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Abstract

The recent interest in the dynamics of networks and the advent, across a range of applications, of 

measuring modalities that operate on different temporal scales have put the spotlight on some 

significant gaps in the theory of multivariate time series. Fundamental to the description of 

network dynamics is the direction of interaction between nodes, accompanied by a measure of the 

strength of such interactions. Granger causality and its associated frequency domain strength 

measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these 

issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs 

involves computing submodels of vector time series models, for which reliable methods do not 

exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the 

impact of downsampling on GEMs has never been established. In this work, using state-space 

methods, we resolve all these issues and illustrate the results with some simulations. Our analysis 

is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general 

applicability.

1 Introduction

Following the operational development of the notion of (temporal) causality by Granger 

(1969) and Sims (1972), Granger causality (GC) analysis has become an important part of 

time series and econometric testing and inference (Hamilton, 1994). It has also been applied 

in the biosciences (Kaminski & Blinowska, 1991; Bernasconi & Konig, 1999; Ding, 

Bressler, Yang, & Liang, 2000), climatology (global warming; Suna & Wang, 1996; 

Kaufmann & Stern, 1997; Triacca, 2005), and, most recently, functional magnetic resonance 

imaging (fMRI). This last application has stimulated this letter.

Since its introduction into fMRI (Goebel, 2003; Valdes-Sosa, 2004; Roebroeck, Formisano, 

& Goebel, 2005; Yamashita, Sadato, Okada, & Ozaki, 2005) GC has become the subject of 

an intense debate: (see Valdes-Sosa, Roebroeck, Daunizeau, & Friston, 2011; Roebroeck, 

Formisano, & Goebel, 2011) and associated commentary. There are two main issues in that 

debate that occur more widely in dynamic networks. First is the impact of downsampling on 

GC. In the fMRI neuroimaging application, causal processes may operate on a timescale on 

the order of tens of milliseconds, whereas the recorded signals are typically available only 

on a 1 second timescale, although sampling up to a 100 ms rate is now becoming possible 
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(Feinberg & Yacoub, 2012). So it is natural to wonder if GC analysis on a slower timescale 

can reveal GC structure (GCS) on a faster timescale. Second is the impact of filtering on GC 

due to the hemodynamic response function, which relates neural activity to the recorded 

fMRI signal. Since intuitively GC will be sensitive to time delay, the variability of the 

hemodynamic response function (HRF), particularly spatially varying delay (called time to 

onset in the fMRI literature) and time to peak (confusingly sometimes called delay in the 

fMRI literature) has been suggested as a potential source of problems (Deshpande, Sathian, 

& Hu, 2010; Handwerker, Gonzalez-Castillo, D’Esposito, & Bandettini, 2012). A referee 

has, however, pointed out that following David et al. (2008), deconvolution (Glover, 1999) 

has gained favor (Havlicek, Friston, Jan, Brazdil, & Calhoun, 2011) as a potential means of 

dealing with this.

An important advance in GC theory and tools was made by Geweke (1982), who provided 

measures of the strength of causality or influence of one time series on another (henceforth 

called GEM, for Geweke causality measure), including frequency domain decompositions of 

them. Subsequently it was pointed out that the GEMs are measures of directional mutual 

information (Rissannen & Wax, 1987). The GEMs were extended to conditional causality in 

Geweke (1984). However, GEMs have not found as wide an application as they should have, 

partly because of some technical difficulties in calculating them, which are discussed further 

below. But GEMs (and their frequency domain versions) are precisely the tool needed to 

pursue both GC downsampling and filtering questions.

In the econometric literature, it was appreciated early that downsampling, especially in the 

presence of aggregation, could cause problems. This was implicit in the work of Sims (1971) 

and mentioned also in the work of Christiano and Eichenbaum (1987), who gave an example 

of contradictory causal analysis based on monthly versus quarterly data, and also discussed 

in Marcet (1991). But precise general conditions under which problems do and do not arise 

have never been given. We do so in this letter.

Some of the econometric discussion has been framed in terms of sampling of continuous 

time models (Sims, 1971; Marcet, 1991; Christiano & Eichenbaum, 1987). And authors such 

as Sims (1971) have suggested that models are best formulated initially in continuous time. 

While this is a view that I have long shared (and related to the modeling approach advocated 

by Middleton and Goodwin (1990), we deal with only discrete time models here. To cast our 

development in terms of continuous time models would require a considerable development 

of its own without changing our basic message.

The issue at stake, in its simplest form, is the following. Suppose that a pair of (possibly 

vector) processes exhibit a unidirectional GC relation (a influences b, but b does not 

influence a), but suppose measurement time series are available only at a slower timescale or 

as filtered time series or both. Then two questions arise. The first, which we call the forward 
question, is this: When is the unidirectional GC relation preserved? The second, which we 

call the reverse question, is harder. Suppose the measurement time series exhibit a 

unidirectional GC relation. Does that mean the underlying unfiltered faster timescale 

processes do? The latter question is the more important and so far has received no theoretical 
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attention. The more general form of this issue is to what extent the GC structure (GCS) 

between two time series is distorted by downsampling and or filtering or both.

In order to resolve these issues, we need to develop some theory and some computational 

and modeling tools. First, to compute GEMs, one needs to be able to find submodels from a 

larger model (i.e., one having more time series). Thus, to compute the GEMs between time 

series xt, yt, Geweke (1982, 1984) attempted to avoid this by fitting submodels separately to 

xt to yt and then also fitting a joint model to xt, yt. Unfortunately this can generate negative 

values for some of the frequency domain GEMs (Chen, Bressler, & Ding, 2006). Properly 

computing submodels will resolve this problem, and previous work has not accomplished 

this (we discuss the attempts in Dufour & Taamouti, 2010, and Chen et al., 2006, below).

Second, one needs to be able to compute how models transform when they are 

downsampled. This has been done only in special cases (Pandit & Wu, 1983) or by methods 

that are not computationally realistic. We provide computationally reliable, state-space-

based methods for doing this here.

Third, we need to study the effect of downsampling and filtering on GEMs. We will show 

how to use the newly developed tools to do this.

To sum up, we can say that previous discussions, including those above, as well as Geweke 

(1978), Telser (1967), Sims (1971), and Marcet (1991), fail to provide general algorithms for 

finding submodels or models induced by downsampling. Indeed both these problems have 

remained open problems in multivariate time series in their own right for several decades, 

and we resolve them here. Further, there does not seem to have been any theoretical 

discussion of the effect of filtering on GEMs, and we resolve that here also. To do that, it 

turns out that state-space models provide the proper framework.

Throughout this work, we deal with the dynamic interaction between two vector time series. 

It is well known in econometrics that if there is a third vector time series involved in the 

dynamics but not accounted for, then spurious causality can occur for reasons that have 

nothing to do with downsampling, a situation discussed by Hsiao (1982) and Geweke 

(1984). Other causes of spurious causality such as observation noise are also not discussed. 

Of course, the impact of downsampling in the presence of a third (vector) variable is also of 

interest but will be pursued elsewhere.

Finally, our whole discussion is carried out in the framework of linear time series models. It 

is of great interest to pursue nonlinear versions of these issues, but that would be a major 

separate task.

