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Abstract 
 

This paper offers a computational account of Pavlovian conditioning in the cerebellum 

based upon active inference and predictive coding. Using eyeblink conditioning as a 

canonical paradigm, we formulate a minimal generative model that can account for 

spontaneous blinking, startle responses and (delay or trace) conditioning. We then establish 

the face validity of the model using simulated responses to unconditioned and conditioned 

stimuli to reproduce the sorts of behaviour that are observed empirically. The scheme’s 

anatomical validity is then addressed by associating variables in the predictive coding 

scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) 

connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish 

predictive validity by reproducing selective failures of delay conditioning, trace conditioning 

and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, 

the ensuing scheme can account for a remarkable range of anatomical and 

neurophysiological aspects of cerebellar circuitry – and the specificity of lesion-deficit 

mappings that have been established experimentally. From a computational perspective, 

this work shows how conditioning or learning can be formulated in terms of minimising 

variational free energy (or maximising Bayesian model evidence) using exactly the same 

principles that underlie predictive coding in perception.  
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Introduction 

Predictive coding is becoming a dominant paradigm in cognitive neuroscience, especially in 

understanding the computational architecture of perception. However, the same principles 

that underpin predictive coding can also be applied to action and choice behaviour. This 

speaks to an embodied or enactivist perspective on perception and the nature of self 

organised behaviour. There are several formal treatments of action and perception; for 

example, distributed adaptive control and active inference (K. Friston, Mattout, & Kilner, 

2011; Tani & Nolfi, 1999; Verschure, Voegtlin, & Douglas, 2003). In this work, we focus on 

active inference that provides a formal description of action and perception that can be 

implemented with predictive coding or Bayesian filtering (Adams, Shipp, & Friston, 2013; K. 

J. Friston et al., 2012). To highlight the embodied nature of active inference, we illustrate 

how it can furnish a detailed account of behavioural responses and, crucially, learning. 

Our focus in this paper is on the simplest form of learning – Pavlovian learning, as 

exemplified by the eyeblink conditioning paradigm. Our objective is to show how the 

principles of predictive coding can be used to inform the computational anatomy of 

cerebellar circuits implicated in eyeblink conditioning. We also take the opportunity to show 

how predictive coding can account for learning through synaptic plasticity and show that 

predictive coding is not limited to perceptual inference in the cortex but can also be usefully 

applied to subcortical and cerebellar anatomy. 

This paper comprises six sections. The first briefly reviews active inference and how it can be 

formulated as Bayesian filtering or predictive coding. This section establishes the central 

role of forward or generative models that enable inference about the causes of sensory 

inputs. The second section considers the minimal requirements of a generative model 

implied by eyeblink conditioning. In active inference an unconditioned response (UR) 

corresponds to a prior belief that some latent or hidden state generates both action and an 

unconditioned stimulus (US). Pavlovian conditioning is the learning of the association 

between a conditioned stimulus (CS) and the unconditioned response. However, in eyeblink 

conditioning, we also have the constraint that the generative model must also account for 

spontaneous blinking. We model this using a generative model with itinerant dynamics (a 

heteroclinic cycle) that generates periodic blinks. This is an important aspect of the 

generative model because it introduces sequences or traces of activity that enable 

associations between conditioned stimuli and unconditioned responses that are separated 

in time (as in trace conditioning).  



Active inference and conditioning 

3 

 

We then consider how this generative model might be implemented in the brain. This rests 

on the form of neuronal message passing implied by predictive coding, which specifies a 

particular pattern of connections. Using known anatomical (synaptic) connectivity, we then 

map the representations entailed by the generative model to various brain structures to 

maximise the consilience between empirical connectivity and the connectivity implied by 

predictive coding. This enables one to predict which connections are likely to mediate 

spontaneous blinking, startle responses and (delay and trace) eyeblink conditioning. The 

third section uses simulations to illustrate these behavioural phenomena, thereby 

establishing the face validity predictive coding in this setting.  

The fourth section addresses the predictive validity of the scheme using the known effects 

of selective brain lesions. These are simulated by deafferentation of specific neuronal 

populations to emulate experimental manipulations (e.g., reversible deactivation). We find 

that there is a remarkable correspondence between the lesion-deficit literature and the 

dissociation between delay and trace conditioning that emerges under predictive coding. 

For example, hippocampal lesions preclude trace conditioning but leave delay conditioning 

intact. This section also considers extinction and reproduces experimental attenuation of 

extinction with pharmacological lesions. We conclude with a brief summary of the 

implications of this formulation of Pavlovian conditioning. 

 

Active inference and predictive coding  

There is a shift in cognitive science away from treating the brain as a passive filter of 

sensations – or stimulus-response link – towards a constructivist (and embodied) view in 

which the brain activity generates hypotheses or fantasies (fantastic: from Greek 

phantastikos, the ability to create mental images, from phantazesthai) to be tested against 

sensory evidence (Gregory, 1968). This perspective dates back to the notion of unconscious 

inference (Helmholtz, 1866/1962) and has been formalised to cover deep or hierarchical 

Bayesian inference about the causes of our sensations – and how these inferences induce 

beliefs, movement and behaviour (Clark, 2013; Dayan, Hinton, & Neal, 1995; K. Friston, 

Kilner, & Harrison, 2006; Hohwy, 2013; Lee & Mumford, 2003).  

 

Predictive coding and the Bayesian brain 

Modern formulations of the Bayesian brain, such as predictive coding, are among the most 

popular explanations for neuronal message passing (Clark, 2013; K. Friston, 2008; Rao & 

Ballard, 1999; Srinivasan, Laughlin, & Dubs, 1982). Predictive coding is a biologically 
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plausible process theory for which there is a considerable amount of anatomical and 

physiological evidence. In these schemes, neuronal representations – in higher levels of 

cortical hierarchies – generate predictions of representations in lower levels (K. Friston, 

2008; Mumford, 1992; Rao & Ballard, 1999). These top-down predictions are compared with 

representations at the lower level to form a prediction error (usually associated with the 

activity of superficial pyramidal cells). The resulting mismatch signal is passed back up the 

hierarchy to update higher representations (usually associated with the activity of deep 

pyramidal cells). This recursive exchange of signals suppresses prediction error at each level 

to provide a hierarchical explanation for sensory inputs. In computational terms, neuronal 

activity encodes beliefs or probability distributions over states in the world that cause 

sensations (e.g., my visual sensations are caused by a face). The simplest encoding 

corresponds to representing the belief with the expected value or expectation of a hidden 

or latent cause. These causes are referred to as hidden because they have to be inferred 

from sensory consequences. Figure 1 provides a formal and schematic illustration of 

predictive coding, which starts with a hierarchical or deep model of how sensations are 

generated (known as a generative model). Given a generative model, one can then write 

down the equations of motion for the expectations that maximise Bayesian model evidence 

(or minimise prediction error). This is known as Bayesian filtering or predictive coding. 

