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Abstract. The possibility of approximating a continuous function on a com-

pact subset of the real line by a feedforward single hidden layer neural network
with a sigmoidal activation function has been studied in many papers. Such

networks can approximate an arbitrary continuous function provided that an

unlimited number of neurons in a hidden layer is permitted. In this paper,
we consider constructive approximation on any finite interval of R by neural

networks with only one neuron in the hidden layer. We construct algorithmi-
cally a smooth, sigmoidal, almost monotone activation function σ providing

approximation to an arbitrary continuous function within any degree of accu-

racy. This algorithm is implemented in a computer program, which computes
the value of σ at any reasonable point of the real axis.

1. Introduction

Neural networks are being successfully applied across an extraordinary range
of problem domains, in fields as diverse as computer science, finance, medicine,
engineering, physics, etc. The main reason for such popularity is their ability to
approximate arbitrary functions. For the last 30 years a number of results have been
published showing that the artificial neural network called a feedforward network
with one hidden layer can approximate arbitrarily well any continuous function of
several real variables. These results play an important role in determining bound-
aries of efficacy of the considered networks. But the proofs are usually do not state
how many neurons should be used in the hidden layer. The purpose of this paper is
to prove constructively that a neural network having only one neuron in its single
hidden layer can approximate arbitrarily well all continuous functions defined on
any compact subset of the real axis.

The building blocks for neural networks are called neurons. An artificial neuron is
a device with n real inputs and an output. This output is generally a superposition
of a univariate function with an affine function in the n-dimensional Euclidean
space, that is a function of the form σ(w1x1 + · · · + wnxn − θ). The neurons
are organized in layers. Each neuron of each layer is connected to each neuron
of the subsequent (and thus previous) layer. Information flows from one layer to
the subsequent layer (thus the term feedforward). A feedforward neural network
with one hidden layer has three layers: input layer, hidden layer, and output layer.
A feedforward network with one hidden layer consisting of r neurons computes
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functions of the form

c0 +

r∑
i=1

ciσ(wi · x− θi). (1.1)

Here the vectors wi, called weights, are vectors in Rn; the thresholds θi and the
coefficients ci are real numbers and σ is a univariate activation function. The
following are common examples of activation functions:

σ(t) =
1

1 + e−t
(the squashing function),

σ(t) =


0, t ≤ −1,
t+ 1

2
, −1 ≤ t ≤ 1,

1, t ≥ 1

(the piecewise linear function),

σ(t) =
1

π
arctan t+

1

2
(the arctan sigmoid function),

σ(t) =
1√
2π

t∫
−∞

e−x
2/2dx (the Gaussian function).

In many applications, it is convenient to take the activation function σ as a
sigmoidal function which is defined as

lim
t→−∞

σ(t) = 0 and lim
t→+∞

σ(t) = 1.

The literature on neural networks abounds with the use of such functions and their
superpositions. Note that all the above activation functions are sigmoidal.

In approximation by neural networks, there are two main problems. The first is
the density problem of determining the conditions under which an arbitrary target
function can be approximated arbitrarily well by neural networks. The second prob-
lem, called the complexity problem, is to determine how many neurons in hidden
layers are necessary to give a prescribed degree of approximation. This problem is
almost the same as the problem of degree of approximation (see [1, 3, 12]). The pos-
sibility of approximating a continuous function on a compact subset of the real line
(or n-dimensional space) by a single hidden layer neural network with a sigmoidal
activation function has been well studied in a number of papers. Different methods
were used. Carroll and Dickinson [4] used the inverse Radon transformation to
prove the universal approximation property of single hidden layer neural networks.
Gallant and White [11] constructed a specific continuous, nondecreasing sigmoidal
function, called a cosine squasher, from which it was possible to obtain any Fourier
series. Thus their activation function had the density property. Cybenko [9] and
Funahashi, [10] independently from each other, established that feedforward neural
networks with a continuous sigmoidal activation function can approximate any con-
tinuous function within any degree of accuracy on compact subsets of Rn. Cybenko’s
proof uses the functional analysis method, combining the Hahn–Banach Theorem
and the Riesz Representation Theorem, whiles Funahashi’s proof applies the result
of Irie and Miyake [15] on the integral representation of f ∈ L1(Rn) functions,
using a kernel which can be expressed as a difference of two sigmoidal functions.
Hornik, Stinchcombe and White [14] applied the Stone–Weierstrass theorem, using
trigonometric functions.
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Kůrková [21] proved that staircase like functions of any sigmoidal type can
approximate continuous functions on any compact subset of the real line within
an arbitrary accuracy. This is effectively used in Kůrková’s subsequent results,
which show that a continuous multivariate function can be approximated arbitrar-
ily well by two hidden layer neural networks with a sigmoidal activation function
(see [20, 21]).