The remainder of the letter, is organized as follows. In section 2, we review and modify 

some state-space results important for system identification or model fitting and needed in 

the following sections. In section 3, we develop state-space methods for computing 

submodels of innovations state-space models. In section 4, we develop methods for 

transforming state-space models under downsampling. In section 5, we review GC and 

GEMs and extend them to a state space-setting. In section 6, we study the effect of filtering 

on GC via frequency domain GEMs. In section 7, we offer a theory to explain when GC is 

Solo Page 3

Neural Comput. Author manuscript; available in PMC 2017 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preserved under downsampling. In section 8, we discuss the reverse GC problem showing 

how spurious causality can be induced by downsampling. In section 9, we set up the 

framework for the application of these results to fMRI. This includes discussion of the phase 

properties of HRFs as well as the impact of deconvolution on the assessment of GC. 

Conclusions are in section 10. There are three appendixes.

1.1 Acronyms and Notation

GC is Granger causality or Granger causes; GCS is Granger causal structure; dn-gc does not 

Granger cause; GEM is Geweke causality measure. HRF is hemodynamic response function; 

SS is state space or state-space model; ISS is innovations state-space model; UC is unit 

circle; VAR is vector autoregression; VARMA is vector autoregressive moving average 

process; wp1 is with probability 1. LHS denotes left-hand side. The lag or backshift operator 

is denoted L or z−1; thus, if xt is a signal, then Lxt = z−1 xt = xt−1. L or z−1 are causal 

operators since they operate on the past. L−1 or z are noncausal operators since they operate 

on the future (so L−1xt = zxt = xt+1). The causal filter  is sometimes 

denoted h, and its noncausal reflection is h∗ = h∗(L)= h(L−1).

 denotes the values xa, xa+1, …, xb, so . For stationary processes, we have a = 

−∞. If M, N are positive semidefinite matrices, then M ≥ N means M−N is positive 

semidefinite. A stable square matrix is one whose eigenvalues all have modulus < 1.

2 State Space

The computational methods we develop rely on state-space techniques and spectral 

factorization, the latter being intimately related to the steady-state Kalman filter. In this 

section, we review and modify some basic results in state-space theory, Kalman filtering, 

and spectral factorization. Our discussion deals with two vector time series, collected as, 

.

2.1 State-Space Models

We consider a general constant parameter SS model,

(2.1)

with positive semidefinite noise covariance, . We refer to this as 

an SS model with parameters (A, C, [Q, R, S]).

It is common with SS models to take S = 0, but for equivalence between the class of 

VARMA models and the class of state-space models, it is necessary to allow S ≠ 0.

Now by matrix partitioning, . So we introduce
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• N: Noise Condition. R is positive definite.

N implies that Qs is positive semidefinite.

2.2 Steady-State Kalman Filter, Innovations State-Space Models, and the Discrete 
Algebraic Ricatti Equation

We now recall the Kalman filter for mean square estimation of the unobserved state 

sequence ξt from the observed time series zt. It is given by Kailath, Sayeed, and Hassibi 

(2000, theorem 9.2.1),

where et is the innovations sequence of variance Vt = R + CPtCT,  is 

the Kalman gain sequence, and Pt is the state error variance matrix generated from the 

Ricatti equation, .

The Kalman filter is a time-varying filter, but we are interested in its steady state. If there is 

a steady state (i.e., Pt → P as t → ∞) then the limiting state error variance matrix P will, 

obey the so-called discrete algebraic Ricatti equation (DARE),

(2.2)

where V = R + CPCT and K = (APCT + S)V−1 is the corresponding steady-state Kalman 

gain. With some clever algebra, (Kailath et al., 2000), the DARE can be rewritten (the 

Ricatti equation can be similarly rewritten) as

where As = A − SR−1C and Ks = AsPCTV−1.

We now introduce two assumptions.

•
St: Stabilizability condition: As,  is stabilizable (see appendix A)

• De: Detectability condition: As, C is detectable.

In appendix A, it is shown De is equivalent to A, C being detectable. Also it holds 

automatically if A is stable.

The resulting steady-state Kalman filter can be written as

(2.3)

Solo Page 5

Neural Comput. Author manuscript; available in PMC 2017 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where εt is the steady-state innovation process and has variance matrix V and Kalman gain 

K. This steady-state filter provides a new state-space representation of the data sequence. We 

refer to it as an innovations state-space (ISS) model with parameters (A, C, K, V). We 

summarize this:

Result 1—Given the SS model, equation 2.1, with parameters (A, C, [Q, R, S]), then 

provided N, St, De hold:

a. The corresponding ISS model, equation 2.3, with parameters (A, C, K, V), can 

be found by solving the DARE, equation 2.2, which has a unique positive-

definite solution P.

b. V is positive definite, (A, C) is detectable, and A−KC is stable so that (A, K) is 

controllable.

Proof—See appendix A.

Remarks

i. Henceforth an ISS model with parameters (A, C, K, V) will be required to have 

V positive definite, (A, C) detectable, and (A, K) controllable so that A–KC is 

stable.

ii. It is well known that any VARMA model can be represented as an ISS model and 

vice versa (Solo, 1986; Hannan & Deistler, 1988).

iii. Note that the ISS model with parameters (A, C, K, V) can also be written as the 

SS model with parameters (A, C, [KVKT, V, KV]).

iv. The DARE is a quadratic matrix equation, but it can be computed using the 

(numerically reliable) DARE command in Matlab as follows. Compute: [P, L0, 

G] = DARE(AT, CT, Q, R, S, I) and then, V = R + CPCT, K = GT.

v. Note that stationarity is not required for this result.

2.3 Stationarity and Spectral Factorization

Given an ISS model with parameters (A, C, B, Σε), we now introduce

• Assumption EV: Eigenvalue stability condition: A has all eigenvalues with 

modulus < 1, that is, A is a stability matrix.

With this assumption we can obtain an infinite vector moving average (VMA) 

representation, an infinite vector autoregressive (VAR) representation, and a spectral 

factorization.

Before stating these results, we need a definition;

• Definition. Minimum phase transfer function. A matrix H(L) of causal transfer 

functions is said to be minimum phase (MP) if its inverse exists and is causal and 

stable. If H(L) is not minimum phase, it is called nonminimum phase (NMP).
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Examples

i. Causal and stable. H(L) = 1 − aL, |a| < 1 has inverse 

, which follows from summing the geometric 

series. Then H_(L) is clearly causal and is stable since its pole  has 

modulus < 1 (i.e., it lies inside the unit circle). Another way to state this is to say 

that H(L) is MP because its zero zo = a has modulus < 1 (i.e., it lies inside the 

unit circle, UC).

ii.
Causal but not stable.  is not minimum phase since 

 is not stable since its pole  has modulus > 1. If we 

rewrite , then 

. This is stable but not causal since 

the expansion is in terms of the future. Again we can rephrase this example to 

say H(L) is NMP because its zero  is outside the unit circle.

iii. Not causal but stable. H(L) = L(1 − aL), |a| < 1 is nonminimum phase since 

 is not causal. Note that H_(L) is stable. We can rephrase this as 

follows. H(L) has two zeros: one is inside the unit circle, and the other is at ∞ 
(i.e., z = L−1 = ∞ makes H (L) vanish and so is outside the unit circle).

For further discussion of minimum phase filters, see Green (1988) and Solo (1986).

The following result is based on Kailath et al. (2000, theorem 8.3.2) and the surrounding 

discussion.

Result 2: For the ISS model (A, C, B, Σε) obeying condition Ev we have,

a. Infinite VMA or Wold decomposition:

(2.4)

b. Infinite VAR representation:

(2.5)

c. Spectral factorization. Put L = exp(− jλ); then zt has positive-definite spectrum 

with spectral factorization as follows:
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(2.6)

d. H(L) is minimum phase.

