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ABSTRACT

Correlated component analysis as proposed by Dmochowski et al. (2012) is a
tool for investigating brain process similarity in the responses to multiple views
of a given stimulus. Correlated components are identified under the assumption
that the involved spatial networks are identical. Here we propose a hierarchical
probabilistic model that can infer the level of universality in such multi-view data,
from completely unrelated representations, corresponding to canonical correlation
analysis, to identical representations as in correlated component analysis. This
new model, which we denote Bayesian correlated component analysis, evaluates
favourably against three relevant algorithms in simulated data. A well-established
benchmark EEG dataset is used to further validate the new model and infer the
variability of spatial representations across multiple subjects.

1 INTRODUCTION

The large scale organization of information processing in the human brain is currently of high inter-
est, see e.g. Bullmore & Sporns (2009). In particular, we are interested in the spatio-temporal net-
works involved when the human brain solves computational problems such as decoding high level
information in digital media, say in a movie. As we may assume that the movie brain interaction is
jointly optimized for the viewing process, it seems natural to hypothesize a certain amount of univer-
sality in the representations and activation patterns in the brains of subjects watching a given movie.
Such ecologically inspired neuroscience, said to be based on naturalistic stimuli, has been pursued
by Hasson et al. (see e.g. Hasson et al. (2004)). They introduced a correlation approach between
anatomically aligned brains. This is based in a rather strong assumption of representational univer-
sality, namely that both the extracted information (what) and spatial networks (where) are shared
among subjects. To exploit the full spatio-temporal patterns of correlation and increase sensitivity, a
multivariate version of this approach, so-called correlated component analysis (here abbreviated as
CorrCA) was recently proposed by Dmochowski et al. (2012). The method was further developed
and applied in Dmochowski et al. (2014). Within the multivariate framework, a natural relaxation of
the strong universality assumption, is to hypothesise that decoded content, i.e, the ’what’, is identical
and shared between subjects, while the spatial representations can be formed individually. Such an
approach corresponds to the multivariate technique known as canonical correlation analysis (CCA)
(Hotelling, 1936). In CCA we search for individual stationary spatial networks with similar tempo-
ral activation among subjects. CCA was generalized to account for both joint and individual signal
components by Lukic et al. (2002).

Inspired by probabilistic principal component analysis introduced by Tipping & Bishop (1999), a
probabilistic approach to CCA was presented in Bach & Jordan (2005). To avoid discrete model se-
lection in probabilistic PCA, Bishop (1999) invoked the automatic relevance determination mecha-
nism (ARD, Hansen & Rasmussen (1994); MacKay (1996)), where each component, corresponding
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to a column in the mixing matrix, has a Gaussian distribution whose width is controlled by a gamma
distributed hyperparameter, potentially shrinking to zero and effectively pruning a component and
thereby automatically inferring the number of components. These schemes for probabilistic PCA
and CCA has lead to Bayesian CCA (Wang, 2007; Wu et al., 2011; Klami et al., 2013) and so-called
group factor analysis (GFA) (Klami et al., 2014), the first practical multi-view generalization of
Bayesian CCA. These methods differ in the way they approximate the hidden source posterior dis-
tribution, typically applying variational inference schemes, as is also the case for the work presented
here.

With the work of Dmochowski et al. on EEG analysis as an inspiration, we will analyse a probabilis-
tic model which focuses on extracting joint components, however, with the possibility of learning
the degree of universality from data. The latter is implemented by a hierarchical Bayesian model
that allows for variable non-universality in the representations used by the views, i.e., individual
subjects. Probabilistic approaches to modelling dependencies between the representations of differ-
ent views have earlier been presented in Lahti et al. (2009) and more recently in Klami et al. (2014).
In contrast to the latter, which seeks to model dependencies between views and components through
the precision of the representations, the model presented here assume an average pattern and lets the
precisions decide the degree of deviation from the common representation. This enables symmetry
amongst the views as in CorrCA, unlike the model presented in Lahti et al. (2009).

We illustrate the performance of our approximate inference procedures in both simulation studies
and in a benchmark EEG set. The specific contributions of this work are: 1) Formulation of a gener-
ative model and inference for Bayesian correlated component analysis (BCorrCa); 2) A principled
scheme for inference of correlated components for more than two simultaneous views; 3) Validation
on simulated data and benchmark EEG data.

Notation
Matrices are denoted by capital bold symbols, e.g. A ∈ R

I×J , and vectors as lowercase bold
symbols, e.g. a. The vector of a matrix is indexed as a row vector, ai, or column vector, aj , and
the elements as aij . To be able to distinguish row from column vectors, the lower case index letter
match the upper case letter used when defining the corresponding matrix. In the case of multiple

views each view is indexed as e.g. A(m) form ∈ {1, ...,M}. I and 0 denote the identity and all-zero
vector or matrix respectively, depending on context.