Chen, Chen and Liu [5] extended the result of Cybenko by proving that any
continuous function on a compact subset of Rn can be approximated by a single
hidden layer feedforward network with a bounded (not necessarily continuous) sig-
moidal activation function. Almost the same result was independently obtained by
Jones [19].

Costarelli and Spigler [7] reconsidered Cybenko’s approximation theorem and
for a given function f ∈ C[a, b] constructed certain sums of the form (1.1), which
approximate f within any degree of accuracy. In their result, similar to [5], σ is
bounded and sigmoidal. Therefore, when σ ∈ C(R), the result can be viewed as a
density result in C[a, b] for the set of all functions of the form (1.1).

Chui and Li [6] proved that a single hidden layer network with a continuous sig-
moidal activation function having integer weights and thresholds can approximate
an arbitrary continuous function on a compact subset of R. Ito [18] established a
density result for continuous functions on a compact subset of R by neural networks
with a sigmoidal function having only unit weights. Density properties of a single
hidden layer network with a restricted set of weights were studied also in other
papers (for a detailed discussion see [16]).

In many subsequent papers, which dealt with the density problem, nonsigmoidal
activation functions were allowed. Among them are the papers by Stinchcombe
and White [30], Cotter [8], Hornik [13], Mhaskar and Micchelli [24], and other
researchers. The more general result in this direction belongs to Leshno, Lin,
Pinkus and Schocken [22]. They proved that the necessary and sufficient condition
for any continuous activation function to have the density property is that it not
be a polynomial. For a detailed discussion of most of the results in this section, see
the review paper by Pinkus [26].

It should be remarked that in all the above mentioned works the number of
neurons r in the hidden layer is not fixed. As such to achieve a desired precision
one may take an excessive number of neurons. This, in turn, gives rise to the
problem of complexity (see above).

Our approach to the problem of approximation by single hidden layer feedforward
networks is different and quite simple. We consider networks (1.1) defined on R
with a limited number of neurons (r is fixed!) in a hidden layer and ask the following
fair question: is it possible to construct a well behaved (that is, sigmoidal, smooth,
monotone, etc.) universal activation function providing approximation to arbitrary
continuous functions on any compact set in R within any degree of precision? We
show that this is possible even in the case of a feedforward network with only one
neuron in its hidden layer (that is, in the case r = 1). The basic form of our theorem
claims that there exists a smooth, sigmoidal, almost monotone activation function
σ with the property: for each univariate continuous function f on the unit interval
and any positive ε one can chose three numbers c0, c1 and θ such that the function
c0 +c1σ(t−θ) gives ε-approximation to f . It should be remarked that we prove not
only the existence result but also give an algorithm for constructing the mentioned
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universal sigmoidal function. For a wide class of Lipschitz continuous functions we
also give an algorithm for evaluating the numbers c0, c1 and θ.

For numerical experiments we used SageMath [28]. We wrote a code for creating
the graph of σ and computing σ(t) at any reasonable t ∈ R. The code is open-source
and available at http://sites.google.com/site/njguliyev/papers/sigmoidal.

2. The theoretical result

We begin this section with the definition of a λ-increasing (λ-decreasing) func-
tion. Let λ be any nonnegative number. A real function f defined on (a, b) is
called λ-increasing (λ-decreasing) if there exists an increasing (decreasing) function
u : (a, b)→ R such that |f(x)− u(x)| ≤ λ, for all x ∈ (a, b). If u is strictly increasing
(or strictly decreasing), then the above function f is called a λ-strictly increasing
(or λ-strictly decreasing) function. Clearly, 0-monotonicity coincides with the usual
concept of monotonicity and a λ1-increasing function is λ2-increasing if λ1 ≤ λ2.

The following theorem is valid.

Theorem 2.1. For any positive numbers α and λ, there exists a C∞(R), sigmoidal
activation function σ : R → R which is strictly increasing on (−∞, α), λ-strictly
increasing on [α,+∞), and satisfies the following property: For any finite closed
interval [a, b] of R and any f ∈ C[a, b] and ε > 0 there exist three real numbers c0,
c1 and θ for which ∣∣∣∣f(t)− c1σ

(
α

b− a
t− θ

)
− c0

∣∣∣∣ < ε

for all t ∈ [a, b].

