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Abstract. We compare an entropy estimator Ĥz recently discussed in [10] with

two estimators Ĥ1 and Ĥ2 introduced in [6][7]. We prove the identity Ĥz ≡ Ĥ1,
which has not been taken into account in [10]. Then, we prove that the statistical
bias of H1 is less than the bias of the ordinary likelihood estimator of entropy.
Finally, by numerical simulation we verify that for the most interesting regime of
small sample estimation and large event spaces, the estimator Ĥ2 has a significant
smaller statistical error than Hz .

Keywords: Shannon entropy, Entropy estimation, Bias analysis, Diversity index,
Probability and statistics, Data analysis

1. Introduction

Symbolic sequences are typically characterized by an alphabet A of d different letters.
We assume statistical stationarity, i.e. any letter-block (word or n-gram of constant
length) wi, i = 1, ...,M , can be expected at any chosen site to occur with a known

probability pi = prob(wi) and
∑M

i=1 pi = 1.
In a classic paper published in 1951, Shannon considered the problem of

estimating the entropy

H = −
M
∑

i=1

pi log pi, (1)

of ordinary English [1]. In principle, this might be done by dealing with longer and
longer contexts until dependencies at the word level, phrase level, sentence level,
paragraph level, chapter level, and so on, have all been taken into account in the
statistical analysis. In practice, however, this is quite impractical, for as the context
grows, the number M of possible words explodes exponentially with n.

In the numerical estimation of the Shannon entropy one can do frequency
counting, hence in the limit of large data sets N , the relative frequency distribution
yields an estimate of the underlying probability distribution. We consider samples of
N independent observations, and let ki, i = 1, ...,M , be the frequency of realization wi

in the ensemble. However, with the choice p̂i =
ki

N
, the naive (or likelihood) estimate

Ĥ0 = −

M
∑

i=1

p̂i log p̂i (2)

http://arxiv.org/abs/1503.05911v2
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leads to a systematic underestimation of the Shannon entropy [2][3][4][5][6][7]. In
particular, if M is in the order of the number of data points N , then fluctuations
increase and estimates usually become significantly biased. By bias we denote the
deviation of the expectation value of an estimator from the true value. In general,
the problem in estimating functions of probability distributions is to construct an
estimator whose estimates both fluctuate with the smallest possible variance and are
least biased.

On the other hand, there is the Bayesian approach to entropy estimation, building
upon an approach introduced in [8], or a generalization recently proposed in [9].
There, the basic strategy is to place a prior over the space of probability distributions
and then perform inference using the induced posterior distribution over entropy.
Actually, a partial numerical comparison of the popular Bayesian entropy estimates
and those discussed hereinafter can be found in [9]. Unfortunately, these simulations
only consider the bias of the entropy estimates but not their mean square error, which
takes into account the important trade-off between bias and variance. However, in the
considerations to be discussed below, for what we intend to demonstrate, no explicit
prior information on distributions is assumed and we will focus ourself on Non-Bayes
entropy estimates only.

To start with, let us consider an estimator of the Shannon entropy which has
recently been proposed and analyzed against the likelihood estimator [10]. The
development of this interesting estimator starts with a generalization of the diversity
index proposed by Simson in 1949 [11] and refers to the following representation of
the Shannon entropy‡

H =

∞
∑

ν=1

1

ν

M
∑

i=1

pi (1− pi)
ν . (3)

In [10], it has been mentioned that there exists an interesting estimator of each term in
(3), which is unbiased up to the order ν = N − 1, namely Zν/ν, where Zν is explicitly
given by the expression

Zν =
N1+ν(N − ν − 1)!

N !

M
∑

i=1

ki
N

ν−1
∏

j=0

(

1−
ki
N

−
j

N

)

, (4)

such that

Ĥz =

N−1
∑

ν=1

1

ν
Zν (5)

is a statistical consistent entropy estimator of H with (negative) bias

BN = −
∞
∑

ν=N

1

ν

M
∑

i=1

pi (1− pi)
ν . (6)

Indeed, the estimator is notable because a uniform variance upper bound has been
proven in [10] that decays at a rate of O(log(N)/N) for all distributions with finite
entropy, compared to O((log(N))2/N) of the ordinary likelihood estimator established
in [13]. It should be mentioned here that the latter decay rate is an implication of the
Efron-Stein inequality, whereas the former (faster) decay rate is derived within the
completely different approach introduced in [10]. Actually, it seems hard to prove the

‡ For another interpretation of this representation see [12].
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same decay rate for the likelihood estimator.