 

 

Figure 1: This figure summarizes hierarchical neuronal message passing in predictive coding. In these 

schemes, neuronal activity encodes expectations about the causes of sensory input, such that 
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expectations minimize prediction error. Prediction error is the difference between (ascending) 

sensory input and (descending) predictions of that input. Minimising prediction error rests upon 

recurrent neuronal interactions among different levels of the cortical hierarchy.  Left panel: these 

equations represent the neuronal dynamics implicit in predictive coding. The equations in the upper 

panel describe a generative model in terms of equations of motion that describe dynamics of hidden 

states in the world. This motion is influenced by hidden causes that are themselves generated by 

hidden states at a higher hierarchical level. When this model is used to account for sensory data, the 

(Bayes) optimal expectations of hidden states and causes can be written as the solution to a gradient 

descent on variational free energy. When this gradient descent is expressed in terms of prediction 

errors, we get the equations in the lower panel. The form of these equations implies the message 

passing scheme shown on the right. Right panel: Prediction errors at the i-th level of the hierarchy 

are simply the difference between expectations encoded at that level and top-down predictions of 

those expectations. The expectations per se (black circles) are driven by prediction errors (red circles) 

so that they reduce the sum of squared (precision weighted) prediction error. Ascending prediction 

error signals are shown as red connections, while descending predictions are shown in black. Because 

prediction error computation involves subtracting predictions from expectations at lower levels, the 

descending black connections are inhibitory. See the appendix for a detailed explanation of these 

equations and the variables in this figure.  

 

Predictive coding, behaviour and learning 

This formulation of neuronal processing accounts for perception; however, the underlying 

imperative to minimise prediction error can also be applied to action. This follows from the 

fact that all behaviour is mediated by classical (or autonomic) reflexes – that can be cast as 

minimising proprioceptive (or interoceptive) prediction errors. In other words, by simply 

equipping predictive coding with reflexes, we have a simple description of embodied or 

active inference. In this view, motor commands are replaced by descending proprioceptive 

predictions that elicit movement by engaging reflexes (that are pre-programmed to 

minimise proprioceptive prediction error). We will use this later to model unconditioned 

responses that are generated by motor commands whose corollary discharge coincidentally 

predicts unconditioned stimuli. This provides a slightly unusual view of reflexive behaviour: 

stimuli do not cause responses but induce expectations that generate predictions in both 

the motor (proprioceptive) and sensory (interoceptive or exteroceptive) domains. The 

former produce movement, while the latter suppress sensory prediction errors. In both 

cases prediction error is minimised. 

The suppression of prediction error also explains learning and plasticity. In predictive 

coding, hierarchical expectations (and their associated prediction errors) are generally 

thought to be encoded by synaptic activity. However, there are parameters of the 

generative model that change slowly over time. Expectations about these parameters are 
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thought to be encoded by synaptic connectivity. This means that synaptic connections 

should change slowly to minimise prediction error (accumulated over time). When 

expressed mathematically, these changes have the form of associative or Hebbian plasticity, 

in which the connection strengths are driven by (postsynaptic) prediction error responses 

(see the appendix).  

In what follows, we will use all three processes to minimise prediction error (and implicitly 

maximise Bayesian model evidence); namely, perception, action and learning. A more 

detailed and technical description of these processes is provided in Figure 1 and the 

appendix. The key thing to remember is that having specified a generative model, the 

equations underlying perception, action and learning are specified uniquely and 

automatically. These equations of motion can then be integrated to simulate the neuronal 

and behavioural responses that mediate the Bayesian belief updating implicit in predictive 

coding. In the next section, we focus on a generative model of eyeblinks and their 

conditioning on various stimuli. 

 

The generative model 

This section describes the generative model used in subsequent sections to understand the 

functional anatomy of spontaneous blinking and eyeblink conditioning – and to simulate the 

effect of various lesions. In brief, we tried to identify a minimal model that could 

accommodate spontaneous blinks, reflexive eye blinks to unconditioned stimuli, and the 

learning of temporal associations between conditioned and unconditioned stimuli. The 

particular model described below is not necessarily unique; however, it is sufficient for our 

purposes. 

The model has two hierarchical levels, with the hidden states at the first level modelling 

beliefs about conditioned stimuli, eyeblinks and unconditioned responses. At this level, 

proprioceptive predictions (motor commands) are generated by expectations about 

spontaneous eyeblinks and unconditioned responses. Hidden states at the second level 

embody a sense of time through Lotka-Volterra dynamics. These dynamics can be regarded 

as a central pattern generator that visits a succession of unstable fixed points in a particular 

sequence. Technically, this is known as a heteroclinic cycle, which generates a sequence of 

latent or hidden states. These states are passed to the first level via a softmax function and 

generate spontaneous eye blinks, or predict conditioned stimuli. In this example, the 

heteroclinic cycle has an inset or sequence of (three) states that lead to the cycle. The cycle 

per se generates spontaneous eyeblinks periodically, while the first state of the inset 

generates a conditioned stimulus. The subsequent unstable fixed points play the role of 



Active inference and conditioning 

7 

 

trace for echo-states that enable the learning or association of subsequent unconditioned 

responses (UR) that follow the conditioned stimuli (CS) some time later. 

Learning corresponds to Hebbian plasticity (that minimises prediction error) in the 

connections between expectations about a UR and (first level) expectations about the CS for 

delay conditioning and (second level) echo-states for trace conditioning. These are shown as 

broken lines in Figure 2. Figure 2 also provides the equations of motion and mappings from 

hidden causes to hidden states that define this hierarchical generative model. This figure 

uses the formalism of Figure 1, which is described in detail in the appendix. 

