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Abstract

Integrate-and-express models of synaptic plasticity propose that synapses may

act as low-pass filters, integrating synaptic plasticity induction signals in or-

der to discern trends before expressing synaptic plasticity. We have previously

shown that synaptic filtering strongly controls destabilising fluctuations in de-

velopmental models. When applied to palimpsest memory systems that learn

new memories by forgetting old ones, we have also shown that with binary-

strength synapses, integrative synapses lead to an initial memory signal rise

before its fall back to equilibrium. Such an initial rise is in dramatic contrast to

non-integrative synapses, in which the memory signal falls monotonically. We

now extend our earlier analysis of palimpsest memories with synaptic filters

to consider the more general case of discrete state, multi-level synapses. We

derive exact results for the memory signal dynamics and then consider various

simplifying approximations. We show that multi-level synapses enhance the

initial rise in the memory signal and then delay its subsequent fall by induc-

ing a plateau-like region in the memory signal. Such dynamics significantly

increase memory lifetimes, defined by a signal-to-noise ratio (SNR). We derive

expressions for optimal choices of synaptic parameters (filter size, number of

strength states, number of synapses) that maximise SNR memory lifetimes.

However, we find that with memory lifetimes defined via mean-first-passage

times, such optimality conditions do not exist, suggesting that optimality may

be an artifact of SNRs.
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1 Introduction

The Hopfield model (Hopfield, 1982) provides the general foundation for many

approaches to associative memory. However, its catastrophic forgetting above

a threshold memory loading renders it implausible even as a toy model of

biological memory. Imposing bounds on synaptic strengths overcomes this

catastrophic forgetting by turning the network into a palimpsest, storing new

memories by forgetting old ones (Nadal et al., 1986; Parisi, 1986). One bio-

physically plausible way of implementing bounds on synaptic strength is to

suppose that synapses exist in only a finite set of states of synaptic strength.

While some experimental evidence supports the possibility of binary-strength

synapses (Petersen et al., 1998; O’Connor et al., 2005b), other evidence sug-

gests the existence of ternary-strength (Montgomery & Madison, 2002, 2004)

or ternary-state (O’Connor et al., 2005a) synapses, while yet further evidence

indicates that changes in synaptic strength may be discrete, step-like processes

without necessarily addressing any possible limit on the number of states of

synaptic strength (Yasuda et al., 2003; Bagal et al., 2005; Sobczyk & Svoboda,

2007). Many models have considered memory formation with both binary-

strength synapses and more general, multi-level, discrete synapses (see, for

example, Willshaw et al., 1969; Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al.,

2005, Leibold & Kempter, 2006, 2008; Rubin & Fusi, 2007; Fusi & Abbott,

2007; Barrett & van Rossum, 2008; Huang & Amit, 2010, 2011). All these

related models share one feature in common: the fidelity of recall of a memory
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falls monotonically in time, often exponentially fast. Much work has been de-

voted to extending the resulting rather short memory lifetimes in these models,

but the underlying problem of monotonic memory trace decay always remains.

In previous work, we have proposed that synapses may integrate synaptic

plasticity induction signals before expressing synaptic plasticity during both

development (Elliott, 2008; Elliott & Lagogiannis, 2009) and memory forma-

tion (Elliott & Lagogiannis, 2012). By integrating plasticity induction signals,

synapses behave as low-pass filters, suppressing high frequency noise and re-

sponding only to low frequency signals. In this way, the fluctuations in synap-

tic strength that destabilise both developmentally-relevant states and states of

memory can be controlled (Elliott, 2011b). We applied such a filtering mech-

anism to memory formation in a feedforward framework with binary-strength

synapses and showed that in radical contrast to non-integrative models of mem-

ory, synaptic filtering and ongoing memory storage actually facilitate an initial

increase in the fidelity of recall of a stored memory (Elliott & Lagogiannis,

2012). Such a model outperforms cascade-type models (Fusi et al., 2005) in

most biologically-relevant regions of parameter space.