Proof. Let α be any positive number. Divide the interval [α,+∞) into the segments
[α, 2α], [2α, 3α], . . .. Let h(t) be any strictly increasing, infinitely differentiable
function on [α,+∞) with the properties

(1) 0 < h(t) < 1 for all t ∈ [α,+∞);
(2) 1− h(α) ≤ λ;
(3) h(t)→ 1, as t→ +∞.

The existence of a strictly increasing smooth function satisfying these properties is
easy to verify. Note that from conditions (1)–(3) it follows that any function w(t)
satisfying the inequality h(t) < w(t) < 1 for all t ∈ [α,+∞), is λ-strictly increasing
and w(t)→ 1, as t→ +∞.

We are going to construct σ obeying the required properties in stages. Let
{un(t)}∞n=1 be the sequence of all polynomials with rational coefficients defined on
[0, 1]. First, we define σ on the closed intervals [(2m − 1)α, 2mα], m = 1, 2, . . ., as
the function

σ(t) = am + bmum

(
t

α
− 2m+ 1

)
, t ∈ [(2m− 1)α, 2mα],

or equivalently,

σ(αt+ (2m− 1)α) = am + bmum(t), t ∈ [0, 1], (2.1)

where am and bm 6= 0 are chosen in such a way that the condition

h(t) < σ(t) < 1 (2.2)

holds for all t ∈ [(2m− 1)α, 2mα].
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At the second stage we define σ on the intervals [2mα, (2m+ 1)α], m = 1, 2, . . .,
so that it is in C∞(R) and satisfies the inequality (2.2). Finally, in all of (−∞, α)
we define σ while maintaining the C∞ strict monotonicity property, and also in
such a way that limt→−∞ σ(t) = 0. We obtain from the properties of h and the
condition (2.2) that σ(t) is a λ-strictly increasing function on the interval [α,+∞)
and σ(t)→ 1, as t→ +∞. Note that the construction of a σ obeying all the above
conditions is feasible. We show this in the next section.

From (2.1) it follows that for each m = 1, 2, . . .,

um(t) =
1

bm
σ(αt+ (2m− 1)α)− am

bm
. (2.3)

Let now g be any continuous function on the unit interval [0, 1]. By the density
of polynomials with rational coefficients in the space of continuous functions over
any compact subset of R, for any ε > 0 there exists a polynomial um(t) of the above
form such that

|g(t)− um(t)| < ε,

for all t ∈ [0, 1]. This together with (2.3) means that

|g(t)− c1σ(αt− s)− c0| < ε, (2.4)

for some c0, c1, s ∈ R and all t ∈ [0, 1].
Note that (2.4) proves our theorem for the unit interval [0, 1]. Using linear

transformation it is not difficult to go from [0, 1] to any finite closed interval [a, b].
Indeed, let f ∈ C[a, b], σ be constructed as above and ε be an arbitrarily small
positive number. The transformed function g(t) = f(a+ (b−a)t) is well defined on
[0, 1] and we can apply the inequality (2.4). Now using the inverse transformation
t = x−a

b−a , we can write that

|f(x)− c1σ(wx− θ)− c0| < ε, (2.5)

where w = α
b−a and θ = αa

b−a + s. The last inequality (2.5) completes the proof. �

Remark 2.1. The idea of using a limited number of neurons in hidden layers of
a feedforward network was first implemented by Maiorov and Pinkus [23]. They
proved the existence of a sigmoidal, strictly increasing, analytic activation function
such that two hidden layer neural networks with this activation function and a fixed
number of neurons in each hidden layer can approximate any continuous multivari-
ate function over the unit cube in Rn. Note that the result is of theoretical value
and the authors do not suggest constructing and using their sigmoidal function.
Using the techniques developed in [23], we showed theoretically that if we replace
the demand of analyticity by smoothness and monotonicity by λ-monotonicity, then
the number of neurons in hidden layers can be reduced substantially (see [17]). We
stress again that in both papers the algorithmic implementation of the obtained
results is not discussed nor illustrated by numerical examples.

In the next section, we propose an algorithm for computing the above sigmoidal
function σ at any point of the real axis. The code of this algorithm is available at
http://sites.google.com/site/njguliyev/papers/sigmoidal. As examples,
we include in the paper the graph of σ (see Figure 1) and a numerical table (see
Table 1) containing several computed values of this function.
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3. Algorithmic construction of the universal sigmoidal function

Step 1. Definition of h(t).
Set

h(t) := 1− min{1/2, λ}
1 + log(t− α+ 1)

.