 

 

 

Figure 2: This figure describes the particular generative model of eyeblink conditioning used 

in subsequent simulations. The highest level of the generative model entails (six) hidden 

states that show itinerant dynamics, prescribed by Lotka-Volterra equations of motion. A 

softmax function of these hidden states generate hidden causes that produce fluctuations in 

(three) hidden states of a lower sensory level. These hidden states correspond to latent 

variables mediating conditioned stimuli (CS), unconditioned responses (UR) and spontaneous 

eyeblinks (EB). The hidden states generate hidden causes mediating (predicted) sensations; 

(1)

EB%

(1)

v%

(2)

x%
(2)

x

(2)

v

(1)

x

(1)

CR

CRs%

(1)

UR%(1)

x

(1)

US

USs%

(1)

CS%
(1)

x

(1)

CS

CSs% Sensory input

Sensory prediction 

error

Expected states and 

errors at the first level

Expected states and 

errors at the second 

level

Model inversion (inference)

Conditioned stimulus Unconditioned response       Unconditioned stimulus

Heteroclinic cycle (1)

v

(1)

x

Generative model

( 2)

( 2)

(2) (2) (2)1
8

(2) (2)

(1) (1) (1)

1

(1) (1) (1) (1) (1) (1) (1)

(1) (1) (1)

6

(1) (1)

(1) (1) (1)

(1) (1) (1)

1

( )

x

x x

CS CS

UR v x CS UR

EB EB

CS CS

US UR

CR UR EB

e
f x

e

g x

f v x

f f v x x

f v x

g x

g g x

g x x





 

  




   
   

        
      

 
 

  
   

1

 
 
 
 
 



Active inference and conditioning 

8 

 

where the conditioned stimulus is in the exteroceptive domain (e.g., a loud tone), the 

unconditioned response generates interoceptive or somatosensory signals (e.g., a 

nociceptive stimulus) and proprioception associated with an eyeblink. Finally, the 

spontaneous eyeblink predicts the proprioceptive consequences of an eyeblink. The 

equations on the left prescribe the precise form of these hierarchical contingencies. The first 

hidden state at the second level of the hierarchy generates a conditioned stimulus, while the 

last (sixth) state generates a spontaneous eyeblink. Crucially, the itinerant (heteroclinic) 

dynamics have been chosen to produce a heteroclinic cycle among the last three states. This 

means, in the absence of any conditioned stimuli, the animal will cycle through the last three 

states, emitting a spontaneous eyeblink on every cycle. However, if there is a conditioned 

stimulus, predictive coding will activate the first state. This state is an unstable fixed point 

and will yield to the second and subsequent states until the heteroclinic cycle is re-entered. 

Effectively, this resets the heteroclinic cycle or central pattern generator, providing a 

sequence of (echo) states following a conditioned stimulus. This heteroclinic cycle is shown 

schematically in the upper inset. Note that the dynamics of the hidden state mediating a 

conditioned response can be affected by the hidden states generating a conditioned stimulus 

or the hidden causes associated with the (echo) states at the higher level. These influences 

depend upon (connectivity) parameters that have to be learned, which are depicted as 

broken lines above. The right panel shows the predictive coding scheme implied by the 

equations of the generative model in the left panel. This schematic follows the same format 

of the previous figure, with (ascending) prediction error connections in red and (descending) 

predictions in black. 

 

The functional anatomy of eyeblink conditioning  

Having established the basic (minimal) form of our generative model, we now have a 

computational architecture for the corresponding Bayesian filtering or predictive coding 

scheme. This architecture is shown in terms of posterior expectation and prediction error 

units (associated with neuronal populations) and connections that mediate the influence of 

expectations on error units and vice versa (associated with connections among populations). 

Notice that this connectivity is rather sparse and conforms to some simple rules (see 

appendix). These rules include: (i) every expectation unit is reciprocally connected to a 

companion error unit. (ii) Expectation units only send connections to prediction error 

populations and vice versa. (iii) Ascending connections are exclusively prediction errors that 

are passed forward to inform expectations at the higher level. (iv) Descending connections 

are exclusively predictions that are subtracted from expectations in lower levels and are 

therefore designated as inhibitory. (v) Reciprocal connections are restricted to a hierarchical 

level or couple neighbouring levels. With these rules in mind, can we now use the known 
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connectivity of the eyeblink conditioning circuits to assign these expectations and error 

units to specific anatomical nuclei and neuronal populations? 

Figure 3 provides a schematic of the key connections involved in eyeblink conditioning 

(lower right panel). In brief, the inferior olive (IO) receives excitatory sensory afferents from 

the trigeminal nucleus reporting somatosensory or nociceptive stimuli (e.g., an 

unconditioned stimulus like an air puff or electrical shock). The inferior olive then sends 

ascending excitatory (climbing fibre) connections to the Purkinje cells (PC) of the cerebellar 

cortex (CC) and interpositus nucleus (IP). The Purkinje cells reciprocate inhibitory 

connections to the inferior olive through the interpositus nucleus. The interpositus nucleus 

provides descending motor control signals via the red nucleus (RN) and facial nucleus to 

elicit an eyeblink. In addition, the interpositus nucleus receives excitatory afferents from the 

pontine nuclei (PN), that themselves send ascending excitatory (Mossy fibre) connections to 

granular (and Golgi) cells (GC) in the cerebellar cortex. These provide excitatory inputs to 

Purkinje cells (via parallel fibres). Eyeblink conditioning is thought to involve plasticity (long-

term depression) in connections to and from the cerebellar cortex; particularly the output 

nucleus of the cerebellum – the interpositus nucleus (Freeman & Steinmetz, 2011; 

McCormick & Thompson, 1984; Yang, Lei, Feng, & Sui, 2014). Spontaneous blinking is 

thought to be generated by (globus pallidus) eyeblink centres that project to the 

interpositus nucleus via the pontine nuclei. It has also known that the hippocampus is 

involved in (conditioned) eyeblinks (Kim, Clark, & Thompson, 1995). For example, lesions to 

the hippocampus abolish trace conditioning – something that we will return to later. 

The left panel of Figure 3 shows the same predictive coding architecture described in Figure 

2; but rearranged to match the predictive coding connections to the anatomical connectivity 

summarised above. There are possibly many rearrangements – and implicit anatomical 

assignments – we could have considered. The designations in Figure 3 associates 

exteroceptive, proprioceptive and somatosensory prediction errors with the pontine, red, 

and inferior olivary nuclei respectively. Expectations of hidden states (and their prediction 

errors) mediating spontaneous blinking, unconditioned responses and conditioned stimuli 

have been assigned to the pontine nuclei, interpositus nucleus and cerebellar cortex 

respectively. Finally, the hidden states at the second level have been associated with the 

globus pallidus and the hippocampus (designated by PHS) or amygdala. The associated 

(second level) hidden causes have been placed in the pontine nuclei.  