Proof

a. Write equation 2.3, in operator form. The series is convergent wp1 and in mean 

square since A is stable.

b. Rewrite equation as . Then write this in 

operator form. The series is convergent wp1 and in mean square since A−KC is 

stable and zt is stationary.

c. This follows from standard formulas for spectra of filtered stationary time series 

applied to (a).

d. From (a),(b) G(L) = H−1 (L) and by (b) G(L) is causal and stable, and the result 

follows.

Remarks

i. Result 2 is a special case of a general result that given a full-rank multivariate 

spectrum fZ(λ), there exists a unique causal stable minimum phase spectral 

factor H(L) with H(0) = I and positive-definite innovations variance matrix Σε 
such that equation 2.6 holds (Hannan & Deistler, 1988; Green, 1988). In general 

detH(L) may have some roots on the unit circle (Hannan & Poskitt, 1988; Green, 

1988), but the assumptions in result 2 rule this case out. Such roots mean that 

some linear combinations of zt can be perfectly predicted from the past (Hannan 

& Poskitt, 1988; Green, 1988), something that is not realistic in the fMRI 

application.

ii. Result 2 is also crucial from a system identification or model-fitting point of 

view. From that point of view, all we can know (from second-order statistics) is 

the spectrum, and so if, naturally, we want a unique model, the only model we 

can obtain is the causal stable minimum phase model: the ISS model. The 

standard approach to SS model fitting is the so-called state-space subspace 

method (Deistler, Peternell, & Scherer, 1995; Bauer, 2005), and indeed it delivers 

an ISS model. The alternative approach of fitting a VARMA model (Hannan & 

Deistler, 1988; Lutkepohl, 1993) is equivalent to getting an ISS model.

iii. We need result 1, however, since when we form submodels, we do not 

immediately get an ISS model; rather, we must compute it.
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3 Submodels

Our computation of causality measures requires that we compute induced submodels. In this 

section, we show how to obtain an ISS submodel from the ISS joint model.

We partition zt = (xt, yt)T into subvector signals of interest and partition the state-space 

model correspondingly:  and B = (BX, BY). We first read out an SS submodel 

for xt from the ISS model for zt. We have simply ξt+1 = Aξt + wt, xt = CXξt + εX,t where, 

. We need to calculate the covariance matrix: 

. We find , Q = var(wt) = BΣεBT and 

. This leads to:

Theorem 1

Given the joint ISS model, equation 2.3 or 2.4, for zt, then under condition Ev, the 

corresponding ISS submodel for xt, (A, CX, K(X), ΩX) (the bracket notation K(X) is used to 

avoid confusion with e.g. CX, ΣX,ε which are submatrices), can be found by solving the 

DARE, equation 2.2, with .

Proof

First, we note by partitioning |Σε| = |ΣX,ε||Σ(Y|X),ε| where so 

that ΣX,ε and Σ(Y|X),ε are both positive definite. Now we need only check conditions N, St, 

De of result 1. We need to show that  is positive definite, (A, CX) is detectable, and 

 is stabilizable; in fact, we show it is controllable.

The first is already established. The second follows trivially since A is stable. We use the 

PBH test (see appendix A) to check the third.

Suppose controllability fails. Then by the PBH test, there exists q ≠ 0 with 

 and
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since Σ(Y|X)ε, is positive definite. But then,

Thus, (A − BXCX, BY) is not controllable. But this is a contradiction since we can find a 

matrix, namely CY, so that A − BXCX − BYCY = A − BC is stable.

Remarks

i. For implementation in Matlab, positive definiteness in constructing Q can be an 

issue. A simple resolution is to use a Cholesky factorization of  and 

form Bε = BLε and then form .

ii. The P(X) matrix from DARE, 

 obeys 

 and then 

.

iii. Dufour and Taamouti (2010) discuss a method for obtaining sub-models, but it is 

flawed. First, it requires computing the inverse of the VAR operator. While this 

might be feasible (analytically) on a toy example, there is no known numerically 

reliable way to do this in general (computation of determinants is notoriously ill 

conditioned). Second, it requires the solution of simultaneous quadratic 

autocovariance equations to determine VMA parameters for which no algorithm 

is given. In fact, these are precisely the equations required for a spectral 
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factorization of a VMA process. There are reliable algorithms for doing this, but 

given the flaw already revealed, we need not discuss this approach any further.

Next we state an important corollary:

Corollary 1—Any submodel is in general a VARMA model, not a VAR. To put it another 

way, the class of VARMA models is closed under the forming of submodels, whereas the 

class of VAR models is not.

This means that VAR models are not generic and is a strong argument against their use. Any 

vector time series can be regarded as a submodel of a larger-dimensional time series and 

thus must in general obey a VARMA model. This result (which is well known in time series 

folklore) is significant for econometrics where VAR models are in widespread use.

For the next section we need:

Theorem 2—For the joint ISS model, equation 2.3 or 2.4, for zt with conditions St, De 

holding and with induced submodel for xt given in theorem 1, we have,

(3.1)

4 Downsampling

There are two approaches to the problem of finding the model obeyed by a downsampled 

process: frequency domain and time domain. While the general formula for the spectrum of 

a downsampled process has long been known, it is not straightforward to use and has not 

yielded any general computational approach to finding submodels of parameterized spectra.

The spectral formula, however, has made it very clear that downsampling leads to aliasing, 

so that higher-frequency information is lost. This strongly suggests that GCS will be affected 

by downsampling.

The most complete (time domain) work on downsampling seems to be that of Pandit and Wu 

(1983), although they treat only the first- and second-order scalar cases. There is work in the 

engineering literature for systems with observed inputs, but that is also limited and in any 

case not helpful here. We follow an SS route.

We begin with the ISS model, equation 2.3. Suppose we downsample the observed signal zt 

with sampling multiple m. Let t denote the fine timescale and k the coarse timescale so t = 

mk. The downsampled signal is . To develop the SS model for , we iterate the SS 

model above to obtain
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Now set t = mk, l = m and denote sampled signals, . Then we find

where . We now use result 1 to find the ISS model corresponding 

to this SS model.

We first have to calculate the model covariances:

(4.1)

(4.2)

We now obtain:

Theorem 3

Given the ISS model, equation 2.3, then under condition Ev, for m > 1, the ISS model for 

the downsampled process  is , obtained by solving the DARE with 

SS model (Am, C, [Qm, R, Sm]) where Qm is given in equation 4.2 and Sm is given in 

equation 4.1.

Proof

Using result 1, we need to show the following. R is positive definite, (Am,C) is detectable, 

and (Am − SmR−1C),  is stabilizable. In fact, we show controllability. 

The first holds trivially; the second does as well since A is stable and thus so is Am. For the 

third, we use the PBH test.

Suppose controllability fails. Then there is a left eigenvector q (possibly complex) with λqT 

= qT(Am − SmR−1C) = qTAm−1(A − BC) and 

Since Σε is positive definite, this delivers  for r = 

0, …, m − 2.

Using this, we now find λ−qT = qTAm−1(A − BC) = qTAm−2(A − BC)2 +qTAm−2BC(A − 

BC) = qTAm−2(A − BC)2. Iterating this yields λqT − qT(A − BC)m. Thus, if λm is an mth 
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root of λ, then λmqT = qT(A − BC). Since qT B = 0, we thus conclude that (A − BC, B) is 

not controllable. But this is a contradiction since (A − BC) + BC = A is stable.