In the following section, we will show that Ĥz is algebraically equivalent to the
estimator [6][7]

Ĥ1 =

M
∑

i=1

ki
N

(

ψ(N)− ψ(ki)
)

, (7)

while the summation is defined for all ki > 0 and the digamma function ψ(k) is the
logarithmic derivative of the Gamma-function [14]. Actually, the estimator (7) is
given for the choice ξ = 1 in [7] (Eq. (28) therein). In the asymptotic regime ki ≫ 1
this estimator leads to the ordinary Miller correction Ĥ1 ∼ Ĥ0 + (M − 1)/2N . This
can be seen by using the asymptotic relation ψ(x) ∼ log(x) − 1/2x.

The mathematical expression of the bias of Ĥ1 has also been derived in [7] and is
explicitly given by

B
(1)
N = −

M
∑

i=1

pi

∫ 1−pi

0

tN−1

1− t
dt, (8)

with a uniform upper bound

|B
(1)
N | ≤

M

N
. (9)

The proof of the identity BN ≡ B
(1)
N will be suppressed here because it is sufficient to

show the equivalence of the corresponding entropy estimators in the following section.
It should be mentioned that the numerical computation time of the estimator H1 is
significantly faster than for Hz . Actually, this improvement has not been taken into
account in reference [9] (Fig. 11), where the authors still used expression (5) above.

In the third section, by numerical computation we compare the mean square error
of Ĥz with an entropy estimator corresponding to ξ = 1/2 in Eq. (13) of [7] (see also
Eq. (35) of [6]), which is explicitly given by the following representation

Ĥ2 =

M
∑

i=1

ki
N

(

ψ(N)− ψ(ki) + log(2) +

ki−1
∑

j=1

(−1)j

j

)

. (10)

This estimator is an extension of Ĥ1 by an oscillating term in the bracket on the right-
hand side of (7). In both [6] and [7], this estimator has not been expressed in terms
of a finite sum, but by integral expressions or infinite sum representations instead.
However, it can be easily shown that the present form is equivalent to those in [6][7],
but the computation is less time-consuming. The bias of the estimator (10) is [7]

B
(2)
N = −

M
∑

i=1

pi

∫ 1−2pi

0

tN−1

1− t
dt, (11)

with uniform upper bound

|B
(2)
N | ≤

M + 1

2N
. (12)

Now, when we look at the right-hand side of (9) and (12), then we see that they mainly

differ by a factor 2 in the denominator. That has the implication that |B
(2)
N | < |B

(1)
N |
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for all N and M ≥ 2. Thus, we can expect a faster convergence of Ĥ2 for sufficient
large M and not very strongly peaked probability distributions. Actually, these are
the distributions we are mainly interested in. The numerical comparison of the mean
square error of Ĥz and Ĥ2 will be evaluated for the uniform probability distribution,
the Zipf distribution and for the zero-entropy delta distribution.

2. Comparison of Ĥz and Ĥ1

In this section, we show the identity Ĥz ≡ Ĥ1. Therefore, let Zi,ν denote the i-th
term of (4),

Zi,ν =
N1+ν(N − ν − 1)!

N !

ki
N

ν−1
∏

j=0

(1 −
ki
N

−
j

N
). (13)

By extending with N in the product, this expression can be rewritten as

Zi,ν =
(N − ν − 1)!

N !
ki

ν−1
∏

j=0

(N − ki − j). (14)

Next, the product is reformulated as a quotient of factorials, i.e.
ν−1
∏

j=0

(N − ki − j) =
(N − ki)!

(N − ki − ν)!
(15)

and in terms of binomial coefficients we get

Zi,ν =
ki

N − ν

(

N − ν

ki

)

/

(

N

ki

)

. (16)

Now, the i-th term of the estimator (5) is obtained by summation over ν, i.e.

N−1
∑

ν=1

1

ν
Zi,ν =

(

N

ki

)

−1

ki

N−1
∑

ν=1

1

ν(N − ν)

(

N − ν

ki

)

=
ki
N

(

HN−1 −Hki−1

)

(17)

while Hk =
∑k

n=1 1/n is the k-th harmonic number [14]. Applying the identity
Hk−1 = ψ(k) + γ (with γ = 0.5772..., the Euler-Mascheroni constant) and summa-
tion for i = 1, 2, ...,M , we obtain the estimator (7), which proves the identity Ĥz ≡ Ĥ1.

In addition, we have the following

Proposition. The estimator Ĥ1 is less biased than the likelihood estimator Ĥ0.