Note that we have duplicated two populations to conform to the anatomical connectivity 

constraints: excitatory principal cells encoding prediction errors in the interpositus nucleus 

have been replicated in the inferior olive. Similarly, exteroceptive prediction error units are 

replicated in the pontine nuclei and cerebellar cortex (as granule cells). With these 

duplications, there is a remarkable correspondence between the empirical and predictive 
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coding connectivity. Of special note are the inhibitory (descending) connections from the 

cerebellar cortex to the interpositus nucleus and from the interpositus nucleus to the 

inferior olive. Note that the connections implicated in learning or conditioning (broken lines) 

implicate (recurrent) connections between Purkinje cells and the interpositus nucleus and 

(recurrent) connections between the pontine nuclei and interpositus nucleus. This is 

consistent with the key role of the interpositus nucleus in eyeblink conditioning. 

 

 

 

Figure 3: This figure reproduces the predictive coding scheme of the previous figure but 

assigns the expectation and error populations to particular anatomical structures. This 

neuroanatomical designation is based on the connectivity shown on the lower right. Lower 

right panel: this schematic summarises the canonical connectivity of eyeblink conditioning: 

the inferior olive (IO) receives excitatory sensory afferents from the trigeminal nucleus 

reporting somatosensory or nociceptive stimuli (e.g., an unconditioned stimulus). The inferior 

olive then sends ascending excitatory (climbing fibre) connections to the Purkinje cells (PC) of 

the cerebellar cortex (CC) and interpositus nucleus (IP). The Purkinje cells reciprocate 

inhibitory connections to the inferior olive through the interpositus nucleus. The interpositus 

nucleus provides descending motor control signals via the red nucleus (RN) and facial 
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nucleus to elicit an eyeblink. In addition, the interpositus nucleus receives excitatory 

afferents from the pontine nuclei (PN), that themselves send ascending excitatory (Mossy 

fibre) connections to granular (and Golgi) cells (GC) in the cerebellar cortex. These provide 

excitatory inputs to Purkinje cells (via parallel fibres). This connectivity architecture can be 

used to establish a function-structure mapping by assigning expectation and error units to 

the nuclei (and cerebellar cortex) to maximise the overlap between the anatomical 

connectivity and the connectivity implied by predictive coding. One such assignment is 

shown on the upper right, leading to the functional architecture on the left. Left panel: this 

schematic depicts a functional anatomy implied by predictive coding. Here, we have 

associated exteroceptive, proprioceptive and somatosensory prediction errors with the 

pontine, red and inferior olivary nuclei respectively. The hidden states (and their prediction 

errors) mediating spontaneous blinking, unconditioned responses and conditioned stimuli 

have been assigned to the pontine nuclei, interpositus nucleus and cerebellar cortex 

respectively. Finally, the hidden states at the second level have been associated with the 

eyeblink centre in the globus pallidus and the hippocampus (designated by PHS). The 

associated (second level) hidden causes have been placed in the pontine nuclei. 

 

This putative mapping between the predictive coding and neuroanatomy suggests the 

functional anatomy depicted in Figure 4: spontaneous blinking (upper left) is mediated by 

descending predictions (from the eyeblink centre in the globus pallidus) to the pontine and 

red nuclei. Conversely, when blinking is elicited reflexively by an unconditioned stimulus, 

the descending proprioceptive predictions (or motor commands) emanate from the 

interpositus nucleus. In active inference, a reflex of this sort rests upon expectations about 

the joint occurrence of an unconditioned stimulus and response. This expectation is induced 

by the unconditioned stimulus and subsequently elicits action through descending 

predictions of expected proprioceptive consequences. It can be seen (upper right) that 

these descending predictions target the red nucleus and inferior olive, providing motor 

commands and corollary discharge respectively.  

After learning or conditioning, we can now call on further connections to mediate 

conditioned responses. However, the form of the conditioning implicates different 

connections. In delay conditioning, the unconditioned and conditioned stimuli are 

coextensive in time, where the conditioned stimulus usually starts before the unconditioned 

stimulus. It is therefore sufficient to expect contemporary exteroceptive and proprioceptive 

eyeblink signals. This calls on expectations of conditioned stimuli encoded by Purkinje cells 

that are in receipt of ascending prediction errors from the pontine nuclei (via Mossy and 

parallel fibres) and those produced by expectations about an unconditioned response from 

the interpositus and inferior olivary nuclei (via climbing fibres). After these expectations 
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have been induced (by conditioned and unconditioned stimuli), they provide descending 

proprioceptive predictions to the output nuclei of the cerebellum (interpositus nucleus) and 

corollary discharge along parallel fibres. In short, delay conditioning engages reciprocal 

connections between the interpositus nucleus and cerebellar cortex.  

Conversely, in trace conditioning the unconditioned stimulus arrives after the termination of 

the conditioned stimulus. This calls on reciprocal connections between the interpositus 

nucleus and the pontine nuclei. In this instance, expectations about the conditioned 

stimulus do not elicit proprioceptive predictions but reset the heteroclinic dynamics at the 

second level of the generative model, such that subsequent echo-states or traces come to 

predict (and cause) an unconditioned response later in time. Notice that after conditioning, 

a conditioned response can occur in the absence of an unconditioned stimulus (which is why 

the ascending connections from the inferior olive have not been highlighted in the last panel 

of Figure 4). Having established a putative functional anatomy for blinking and eyeblink 

conditioning, we can now integrate or solve the predictive coding scheme to simulate 

unconditioned and conditioned responses. 
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Figure 4: This schematic highlight the different modes of blinking afforded by the predictive 

coding scheme of the previous figure. The four panels consider the key connections involved 

in spontaneous blinking, unconditioned responses to noxious stimuli, and conditioned 

responses under delay and trace conditioning. Upper panels: spontaneous blinking is 

mediated by descending predictions (from the eyeblink centre in the globus pallidus) to the 

pontine nuclei and, finally, the red nucleus. Notice that there are no ascending prediction 

errors from the red nucleus. This is because the proprioceptive prediction error is resolved 

not through perceptual updating but by acting to fulfil the conditions (i.e., blinking). When 

blinking is elicited by an unconditioned stimulus, the descending proprioceptive predictions 

(or motor commands) descend from the interpositus nucleus. It can be seen (upper right) 

that these descending predictions target the red nucleus and inferior olive, providing motor 

commands and corollary discharge respectively. Lower panels: after learning or 

conditioning, further connections come into play to mediate a conditioned response. In delay 

conditioning, the unconditioned and conditioned stimuli are contemporaneous. It is 

therefore sufficient to expect contemporary exteroceptive and proprioceptive eyeblink 

signals. This calls on expectations of conditioned stimuli encoded by Purkinje cells that are in 

receipt of ascending prediction errors from the pontine nuclei (via Mossy and parallel fibres) 

and those produced by expectations about an unconditioned response from the interpositus 

an inferior olivary nuclei (via climbing fibres). When these expectations have been induced 

(by conditioned an unconditioned stimuli), they provide descending proprioceptive 

predictions to the outputs nuclei of the cerebellum (interpositus nucleus) and corollary 

discharge along parallel fibres. In short, delay conditioning engages reciprocal connections 

between the interpositus nucleus and cerebellar cortex. Conversely, in trace conditioning the 

unconditioned stimulus arrives after the termination of the conditioned stimulus. This calls 

on reciprocal connections between the interpositus nucleus and the pontine nuclei. In this 

instance, expectations about the conditioned stimulus do not elicit proprioceptive predictions 

but reset the heteroclinic dynamics at the second level of the generative model, such that 

subsequent dynamical echo states or traces come to predict (and cause) an unconditioned 

response later in time. 