Remark

i. In Matlab, we would compute, 

, yielding 

and .

ii. More specifically  obeys , where 

; ; 

; .

5 Granger Causality

In this section, we review and extend some basic results in Granger causality. In particular, 

we extend GEMs to the state-space setting and show how to compute them reliably.

Since the development of Granger causality, it has become clear (Dufour & Renault, 1998; 

Dufour & Taamouti, 2010) that in general, one cannot address the causality issue with only 

one-step-ahead measures as commonly used. One needs to look at causality over all forecast 

horizons. However one-step measures are sufficient when one is considering only two vector 

time series as we are (Dufour & Renault, 1998, proposition 2.3).

5.1 Granger Causality Definitions

Our definitions of one-step Granger causality naturally draw on Granger (1963, 1969), Sims 

(1972), and Solo (1986) but are also influenced by Caines (1976), who, drawing on the work 

of Pierce and Haugh (1977), distinguished between weak and strong GC, or what Caines 

calls weak and strong feedback free processes. We introduce:

• Condition WSS: The vector time series xt, yt are jointly second-order stationary.

• Definition: Weak Granger causality. Under WSS, we say yt does not weakly 

Granger-cause (dn-wgc) xt if, for all t,

Otherwise, we say yt weakly Granger causes (wgc) xt. Because of the elementary 

identity,
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the equality of variance matrices in the definition also ensures the equality of 

predictions: . This definition agrees 

with Granger (1969); Caines and Chan (1975), who do not use the designator 

weak; and Caines (1976) and Solo (1986) who do.

• Definition: Strong Granger causality. Under WSS, we say yt does not strongly 

Granger cause (dn-sgc) xt if, for all t,

Otherwise we say yt strongly Granger-causes (sgc) xt. Again, equality of the 

variance matrices ensures equality of predictions, 

. This definition agrees with Caines 

(1976) and Solo (1986).

• Definition: FBI (feedback interconnected). If xt Granger-causes yt and yt 

Granger-causes xt, then we say xt, yt are feedback interconnected.

• Definition: UGC (unidirectionally Granger causes). If xt Granger-causes yt but yt 

dn-gc xt we say xt unidirectionally Granger-causes yt.

5.2 Granger Causality for Stationary State-Space Models

Now we partition zt = (xt, yt)T into subvector signals of interest and partition the vector MA 

or state-space model, equation 2.4, correspondingly:

(5.1)

(5.2)

Now we recall results of Caines (1976):

Result 3—If  obeys a Wold model of the form zt=HZ (L)εt where HZ(L) is a 

one-sided square summable moving average polynomial with HZ(0)= I, which is partitioned 

as in equation 5.2, then:
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a. yt dn-wgc xt iff HXY(L) = 0.

b. yt dn-sgc xt iff HXY(L) = 0 and ΣXY,ε = 0.

We can now state a new SS version of this result:

Theorem 4—For the stationary ISS model, equations 5.1 and 5.2:

a. yt dn-wgc xt iff CXAr BY = 0, r ≥ 0.

b. yt dn-sgc xt iff CXAr BY = 0, r ≥ 0 and ΣXY,ε = 0.

Proof—The proof follows immediately from result 3 since .

Remarks

i. By the Cayley-Hamilton theorem, we can replace part a of theorem 4 with 

CXArBY = 0, 0 ≤ r ≤ n − 1, n = dim (ξt).

ii. Collecting these equations together gives CX (BY, ABY,…, An−1BY) = 0, which 

says that the pair (A, BY) is not controllable. Also, we have 

, which says that the pair (CX, A) is not 

observable. Thus, the representation of HXY(L) is not minimal.

From a data analysis point of view, we need to embed this result in a well-behaved 

hypothesis test. The results of Geweke (1982), suitably modified, allow us to do this.

5.3 Geweke Causality Measures for SS Models

Although much of the discussion in Geweke (1982) is in terms of VARs, we can show it 

applies more generally. We begin as Geweke (1982) did with the following definitions. First, 

 is a measure of the gain in using the past of y to predict x beyond using 

just the past of x; similarly introduce . Thus, for example, FY→X is a 

directional measure of the influence of yt on xt. Next, define the instantaneous influence 

measure: . These are then joined in the fundamental decomposition 

(Geweke, 1982),

(5.3)

where, . Geweke (1982) then proceeds to decompose these measures in 

the frequency domain. Thus, the frequency domain GEM for the dynamic influence of yt on 

xt is given by Geweke (1982),
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(5.4)

and fe(λ) is assembled (following Geweke, 1982) as follows.

Introduce , and note that  is uncorrelated with εX,t and has 

variance . Then rewrite equation 5.2 as

This corresponds to equation 3.3 in Geweke (1982) and yields the following expressions 

corresponding to those in Geweke (1982):

(5.5)

(5.6)

Using the SS expressions above, we rewrite HeX(L) in a form more suited to computation as

(5.7)

Note that then, using theorem 2,

(5.8)

Clearly, with L = exp(−jλ), fX(L) ≥ fe(L) ⇒ FY→X≥0.
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Also the instantaneous causality measure is

(5.9)

Clearly ΣX,ε ≥ Σ(X|Y),ε so that FY.X ≥ 0.

Introduce the normalized cross-covariance-based matrix, 

. Then, using a well-known partitioned matrix 

determinant formula (Magnus & Neudecker, 1999), we find FY.X = ln|I − Γx,y|. This means 

that the instantaneous causality measure depends only on the canonical correlations (which 

are the eigenvalues of Γx,y) between εX,t, εY,t (Seber, 1984; Kshirsagar, 1972).

To implement these formulas, we need expressions for ΩX, ΩY, fX(λ). To get them, Geweke 

(1982) fits separate models to each of xt and yt. But this causes positivity problems with 

fY→X(λ) (Chen et al., 2006). Instead we obtain the required quantities from the correct 

submodel obtained in the previous section. We have:

Theorem 5a—The GEMs can be obtained from the joint ISS model, equation 5.1, and the 

submodel in theorem 2, as follows:

a.

 where ΩX is got from the submodel in theorem 3.

b. The frequency domain GEM fY→X(λ), equation 5.4, can be computed from 

equations 5.6, 3.1, and 5.7.

ΩY, FX→Y, fX→Y(λ) can be obtained similarly.

Now pulling all this together with the help of result 3, we have an extension of the results of 

Geweke (1982) to the state-space/VARMA case.

Theorem 5b—For the joint ISS model, equation 5.1:

a.

FY→X ≥ 0, FY.X ≥ 0 and .

b. yt dn-wgc xt iff, fX(L) = fe(L) which holds iff FY→X=0, that is, iff ΩX = ΣX,ε.

c. yt dn-sgc xt iff fX(L) = fe(L) and Σ(X|Y),ε = ΣX,ε that is, iff FY→X = 0 and 

FY.X=0, that is, iff FY→X + FY.X = 0 i.e. iff ΩX = Σ(X|Y),ε.
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Remarks

i. A very nice nested hypothesis testing explanation of the decomposition 5.3 is 

given by Parzen in the discussion to Geweke (1982).

ii. It is straightforward to see that the GEMs are unaffected by scaling of the 

variables. This is a problem for other GC measures (Edin, 2010).

iii. For completeness, we state extensions of the inferential results in Geweke (1982) 

without proof. Suppose we fit an SS model to data zt, t = 1, …, T using, for 

example, so-called state-space subspace methods (Deistler et al., 1995; Bauer, 

2005) or VARMA methods in, for example, Lutkepohl (1993). Let , , 

,  be the corresponding GEM estimators. If we denote true values with 

a superscript 0, we find under some regularity conditions:

So to test for strong GC, we put these together:

Together with similar asymptotics for , , we see that the fundamental 

decomposition, equation 5.3, has a sample version involving a decomposition of 

a chi-squared into sums of smaller chi-squared statistics.

iv. Chen et al. (2006) also attempt to derive FY→X without fitting separate models to 

xt, yt. However the proposed procedure to compute fX(λ) involves a two-sided 

filter and is thus in error. The only way to get fX(λ) is by spectral factorization 

(which produces one-sided or causal filters), as we have done.

v. Other kinds of causality measures have emerged in the literature (Kaminski & 

Blinowska, 1991; Baccala & Sameshima, 2001; Takahashi, Baccala, & 

Sameshima, 2008; Pascual-Marqui et al., 2014), but it is not known whether they 

obey the properties in theorems 5a and 5b. However these properties are crucial 

to our subsequent analysis.