2 THE MODEL

The objective of the model is to infer the decomposition of measured neural activity into shared
maximally correlated time series and corresponding individual patterns as depicted in the factor
graph Fig. 1. Thus, we consider the normally distributed generative model

X(m) ∼ N
(

A(m)Z,Ψ(m)−1
)

(1)

Z ∼ N (0, I), (2)

where X(m) ∈ R
D×N denotes the observed neural activity for each view m, A(m) ∈ R

D×K is
the forward model ’pattern’ (Bieß mann et al. (2012)), Z ∈ R

K×N denotes the set of shared latent

sources, and Ψ(m) is the precision. Using probabilistic formulations it is straightforward to extend
dimensionality of variables to facilitate e.g. group-wise analysis with multiple views. However, this
formulation is common to a variety of models, including Bayesian CCA, so the way the models
differentiate, is in the higher levels of the hierarchy. Specifically, the novelty of BCorrCA lies in the
relationship between the individual patterns

A ∼
M
∏

m

K
∏

k

N
(

a
(m)
k |uk, λ

(m)−1

k

)

, for M ≥ 2, (3)

where each column of A(m) is a pattern corresponding to one component. The latent variable,
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Figure 1: Factor graph illustrating the relationship between the variables in BCorrCA.
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U ∼
K
∏

k

N
(

uk|0, α
−1
k

)

, (4)

represents the common pattern across all views and the precision λ regularizes the distance between

the view-specific patterns A(m) and U. With prior knowledge of the number of hidden sources, K,
the dimension of the estimated forward model can be reduced, which is an advantage whenK ≪ D
and D is large.

2.1 PRIORS ON THE NOISE

Since the factorisation X ≃ AZ is not expected to adequately explain the noise covariance of the
neural activity, the model includes a full rank precision matrix. This choice is motivated by the
large number of sources contributing to the noise signal and by volume conduction leading to inter-
channel correlation (Wipf et al., 2010).

For convenience, the precision is assigned a Wishart prior,

Ψ(m) ∼ W(S0, v0), (5)

where S0 and v0 are hyperparameters. The prior on the precisions of the shared mixing matrix, U,
is likewise the conjugate gamma distribution;

αk ∼ Ga(a0, b0), (6)

where a0 and b0 are shape and scale parameters. If the hyperprior is ’flat’, the hyperparameters of the
prior are estimated from the data and if the number of features are larger than the dimension of the
latent sources, the prior on the precision will assume large values for some components, forcing the
pattern coefficients to zero. This is the called automatic relevance determination (ARD) mechanism
and is widely used in Bayesian models to prune irrelevant features (Hansen & Rasmussen, 1994;
MacKay, 1996). The prior on the precision for individual patterns, A, can also be considered an
ARD type parameter and is also modelled with the gamma distribution

λ
(m)
k ∼ Ga(a0, b0). (7)

The model has the ability to share the precision hyperprior across both views and patterns to enforce
shared representation or to be inferred individually for maximum flexibility. For simplicity λ is
assumed shared in the following.

2.2 INFERENCE

The posterior distribution of all the latent, or hidden, variables H,

p(H|X) =
p(H,X)

p(X)
, (8)

is analytically intractable. In probabilistic variational inference we invoke a simplifying assumption,
namely that the approximate posterior distribution, q, is completely factorised as

q(H) =
∏

i

qi(Hi). (9)

Thus we obtain a posterior distribution for each factor separately. This simplification is originally
known in physics as mean field theory (Bishop, 2006). The BCorrCA model presented in this article
is based on variational inference with assumptions of a factorised posterior and conjugate priors
from the exponential family. An analytic solution is attained for each variable, which are then
updated iteratively in an expectation-maximisation like manner until convergence. The updates for
BCorrCA are provided in detail in the appendix. The result is an algorithm, which can implement
both independent mixing as in CCA (with a small λ), or completely aligned matrices as in CorrCA
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(with a large λ). Importantly it generalises in a straightforward manner to an arbitrary number of
parallel data views.

A lower bound function, L(q), for the full log marginal likelihood is often calculated to monitor con-
vergence. It is usually derived as the sum of the expectations of all prior and posterior distributions
calculated independently. Inspired by Murphy (2012) we have chosen to combine the expectations
into one equation, replace terms with variables already calculated (such as bλ), and let them cancel
each other out, where applicable. Since it is the change of the lower bound that is of interest, we
also combined all constant terms into the common constant, C. Compared to Wu et al. (2011) and
Wang (2007) which present the lower bound for similar models1 the result is a more compact and
cost efficient calculation

L(q) =
1

2

M
∑

m

{

vΨ ln |S
(m)
Ψ |+

D
∑

d

ln |Σ
(m)
ad

|

}

− aλ ln bλ

+
K
∑

k

{

−aα ln bαk
+
D

2
lnσ2

uk

}

+
N

2
ln |Σz|

−
1

2

(

N · Tr(Σz) +

N
∑

n

µT
z,nµz,n

)

+ C. (10)

2.3 SELECTING HYPERPARAMETERS FOR PRIOR DISTRIBUTIONS

In a fully Bayesian setting the hyperparameters are often set to make the priors as non-informative as
possible so that they will be estimated from data. The default non-informative settings in this model
for the Wishart distribution are S0 = 10−3I and v0 = D + 1 and for both gamma distributions are
a0 = b0 = 10−3. These settings ensures a high level flexibility in the prior which can regularise
even high dimensional data. If a priori knowledge of the system is available the hyperparameters
can be changed to reflect that or an empirical Bayesian approach can be applied by estimating the
hyperparameters from data. By e.g. using the pre-stimulus EEG in an ERP paradigm or baseline
recordings, it is possible to estimate measurement variance which can be used to set hyperparameters
of Ψ, which is applied in the EEG experiment in section 4.