 

Simulating eyeblinks and their conditioning 

Figure 5 shows the results of a simulated unconditioned response. These simulations used 

the active inference (predictive coding) scheme described in the appendix and the 

generative model described in Figure 2. We assumed a low level of sensory noise with a log 

precision of 16. The log precision of the remaining random fluctuations was four, unless 
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otherwise stated. The central panel shows the predictive coding architecture, highlighting 

expectations about hidden states in different colours (red – spontaneous blinking: blue – 

conditioned stimulus: Green – unconditioned response). The graphs show associated 

activity in populations encoding expectations (and prediction errors) as a function of 

peristimulus time (in time bins of about 250 ms). The lower right graph shows an 

unconditional stimulus, modelled as a Gaussian bump function with a width of eight time 

bins. This produces somatosensory prediction errors (thick red connections) that induce an 

expected unconditioned response (green). In turn, expectations about an unconditioned 

response generate descending predictions (thick black connections), which elicit a blink 

(lower graph), which cancels the somatosensory prediction error. The associated 

expectation is shown in green in the upper right graph. Here, we also see expectations 

about spontaneous blinking (red) generated by the heteroclinic cycle of hidden states 

(upper left graph) and their associated hidden causes (lower left graph). These mediate 

(spontaneous) eyeblinks through the appropriate (dotted) connections, which occur at 

times indicated by the red arrows on the lower graph. Note that there is no conditioned 

stimulus in this simulation and therefore the unconditioned blink simply appears in addition 

to spontaneous blinking (and expectations about a conditioned stimulus are zero: blue line 

in the upper right graph). This should be contrasted with the responses shown in Figure 6. 
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Figure 5: This figure reports the results of a simulated unconditioned response. The central 

panel shows the predictive coding architecture, showing expectations about hidden states in 

different colours (red – spontaneous blinking: blue – conditioned stimulus: Green – 

unconditioned response). The graphs show the activity of populations encoding expectations 

(and prediction errors) as a function of peristimulus time (expressed in time bins of about 

250 ms). The lower right graph shows an unconditional stimulus, models with a Gaussian 

bump function with a width of eight time bins. This produces somatosensory prediction 

errors (thick red connections) that induce an expected unconditioned response (green). This 

generates descending predictions (thick black connections), which elicit a blink (lower 

graph). The associated expectation is shown in green in the upper right graph. Here, we also 

see expectations about spontaneous blinking (red) generated by the heteroclinic cycle of 

hidden states (upper left graph) and their associated hidden causes (lower left graph). These 

mediate (spontaneous) eye blinks (red arrows) through the appropriate (dotted) 

connections. 

Figure 6 contrasts predictive coding during spontaneous blinking, with the resetting of 

expectations by a conditioned stimulus such as a loud tone (before conditioning). The left 

panels show the dynamics of hidden states and causes as a function of peristimulus time 

during the emission of two spontaneous blinks. In this and subsequent figures, the first 

panel shows the sensory prediction (solid lines) and prediction error (dotted lines) – 

although in this instance the prediction errors are so small they are barely visible. The 

second (upper right) panel shows the expected hidden states generating sensory predictions 

using the same colour scheme as in the previous figure. These hidden states are driven by a 

mixture of hidden causes shown on the lower left, which are softmax functions of the 

hidden states at the second level, shown on the lower right. During spontaneous blinking, 

the last hidden state and cause (olive green) generates expectations about blinking with a 

periodicity of about 120 time bins (or three seconds). The right panels show the same 

results but in response to a conditioned stimulus (e.g. tone) presented at around 125 time 

bins. In this case, there is a profound reorganisation of the heteroclinic dynamics at the 

second level (lower right graph). This can be construed as a stimulus-dependent resetting of 

a central pattern generator to produce echo-states, starting with the first (blue line). This 

effectively delays the next spontaneous blink because the echo-states have to pass through 

a sequence of unstable fixed points before entering the heteroclinic cycle again. This delay 

can be likened to a simple form of freezing or a startle response (Davis, Falls, Campeau, & 

Kim, 1993). 
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Figure 6: This figure contrasts predictive coding during spontaneous blinking with the 

resetting of second level (echo-state) expectations by a conditioned stimulus. Left panels: 

these show the dynamics of hidden states and causes as a function of peristimulus time 

during the emission of two spontaneous blinks. In this and subsequent figures, the first panel 

shows the sensory prediction (solid lines) and prediction error (dotted lines). The second 

(upper right) panel shows the expected hidden states generating sensory predictions using 

the same colour scheme as in the previous figure. These hidden states are driven by a 

mixture of hidden causes shown on the lower left, which are softmax functions of the hidden 

states at the second level, shown on the lower right. During spontaneous blinking, the last 

hidden state and cause (olive green) generates expectations about blinking every 120 time 

bins (or three seconds). Right panels: these graphs show the same results but in response to 

a conditioned stimulus (e.g. tone) presented at around 125 time bins. In this case, there is a 

reorganisation of the heteroclinic dynamics at the second level (lower right graph). This 

effectively delays the next spontaneous blink because the echo-states have to pass through a 

sequence of unstable fixed points to return to the heteroclinic cycle. The delay (double 

headed arrow) in spontaneous blinking reflects the delay before the heteroclinic cycle is 

resumed. This delay can be likened to a simple form of freezing or startle response. 
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Simulations of conditioning 

The unconditioned responses, spontaneous blinking and startle responses to conditioned 

stimuli above were all simulated before any conditioning. We repeated these simulations for 

several trials in which the conditioned stimulus (e.g. loud tone) and unconditioned stimulus 

(e.g. air puff) were presented together in delay (simultaneous presentation) or trace 

(sequential presentation) paradigms. 