Note that this function satisfies the conditions 1)–3) in the proof of Theorem 2.1.
Step 2. Enumerating the rationals.
Let an be Stern’s diatomic sequence:

a1 = 1, a2n = an, a2n+1 = an + an+1, n = 1, 2, . . . .

It should be remarked that this sequence first appeared in print in 1858 [29] and
has been the subject of many papers (see, e.g., [25] and the references therein).

The Calkin–Wilf [2] sequence qn := an/an+1 contains every positive rational
number exactly once and hence the sequence

r0 := 0, r2n := qn, r2n−1 := −qn, n = 1, 2, . . . ,

is the enumeration of all the rational numbers. It is possible to calculate qn and rn
directly. Let

(11 . . . 1︸ ︷︷ ︸
fk

00 . . . 0︸ ︷︷ ︸
fk−1

11 . . . 1︸ ︷︷ ︸
fk−2

. . . 00 . . . 0︸ ︷︷ ︸
f1

11 . . . 1︸ ︷︷ ︸
f0

)2

be the binary code of n. Here, f0, f1, . . . , fk show the number of 1-digits, 0-digits,
1-digits, etc., respectively, starting from the end of the binary code. Note that f0
can be zero. Then qn equals the continued fraction

[f0; f1, . . . , fk] := f0 +
1

f1 +
1

f2 +
1

. . . +
1

fk

. (3.1)

The calculation of rn is reduced to the calculation of qn/2, if n is even and q(n+1)/2,
if n is odd.

Step 3. Enumerating the polynomials with rational coefficients.
It is clear that every positive rational number determines a unique finite contin-

ued fraction [n0;n1, . . . , nl] with n0 ≥ 0, n1, . . . , nl−1 ≥ 1 and nl ≥ 2.
Since each non-zero polynomial with rational coefficients can uniquely be written

as rk0 +rk1t+. . .+rkdt
d, where rkd 6= 0 (i.e. kd > 0), we have the following bijection

between the set of all non-zero polynomials with rational coefficients and the set of
all positive rational numbers:

rk0 + rk1t+ . . .+ rkdt
d 7→ [k0; k1 + 1, . . . , kd + 1]

We define u1(t) := 0 and

um(t) := rn0
+ rn1−1t+ . . .+ rnd−1t

d, m = 2, 3, . . . ,

where qm−1 = [n0;n1, . . . , nd].
Step 4. Construction of σ on [(2m− 1)α, 2mα].
Set M := h((2m+1)α). Besides, for each polynomial um(t) = d0+d1t+. . .+dkt

k,
set

A1 := d0 +
d1 − |d1|

2
+ . . .+

dk − |dk|
2

(3.2)
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Figure 1. The graph of σ on [0, 10] (α = 1, λ = 1/2)

and

A2 := d0 +
d1 + |d1|

2
+ . . .+

dk + |dk|
2

. (3.3)

It is not difficult to verify that

A1 ≤ um(t) ≤ A2, t ∈ [0, 1].

If um is constant, then we put

σ(t) :=
1 +M

2
.

Otherwise, we define σ(t) as the function

σ(t) = am + bmum

(
t

α
− 2m+ 1

)
, t ∈ [(2m− 1)α, 2mα], (3.4)

where

am :=
(1 + 2M)A2 − (2 +M)A1

3(A2 −A1)
, bm :=

1−M
3(A2 −A1)

. (3.5)

Note that am, bm are the coefficients of the linear function y = am + bmx mapping
the closed interval [A1, A2] onto the closed interval [(1 + 2M)/3, (2 +M)/3]. Thus,

h(t) < M <
1 + 2M

3
≤ σ(t) ≤ 2 +M

3
< 1, (3.6)

for all t ∈ [(2m− 1)α, 2mα].
Step 5. Construction of σ on [2mα, (2m+ 1)α].
To define σ on the intervals [2mα, (2m+ 1)α] we will use the smooth transition

function

βa,b(t) :=
β̂(b− t)

β̂(b− t) + β̂(t− a)
,

where

β̂(t) :=

{
e−1/t, t > 0,

0, t ≤ 0.