3 PERFORMANCE ON SIMULATED DATA

To validate BCorrCA and quantify its performance data was generated with a varying similarity
between the mixing matrices by changing the ’true’ λ. From the model definition we get that

X(m) = A
(m)
true Z + ǫ with ǫ ∼ N (0, σ2

ǫ ), where σ2
ǫ is varied to obtain a desired signal-to-noise

ratio (SNR) and the dimensionality of the oberservation space is set to D = 6. Z is a K ×N source
matrix containing K time series, where we apply K = K0 to simplify the comparisons. The mixing

matrix is generated by A
(m)
true = Utrue + δ(m), with Utrue ∼ N (0, 1) and δ(m) ∼ N (0, λ−1). Note

that we use the simpler the noise model of GFA for fair comparison.

We have used up to K0 = 4 hidden sources, generated as in Klami et al. (2013), for direct compa-
rability with this work. Here we will mainly focus on the simple case of one hidden source corre-
sponding to the data being generated from one sinusoid and additive noise. For comparative analysis
the performances of BCorrCA, CorrCA, CCA, and GFA were estimated on the same data. For each
combination of conditions either 20 or 100 datasets were randomly generated and the average cor-
relation coefficient between the inferred source and the true source was chosen as the measure of
performance. The algorithms were tested at varying levels of SNR, number of views, M , and simi-
larity between the true mixing matrices of each view. In each test the data had six dimensions and a
total of 5,000 samples divided equally among the views. CorrCA and CCA are designed to handle
two views at a time. In case of multiple views we employed the scheme for combination proposed in
Dmochowski et al. (2012), i.e., the views are concatenated in time so that all pairwise combinations

1The lower bound for the model presented in Wang (2007) appears in the R-code supplied for the paper
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are compared. This method has the disadvantage that the number of samples in the concatenated
data scales with the number of views as M(M − 1).

3.1 INFERING THE SIMILARITY BETWEEN MIXING MATRICES
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Figure 2: Estimation of the similarity between the mixing matrices in simulated data with different
number of views. The opaque area marks the standard error of the mean. The similarity is regulated
through the parameter λ, and estimated using BCorrCA. The simulations were conducted with a
single hidden source, 100 repetitions and a SNR of 3 dB.

Figure 2 shows the results of simulations where the similarity between the true mixing matrices is
varied by the λ parameter. It can be seen that BCorrCA is able to estimate this parameter through
the entire range, though it has a tendency to overestimate. This overestimation might stem from
an interaction with the other ARD-parameter, α, since the magnitude of the weights in the mixing
matrix is influenced by both the α and λ parameters. The interaction might also be the cause of
the drop seen when the true value of λ is larger than 102. As both α and λ are initialised at 1, it is
possible that BCorrCA finds a local optimum closer to the initialised value of λ and compensates
through α. Finally it can be seen that increasing the number of views improves the precision. An
effect that is most pronounced when dealing with a single hidden source and lower noise levels.

3.2 USING THE LOWER BOUND AS A PERFORMANCE MEASURE

While CCA and CorrCA are deterministic, the latent variable models are quite dependent on their
(random) initialisation. This creates a need for a way to choose the best amongst multiple analyses
on the same dataset. Inspired by the use of the lower bound as performance indicator in Klami et al.
(2013), we investigated the relationship between the calculated lower bound and the ability to infer
the correct source space. To do this we randomly restarted BCorrCA and GFA 100 times on each
of 200 datasets, with varying mixing matrix similarity

(

λ = {10−3, 1, 103}
)

and dimension of the

observation space (D = {8, 50}).

For each dataset, the lower bound and the accuracy of inferring the true sources2 was correlated
across the random restarts. BCorrCA and GFA obtained an average correlation of -0.02 and -0.03
suggesting that there is no consistent relationship between the lower bound and inferring the correct
source space. However, with standard deviations of 0.22 and 0.19 for BCorrCA and GFA, the
relationship does seem to be dataset dependent. A trend that was seen in all combinations on dataset
parameters.

When correlating the true and inferred sources, each true source was paired with one inferred source
without replacement, such that the largest possible average correlation was obtained. This approach
does not penalise the algorithm if it infers too many sources. We therefore decided to test if the lower

2Measured as the correlation between inferred and true sources.
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Figure 3: Relationship between the number of random restarts and obtaining the correct number of
sources. 20 datasets were randomly generated with the same parameters;M = 5 views,K0 = 4 true
sources, SNR = −3 dB, λ = 1 mixing matrix similarity, and D = 8 dimensionality of observation
space. The algorithms were initialised with K = 6 hidden sources in 100 analyses on each dataset,
in which the lower bound was used to select amongst a varying number of restarts. Each grey dot
shows the accuracy of choosing the right number of active sources, with the red dot and blue line
signifying the grand average and standard deviation.

bound is a good indicator of whether the algorithms achieve the right number of active sources
through ARD. A source was defined as inactive when its reconstructed variance was below 1o/oo

compared to the source with the highest variance. The reconstructed variance was defined as the
product of the source variance and the variance of the corresponding inferred pattern.

