξji
2 log f(u

j
i ; ξ

j
i ) + ξji

∂

∂ξji
log f(uj

i ; ξ
j
i )

}

Aj
i , (18)

where

Aj
i =





1 − log λ(tji )

− log λ(tji ) {log λ(tji )}
2



 . (19)

Note that the rank of matrixAj
i is 1, but the rank ofJ(η, α) generally becomes 2.2 Fur-

ther, if the probability density functionf satisfies the regularity conditions that ensure

asymptotic normality of parameter estimators (Casella andBerger, 2002), the asymp-

totic variance matrix of the MLE is given byJ(η̂, α̂)−1, with which the confidence

intervals forη̂ andα̂ are constructed as

η̂ ± z
√

(

J(η̂, α̂)−1
)

11
(20)

and

α̂± z
√

(

J(η̂, α̂)−1
)

22
, (21)

wherez is the critical value.

2.3 Choice of ISI density function

The ISI density functionf(x;φ) is one of the building blocks of the proposed statistical

model. Any ISI density function with a finite variance represents a generalized rate-

modulated renewal process (14). Presently, we use a Tweediedistribution, a special case

of an exponential dispersion model (Jorgensen, 1987, 1997). This is a two-parameter

distribution, consisting of a linear exponential family with an additional dispersion pa-

rameter. These distributions play an important role in statistics, because they are the

response distributions for generalized linear models (McCullagh and Nelder, 1989). A

Tweedie distribution is an exponential dispersion model that has scale invariance (8),

2 The rank ofJ(η, α) becomes 1 when the firing rate is constant.
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and includes probability distributions commonly used for describing the ISI variability,

such as the gamma (forα = 2) and inverse Gaussian (forα = 3) distributions as special

cases. These properties make a Tweedie distribution an obvious choice forf(x;φ).

Exponential dispersion models have a probability density function of the form,

f(x;µ, φ) = c(x, φ) exp

[

1

φ
{xθ − κ(θ)}

]

, (22)

whereθ is the canonical parameter, andκ(θ) is the cumulant function, with derivatives

being the cumulants of the distribution. In particular, itsmean and variance are given

by µ = κ̇(θ) andσ2 = φκ̈(θ), respectively. The mapping fromθ to the ISI meanµ is

invertible, and is written̈κ(θ) = V (µ) for a suitable functionV (µ), called the variance

function. A Tweedie distribution is identified by a particular choice of the variance

function, asV (µ) = µα. By equating̈κ(θ) = dµ/dθ = µα and solving forµ andκ, θ

andκ are obtained as

θ =







µ1−α
−1

1−α
α 6= 1

log µ α = 1
, (23)

and

κ(θ) =







µ2−α
−1

2−α
α 6= 2

log µ α = 2
, (24)

where we choseκ(θ) = 0 andµ = 1 at θ = 0, without loss of generality. The factor

c(x, φ) in Eq. (22), which is determined by the normalization condition, does not have

a closed form, except for in special cases. We compute it numerically, using series

expansion and the Fourier inversion formula (Dunn and Smyth, 2005, 2008).

3 Results

In this section, we demonstrate with simulations that the proposed statistical model (14)

describes spike trains that have a wide range of variability, characterized byα andφ.

We illustrate on simulated and experimental data that our inference method is capable

of estimatingα andφ from rate-modulated spike trains.
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3.1 Simulation study

First, we simulate spike trains. The probability of a spike occurring in a short interval

(t, t+ dt] is given by the conditional intensity function (14):

P{N(t+dt)−N(t) = 1; tN(t), {λ(t)}, φ, α} = r(t; tN(t), {λ(t)}, φ, α)dt+o(dt). (25)

Spike trains are simulated by discretizing the time into small bins (dt = 10−5), and

evaluating Eq. (25) in each bin. We use the firing rate function as

λ(t) = 40 + 20 sin
2π

0.5
t, (26)

and generateM spike trains in the time intervalt ∈ (0, 1]. In order to compute the firing

rate and the Fano factor, we use a sliding window of duration∆ = 0.125, in which an

average of five spikes are expected to fall. LetN j
∆(t) denote the number of spikes of the

jth spike train in the counting window centered att. The firing ratêλ(t) and the Fano

factorF̂∆(t) in this window are computed, by averaging across trials, as

λ̂(t) =
1

M

M
∑

j=1

N j
∆(t)