Figure 7 shows the results of simulated delay conditioning. The graphs report expectations 

using the format of Figure 6, concentrating on a peristimulus time window of 64 time bins 

when the conditioned and unconditioned stimuli were presented. The conditioned stimulus 

(e.g., the tone) reached a maximum at 48 time bins (with a standard deviation of eight time 

bins). The unconditioned stimulus was presented towards the end of this period, reaching a 

maximum at 52 time bins (with a standard deviation of four time bins). The corresponding 

sensory inputs are shown as black dotted lines in the upper left graphs. The left panels show 

the responses prior to delay conditioning. Here, we see the conditioned stimulus resets the 

echo-states at the higher level, while the unconditioned stimulus elicits a proprioceptive 

prediction (and behavioural response) with an amplitude of about 0.5 arbitrary units. Note 

that the prediction of the unconditioned stimulus is only half of its actual amplitude, 

producing a rather large prediction error (dotted green line).  

The right panels show the same responses after 16 trials of learning. At this point, the 

equivalent prediction error has been suppressed (and indeed shows a biphasic response 

with an anticipatory error). This reflects augmented expectations about an unconditioned 

response furnished by the conditioned stimulus. Crucially, the ensuing behavioural response 

increases in amplitude with a decrease in latency (see vertical lines in the upper left graph). 

We defined latency as a difference in onset of the eyeblink before and after conditioning 

(where onset time is the average obtained by treating the amplitude of the response as a 

probability distribution). The graph in the lower panel depicts the increase in response 

vigour (amplitude – broken line) and decrease in latency (solid line) over trials mediated by 

learning or plasticity (dotted lines). The learning or changes in parameters are shown in 

image format on the right to illustrate that conditioning is dominated by changes in the 

coupling between expectations about a conditioned stimulus (encoded by Purkinje cells in 

the cerebellar cortex) and consequent predictions about an unconditioned response (in the 

interpositus nucleus). Interestingly, there is also an increase in the influence of (the first) 

hidden cause predicting the conditioned stimulus. This can be contrasted with the plasticity 

induced by trace conditioning shown in the next figure. 
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Figure 7: An illustration of delay conditioning. The graphs report expectations using the 

format of the previous figure. Here, we concentrate on a peristimulus time window of 64 

time bins, when the conditioned and unconditioned stimuli were presented. The conditioned 

stimulus reached a maximum at 48 time bins. The unconditioned stimulus was presented 

towards the end of this period, reaching a maximum at 52 time bins. The corresponding 

sensory inputs are shown as black dotted lines in the upper left graphs. Left panels: these 

show the responses prior to delay conditioning. Here, we see the conditioned stimulus resets 

the dynamics at the higher level, while the unconditioned stimulus elicits a proprioceptive 

prediction (and behavioural response) of about 0.5. Note that the prediction of the 

unconditioned stimulus is only half of its real amplitude, producing a rather large prediction 

error (dotted green line). Right panels: After 16 trials of learning, this prediction error has 

been suppressed. This reflects augmented expectations about an unconditioned response 

furnished by the conditioned stimulus. Crucially, the ensuing behavioural response increases 

in amplitude with a decrease in latency (see vertical lines in the upper left graph). Lower 

panel: The graph depicts the increase in response vigour (amplitude – broken line) and 

decrease in latency (solid line) over trials. The learning or changes in parameters mediating 

these behavioural changes are shown on the right to illustrate that conditioning is 
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dominated by changes in the coupling between expectations about a conditioned stimulus 

(encoded by Purkinje cells in the cerebellar cortex) and consequent predictions about an 

unconditioned response (in the interpositus nucleus). There is also an increase in the 

influence of (the first) second level hidden cause predicting the conditioned stimulus. In the 

simulations, we only considered plasticity in the contributions of the first three (second level) 

hidden causes to an unconditioned response. 

Figure 8 shows the same simulation as the previous figure but introducing a delay between 

the conditioned and unconditioned stimuli. Because learning is slightly slower in this trace 

conditioning paradigm we doubled the number of trials to 32. The responses are shown 

over 128 time bins, where the peak of the unconditioned stimulus was delayed by 32 time 

bins. In this instance, response vigour increases more slowly, although latency is markedly 

reduced (at least for the first 20 or so trials). The key thing to note here is that, ultimately, it 

is the connection from the third (echo or trace) hidden cause that mediates conditioning. 

This is because the delay means that this hidden cause is active at the time the 

unconditioned response is elicited. Crucially, this means a different set of connections are 

engaged; namely the connections between the pontine nuclei and interpositus nucleus. 
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Figure 8: This figure uses the same format as the previous figure; however, we have now 

introduced a delay between the conditioned stimulus (e.g. tone) and unconditioned stimulus 

(e.g., shock) and doubled the number of trials to 32. These responses are shown over 128 

time bins, where the peak of the unconditioned stimulus was delayed by 32 time bins. In this 

instance, response vigour increases more slowly although latency is markedly reduced (at 

least for the first 20 or so trials). The key thing to note here is that it is the connection from 

the third (echo or trace) hidden causes at the higher level that mediates conditioning. 

In summary, this section has established the face validity of the predictive coding scheme in 

relation to spontaneous blinking, startle responses to a stimulus prior to conditioning and 

conditioned eyeblinks under both delay and trace conditioning. Furthermore, the ensuing 

computational anatomy matches the known circuitry and plasticity implicated in real 

eyeblink conditioning. In the last section, we try to establish the predictive validity of this 

scheme by trying to replicate the lesion deficit relationships observed empirically using 

simulated deafferentation. 

 

Lesion-deficit simulations 

There are many facts about the eyeblink conditioning system that have been disclosed 

through a long history of careful lesion studies (Davis et al., 1993; Freeman & Steinmetz, 

2011; Kim et al., 1995; Yang et al., 2014). In brief, it is very well-established that delay 

conditioning is most sensitive to lesions of the cerebellar output nuclei; namely the 

interpositus nucleus. It is also clear that the cerebellar cortex plays a key role in delay (and 

trace) conditioning although lesions to cerebellar cortex per se are not always sufficient to 

block conditioning. Although not a double dissociation, there is an important dissociation 

between the conditioning deficits induced by cerebellar and hippocampal lesions. 