The test showed, that there was a clear correlation between lower bound and obtaining the true
number of active sources, prompting an investigation into how many restarts are necessary before
one can be sure that the correct number of sources are obtained. Figure 3 shows the relationship
between the number of restarts on the same dataset and the accuracy of inferring the right number
of sources. In most cases a few restarts are sufficient for both algorithms, but some datasets, though
generated with the same parameters, prove more difficult and needs more restarts to ensure the
algorithm has converged on the correct number of sources. The number of restarts necessary varies
with the dataset parameters, some combinations proving more difficult while others enabled the
algorithms to always converge on the correct number of sources.

In the special case of datasets with low dimensionality and equal representations GFA produced too
few active sources (data not shown). Under these conditions (D = 8, λ = 103) GFA produced three
active sources on 21 out of 40 datasets, which contained four true sources. In 8 of these 21 datasets
too few sources resulted in a higher lower bound. Changing either dataset parameter meant that GFA
only obtained the right number of sources or more. We were not able to make BCorrCA obtain too
few sources.

Initial tests showed that BCorrCA had a tendency of producing too many active sources, when the

Wishart prior for the noise had been uninformed
(

Ψ(m) ∼ W{10−3 · I, v0}
)

. Running the same

tests using the variance of the observations
(

Ψ(m) ∼ W{var[X(m)] · I, v0}
)

alleviated this problem
and BCorrCA was able to obtain the correct number of sources. For the sake of fair comparisons

the same approach was tried for the gamma prior used in GFA
(

τ (m) ∼ Ga{1, var[X(m)]}
)

. This,
however, did not results in an improvement, probably due to the simpler noise model.

3.3 PERFORMANCE UNDER VARYING CONDITIONS

We report a more extensive set of tests in which the ’true’ similarity between the views, the SNR,
or the number of views are varied, see figure 4. In the following the results will be reviewed one
condition at a time. In these tests we used a single hidden source.
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(c) Varying M
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Figure 4: Performance of BCorrCA, GFA, CorrCA and CCA on simulated data measured by mean
correlation coefficient and standard error of the mean with respect to the true source over 20 rep-
etitions. In each subfigure the data is varied in one condition: In (a) and (b) the performance is
tested under different levels of SNR and either 2 or 5 views. (c) shows the performance with varying
number of views, and in (d) the similarity between the true weights are varied by the λ parameter.
Both data for both (c) and (d) are created with SNR = −6. In all subfigures λ = 10−3, except for
(a) where λ = 103.

Signal-to-noise SNR
For the two view case (figure 4a) and high SNR the algorithms all perform equally well, suggesting
that they reach the same solutions, but as the noise level increases GFA shows a quick drop towards
zero correlation. This drop is also be seen in the case of five views in figure 4b, in this case for both
latent variable models and is due to both models choosing an over-regularized zero-source solution
as the cost of a poor estimation gets too high. GFA and BCorrCA are both derived using variational
inference and share the majority of their priors, the reason for BCorrCA outperforming GFA at low
levels of SNR can therefore either be attributed to the introduction of the U and λ constraints or the
full rank model for the noise.

Number of views
Figure 4c illustrates how performance improves as the number of available views increase. Note
that this increase is not due to an increase in the amount of data, as we have fixed the number
of observations. BCorrCA and GFA are build to generalise to arbitrary number of views. Here,
CCA and CorrCA actually perform worse when there are more than two views and the true mixing
matrices are different. With identical simulated mixing matrices the algorithms perform at par with
BCorrCA. This suggests that the increased performance stems from having more observations of the
same signal which effectively averages out the additive noise.

Similarity between mixing matrices
All tests were run at different levels of similarity between the true mixing matrices of each dataset
as attained by varying the λ parameter. Figure 4d shows how this affects the performance in the case
of five views. It can be seen that both CCA and CorrCA are affected in a negative way by dissimilar
true mixing matrices, whereas BCorrCA and GFA are unaffected. Figure 4a shows that CorrCA
attains the highest correlations at very low levels of SNR when the mixing matrices are equal, which
is the case for both two and more views. BCorrCA attains the same increase in performance at
SNR levels below -15 dB. Combining this with the fact that BCorrCA performs well with unequal
mixing matrices shows that it is able to adapt to a given dataset and regulate the mixing matrices to
be independent as in CCA or equal as in CorrCA.

3.4 BLIND SOURCE SEPARATION
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Figure 5: Performance with four hidden sources, five views, SNR = −6dB, and varied similarity
between the true weights. Note that the range of the y-axis is lower compared to figure 4d.

That the difference in performance between BCorrCA and GFA is present when the representations
are independent as illustrated, means that at some general difference is due to the full rank noise
model. To investigate if modelling inter-view dependencies in the representations also has an ef-
fect the difficulty was increased by increasing the number of hidden sources to K0 = 4 as used in
Klami et al. (2013). This decreases the mean correlation, but it does not change the relative per-
formance between the algorithms, when varying SNR or the number of views. A difference can,
however, be seen when varying the similarity between the mixing matrices, which is illustrated in
figure 5. Increased similarity can be seen to cause a drop in performance for the two latent vari-
able models, but where the performance of GFA drops below CCA and CorrCA, BCorrCA seem to
converge with these two algorithms. Since the noise level is held constant the relative difference in
performance can be attributed to the introduction of the U and λ constraints.