Here, we extend our earlier analysis from binary-strength to more general,

discrete synapses. After discussing our general formalism in section 2, we de-

rive exact results for the tracked memory signal in the presence of n discrete

strength states in section 3. Various approximations to these results may be

obtained for the large time limit or the large n limit, which facilitate the ex-

traction of expressions for memory lifetimes, defined via a signal-to-noise ratio
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(SNR). In section 4, we first explore the dynamics of the tracked memory signal

for general, discrete synapses in the presence of a synaptic filter. We show that

the signal rise that occurs for binary-strength synapses is present for general,

discrete synapses and that, indeed, this signal rise is logarithmically enhanced

as a function of n. We also show that the signal then essentially plateaus

for large n, with the duration of this plateauing increasing quadratically with

n. We then turn to considering memory lifetimes explicitly, and explore the

dependence of memory lifetimes on the number of synapse, number of states

of strength per synapse, and also on the synaptic filter size, Θ. We find that

for SNR memory lifetimes, we can trade n and Θ, significantly reducing to

biophysically realistic ranges the optimal values of n or Θ that generate max-

imum SNR memory lifetimes. However, when using a mean-first-passage time

(MFPT) definition of memory lifetimes (Elliott, 2014), we do not see maxima

in memory lifetimes, so optimality conditions do not exist in this case. Finally,

in section 5, we discuss our results and the issues raised by them.

2 General Formalism

We provide an outline of our general formalism here. Further details may be

found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014). Table 1 provides

a summary of the main parameters and quantities used throughout.

5



Parameter

or quantity

Description

n Number of states of synaptic strength per synapse.

N Number of synapses.

Θ Filter size.

sA Strength of strength state A, A ∈ {1, . . . , n}.

S Vector of strengths sA, ST = (s1, . . . , sn).

Si(t) Strength of synapse i at time t.

h(t) Tracked memory signal.

µ(t), σ(t) Mean and standard deviation of h(t).

B, BI Equilibrium distribution of filter states, vector and components.

A Joint distribution of filter and strength states in equilibrium.

M± Matrices implementing potentiation and depression steps on the joint

distribution of filter and strength states.

F± Matrices incrementing or decrementing filter state without threshold pro-

cesses.

D± Matrices implementing filter threshold processes.

G±
J (t) Densities for first escapes through filter thresholds from filter state J in

time t.

HJ(t) Probability of not having reached either filter threshold from filter state

J in time t.

fI|J(t) Probability of a transition from filter state J to filter state I in time t.
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p
A|B
I|J (t) Probability of a transition from filter state J and strength state B to filter

state I and strength state A in time t.

PI|J(t) Matrix with elements p
A|B
I|J (t) for given filter states I and J .

GJ(t) Matrix of escape densities from filter states J for transitions to adjacent

strength states.

W(t) Auxiliary but key matrix of filter escape densities determining transitions

between strength states, defined by W(t) = δ(t) I − G0(t).

C The matrix 1
2
C is a stochastic matrix implementing a symmetric random

walk between two reflecting boundaries.

λm, em Eigenvalues and eigenvectors of 1
2
C, m = 0, . . . , n − 1.

v vT = (−1, 0, . . . , 0, +1) is a vector that captures the change in the equi-

librium distribution of strengths at the storage of the tracked memory.

Table 1. Summary of main parameters and quantities used throughout.

2.1 Perceptron Formulation

We consider the possibility of n states of synaptic strength, with n ≥ 2, and

examine the dependence of memory lifetimes on this parameter. We index

these strength states by letters such as A and B, and we define strength state

A to correspond to strength

sA = −1 + 2
A − 1

n − 1
, (2.1)

with A = 1, . . . , n, so that s1 = −1 and sn = +1. We have scaled the strengths,

regardless of n, into the interval [−1, +1] in order to facilitate comparison of
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results for different n. We shall discuss the biological relevance of this scaling

in the Discussion. For simplicity and mathematical tractability, we consider a

single perceptron. The perceptron has N synapses with strengths Si(t), i =

1, . . . , N , where t denotes time, with Si(t) ∈ {sA |A = 1, . . . , n}. As standard,

the perceptron is assumed to have binary-valued inputs xi ∈ {−1, +1} through

these N synapses. The activation upon presentation of input vector x is then

hx(t) =
1

N

N∑

i=1

xi Si(t). (2.2)

For our purposes here, we are interested only in this activation and not in

any thresholding of the perceptron’s activation that generates the perceptron’s

binary-valued output.