6 Effect of Filtering on Granger Causality Measures

Now the import of the frequency domain GEM becomes apparent since it allows us to 

determine the effect of one-sided (or causal) filtering on GC.

We need to be clear on the situation envisaged here. The unfiltered time series are the 

underlying series of interest, but we have access only to the filtered time series, so we can 

only find the GEMs from the spectrum of the filtered time series. What we need to know is 

when those filtered GEMs are the same as the underlying GEMs. We have:
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Theorem 6

Suppose we filter zt with a stable, full-rank, one-sided filter . 

Then:

a. If Φ(L) is minimum phase, the GEMs (and so GC) are unaffected by filtering.

b. If Φ(L) has the form  where ψ(L) is a scalar all-pass filter and 

 is stable, minimum phase, then the GEMs (and so GC) are unaffected by 

filtering.

c. If Φ(L) is nonminimum phase and case b does not hold, then the GEMs (and so 

GC) are changed by filtering.

Proof

Denote  by result 2a. Then for the frequency domain GEM, we 

need to find , where L = exp(−jλ). We find trivially 

that . Finding  is 

much more complicated; we need the minimum phase vector moving average or state-space 

model corresponding to equation 5.2. Taking Φ(L) to be nonminimum phase, we carry out a 

spectral factorization, , where  is causal, stable, minimum 

phase with  and then, from appendix C, , can be written 

, , where E(L) is all pass and J,  are 

constant matrices (Cholesky factors). Writing this in partitioned form,

yields , where

Thus, in , the |ΦX(L)| factors cancel giving, 

. This will reduce to fY→X(λ) iff 

 where K(L−1) is all pass, which occurs iff DXY(L−1) = 0, 

DYX(L−1)= 0, DXX (L−1) = ψ(L−1)I, DYY (L−1) = ψ(L−1)I where ψ(L−1) is a scalar all-pass 

filter. Results a, b, and c now follow.
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Remark

Result a has also been obtained in the independent work of Seth, Chorley, and Barnett 

(2013) by different methods.1

We give three examples:

Example 6A

Differential delay. Suppose  where εt, νt are independent zero 

mean white noises with variances 1, σ2, respectively, while . So the two 

series are white noises that exhibit an instantaneous GC. The filtering delays one series 

relative to the other. Then we have 

, and we see that 

 while  is stable, causal, and invertible; indeed, . 

Thus, we see that the differential delay has introduced a spurious dynamic GC relation and 

the original purely instantaneous GC is lost.

Example 6B

Noncausal filter. We use the same setup as in example 6 A except that now 

 where |θx| < 1, |θy| < 1 and θx ≠ θy. We rewrite this as 

−L−1Ψ(L) where . Although L−1 is noncausal and 

so NMP, it is the same for both filters and so by theorem 6b will not affect the GEMS. So we 

can replace Φ(L) with Ψ(L). Both entries in Ψ(L) are causal but unstable, and so NMP and 

the GCS will be altered. In fact, we now show this explicitly.

Note, first, how the noncausal filter operates. We have

Future values are needed to compute the filtered signal at the current time.

1The main parts of this theorem were announced in a research workshop at the 2011 Human Brain Mapping meeting
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The process  has spectrum  where 

,  and similarly for B. It is straightforward to check 

that this has spectral factorization,

where  and a = 1 − θxL, b = 1 − θyL. Note that AA∗ = aa∗ and A∗B = ab∗. This 

factorization corresponds to the model  where εa,t, νb,t are 

independent white noises of variances , R2, respectively. We see that the NMP filtering 

has introduced spurious dynamics and reversed the GCS.

Example 6C

Wiener deconvolution. When filtered versions of xt, yt are observed in noise, one can 

estimate them by using the Wiener fitler (Kailath et al., 2000). The optimal filter uses the 

joint spectrum, but fMRI practice (Glover, 1999) is to filter each signal separately. This is 

suboptimal but will still reduce the effect of the noise. Suppose we observe wx,t = hx(L)xt + 

εt where h(L) is a stable filter and εt is a white noise of variance σ2 independent of xt. The 

Wiener filter estimate of xt is  where (Kailath et al., 2000) 

 where γx = γx(L) is the autocovariance generating function of xt. In 

fMRI practice (Glover, 1999), γx(L) is set to 1. This is sub-optimal and may lead to 

performance worse than no filtering. But continuing, we carry out a spectral factorization 

giving  where kx = kx(L) is a causal minimum phase filter with kx(0) = 1. 

The filter thus becomes . Since kx is minimum phase and causal, then  is 

stable and causal and will not affect the GEMS. We are left with the noncausal filter 

— for example, in the simple case, hx= 1 − θxL, |θx| < 1, the spectral factorization reduces to 

solving a quadratic equation and one obtains kx = 1 − αx L, |αx| < 1 Thus, 

. With a similar deconvolution (where βx ≠ 

βy) applied to a noisy filtered version of yt, we conclude that deconvolution will distort the 

GCS since the βx, βy filters are noncausal.

7 Downsampling and Forwards Granger Causality

We now consider to what extent GC is preserved under downsampling.
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Using the sampled notation of our discussion above and defining , we have the 

following result:

Theorem 7

Forwards causality:

a. If yt dn-sgc xt, then  dn-sgc .

b. If yt dn-wgc xt, then in general  wgc .

Remarks

i. Part a is new, although technically a special case of a result of the author’s 

established in a non-SS framework.

ii. We might consider taking part b as a formalization of longstanding folklore in 

econometrics (Christiano & Eichenbaum, 1987; Marcet, 1991) that 

downsampling can destroy unidirectional Granger causality. However, that same 

folklore is flawed because it failed to recognize the possibility of part a. The 

folklore is further flawed because it failed to recognize the more serious reverse 

problem discussed below.

Proof of Theorem 7, Part a—We use the partitioned expressions in the discussion 

leading up to result 3. We also refer to the discussion leading up to theorem 6.

This allows us to write two decompositions. First, we write wk=wX,k +wY,k, where

From result 3 and the definition of dn-sgc,

(7.1)

The other decomposition is , and

(7.2)

Next we note from theorem 4 that

for all p ≥ 0. Thus, we deduce
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(7.3)

We can now write

(7.4)

Based on equation 7.4, we now introduce the ISS model for ,

where νX,k is the innovations sequence. Using this, we introduce the estimator K(X)νX,k of 

wX,k and the estimation error . Below we show

(7.5)

We thus rewrite the model for  as

Now we can construct an ISS model for ζk = (I + CY (L−1 I − Am)−1K(Y))νY,k where νY,k is 

the innovations sequence. In view of equations 7.1, 7.2, and 7.5, νX,k and νY,l are 

uncorrelated for all k, l. Thus, we have constructed the joint ISS model:

From this we deduce that  dn-sgc  as required.