The effect from the similarity between mixing matrices seems to have an interaction with the level
of SNR, as high similarity increases performance for very low values of SNR (below -10 dB).

4 VALIDATION ON BENCHMARK EEG FROM A VISUAL SELECTIVE

ATTENTION TASK

For the purpose of evaluating the algorithm on real EEG, we use a well-documented data set from
the five-box task study by the Swartz Center for Computational Neuroscience (Makeig et al., 1999).

4.1 TASK DESIGN

ERPs were recorded from subjects attending to 5 laterally arranged boxes 0.8 cm above a central
fixation point on a monitor in which a filled circle appeared in random order for a duration of 100
ms. In each block of trials the subject focused on a highlighted box and pressed a thumb response
button when a disc appeared in the attended location (Townsend & Courchesne, 1994).

4.2 PRE-PROCESSING

The continuous EEG was recorded at 512 Hz from 60 subjects from 29 channels referenced to
the left mastoid and mounted in the international 10-20 system. The EEG was segmented into
response-locked epochs with 100 ms pre- and 290 ms post-response time (n=200). Epochs with
values higher than 70µV or exceeding 5 standard deviations were automatically rejected to remove
eye artefacts and electrical drift. The remaining epochs were bandpass filtered using a windowed
sinc-filter with passband frequencies 0.1-40 Hz and baseline-corrected in relation to the 100 ms pre-
response interval. The ”infomax” ICA algorithm (Bell & Sejnowski, 1995) was then used on the
concatenated epochs to isolate independent components containing eye artefacts. Scalp topographies
and time courses were used to identify noisy components which were then removed from the EEG
which was then normalised with respect to its total power.
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4.3 PREVIOUS ANALYSIS

By analysing this data using ICA, Makeig et al. (1999) were able to decompose the late positive
complexes evoked by visual stimuli into a frontoparietal component (P3f), a longer-latency large
component (P3b) and a postmotor potential (Pmp) induced by a button press and later Delorme et al.
(2007) found with ICA and time-frequency analysis that faster responses were linked with larger P3f
peaks.

4.4 FINDING CORRELATED COMPONENTS

Because BCorrCA is sensitive to temporal misalignment the criterion for including views (subjects)
in this experiment was based on the correlation of the averaged ERP of channel Pz between view 12
and all of the views in the cohort. The particular view and channel was chosen as reference due to
a strong response and a low noise level. The six views with highest correlation (12,13,14,15,16,22)
were chosen and cropped to contain the same number of epochs (343). To test the reliability of
the algorithm 100 epochs were randomly drawn from each view and concatenated to create 6 views
of ”continuous” EEG. This leaves an inference problem of M=6, D=29, N=20000 and K=1 for
BCorrCA and K=7 for GFA since the algorithm models noise in components. In GFA the component
with the largest variance was chosen. The procedure was repeated 100 times in order to compute
mean and standard error of the mean. Inspired by the approach by Wipf et al. (2010) the prior on
the covariance in BCorrCA is here estimated from the pre-stimulus EEG.

4.5 RESULTS

The ratio of the variance of view-specific patterns and the variance of the difference between view-
specific patterns represents an estimate of the similarity across views. The same applies to the
time series components but the algorithm only computes a common component for all the views.
However, by constructing the backward model filters, W, the view-specific components can be found

by y(m) = X(m)⊺w(m). Due to the model formulation
∼

X = Az⊺, the patterns and components can

only be inferred up to a scale factor, i.e.
∼

X = Az⊺ = 1
c
A · cz⊺. Fair comparison between the

methods then requires normalisation of A by multiplication of the standard deviation of z and vice
versa, when comparing the respective variables. To increase readability the variables are further
standardised with respect to the standard deviation of the grand average pattern or ERP. The average
variance within views for both patterns and time series is computed as the usual variance

varwithin(δ) =
1

M

M
∑

m

E[(δm − E[δm])2] (11)

and the between-view variance as the average of the upper triangular sans diagonal of pairwise
differences

varbetween(δ) =
2

M(M − 1)

M
∑

m=1

M
∑

i=m+1

E[(δmi − E[δmi])
2], δmi = δm − δi, (12)

where E[·] is either the spatial or temporal mean depending on usage. In table 1 we see that the
average within-view variance for both patterns and time series are larger than the average between-
view variance which suggests a high amount of universality in the neural representations. The shared
representation is particularly evident from the comparison of time series but as the selection of views
were based on ERP similarity this ratio is biased in favour of low variation between views.

In figure 6 the evidence for a shared representation is seen in the relatively small standard devi-
ation (mesh) compared to the average pattern. The scalp topography shows positive parietal and
negative frontal activation which is very close to the pattern found to isolate the Pmp in the late
positive complex (Makeig et al., 1999). In figure 7 we see how BCorrCA is able to acquire a nu-
merically stronger representation but maintain roughly the same standard deviation on an electrode
basis between subjects.

10



Figure 6: Grand average pattern projection and standard error (mesh) attained with BCorrCA. The
pattern is illustrated both as a 2- and 3-dimensional structure to show the between-view variation.
Positive weights are located in the parietal region.