Hippocampal deafferentation destroys trace conditioning but leaves delay conditioning 

intact. Conversely, cerebellar lesions (especially of the interpositus nucleus) block both trace 

and delay conditioning. In what follows, we test the prediction that removing hippocampal 

afferents and cerebellar afferents would produce the same dissociation. In the simulated 

lesion studies, lesions were induced by reducing the log precision of selected error 

populations from 4 to 0. Effectively, this reduces their sensitivity or gain and can be thought 

of as a reversible deactivation of specific neuronal populations. 

Figure 9 shows the results of these simulated lesion experiments in terms of response 

latency and underlying plasticity. The upper rows shows the results of conditioning under a 

variety of simulated experimental conditions; namely, normal learning, a deafferentation of 
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hippocampal inputs, a lesion to the cerebellar output (interpositus) nuclei and a lesion to 

the cerebellar cortex. The locations of these three forms of simulated deafferentation are 

shown in green in the lower row. There are two key observations here: first, a marked 

dissociation between hippocampal and cerebellar lesions, where hippocampal lesions 

impair trace conditioning but preserve delay conditioning. In contrast, a cerebellar lesion 

precludes both trace and delay conditioning. Second, lesions to the cerebellar output nuclei 

have more profound effects compared to lesions of cerebellar cortex per se. These 

observations are consistent with empirical findings. 

 

 

 

Figure 9: The results of simulated lesion experiments. The upper rows shows the results of 

conditioning over 16 trials (for delay conditioning) or 32 trials (for trace conditioning) under 

a variety of simulated experimental conditions; namely, normal learning, a deafferentation 

of hippocampal inputs, a lesion to the cerebellar output (interpositus) nuclei and a lesion to 

the cerebellar cortex. These lesions were implemented by reducing the gain or sensitivity of 

prediction error units in the respective regions from a log precision of 4 to 0. The locations of 

these three forms of simulated deafferentation are shown in green in the lower row. There 

are two key observations here: first, a marked dissociation between hippocampal and 
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cerebellar lesions, where hippocampal lesions impair trace conditioning but preserves delay 

conditioning. In contrast, a cerebellar lesion precludes both trace and delay conditioning. 

Second, lesions to the cerebellar output nuclei have more profound effects on conditioning to 

lesions of cerebellar cortex per se. 

 

Finally, we considered the interesting effects of lesions to the inferior olive on extinction. It 

is known that infusion of picrotoxin (which blocks the inhibitory neurotransmitter GABA) to 

the inferior olive prevents extinction (Medina, Nores, & Mauk, 2002). To examine the effect 

of a similar simulated lesion, we first had to reproduce extinction under the predictive 

coding scheme. These simulations are shown in Figure 10, where the left panels report the 

results of a single trial after trace conditioning but in the absence of an unconditioned 

stimulus. The format is the same as in Figure 8. Comparison with Figure 8 shows that the 

conditioned response (green lines in the upper left graph) is attenuated when not 

accompanied by an expected unconditioned stimulus. This simulation was repeated for 

eight trials to simulate extinction. The results are shown in the left graph (right panel) in 

terms of response vigour (dashed line), falling from the level of 0.35 (as in the left panels) to 

a value of about 0.2.  

This behavioural extinction is mediated by a decrease in the connectivity mediating trace 

conditioning (dotted lines). We then repeated the simulation but simulating a 

desensitisation of principal cells in the inferior olive responsible for reporting prediction 

errors about the unconditioned stimulus. Crucially, this simple lesion (reducing the log 

precision from 2 to 0) abolishes extinction, as shown in the right graph (right panel). Note 

that this simulated chemical lesion also disinhibits the conditional response, which almost 

doubles in amplitude. In short, the simulated and empirical effects of (chemical) lesions to 

the inferior olive are consistent. The perspective afforded by predictive coding explains this 

effect simply: somatosensory prediction errors are attenuated and therefore the system is 

unaware of the omission of an (expected) unconditioned stimulus. This means there are no 

subsequent prediction error signals to drive the plasticity necessary for extinction. 
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Figure 10: this figure simulates the effects of lesions to the inferior olive on extinction. Left 

panels: these report the results of a single trial after trace conditioning in the absence of an 

unconditioned stimulus. The format is the same as in Figure 8. Comparison with Figure 8 

shows that the conditioned response (green lines in the upper left graph) is attenuated when 

not accompanied by an expected unconditioned stimulus. This simulation was repeated for 

eight trials to simulate extinction. Right panel: the left graph shows extinction in terms of 

response vigour (dashed line), falling from the level of 0.35 (as in the left panels) to a value 

of about 0 2. This behavioural extinction is mediated by a decrease in the connectivity 

mediating trace conditioning (dotted lines). We then repeated the experiment but simulating 

a desensitisation of the inferior olive responsible for reporting prediction errors about the 

unconditioned stimulus. Crucially, this simple lesion (reducing the log precision from 2 to 0) 

abolishes extinction. 

 

Conclusion 

In summary, this paper provides an elemental account of learning and Pavlovian 

conditioning in terms of active inference and predictive coding. This scheme can account for 

spontaneous behaviour, perceptual inference (and startle responses), and learning as 

disclosed through (delay and trace) conditioning. The implicit computational architecture 
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maps very comfortably onto the known functional anatomy of eyeblink conditioning in 

cerebellar circuits and associated (brain stem) nuclei. Furthermore, we were able to 

establish the predictive validity of the ensuing structure-function mapping using simulated 

lesion experiments that reproduce empirical findings remarkably well. Specifically, we were 

able to reproduce the dissociation between deficits in delay and trace conditioning 

produced by lesions to the hippocampus and cerebellar systems respectively. 

Clearly, there are many details of neuronal implementation and a vast number of empirical 

findings that we have not covered; however, the minimal description on offer has some 

interesting implications for understanding perception in the context of learning and 

behaviour. One interesting aspect is that active inference can explain various forms of 

(Pavlovian) learning without reference to reinforcement learning. This reflects the fact that 

standard notions from reinforcement learning (e.g., value functions) can always be cast in 

terms of prior beliefs – that are invariably part of a generative model. This has the 

advantage that the same imperatives (and process theories) can be applied identically to 

perception and action.  