/

∆, (27)

and

F̂∆(t) =
1

M − 1

M
∑

j=1

{N j
∆(t)− λ̂(t)∆}2

/

λ̂(t)∆. (28)

Figure 1 displays the raster plots of 20 spike trains, andF̂∆(t) computed withM = 104

for differentα andφ. We see thatα andφ differentiate the variability of spike trains

in different manners, as described in Eq. (4):φ scales the overall variability of spike

trains, whileα controls the dependency on the firing rate. The Fano factor isinversely

related to the firing rate forα = 3 (Figure 1b). Forα = 2, in which case the proposed

model (14) corresponds to the “conventional” rate-modulated renewal process (12), the

Fano factor is almost constant, irrespective of the firing rate (Figure 1a). Forα = 2 and

φ = 1, the spike trains become the inhomogeneous Poisson process(Figure 1a2).

We simulatedM spike trains, from which the MLE(α̂, φ̂) was computed. We re-

peated the simulation103 times. Figure 2 shows that̂α and log φ̂ are approximately
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normally distributed, and that they are correlated. Figure3a plotsα̂ andlog φ̂ against

the number of spike trainsM (open circles). It is observed thatα̂ andlog φ̂ converge

to the true values asM increases. The errors in̂α andlog φ̂ are decomposed into the

bias and variance, which are shown in figure 3bc. Figure 4 displays the MLEα̂ of the

exponent against the true value, ranging fromα = 2 to 3, whereα̂ was computed with

M = 50 (open circles). The MLE approximately matches the true value in this range.

For comparison, we computed an empirical estimate of (α, log φ), using linear re-

gression of{log F̂∆(t)} on {log λ̂(t)} from Eqs. (4) and (6). The results are plotted

in figures 3 and 4 (crosses). It is confirmed that the bias and variance of (̂α, log φ̂) are

smaller than those predicted by the empirical estimates.

3.2 Experimental data

We apply our method to two experimental datasets. One dataset, labeled “nsa2004.1”, is

publicly available from the Neural Signal Archive (Brittenet al., 2004). The spike data

was recorded from 216 neurons in the visual cortical area MT of adult rhesus macaques.

The recordings were obtained while a visual stimulus, consisting of a dynamic random

dot pattern, was presented. Further experimental details can be found in Britten et al.

(1992). The other dataset, labeled “ia-1”, is available from the CRCNS data sharing

website (Rokem et al., 2009). Spike trains were recorded from 43 auditory receptor

cells of grasshoppers, while an auditory stimulus consisting of random amplitude mod-

ulations of wave was presented. See Rokem et al. (2006) for more details.

Both datasets were divided into sub-datasets, consisting of multiple spike trains

recorded from one cell under identical stimulus conditions. We selected sub-datasets

containing≥ 50 trials, and with the mean firing rate≥ 10 spikes/s, due to the sufficiency

of spikes for the analysis. Consequently, 193 sub-datasetsfor nsa2004.1 and 138 sub-

datasets for ia-1 were used. Representative sub-datasets for nsa2004.1 and ia-1 are

shown in Figure 5, together with the estimated firing rateλ̂(t) and Fano factor̂F∆(t),

computed with the sliding window whose length∆ was taken so that an average of five

spikes are encompassed.

For each sub-dataset, we obtained the MLE(α̂, φ̂). Figure 6a shows a scatter plot

of (α̂, log φ̂) (open circles stand for nsa2004.1 and crosses stand for ia-1). The mean
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and standard deviations of the MLE areα̂ = 2.43 ± 0.38 andlog φ̂ = 1.52 ± 1.69 for

nsa2004.1, and̂α = 2.96 ± 0.58 andlog φ̂ = 3.37 ± 2.46 for ia-1. It is observed that

a large portion of thêα are greater than two, and that on averageα̂ of ia-1 is greater

than that of nsa2004.1. This indicates that the firing variability tends to decrease as the

firing rate increases, and that this tendency is stronger in ia-1 than in nsa2004.1. In

order to confirm this result, we estimated the exponentγ of the Fano factor empirically

for each sub-dataset, by performing linear regression of{log F̂∆(t)} on{log λ̂(t)} (see

Figure 5a2,b2). The estimated exponents,γ, areγ̂ = −0.17 ± 0.51 for nsa2004.1 and

γ̂ = −0.94 ± 0.33 for ia-1. Figure 6b plotŝγ againstα̂ in each of the sub-datasets,

showing that the individual sub-datasets scatter around the line (6).