Table 1: Mean variance of time series components and patterns calculated according to (11) and (12) with
standard error of the mean variance in parentheses. For comparability patterns and time series are normalised
wrt. the standard deviation of the grand average for each method.

BCorrCA GFA

Within-view Between-view Within-view Between-view

Patterns 1.39 (0.20) 0.93 (0.20) 1.47 (0.29) 1.13 (0.23)

Time series 1.09 (0.06) 0.23 (0.05) 1.08 (0.17) 0.21 (0.03)

Figure 8 shows in the small error a high level of reliability for BCorrCA and GFA. The neural
response is represented by a stronger signal in BCorrCA, which is due to the difference in pattern
weights as we saw in figure 7, and is closer to the response we expected to see from Makeig et al.
(1999), suggesting BCorrCA has greater affinity to physiologically meaningful solutions.

To further quantify the performance of each method the proportion of variance explained (PVE) was
calculated from the reconstructed data by

PVE =
SST − SSE

SST
, (13)

where SST is the total sum of squares and SSE the error sum of squares, ie. the residual variance.
The proportion of variance explained across all views (subjects) and repetitions is very close for the
two methods but a little higher for GFA. However, the variation of PVE is also much higher and a
closer analysis disclosed a significant difference in PVE between repetitions for GFA and less so for
BCorrCA. In most repetitions GFA finds a very good solution for a single view and poor solutions
for the rest whereas BCorrCA is more steady across repetitions and attains only mediocre PVE
results for all views. GFA thus has a tendency to ’overfit’ to a single view which may explain why,
when averaged over multiple repetitions, it attains results with a lower variance, however, using the
average has the advantage of obtaining a solution with a more common neural pattern. The latent
’response component’ is very consistent across views due to its low-level cognitive origins so even
though it is explained mostly by a single view, it is a good representation of the shared component.
Since GFA has no constraints on the patterns this solution is satisfactory, and perhaps preferred, in
a context where a strong shared pattern is not part of the hypothesis.

5 DISCUSSION AND CONCLUSION

Research in social neuroscience has shifted from being inherently single person studies of people
observing others towards multi-way interaction between multiple persons (Schilbach et al., 2013),
which calls for methods that are able to adapt to the level of universality in neural representations
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Figure 7: Grand average pattern projection and standard error (mesh) for BCorrCA (left) and GFA
(right). The patterns are normalised wrt. the standard deviation of the component z. The patterns are
illustrated as 3-dimensional structures to show the difference in amplitude of the weights. Positive
weights are located in the parietal region. The left figure is the same as the 3D part of figure 6.
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Figure 8: Average ERP of component from BCorrCA and GFA. Mean and standard error is com-
puted from 100 repetitions of 100 randomly selected epochs from each view. The small error in-
dicates a high level of reliability for both methods. The epochs are normalised wrt. to the mean
standard deviation of the mixing matrices, A. Figure 7 and 8 show that we have higher variance
explained, by scaling var(z) = 1, respectively var(A) = 1.

12



across brains. The probabilistic implementation of correlated component analysis presented here
provides a new approach to the extraction of flexible shared representations and information.

Extensive tests in simulated data show that the proposed model and inference scheme is able to
estimate the similarity between the views and that an increasing number of views in fact improves
the estimate. By adjusting the level of additive observation noise we demonstrated that BCorrCA
performs better than GFA in poor signal to noise conditions and better than all the other methods
when the number of views increases and there is limited similarity between mixing patterns. The
effect of increasing the number of views is positive for both BCorrCA and GFA, while CorrCA
and CCA stabilise at a lower level of performance (similarity between estimated sources and ’true’
sources), when the patterns are dissimilar. However, when the patterns become similar they all reach
the same level of source estimation. Our experiments in simulated data also showed that multiple
views improve the extraction of shared signals, even when the total amount of observations were
kept the same. By these simulations we thus conclude that the proposed method is better suited for
multi-view problems than CorrCA and CCA, and to be preferred over GFA when the SNR is low.
And indeed offers the flexibility to infer the degree of universality in the view representations.

Both of the latent variable models were seen to have a drop in performance when the data contained
multiple sources and their mixing patterns were similar across views. Inspection of the inferred
sources show that they appear to be linear combinations of the true sources, which suggests that
the latent variable models may experience a rotation of the ’true’ source space. Though a solution
to the rotation problem was discussed in Klami et al. (2013), further investigation into this issue is
warranted.

Latent variable models usually use the lower bound for the full log marginal likelihood to monitor
convergence, but it in some cases it is also used to choose between multiple analyses on the same
dataset (Klami et al., 2013). This prompted an investigation into the relationship of the lower bound
and the correlation between the true sources and the inferred ones. Though some dataset-specific
variation was seen, the average result was a correlation close to zero. The reason for the lack of
a consistent correlation between the lower bound and the mean true source correlation could stem
from the fact that the lower bound represents how close the entire model is to the observations.
This could mean that an analysis can achieve a low mean correlation with the true sources, but still
model the observations correctly through the other variables, e.g., noise variables, and thus obtain
a high lower bound. The tests, however, showed a strong correlation between the lower bound and
the number of active sources, meaning that the analysis with highest lower bound would likely be
the one with the correct number of active sources. Certain types of data caused GFA to produce
results with a lower number of active sources than the true number of sources, and in roughly a
third of the datasets did these analyses obtain a higher lower bound than the ones obtaining the
correct number of active sources. While the lower bound in all but some special cases seems to be
a valid unsupervised performance measure for selecting the solution with the correct the number
of active sources, further investigations into this area, e.g., comparing the lower bound with other
performance measures, might be able to give a clearer understanding of its proper use.