The perceptron is required to store “memories” ξα, α = 0, 1, 2, . . .. In a

discrete time formalism, memory ξα is stored at time t = α. From a biological

perspective, however, a discrete time formalism for memory storage is not

particularly realistic. Furthermore, we have previously shown that driving

memory storage as a discrete time process eliminates covariance terms that

have a detrimental impact on memory dynamics (Elliott & Lagogiannis, 2012).

Using a continuous time process to drive memory storage is biologically more

realistic and allows a full consideration of the resulting impact of covariance

terms on memory dynamics. We therefore employ a continuous time formalism

to drive memory storage. The simplest continuous time process to consider is

the Poisson process. Memories are therefore stored as a Poisson process of
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rate r, which we may without loss of generality take as r = 1 Hz, since r may

be restored in formulae by the replacement t → r t. Despite using a Poisson

process, memory ξ0 is nevertheless always stored at t = 0 s; in fact, we consider

it to be stored at time t = 0− s so that the time immediately after the storage of

ξ0 can be referred to simply as t = 0 s. We need not specify a target perceptron

output associated with memory ξα because for an isolated perceptron we can

always without loss of generality consider instead the storage of −ξα rather

than +ξα. We then always consider the target output for any memory to be +1,

so that the corresponding perceptron activation is above firing threshold. With

this convention, ξα
i is the plasticity induction signal to synapse i upon storage of

memory α: ξα
i = +1 requires the synapse to potentiate (strengthen) while ξα

i =

−1 requires it to depress (weaken). We discuss the implementation of synaptic

plasticity in response to these induction signals below. As usual, the memories

are assumed to be random and uncorrelated, both across synapses and between

different memories, so that ξα
i = ±1 with probability 1/2 independent of i and

α. We note that we do not consider the possibility of a sparse coding framework

here. We discuss sparse coding in the Discussion.

Although the use of strengths sA in the range [−1, +1] and binary-valued

inputs xi ∈ {−1, +1} may appear biologically problematic, we can always

translate these ranges so that they become non-negative under an associated

change in the perceptron’s firing threshold. These issues are discussed else-

where (Elliott & Lagogiannis, 2012; Elliott, 2014).

We are interested in the fidelity of recall of the first memory ξ0 by the
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perceptron in the face of the ongoing storage of the subsequent memories ξα,

α > 0. The perceptron’s activation upon re-presentation of ξ0 at some later

time t is just hξ0(t), and if this activation is above firing threshold, then the

memory is still stored by the perceptron. We refer to ξ0 as the tracked mem-

ory, to hξ0(t) as the tracked memory signal or just the memory signal, and

we write h(t) = hξ0(t) for convenience. Memory lifetimes may be defined in

many different ways (for examples, see Tsodyks, 1990; Leibold & Kempter,

2006; Huang & Amit, 2010; Elliott, 2014). Here, we mostly employ the SNR

definition (Tsodyks, 1990; Amit & Fusi, 1994). If µ(t) is the mean memory

signal and σ(t) the standard deviation in the memory signal, then the SNR

is defined as µ(t)/σ(t). Memory lifetime is then defined as the time τsnr at

which µ(t)/σ(t) falls below some defined point, which is typically taken to be

unity, so that τsnr is the solution of µ(τsnr)/σ(τsnr) = 1. For simplicity, we will

mostly use this definition here. Specifically, we will assume that a perceptron’s

firing threshold can always be chosen so that the mean memory signal does not

become inaccessible by ever dropping below the perceptron’s firing threshold.

For most models, this requirement amounts to choosing a firing threshold of

zero, because µ(t) asymptotes to zero at large times. Without this assump-

tion, memory lifetimes are severely and disastrously shortened, and become

independent of N as N increases (Elliott, 2014). We will also consider for

comparison a definition of memory lifetimes based on MFPTs (Elliott, 2014).

In this formulation, memory lifetime is defined as the average time at which the

stochastic memory signal h(t) first falls below firing threshold. Such a defini-
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tion provides a more natural definition of memory lifetime, but is analytically

much more difficult to study for non-trivial models of synaptic plasticity.