4 Discussion

This article was concerned the variability of spike trains,described by the power mean-

variance relationship (1). It was shown that this single assumption allows the spike

trains to have a wide range of variability, characterized byφ andα. By combining

the power law with the time-rescaling transformation, we proposed generalized rate-

modulated renewal processes, based on which a statistical method was developed for

inferring (φ, α) from rate-modulated spike trains.

In our method, the firing rateλ(t) was estimated separately from(φ, α), using a

rectangular counting window. We could use other methods, such as kernel density

estimators or spline methods, which produce more precise rate estimates (Kass et al.,

2003; Shimazaki and Shinomoto, 2010). Alternatively, one may estimateλ(t) together

with (φ, α), rather than separately. A principled method is to adopt a Bayesian frame-

work, introducing a prior process ofλ(t) for regularization and computing the pos-

terior process. Parameters of the prior process and(φ, α) can be simultaneously op-

timized, by maximizing the marginal likelihood or the evidence (Cunningham et al.,

2008; Koyama and Shinomoto, 2005; Koyama et al., 2013), which may improve the

statistical efficiency.

It is often assumed that the variance of spike counts is proportional to their mean

(Averbeck, 2009), where the coefficient of proportionality(which corresponds to the

Fano factor) may differ from unity due to a deviation from Poisson spiking. In our

12



formulation, this assumption is relaxed, and we adopt one that the ratio of the count

variance to the mean changes with the firing rate (Eq. (4)), which is observed in a wide

range of brain regions (Kara et al., 2000).

The degree of irregularity of neural firing, which is measured by ISI statistics such as

thelocal variation LV (Shinomoto et al., 2003), is generally maintainedin vivo cortical

areas, while the firing rate varies in time (Maimon and Assad,2009; Shinomoto et al.,

2009). This implies that the exponent of the power law (2) in the ISI statistics isα ≈

2, from which a linear relationship between the mean and variance of spike counts

(γ ≈ 0) is expected. On the other hand, steady discharges of X retinal ganglion cells,

in response to stationary visual patterns, approximately obey the power law withα ≈

3 (Troy and Robson, 1992), implying that a fixed ratio of the variance to the mean

spike count no longer holds, but that the spike counts are less variable at higher rates

(Berry and Meister, 1998; Reich et al., 1998).

In the nervous system, neurons produce an action potential by integrating presynap-

tic inputs within tens of milliseconds, in which typically afew spikes come from each

presynaptic neuron. This implies that the variance of spikecounts in the integration time

exhibits the power law, so that the presynaptic inputs havesignal-dependent noise3 that

may be relevant to the computation carried out by the nervoussystem. Ma et al. (2006)

hypothesized that the Poisson-like statistics in the responses of populations of corti-

cal neurons may represent probability distributions over the stimulus, and implemented

Bayesian inferences using linear combinations of the responses. A necessary condition

in their hypothesis, which makes the Bayesian inferences possible, is that the variance

of spike counts is proportional to the mean spike count (γ = 0). Lu et al. (2013) showed

that in controlling dynamical systems with noisy signals, precise control is achievable if

the control signal has sub-Poisson noise (γ < 0), while it is not achievable if the control

signal has Poisson or supra-Poisson noise(γ ≥ 0).

By analyzing a stochastic leaky integrate-and-fire model, we provided a possible

mechanistic explanation for the origin of the power law (1) with various exponents

3 With a temporal resolution of this integration time, spike trains may be described as

dN(t)

dt
≈ λ(t) + ξ(t),

whereξ(t) is a white noise withE[ξ(t)] = 0 andE[ξ(t)ξ(s)] = φλ(t)γ+1δ(t− s).
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(Koyama, 2014):α = 3 may imply a supra-threshold firing regime, in which firing is

driven by excitatory input;α = 2 may be interpreted as a sub-threshold firing regime,

in which the membrane potential fluctuates below the threshold; andα = 1 may emerge

when firing is strongly caused by large fluctuations of the membrane potential. There-

fore, it is speculated that the “intrinsic” exponent may reflect electrophysiological prop-

erties of individual cells or dynamical states of networks,and may vary across different

brain areas. The proposed statistical framework offers a systematic way to explore the

diversity of the variability of neural responses.