Our analysis of the visual selective attention shift EEG dataset showed the expected post-motor
potential response following the key press is markedly stronger using BCorrCA compared to GFA
and thus explains more of the variation. In Table I we list the total variation within and between
subjects (views). Note, the within subject variability (i.e., variability across electrode weights) is
larger than the between subject variability, adding evidence to the hypothesis that subjects to some
degree share spatial representation. The estimated response time course is highly universal for the
subjects entering the analysis, as expected. We found that while GFA initially seemed to produce
inferior results the issue was caused by solutions ’overfitting’ to individual views. The evaluation
criteria in this test punish this behaviour while it may provide a better solution in another setting.

The proposed scheme for inference of shared responses in the face of inter-subject representational
variability thus offers a new analytic route for experiments with simultaneous stimulation of groups.
Rather than analysing a large number of pairwise correlations between of subject responses the
proposed scheme enable inference of joint attention and other joint activity in large cohorts.
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APPENDIX

NOTE ON CHANGE IN PERFORMANCE ON SIMULATED DATA

It should be noted that the performance of BCorrCA has improved with low levels of SNR (par-
ticularly in the two view case) compared to an earlier article regarding BCorrCA (Poulsen et al.,
2014). This was due to an error in the lower bound calculations, which gave a wrong estimate of the
time of convergence, and caused the algorithm stop its iterations prematurely. A change in the data
creation with regards to adding observation noise with the correct amplitude and avoid differences
in scaling has caused an improvement in the performance of all four algorithms, but has not altered
their relative performance.

CORRELATED COMPONENTS AS AN EIGENVALUE PROBLEM

To introduce the notion of correlated components, we briefly review the multivariate schemes CCA
and CorrCA, both of which are valid for two views. Given two multivariate spatio-temporal views,

X(1) ∈ R
D1×N and X(2) ∈ R

D2×N , with {D1, D2} being the number of measured features in the

views and N the number of time samples, CCA estimates weights, {W(1),W(2)}, which maximise

the correlation between y1 = X(1)⊺w
(1)
k and y2 = X(2)⊺w

(2)
k . At the same time CCA constrains

the estimated weights with the condition that X(1)⊺w
(1)
k and X(1)⊺w

(1)
k′ are uncorrelated for k 6= k′

Klami et al. (2013). Introducing the sample covariance matrix, Rij = 1
N

X(i)X(j)⊺, CCA estimates
the weights analytically through eigenvalue decompositions

R−1
11 R12R−1

22 R21w(1) = ρw(1) (14)

R−1
22 R21R−1

11 R12w(2) = ρw(2).

Correlated component analysis (CorrCA) is a related approach for the case where the views are sim-

ilar, i.e., D1 = D2, for which it imposes the additional constraint of shared weights w = w(1) =
w(2). This stronger universality assumption can potentially increase sensitivity as it involves estima-
tion of fewer parameters. In correlated component analysis the weights are thus estimated through a
single eigenvalue problem (Dmochowski et al., 2012),

(R11 + R22)
−1 (R12 + R21)w = ρw. (15)

ROBUSTNESS OF CORRCA WITH DIFFERENTLY MIXED VIEWS

By definition CorrCA could be challenged, if the ’true’ weights of the views were different. How-
ever, in initial tests on simulated data we found only a small drop in performance (data not shown).
To understand this robustness we analyse a kind of ’worst case scenario’, in which the ’true’ view
specific mixing weights are orthogonal.

The observations are assumed to consist of a single ’true’ signal mixed into D dimensions with

additive Gaussian noise; X(1) = a(1)z⊺ + ǫ , X(2) = a(2)z⊺ + ǫ . Given a large sample, the
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covariance matrices are given as R11 = P · a(1)a(1)
⊺

+ σ2I , R12 = P · a(1)a(2)⊺, where P is the
variance of z and σ2 signifies the noise variance. For simplicity the weight vectors are assumed to
be unit length. The two matrices in (15) can then be written as

(R11 + R22)
−1 =

1

P

(

[a(1) a(2)]

[

a(1)
⊺

a(2)
⊺

]

+
2σ2

P
I

)−1

(16)

R12 + R21 = P · [a(1) a(2)]

[

a(2)
⊺

a(1)
⊺

]

, (17)

using block matrix notation. Using a(1)⊺a(2) = 0, ‖a(1)‖2 = ‖a(2)‖2 = 1 and the Woodbury
identity, the matrix product of (16) and (17) can be expressed as

(R11 + R22)
−1

(R12 + R21) =
P

2σ2

(

I −
P

2σ2 + P
[a(1) a(2)]

[

a(1)
⊺

a(2)
⊺

])

[a(1) a(2)]

[

a(2)
⊺

a(1)
⊺

]

(18)

=
P

2σ2 + P
(a(1)a(2)⊺ + a(2)a(1)

⊺

) (19)

Using the simplifying assumptions made earlier, an eigenvector for (19) can be seen to have the form

αa(1) + βa(2) since

P

2σ2 + P
(a(1)a(2)

⊺

+ a(2)a(1)⊺)(αa(1) + βa(2)) =
P

2σ2 + P
(αa(2) + βa(1)). (20)

It can be seen that αa(1) + βa(2) is an eigenvector when either α = β or α = −β with ± P
2σ2+P

as eigenvalues. This means that when the true mixing weights of two views are orthogonal CorrCA
finds a useful common set of weights, consisting of a weighted sum of the true weights, leading only
to a limited drop in SNR.