Proof of Equation 7.5—Consider then 

. The second term 

vanishes for k ≠ l. The first term vanishes for k > l since wX,k is uncorrelated with the past 

and hence νX,l; for l > k, it vanishes since νX,l is uncorrelated with the past. For k = l, it 
vanishes by the definition of K(X) (Kailath et al., 2000).

Solo Page 23

Neural Comput. Author manuscript; available in PMC 2017 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof of Theorem 7, Part b—A perusal of the proof of theorem 7, part a, shows that we 

cannot construct the block lower triangular joint ISS model. In general, we obtain a full 

block ISS model.

8 Downsampling and Reverse Granger Causality

We now come to the more serious issue of how downsampling might distort GC. To 

establish distortion, we simply have to exhibit a numerical example, but that is not as simple 

as one might hope.

8.1 Simulation Design

Designing a procedure to generate a wide class of examples of spurious causality is not as 

simple as one might hope. We develop such a procedure for a bivariate vector autoregression 

of order one: a bivariate VAR(1). On the one hand, this is about the simplest example one 

can consider; on the other hand, it is general enough to generate important behaviors.

The bivariate VAR(1) model is then

Where Σ is the variance matrix of the zero mean white noise  and ρ is a correlation.

We note that this model can be written as an ISS model with parameters, A, I, −A, Σ. Hence, 

all the computations described above are easily carried out.

But the real issue is how to select the parameters. By a straightforward scaling argument, it 

is easy to see that we may set σa = 1 = σb without loss of generality. Thus, we need to 

choose only A, ρ.

Some reflection shows that there are two issues. First, we must ensure the process is 

stationary; for the eigenvalues λ1, λ2 of A, we must have |λ1| < 1, |λ2| < 1. Second, to 

design a simulation, we need to choose FY→X, FX→Y, but these quantities depend on the 

parameters A, ρ in a highly nonlinear way, so it is not obvious how to do this. And five 

parameters are already too many to pursue this by trial and error.

For the first issue, we have trace(A) = λ1 + λ2=ϕx + ϕy and det(A) = λ1λ 2 = ϕxϕy − γxγy. 

Our approach is to select λ1, λ2 and then find ϕx, ϕy to satisfy ϕx + ϕy = λ1 + λ2, ϕxϕy = 

λ1λ2 + γxγy. This requires solving a quadratic equation. If we denote the solutions as r+, r−, 

then we get two cases: (ϕx, ϕy) = (r+, r−) and (ϕy, ϕx) = (r+, r−). This leaves us to select γx, 
γy.

In appendix B we show that  where . Similarly, 

FX→Y ≥ ln(1 + ξy) where . But we also show that ξx = 0 ⇒ FY→X = 0 and ξy 
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= 0 ⇒ FX→Y = 0, so we select ξx, ξy, thereby setting a lower bounds to FY→X, FX→Y. This 

seems to be the best one can do, and as we see below, it works quite well. So given ξx, ξy, 

compute  and . This gives four cases and multiplied by the 

two cases above yields eight cases.

This is not quite the end of the story since the γx, γy values need to be consistent with the 

ϕx, ϕy values. Specifically the quadratic equation to be solved for ϕx, ϕy must have real roots. 

Thus, the discriminant must be ≥ 0. So (ϕx + ϕy)2 − 4(ϕxϕy) = (λ1 + λ2)2 − 4(λ1λ2 + 

γxγy)=(λ1− λ2)2 − 4γxγy ≥ 0. There are four cases: two with real roots and two with 

complex roots.

If λ1, λ2 are real, then we require 

. This always holds if sign(γxγy) 
≤ 0. If sign(γx γy) > 0, we have a binding constraint that restricts the sizes of ξx, ξy.

If λ1, λ2 are complex conjugates, then (λ1−λ2)2 is negative. If sign(γxγy) ≥ 0, then the 

condition never holds. If sign(γxγy) < 0, then there is a binding constraint that restricts the 

sizes of ξx, ξy. In particular, note that if sign(γxγy) = 0, then one cannot have complex roots 

for A. We now use this design procedure to illustrate reverse causality.

8.2 Computation

We describe the steps used to generate the results below. We assume the state-space model 

for  comes in ISS form. Since standard state-space subspace model-fitting 

algorithms (Larimore, 1983; van Overschee & de Moor, 1996; Bauer, 2005) generate ISS 

models, this is a reasonable assumption. Otherwise we use result 1 to generate the 

corresponding ISS model.

Given a sampling multiple m, we first use theorem 3 to generate the subsampled ISS model 

and, hence, . To obtain the GEMs, we use theorem 1 to generate the marginal models 

for xt, yt yielding , . And now ,  are gotten from formulas 5.8 and 5.9 

and the comment following theorem 5a.

8.3 Scenario Studies

We now illustrate the various results above with some bivariate simulations.

Example 1: GEMs Decline Gracefully—Here, for the underlying process, y pushes x 
much harder than x pushes y. This pattern is roughly preserved with slower sampling, but 

the relative strengths change as seen in Table 1.
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Example 2: GEMs Reverse—In this case, the underlying processes push each other with 

roughly equal strength. But subsampling yields a false picture with x pushing y much harder 

than the reverse (see Table 2).

Example 3: Near Equal Strength Dynamics Becomes Nearly Unidirectional—In 

this case, the underlying relation is one of near equal strength feedback interconnection. But 

as Table 3 shows, almost immediately a very unequal relation appears under subsampling 

which soon decays to a near unidirectional relation.

Example 4: Near Unidirectional Dynamics Becomes Near Equal Strength—In 

this case a near unidirectional dynamic relation immediately becomes one of significant but 

unequal strengths and then one of near equal strength (see Table 4).

There is nothing pathological about these examples, and using the design procedure 

developed above, it is easy to generate other similar kinds of examples. They make it 

emphatically clear that GC cannot be reliably discerned from downsampled data.

In independent work, Seth et al. (2013) have shown simulations where downsampling 

distorts GC. But their work is purely empirical, and they do not have the theoretical 

framework developed here to design specific types of distortion as we have done.

9 Application to fMRI

In this section we apply the above results to fMRI, but to do so, we need to describe fMRI 

data generation schemes (dgs’s); we give three such schemes The following feature is 

common to all of them.

We suppose there is an underlying neural activity (NA) 2-node circuit operating on a fast 

timescale of order 50 ms and that it is described by a state-space model. Specifically, the 

(possibly vector) NA signals at each node are xt, yt, which we collect together into a joint 

NA vector signal , which is described by a state-space model such as equation 

2.1 or 2.3.

• Filter (F). The BOLD signal recorded at a particular voxel is generated as 

follows. The NA zt is filtered by (a spatially varying) HRF to generate a fast 

BOLD signal —specifically

• Filter then downsample (F-DS). The BOLD signal recorded at a particular voxel 

is generated in two stages. The first stage is the same as F. In the second stage, 

the scanner samples this signal delivering a downsampled (or slow) BOLD signal 

—for example, if the NA timescale is 50 ms and the downsampled 

time scale is 200 ms, then m = 4.
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• Downsample then filter (DS-F). Here we suppose the NA zt is down-sampled to 

a slow timescale giving a slow NA . This is then filtered by (a slow 

spatially varying) HRF to generate the slow BOLD signal zb,k.