A Derivation of the likelihood function

In this appendix, we derive Eq. (16) from Eq. (15). Using Eq. (14), the second factor in

the rhs of Eq. (15) is rewritten as

n
∏

i=2

r(ti; ti−1, {λ(t)}, φ, α)

=

n
∏

i=2

λ(ti)f(Λ(ti)− Λ(ti−1);λ(ti)
2−αφ)

×

n
∏

i=2

[

1−

∫ ti

ti−1

λ(v)f(Λ(v)− Λ(ti−1);λ(v)
2−αφ)dv

]

−1

. (29)

Taking the derivative of the logarithm of the last factor in Eq. (29) leads to

d

dti
log

[

1−

∫ ti

ti−1

λ(v)f(Λ(v)− Λ(ti−1);λ(v)
2−αφ)dv

]

= −
λ(ti)f(Λ(ti)− Λ(ti−1);λ(ti)

2−αφ)

1−
∫ ti

ti−1
λ(v)f(Λ(v)− Λ(ti−1);λ(v)2−αφ)dv

= −r(ti; ti−1, {λ(t)}, φ, α), (30)

where the last equality comes from Eq. (14). Thus, we obtain

n
∏

i=2

[

1−

∫ ti

ti−1

λ(v)f(Λ(v)− Λ(ti−1);λ(v)
2−αφ)dv

]

= exp

(

−

∫ tn

t1

r(u; tN(u), {λ(t)}, φ, α)du

)

. (31)

14



Substituting Eqs. (29) and (31) into Eq. (15) leads to Eq. (16).
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Figure 1: Raster plots of 20 spike trains simulated using Eqs. (25) and (26) and esti-
mated Fano factor̂F∆(t), for differentα andφ. The Fano factor is almost constant for
α = 2 (a1,2,3), while it is inversely related to the firing rate forα = 3 (b1,2,3). The
overall Fano factor increases asφ increases, for fixedα.

19



2.7 2.8 2.9 3 3.1 3.2 3.3 2.5 3 3.5 4 4.5 5 2.7 2.8 2.9 3 3.1 3.2 3.3
2.5

3

3.5

4

4.5

5

φ^

lo
g

φ
^

logα^ α^

(a) (b) (c)

Figure 2: Histograms of̂α (a) andlog φ̂ (b), obtained by103 repeated simulations, with
M = 100 spike trains. Botĥα and log φ̂ are approximately normally distributed. (c)
presents a scatter plot of(α̂, log φ̂), showing that̂α andlog φ̂ are linearly related.

10 1 10 2
2

2.5

3

3.5

10 1 10 2
10 -4

10 -3

10 -2

10 -1

number of spike trains
10 1 10 2

10 -3

10 -2

10 -1

10 1 10 2
0

1

2

3

4

5

6

10 1 10 2
10 -3

10 -2

10 -1

10 0

10 1

number of spike trains
10 1 10 2

10 -2

10 -1

10 0

10 1

φ^

lo
g

B
ia

s
( 

  
  
  
 )

2
φ^

lo
g

V
a

r(
  
  
  
  
)

φ^

lo
g

α^

B
ia

s
( 

  
)2

α^
α^

V
a

r(
  
 )

MLE
empirical

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 3: Estimates ofα and log φ as functions of the number of spike trainsM .
Results in this figure were computed by averaging across103 repeated simulations for
eachM . Open circles and crosses represent the MLE and the empirical estimate, re-
spectively. The true parameters areα = 3 and logφ = log 40(≈ 3.69), represented
by dashed lines in (a). (a) presents the mean and 2SD ofα̂ andlog φ̂. The errors in̂α
andlog φ̂ are decomposed into the squared bias (b) and variance (c). Both the bias and
variance decrease as the number of spike trainsM increases. The bias and variance of
the MLEs are smaller than those of the empirical estimates.
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Figure 5: Representative sub-datasets for nsa2004.1 (a1) and for ia-1 (b1). (Top) raster
plot of 20 spike trains; (middle) estimated firing rate (the horizontal bar indicates the
length of the counting window); (bottom) the Fano factor. The Fano factor is plotted
against the firing rate on a log-log scale (a2 for nsa2004.1 and b2 for ia-1), on which
linear regression was performed to obtain the exponentγ̂.
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