UPDATES FOR BCORRCA

Here follows the updates for each variable in BCorrCA, which are iterated in an expectation-
maximisation like manner until convergence.

q(Z) =

N
∏

n=1

N
(

zn|µz,n,Σz

)

(21)

Σ−1
z =

M
∑

m

{〈

A(m)⊺Ψ(m)A(m)
〉}

+ I (22)

µz,n = Σz

M
∑

m

〈

A(m)⊺
〉〈

Ψ(m)
〉

x(m)
n (23)

q(Ψ) =
M
∏

m

W
(

S
(m)
Ψ , vΨ

)

(24)

S
(m)
Ψ

−1
=

〈

A(m)
N
∑

n

znz⊺nA(m)⊺

〉

+

N
∑

n

x(m)
n x(m)

n

⊺

− 2 ·
N
∑

n

x(m)
n 〈z⊺n〉

〈

A(m)⊺
〉

+ S−1
0 (25)

vΨ = N + v0 (26)
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q(A(m)) =

D
∏

d=1

N
(

â
(m)
d | µ

(m)
ad ,Σ

(m)
ad

)

(27)

Σ
(m)
ad

−1
=
〈

ψ
(m)
dd

〉

N
∑

n

〈znz⊺n〉+ 〈λ〉 I (28)

µ
(m)
ad = Σ

(m)
ad

(

N
∑

n

〈zn〉
〈

ψ
(m)
(d,:)

〉

x(m)
n + 〈λ〉 〈ud〉

−
D
∑

d′ 6=d

〈

ψ
(m)
dd′

〉

N
∑

n

〈znz⊺n〉
〈

a
(m)
d′

⊺
〉



 (29)

q(U) =

K
∏

k=1

N
(

uk| µuk
, σ2

uk
I
)

(30)

σ−2
uk

=M 〈λ〉+ 〈αk〉 (31)

µuk
= σ2

uk
〈λ〉

M
∑

m

〈

a
(m)
k

〉

(32)

q(α) =

K
∏

k

Ga(αk|aα, bαk
) (33)

aα = a0 +
D

2
(34)

bαk
= b0 +

〈u⊺

kuk〉

2
(35)

q(λ) = Ga(λ|aλ, bλ) (36)

aλ = a0 +
MKD

2
(37)

bλ = b0 +

K
∑

k

M
〈u⊺

kuk〉

2
+

M
∑

m







〈

a
(m)
k

⊺

a
(m)
k

〉

2

−
〈

a
(m)
k

⊺
〉

〈uk〉
}

. (38)

where â
(1)
d is a column vector corresponding to the d’th row of A and 〈.〉 signifies the expectation.

Note that vΨ, aα and aλ are constants and can be defined before iterating over the other updates.

VARIATIONAL MESSAGE PASSING

The factorisation invoked in variational inference can be viewed as the decomposition of a large net-
work into a subset of factors that individually can be approximated variationally, creating a message–
passing like algorithm. Variational message passing (VMP) by Winn & Bishop (2005) is an efficient
implementation of this principle in which each factor is only conditioned on variables in the same
Markov blanket. Because VMP constrains the factors to be in the exponential family and conjugate
with respect to the distributions they are conditioned on (their parents), the variational updates sim-
plify greatly (Attias, 2000). It is thus possible to write a conditional distribution of the exponential
family on a generic form that allows the algorithm to extract sufficient statistics and pass on as a
message. The receiving node can then update its posterior belief based on the incoming messages.

VMP is a special case of a broader set of message–passing algorithms that all rely on minimising
the α–divergence. What makes VMP unique is that it, like mean field theory, seeks the minimisa-
tion of the exclusive KL–divergence (α = 0), which ensures that minimising the local divergence
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Figure 9: Comparison at varying levels of SNR between BCorrCA implemented in Matlab using the
derivations presented in this article, and a version implemented with VMP using Infer.NET . λ has
been set equal to 103 making the true weights of both views nearly equal. The shown correlation
coefficient is calculated as the mean of 20 simulations at each condition, with the standard error of
the mean illustrated as the opaque area.

exactly minimises the global divergence (Minka, 2005). For VMP inference we use the probabilistic
programming framework, infer.NET, developed by Minka et al. (2013).

Figure 9 shows the performance of BCorrCA implemented in Matlab using the derivations presented
in this paper and a version implemented with VMP at multiple levels of SNR. For each of the 20
repetitions the algorithms were initialised identically. Considering their standard error of mean,
the two implementations of BCorrCA were deemed to have equal performance, with the difference
being attributed to differences in the order of updates. Therefore the VMP implementation was left
out of the rest of the tests presented in this article.
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