Furthermore, the hierarchical nature of (active or embodied) inference speaks to a 

potentially important relationship between various forms of learning and control. For 

example, the simulations above could be regarded as successive hierarchical elaborations of 

beliefs about behaviour. In other words, delay conditioning can be understood as the 

contextualisation of an unconditioned response (to an unconditioned stimulus) through the 

learning of contingencies relating to conditioned stimuli. This learning invokes cerebellar 

representations of conditioned stimuli that jointly predict the conditioned stimulus and 

unconditioned response. In a similar vein, trace conditioning can be regarded as a 

hierarchical extension of this internal modelling, in which temporally extensive dynamics at 

higher hierarchical levels contextualise lower-level expectations that are distributed over 

time. This may reflect a fundamental aspect of learning; namely, the emergence of habitual 

or Pavlovian behaviour under deep hierarchical inference about the causes of our 

sensations (Pezzulo, Rigoli, & Chersi, 2013). 
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Appendix 

This brief description of generalized predictive coding is based on (K. Friston, 2008). This 

scheme is based on three assumptions: 

 The brain minimizes a free energy of sensory inputs defined by a generative model. 

 The generative model used by the brain is hierarchical, nonlinear and dynamic. 

 Neuronal firing rates encode the expected state of the world, under this model. 

 

Free energy is a quantity from statistics that measures the quality of a model in terms of the 

probability that it could have generated observed outcomes. This means that minimizing 

free energy maximizes the Bayesian evidence for the generative model. The second 

assumption is motivated by noting that the world is both dynamic and nonlinear and that 

hierarchical causal structure emerges inevitably from a separation of spatial and temporal 

scales. The final assumption is the Laplace assumption that leads to a simple and flexible 

neuronal code. 

Given these assumptions, one can simulate a whole variety of neuronal processes by 

specifying the particular equations that constitute the brain’s generative model. In brief, 

these simulations use differential equations that minimize the free energy of sensory input 

using a generalized gradient descent. 

( ) ( ) ( ( ), ( ))t D t F s t t    %
&% % % %        A.1 

These differential equations say that neuronal activity encoding posterior expectations 

about (generalized) hidden states of the world ( , , , )    % K=  reduce free energy – 

where free energy ( , )F s %% is a function of sensory inputs ( , , , )s s s s % K  and neuronal 

activity. This is known as generalized predictive coding or Bayesian filtering. The first 

(prediction) term of the predicted changes in expectations based on a differential matrix 

operator D  that returns their generalized motion ( , , , )D     % K= . The second 

(correction) term is usually expressed as a mixture of prediction errors that ensures the 

changes in posterior expectations are Bayes-optimal predictions about hidden states of the 

world. To perform neuronal simulations under this scheme, it is only necessary to integrate 

or solve Equation A.1. This solution simulates the neuronal dynamics that encode posterior 

expectations. These expectations depend upon the brain’s generative model of the world, 

which we assume has the following hierarchical form: 
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This equation describes a probability density over the sensory and hidden states that 

generate sensory input. Here, the hidden states have been divided into hidden states and 

causes 
( ) ( )( , )i ix v  at the i-th level within the hierarchical model. Hidden states and causes are 

abstract variables that the brain uses to explain or predict sensations – like the motion of an 

object in the field of view. Hidden causes link hierarchical levels, whereas hidden states link 

dynamics over time.   

The generative model is characterised by nonlinear functions ( ) ( )( , )i if g  of hidden states 

and causes that generate hidden causes for the level below and – at the lowest level – 

sensory inputs. Random fluctuations in the motion of hidden states and causes ( ) ( )( , )i i

x v 
 

enter each level of the hierarchy. Gaussian assumptions about these random fluctuations 

make the model probabilistic. In other words, they play the role of sensory noise at the first 

level and induce uncertainty at higher levels. The amplitudes of these random fluctuations 

are quantified by their precisions ( ) ( )( , )i i

x v  .  

 

Perception  

Given the form of the generative model (A.2) we can now write down the differential 

equations (A.1) describing neuronal dynamics in terms of (precision-weighted) prediction 

errors. These errors represent the difference between posterior expectations and predicted 

values, under the generative model (using TA B A B @  and omitting higher-order terms): 
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      A.3 

This produces a relatively simple update scheme, in which posterior expectations ( )i% are 

driven by a mixture of prediction errors ( )i%  that are defined by the equations of the 

generative model. 

In neuronal network terms, Equation A.3 says that error-units compute the difference 

between expectations at one level and predictions from the level above to produce a 

(precision weighted) prediction errors ( )i at the i-th level of the hierarchy. Posterior 

expectations are then driven by prediction errors from the same level and the level below.  

These constitute bottom-up and lateral messages that drive expectations to produce better 

predictions and reduce prediction error in the level below. In the cortex, the sources of 

bottom-up prediction errors are generally thought to be superficial pyramidal cells, because 

they send forward (ascending) connections to higher cortical areas. Conversely, predictions 

are thought to be conveyed from deep pyramidal cells by backward (descending) 

connections, to target the superficial pyramidal cells encoding prediction error (Bastos et al., 

2012; Mumford, 1992). 

 

Learning 

The corresponding updates for the parameters follow a similar scheme; however, because 

parameters change slowly, we have a simpler gradient descent that effectively accumulates 

free energy gradients over time: 

( ) ( , )

( ( ), ( ))t

t S s

S F s t t

  



 

 

%
&% %%

% %
         A.4 
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Here, ( , )S s %%  is the anti-derivative of free energy (known as free action).  Neurobiologically, 

when expressed in terms of prediction errors, the solution to Equation A.4 corresponds to 

associative plasticity. For parameters that affect the equations of motion we have (with a 

formally identical equation for parameters that affect the nonlinear mappings): 

( )
( ) ( )

ij ij ij ij

i
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ij x x
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 



 


   



&

%
& %

         A.5 

This says that plasticity comprises an associative term and a decay term mediating priors on 

the parameters (first equality). The integral of the associative term is simply the covariance 

between presynaptic input and postsynaptic prediction error (second equality); in short, it 

mediates associative or Hebbian plasticity. Crucially, note that the plasticity mediated by a 

positive prediction error is negative. In other words, from the perspective of presynaptic 

inputs to principal cells encoding (postsynaptic) prediction error, this would manifest as 

synaptic depression of the sort seen in the cerebellum. 

 

Action 

In active inference, expectations elicit behaviour by sending top-down predictions down the 

hierarchy that are unpacked into proprioceptive predictions at the level of the cranial nerve 

nuclei (e.g. facial nucleus) and spinal cord. These engage classical reflex arcs to suppress 

proprioceptive prediction errors and produce the predicted motor trajectory 

(1)

v

F s
a

a a


 
    

 

%
&          A.6 

The reduction of action to classical reflexes follows because the only way that action can 

minimise free energy is to change sensory (proprioceptive) signals; cf., the equilibrium point 

formulation of motor control (Feldman & Levin, 1995). In short, active inference can be 

regarded as equipping a generalised predictive coding scheme with classical reflex arcs. 
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