It is easy to see that βa,b(t) = 1 for t ≤ a, βa,b(t) = 0 for t ≥ b and 0 < βa,b(t) < 1
for a < t < b. Set

K :=
σ(2mα) + σ((2m+ 1)α)

2
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t σ t σ t σ t σ t σ
α 0.88087 100 0.95548 200 0.96034 0 0.55682 −100 0.00868
10 0.95095 110 0.94162 210 0.96064 −10 0.07655 −110 0.00790
20 0.95879 120 0.97124 220 0.94790 −20 0.04096 −120 0.00725
30 0.96241 130 0.97163 230 0.96119 −30 0.02796 −130 0.00670
40 0.96464 140 0.94397 240 0.97430 −40 0.02122 −140 0.00623
50 0.94931 150 0.97230 250 0.95743 −50 0.01710 −150 0.00581
60 0.96739 160 0.97259 260 0.97461 −60 0.01432 −160 0.00545
70 0.93666 170 0.94573 270 0.95793 −70 0.01232 −170 0.00514
80 0.96910 180 0.94622 280 0.94979 −80 0.01081 −180 0.00485
90 0.93951 190 0.94669 290 0.96670 −90 0.00963 −190 0.00460

Table 1. Some computed values of σ (α = 1, λ = 1/2)

Since both σ(2mα) and σ((2m+ 1)α) belong to the interval (M, 1), we obtain that
K ∈ (M, 1).

First we extend σ smoothly to the interval [2mα, 2mα+α/2]. Take ε := (1−M)/6
and choose δ ≤ α/2 such that∣∣∣∣am + bmum

(
t

α
− 2m+ 1

)
− (am + bmum(1))

∣∣∣∣ ≤ ε, t ∈ [2mα, 2mα+ δ]. (3.7)

Let us show how one can choose this δ. If um is constant, it is sufficient to take
δ := α/2. If um is not constant, we take

δ := min

{
εα

bmC
,
α

2

}
,

where C is a number satisfying |u′m(t)| ≤ C for t ∈ (1, 1.5). Now define σ on the
first half of the interval [2mα, (2m+ 1)α] as the function

σ(t) := K − β2mα,2mα+δ(t)

×
(
K − am − bmum

(
t

α
− 2m+ 1

))
, t ∈

[
2mα, 2mα+

α

2

]
.

(3.8)

Let us verify that σ(t) satisfies the condition (2.2). Indeed, if 2mα + δ ≤ t ≤
2mα + α

2 , then there is nothing to prove, since σ(t) = K ∈ (M, 1). If 2mα ≤
t < 2mα + δ, then 0 < β2mα,2mα+δ(t) ≤ 1 and hence from (3.8) it follows that
for each t ∈ [2mα, 2mα + δ), σ(t) is between the numbers K and A(t) = am +
bmum

(
t
α − 2m+ 1

)
. On the other hand, from (3.7) we obtain that

am + bmum(1)− ε ≤ A(t) ≤ am + bmum(1) + ε,

which together with (3.4) and (3.6) yields that A(t) ∈
[
1+2M

3 − ε, 2+M3 + ε
]
, for

t ∈ [2mα, 2mα+ δ). Since ε = (1−M)/6, the inclusion A(t) ∈ (M, 1) is valid. Now
since both K and A(t) belong to (M, 1), we finally conclude that

h(t) < M < σ(t) < 1, for t ∈
[
2mα, 2mα+

α

2

]
.

We define σ on the second half of the interval in a similar way:

σ(t) := K − (1− β(2m+1)α−δ,(2m+1)α(t))

×
(
K − am+1 − bm+1um+1

(
t

α
− 2m− 1

))
, t ∈

[
2mα+

α

2
, (2m+ 1)α

]
,
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where

δ := min

{
εα

bm+1C
,
α

2

}
, ε :=

1− h((2m+ 3)α)

6
, C ≥ sup

[−0.5,0]
|u′m+1(t)|.

One can easily verify, as above, that the constructed σ(t) satisfies the condition
(2.2) on [2mα, 2mα+ α/2] and

σ
(

2mα+
α

2

)
= K, σ(i)

(
2mα+

α

2

)
= 0, i = 1, 2, . . . .

Step 6. Construction of σ on (−∞, α).
Finally, we put

σ(t) :=
(

1− β̂(α− t)
) 1 + h(3α)

2
, t ∈ (−∞, α).

It is not difficult to verify that σ is a strictly increasing, smooth function on (−∞, α).
Note also that σ(t)→ σ(α) = (1 + h(3α))/2 (see Step 4), as t tends to α from the
left and σ(i)(α) = 0, for i = 1, 2, . . ..

Step 6 completes the construction of the universal activation function σ, which
satisfies Theorem 2.1.