Note that F is the limiting case of F-DS where fMRI is recorded on the same timescale as 

NA. Clearly F-DS makes physiological sense, whereas DS-F does not. Indeed F-DS is 

advocated by Deshpande et al. (2010), who provide further physiological references to back 

it up. However, below we will see that DS-F seems to be behind some of the processing 

methods used in practice.

The aim now is to try to solve the reverse GC problem; to determine the GCS of fast NA 

circuit zt from the GCS of either the fast BOLD circuit  or the slow BOLD circuit zb,k. To 

do this, we see from theorem 6, that we need to investigate the phase properties of the HRF.

9.1 HRFs Are Nonminimum Phase

We denote an HRF by hr, r=1, 2,⋯ and its transfer function as 

. We assume H(z) is bounded input, bounded output 

stable (Kailath et al., 2000), for which the necessary and sufficient condition is 

.

In Figure 1 we show plots of canonical HRFs (with default parameter choices) used in SPM 

and Glover (1999). They exhibit three main features found in practice:

1. Refractory period: Characterized by a time to onset τo

2. Overshoot—characterized by a peak time τp

3. Undershoot

Also there are persistent reports in the literature of HRFs with an initial small dip 

immediately following the refractory period (e.g., Miezin, Maccotta, Ollinger, Petersen, & 

Buckner, 2000).

A number of results in the control engineering literature show how nonminimum phase 

(NMP) zeros of the transfer function imply overshoot and undershoot of an impulse 

response (see Damm & Muhirwa, 2014). But none of these works provide converse results, 

showing what impulse response shape implies about transfer function zeros.

We give a preliminary general result and then two converse results.

Theorem 8a—Any HRF with a refractory period is NMP.

Proof—We can write the transfer function as h(L) = Lτo g(L) where g(L) is a causal 

transfer function. Even if g(L) is MP, then h(L) is NMP because L−τo is not a causal 

operator.

Certainly the time to onset can be estimated, and then the BOLD signal can be shifted in 

time to align the start time with the stimulus start time. This effectively corrects the HRF for 
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the refractory period. But this makes sense only if it is known that the refractory period is 

due to information transmission delay. If it is due to the GCS, then such alignment, being 

noncausal, will destroy the GCS.

To continue, we now assume the HRF has been corrected for the refractory period so that the 

corrected transfer function is .

Theorem 8b—Dip: if h1 < 0 and H(1) > 0, then the HRF is NMP.

Note that 

. The fact that the overshoot area (far) exceeds the sum of the other two areas (so that H(1) > 

0) seems to be a universal property of actual HRFs.

Proof—We prove that Hc(z) has a real zero outside the UC. We can set z = R, which is real. 

Then consider that . For R ≥ 1, the 

second term is bounded by  and → 0 as R → ∞. Since h1 < 0, then 

for R large enough, RH(R) < 0 Since 1H(1) > 0, this means there must exist Ro > 1 with 

RoH(Ro) = 0 as required.

Theorem 8c: No dip: if h1 > 0 and H(−1) > 0, then the HRF is NMP.

Note that  and H(−1) > 0 is satisfied by the 

default canonical HRFs. Further, because HRFs are very smooth, the successive differences 

h2m − h2m−1 will be very small. H(−1) can be split into four pieces: a positive sum up to the 

peak time, a negative sum from there to the zero crossing, a positive sum to the trough of the 

undershoot, and a negative sum from there back up to the the time axis. We thus expect 

H(−1) to be small.

Proof—We prove Hc(z) has a complex zero outside the UC. Put z = Rejπ = −R. Then 

consider that . For 

R ≥ 1, the second term is bounded by , which → 0 as R → ∞ and so 

since −h1 < 0, then for R large enough, RH(−R) < 0. Since 1H (−1) > 0, there must thus exist 

Ro > 1 for which RoH(−Ro) = 0 and the result is established.

Since the condition H(−1) > 0 and more generally the possibility of complex zeros outside 

the UC is so crucial, more flexible modeling of the HRF is called for. Recent approaches 

include Khalidov, Fadili, Lazeyras, Ville, and Unser (2011), Zafer, Blu, and Ville (2014), 

Wu et al. (2013), Sreenivasan, Havlicek, and Deshpande (2015) and our approach using 

Laguerre-polynomials (Cassidy, Long, Rae, & Solo, 2012).
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9.2 Deconvolution

As noted in section 1, the current practice is to first apply a deconvolution to the BOLD 

signals before carrying out a GC analysis. As discussed in section 9.3, this makes sense only 

for DS-F.

We now see from the deconvolution example 6 C that even if Wiener deconvolution is 

applied to noise-free data zb,k, it will distort the GCS because it necessarily involves 

noncausal filtering. This is discussed further in section 9.3.

9.3 Reverse GC Problem

We discuss approaches under F, F-DS, and DS-F.

F—There is only one approach possible here. If the HRF is minimum phase, then the fast 

filtering will not affect the GCS and the first stage would consist of a GC analysis of the fast 

BOLD data. That is, fit an SS model to ; find submodels for ,  using DARE (see 

theorem 1); and compute the GEMS FY→X, FY.X, FX→Y using the expressions in theorem 

5a. This would deliver the GCS of the fast BOLD circuit and, hence, of the NA circuit. But 

in practice, the BOLD data will be noisy, and an attempt to reduce the impact of the noise by 

deconvolution will distort the GCS. If the HRF is nonminimum phase, then this GCS would 

be distorted and nothing can be done to overcome that.

F-DS—Again there is only one approach possible here. If the HRF is minimum phase, then 

the fast filtering will not affect the GCS and the first stage would consist of a GC analysis of 

the slow BOLD data—that is, fit an SS model to zb,k; find submodels for xb,k, yb,k using 

DARE (see theorem 1); and compute the GEMS FY→X, FY.X, FX→Y using the expressions 

in theorem 5a. This would deliver the GCS of the slow BOLD circuit. The second stage is to 

try to get the GCS of the fast BOLD circuit. But now we see that it must fail since the results 

of the reverse GC study in section 8 demonstrate that we cannot use the GCS of the slow 

BOLD circuit to discern the GCS of the fast BOLD circuit. So we cannot get at the GCS of 

the fast NA circuit.

Notice that in F-DS there is no role for deconvolution.

If the HRF, is NMP then the GCS will be distorted and there is nothing we can do to 

overcome this. If we apply deconvolution, then the analysis above shows it must fail since 

the Wiener filter is NMP.

DS-F—There are two approaches here. The direct approach has two stages. If the HRF is 

minimum phase, then the slow filtering will not affect the GCS and the first stage would 

consist of a GC analysis of the slow BOLD data—that is, fit an SS model to zb,k; find 

submodels for xb,k, yb,k using DARE (see theorem 1); and compute the GEMS FY→X, FY.X, 
FX→Y using the expressions in theorem 5a. This would deliver the GCS of the slow NA 

circuit since by theorem 6, the GEMS would be the same as for the slow BOLD data. The 

second stage is to try to get the GCS of the fast NA circuit. But now we see that it must fail, 

since the results of the reverse GC study in section 8 demonstrate that we cannot use the 

GCS of the slow NA circuit to discern the GCS of the fast NA circuit.
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The indirect approach has three stages. If the slow HRF is minimum phase, then in the 

zeroth stage, we could inverse filter (deconvolve) the slow BOLD data to obtain the slow 

NA. In the first stage, we obtain its GCS using the procedure described in the first stage of 

the direct approach. But for the second stage, we are in the same situation as in the direct 

approach and must fail to discern the GCS of the fast NA.