Proof . Since we know from [7] that the bias of Ĥ1 is negative, it is sufficient to
prove that ψ(N)− ψ(k) > log N

k
, for 0 < k < N . The following inequalities [14]

ψ(N) ≥ log
(

N −
1

2

)

(18)

ψ(k) ≤ log(k)−
1

2k
(19)

can be applied such that we only have to check that

N >
1/2

1− e−
1

2k

. (20)
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Now, for any finite k > 0, the inequality 1 + 1
2k < exp

(

1
2k

)

is satisfied. The proof is
by Taylor series expansion of the exponential function. From this, by simple algebraic
manipulations, it follows that the right-hand side of (20) is less than k + 1

2 , for any
finite k > 0. It follows that (20) is satisfied for any k with 0 < k < N . This proves
that Ĥ1 is less biased then Ĥ0. �

3. Numerical comparison of Ĥz and Ĥ2

In this section, we will focus on the convergence rates of the root mean square error
(RMSE) of Ĥz and Ĥ2. Here, the RMSE is defined by

RMSE =

√

E[(Ĥ −H)2]. (21)

We choose this error measure because it takes into account the trade-off between bias
and variance. Moreover, we want to mention that there is a slightly modified version
Ĥ∗

z of the estimator Ĥz, defined in Eq. (12) of [10]. Since the bias BN of Ĥz is explic-
itly known, a correction is defined by subtraction of the bias term BN with pi replaced
by its estimate p̂i. The modified estimator is then given by Ĥ∗

z = Ĥz − B̂N , while B̂N

is the plug-in estimator of BN . For reasons of simplicity, we deny applying the same
procedure of bias correction for the estimator Ĥ2.

Our first data sample is taken from the uniform probability distribution pi = 1/M ,
for i = 1, 2, ...,M . In addition, we consider the (right-tailed) Zipf-distribution with
pi = c/i, for i = 1, 2, ...,M and normalization constant c = 1/HM (reciprocal of
the M -th harmonic number). The statistical error for increasing sample size N and
given M is shown in Fig. 1 and Fig. 2. As we can see, the RMSE of all estimators is
monotonic decreasing in N . The convergence of the naive estimator Ĥ0 is rather slow
compared to the other estimators, while the performance of Ĥ∗

z is slightly better than
for Ĥz. On the other hand, the statistical error of Ĥ2 is significantly smaller than the
statistical error of Ĥz and Ĥ∗

z and this behaviour seems to be representative for large
M .

The statistical error for increasing M and fixed sample size N is shown in Fig. 3
and Fig. 4. For M ≫ N , the RMSE of Ĥz and Ĥ∗

z is greater than of Ĥ2. This
phenomenon reflects the fact that the bias reduction becomes more and more relevant
for increasing M , compared to the contribution of the variance.

As we can see from both examples, the gap between Ĥ∗

z and Ĥ2 is slightly smaller
for the peaked Zipf distribution compared to the uniform distribution. Thus, we ask
for the performance in the extreme case of the delta distribution pi = δi,1, which has

entropy zero. Indeed, in this special case we have Ĥ0 = Ĥ1 = Ĥz = Ĥ∗

z = 0 for any

sample size N , but Ĥ2 = log(2) +
∑N−1

j=1 (−1)j/j → 0 for N → ∞. Actually, in this
case the statistical error of the latter scales like ∼ 1/2N for large N .

4. Summary

In the present note, we classified the entropy estimator Ĥz of [10] within the
family of entropy estimators originally introduced in [7]. This reveals an interesting
connection between two different approaches to entropy estimation, one coming from
the generalization of the diversity index of Simpson and the other one coming from
the estimation of pqi in the family of Renyi entropies. This connection is explicitly
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established by the identity Ĥz ≡ Ĥ1. In addition, we proved that the statistical bias
of Ĥ1 is smaller than the bias of the likelihood estimator Ĥ0.

Furthermore, by numerical computation for various probability distributions, we
found that Ĥz (or the heuristic estimator Ĥ∗

z ) can be improved by the estimator Ĥ2,
which is an excellent member of the estimator family in [6][7].

On the other hand, there is a uniform variance upper bound of Ĥz (and therefore
of Ĥ1) that decays at a rate of O(log(N)/N) for all distributions with finite entropy
[10]. It would be interesting to know if this variance bound also holds for the estimator
Ĥ0 or Ĥ2. The answer might be found in a forthcoming publication.
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Figure 1. Statistical error of Ĥ0 (�), Ĥz (◦), Ĥ∗

z
(+) and Ĥ2 (•), for

the uniform probability distribution with M = 100 (see text). The

RMSE of Ĥ2 is significantly smaller then of Ĥz and Ĥ
∗

z
. The exact

value of the entropy is H = 5.3.
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Figure 2. Same as in Fig. 1, but for Zipf’s probability distribution
(see text). The exact value of the entropy is H = 3.68.
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Figure 3. Statistical error of Ĥ0 (�), Ĥz (◦), Ĥ∗

z
(+) and Ĥ2 (•),

for sample size N = 10 in the instance of the uniform probability
distribution. Small sample estimation is expected when M is above
the sample size N .
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Figure 4. Same as in Fig. 3, but for the Zipf distribution. There is
a crossover for M ≈ N .
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