4. The algorithm for evaluating the numbers c0, c1 and θ

Although Theorem 2.1 is valid for all continuous functions, in practice it is quite
difficult to calculate algorithmically c0, c1 and θ in Theorem 2.1 for badly behaved
continuous functions. The main difficulty arises while attempting to design an
efficient algorithm for the construction of a best approximating polynomial within
any given degree of accuracy. But for certain large classes of well behaved functions,
the computation of the above numbers is doable. In this section, we show this for
the class of Lipschitz continuous functions.

Assume that f is a Lipschitz continuous function on [a, b] with a Lipschitz con-
stant L. In order to find the parameters c0, c1 and θ algorithmically, it is sufficient
to perform the following steps.

Step 1. Going to the unit interval.
Consider the function g(t) = f(a + (b − a)t), which is Lipschitz continuous on

[0, 1] with a Lipschitz constant L1 = L(b− a). Denote by

Bn(x) :=

n∑
k=0

g

(
k

n

)(
n

k

)
xk(1− x)n−k

the n-th Bernstein polynomial of the function g. Let ε > 0 be given.
Step 2. Finding the position of a given rational number.
Define the functions

pq : Q+ → N, pr : Q→ N ∪ {0},
which return the positions of a positive rational number and a rational number
in the sequences {qn} and {rn}, respectively (see Section 3). We start with the
computation of pq. Let q be a positive rational number. If (3.1) is the continued
fraction representation of q with k even (we may always consider [f0; f1, . . . , fk−1, 1]
instead of [f0; f1, . . . , fk] if needed), then the binary representation of the position
pq(q) of q in the Calkin–Wilf sequence is

pq(q) = (11 . . . 1︸ ︷︷ ︸
fk

00 . . . 0︸ ︷︷ ︸
fk−1

11 . . . 1︸ ︷︷ ︸
fk−2

. . . 00 . . . 0︸ ︷︷ ︸
f1

11 . . . 1︸ ︷︷ ︸
f0

)2.
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Now we can easily find pr(r) by the formula

pr(r) =


0, r = 0,

2pq(r), r > 0,

2pq(−r)− 1, r < 0.

Step 3. Finding n ∈ N such that |Bn(x)− g(x)| ≤ ε/2, x ∈ [0, 1].
We use the inequality (see [27])

|Bn(x)− g(x)| ≤ χω
(

1√
n

)
, x ∈ [0, 1],

where

χ =
4306 + 837

√
6

5832
= 1.089887 . . . .

Since

ω

(
1√
n

)
≤ L1√

n

it is sufficient to take

n :=

⌈(
2χL1

ε

)2
⌉
,

where d·e is the ceiling function defined as dxe := min{k ∈ Z | k ≥ x}.
Step 4. Finding a polynomial p with rational coefficients such that |p(x) −

Bn(x)| ≤ ε/2, x ∈ [0, 1].
If Bn(x) = a0 +a1x+ . . .+akx

k then it is sufficient to choose d0, d1, . . . , dk ∈ Q
such that

|a0 − d0|+ |a1 − d1|+ . . .+ |ak − dk| ≤
ε

2
and put p(x) := d0 + d1x+ . . .+ dkx

k.
Step 5. Finding m ∈ N such that um ≡ p.
For the definition of um see Section 3. If p ≡ 0 then clearly m = 1. Otherwise

let ni := pr(di) be the positions of the numbers di in the sequence {rn}. Then

m = pq([n0;n1 + 1, . . . , nk + 1]) + 1.

Step 6. Evaluating the numbers c0, c1 and s in (2.4).
Set s := (1− 2m)α. If um = p is constant then we put

c1 := 1, c0 := d0 −
1 + h((2m+ 1)α)

2
.

If um = p is not constant then we put

c1 :=
1

bm
, c0 := −am

bm
,

where am and bm are computed using the formulas (3.2), (3.3) and (3.5).
Step 7. Evaluating the numbers c0, c1 and θ.
In this step, we return to our original function f and calculate the numbers c0, c1

and θ (see Theorem 2.1). The numbers c0 and c1 have been calculated above (they
are the same for both g and f). In order to find θ, we use the formula θ = αa

b−a + s.

Remark 4.1. Note that some computational difficulties may arise while implement-
ing the above algorithm in standard computers. For some functions, the index m of
a polynomial um in Step 5 may be extraordinarily large. In this case, a computer
is not capable of producing this number, hence the numbers c0, c1 and θ.
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