In practice, slow timescale deconvolution has gained favor recently. It is done using a 

Wiener filter (Glover, 1999) since this deals with possible noise (which we have ignored in 

our discussion). But as discussed above, this must fail since the Wiener filter is NMP.

We see here that only in DS-F is there a role for slow timescale deconvolution.

In sum we conclude that under any data-generating scheme, GC analysis must fail.

We note that there is an extensive discussion of GC in fMRI in Rodrigues and Andrade 

(2015). Unfortunately this work relies on the erroneous method of Chen et al. (2006) for 

computing GEMs (see the remarks following theorem 5b), and so its results are flawed.

10 Conclusion

This letter has given a theoretical and computational analysis of the use of Granger causality 

(GC) and applied the results to fMRI. There were two main issues: the effect of 

downsampling and the effect of hemodynamic filtering on Granger causal structure (GCS). 

To deal with these issues, a number of novel results in multivariate time series and Granger 

causality were developed via state-space methods as follows:

1. Computations of submodels via the DARE (see theorems 1 and 4)

2. Computation of downsampled models via the DARE (see theorem 3)

3. Reliable computation of GEMs via the DARE (see theorems 5a and 5b)

4. Effect of filtering on GEMs (see theorem 6)

Theorem 6 showed that nonminimum phase filters distort GCS. Using the results in the first 

three methods, we were able to develop, in section 8, a framework for generating 

downsampling-induced spurious Granger causality on demand and provided a number of 

illustrations.

In section 9 these results were applied to fMRI. To do this we described three data 

generating processes for fMRI:

1. F where fMRI time series are filtered neural activity (NA)

2. F-DS where NA is filtered, then downsampled to give fMRI time series

3. DS-F where NA is downsampled, then fitered to give fMRI time series

While F-DS has strong physiological justification, DS-F seems to be behind a number of 

approaches in the literature. We showed that HRFs are non-minimum phase due to a 

refractory period. If that period can be corrected for, the phase character of the HRF has to 
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be checked on a case-by-case basis. Certainly default canonical HRFs are nonminimum 

phase, and so more flexible HRF modeling will be needed.

Then we discussed the reverse GC problem under each data-generating process. In each 

case, we concluded that GC analysis could not work.

All this leads to the conclusion that linear Granger causality analysis of fMRI data cannot be 

used to discern neuronal level–driving relationships. Not only is the timescale too slow, but 

even with faster sampling, the non-minimum phase aspect of the HRF and the noise will still 

compromise the method.

Future work would naturally include an extension of the Granger causality results to handle 

the presence of a third vector time series and extensions to deal with time-varying Granger 

causality. Nongaussian versions could mitigate the nonminimum phase problem to some 

extent, but there does not seem to be any evidence for the nongaussianity of fMRI data. 

Extensions to nonlinear Granger causality are currently of great interest but need 

considerable development.
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Appendix A: Stabilizability, Detectability, and DARE

In this appendix we restate and modify for our purposes some standard state-space results. 

We rely mostly on Kailath et al. (2000, appendixes E and C).

We denote an eigenvalue of a matrix by λ and a corresponding eigenvector by q. We say λ is 

a stable eigenvalue if |λ| < 1; otherwise, λ is an unstable eigenvalue.

A.1 Stabilizability

The pair (A, B) is controllable if there exists a matrix G so that A−BG is stable (i.e., all 

eigenvalues of A−BG are stable). (A, B) is controllable iff any of the following conditons 

hold,

• Controllability matrix: C = [B, AB, …, An−1B] has rank n.
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• Rank test: rank[λI − A, B] = n for all eigenvalues λ of A.

• PBH test: There is no left eigenvector of A that is orthogonal to B, that is, if qTA 
= λqT, then qTB ≠ 0.

The pair (A, B) is stabilizable if rank[λI − A, B] = n for all unstable eigen-values of A. 

Three useful tests for stabilizability are:

• PBH test: (A, B) is stabilizable iff there is no left eigenvector of A corresponding 

to an unstable eigenvalue that is orthogonal to B, that is, if qTA = λqT and |λ| 1, 

then qTB ≠ 0.

• (A, B) is stabilizable if (A, B) is controllable.

• (A, B) is stabilizable if A is stable.

A.2 Theorem DARE

See Kailath et al. (2000, theorem E6.1, lemma 14.2.1, section 14.7).

Under conditions N,St,De, the DARE has a unique positive semidefinite solution P, which is 

stabilizing (i.e., As − KsC is a stable matrix). Further if we initialize P0 = 0, then Pt is 

nondecreasing and Pt → P as t → ∞.

Remarks

i. “As − KsC stable” means that A−KC is stable (see below), and this implies that 

(A, K) is controllable (see below).

ii. Since V ≥ R, then N ⇒ V is positive definite.

Proof of Remark i—We first note (taking limits in) (Kailath et al., 2000, equation 9.5.12) 

Ks = K − SR−1. We then have As−KsC=A − SR−1C − (K − SR−1)C = A − KC. So As− KsC 
is stable iff A−KC is stable. But then (A, K) is controllable.

A.3 Detectability

The pair (A,C) is detectable if (AT,CT) is stabilizable.

Remarks

i. If As is stable (all eigenvalues have modulus < 1), then St De automatically hold.

ii. Condition De can be replaced with the detectability of (A,C) which is the way 

Kailath et al. (2000) state the result. We show equivalence below (this is also 

noted in a footnote in Kailath et al., 2000, section 14.7).

Proof of Remark ii

Suppose (As,C) is detectable but (A,C) is not. Then by the PBH test, there is a right 

eigenvector p of A corresponding to an unstable eigenvalue of A with Ap = λp,Cp = 0. But 

then Asp = (A − SR−1C)p = Ap = λp while Cp = 0 which contradicts the detectbility of 

(As,C). The reverse argument is much the same.
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Proof of Result 1

Part a follows from the discussion leading to theorem DARE. Part b follows from the 

remarks after theorem DARE.

Appendix B: GEMs for Bivariate VAR(1)

Applying formula 5.5 and reading off HXX from the VAR(1) model yields

This can clearly be written as an ARMA(2,1) spectrum  Equating 

coefficients gives

where  and . We thus have , and using this in the 

first equation gives,  or . This has, of course, two solutions:

Note that if ξx = 0, this delivers .

We must choose the solution that ensures 

. And so we must choose the + solution. Continuing, we now claim,

This follows if 

, which holds.
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Appendix C: Spectral Factorization

Suppose εt is a white noise sequence with E(εt) = 0, var(εt)= Σ. Let G(L) be a stable causal, 

possibly nonminimum phase filter. Then  has spectrum 

where L = exp(−jλ). We can then find a unique causal, stable minimum phase spectral 

factorization . Let V, Vo have Cholesky factorizations V = JJT, 

 and set Gc(L) = G(L)J, Go,c(L) = Go(L)Jo. Then 

. Since Go,c(L) is minimum phase, we can 

introduce the causal filter . Such a filter is called 

an all pass filter (Hannan & Deistler, 1988; Green, 1988). Now, Gc(L) = Go,c(L)E(L) or G(L) 

= Go(L)JoE(L)J−1 (i.e., a decomposition of a nonminimum phase (matrix) filter into a 

product of a minimum phase filter and an all-pass filter. We can also write this as 

 showing how the nonminimum phase 

filter is transformed to yield a spectral factor.
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Figure 1. 
Canonical HRFs.
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