2.2 Filter-Based Synaptic Plasticity

Upon the storage of memory ξα, the component ξα
i is the induction signal to

synapse i, indicating whether the synapse should potentiate (ξα
i = +1) or de-

press (ξα
i = −1). We have proposed that synaptic plasticity induction signals

should be integrated by synapses before synaptic plasticity is expressed (El-

liott, 2008), generating what we have termed “integrate-and-express” models of

synaptic plasticity (Elliott & Lagogiannis, 2009) in analogy with integrate-and-

fire models of neuronal firing. Specifically, we have proposed that a synapse

may implement a discrete low-pass filter that attenuates high-frequency noise

while passing a low-frequency signal (Elliott, 2011a; Elliott & Lagogiannis,

2012). The synapse essentially decides whether or not to express synaptic

plasticity depending on whether or not a synaptic filter mechanism reaches

upper or lower filter thresholds, for potentiation or depression, respectively.

Fig. 1 represents this synaptic filter as a continuous time Markov process.

Because potentiating and depressing induction signals are equiprobable, we

need only consider a symmetric filter with equal upper and lower thresholds,

±Θ. Filter states are indexed by letters such as I and J , with I ∈ {−(Θ −

1), . . . , +(Θ−1)}, and are represented in the figure by the circles enclosing the

filter states. Rightward transitions represent potentiating induction signals

that cause the filter state to increment by one; conversely, leftward transitions
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represent depressing induction signals. The rates of these signals, indicated on

the transitions between filter states in the figure, are just the rate of memory

storage (r, which we set to unity) multiplied by the probabilities that ξα
i = ±1

(which are 1/2 in both cases). If the filter is in state +(Θ − 1) and receives a

potentiating induction signal, then the filter reaches threshold, is returned to

the I = 0 filter state, and a potentiation step is expressed (indicated by ⇑), so

that the synapse’s strength increases from sA to sA+1. If sA = +1, or A = n,

then of course a potentiation step cannot be expressed since the synapse is

already saturated at its upper strength limit; in this case, the strength remains

at sn = +1. Similarly, if the filter is in state −(Θ−1) and receives a depressing

induction signal, it is returned to state I = 0 and a depression step is expressed

(indicated by ⇓), so that the synapse’s strength decreases from sA to sA−1. If

sA = −1, or A = 1, then a depression step cannot be expressed as the synapse is

already saturated at its lower strength limit; in this case, the strength remains

at s1 = −1. The synapse thus performs a random walk on its allowed strength

states A = 1, . . . , n in the presence of reflecting boundaries at A = 0 and

A = n + 1, implementing saturation of strength. The random walk between

these strength states is driven by the underlying filter threshold events.

Let F+ be the (2 Θ− 1) × (2 Θ− 1) matrix that increments the filter state

by one unit but without taking the I = +(Θ− 1) filter state back to I = 0, so

without the filter upper threshold process. F+ has entries of unity on its lower

diagonal and zeros elsewhere. Let D+ be the matrix that takes the I = +(Θ−1)

filter state back to I = 0. This matrix has zeros everywhere except for its entry
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of unity at the 0, +(Θ − 1) position in filter indices [or position Θ, (2 Θ − 1)

with conventional indexing of matrix entries]. For Θ = 3, for example, we have

F
+ =




0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




, D
+ =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0




.

Let the matrices F− and D− be the corresponding matrices for a decrement in

filter state. F− = (F+)
T
, where the superscript T denotes the transpose, and

the matrix D− is zero everywhere except for unity at the 0,−(Θ − 1) position

in filter indices [or position Θ, 1 with conventional indexing]. For Θ = 3, for

example,

F
− =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




, D
− =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

As there are n strength states and 2 Θ − 1 filter states, the joint probability

distribution of the strength and filter states of a synapse is represented by a

(2 Θ−1)n-dimensional vector. We order the entries of such vectors so that the

Ath batch of 2 Θ−1 entries corresponds to the distribution of filter states when

the synapse is in strength state A. Let M+ denote the (2 Θ− 1)n× (2 Θ− 1)n

matrix that implements a potentiation step and M− the corresponding matrix
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implementing a depression step. For example, with n = 4, M+ and M− are

given schematically by

M
+ =




F+

D+ F+

D+ F+

D+ F++D+




, (2.3)

and

M
− =




F−+D− D−

F− D−

F− D−

F−




, (2.4)

where all entries are zero unless explicitly specified. The appearance of the

submatrices F++D+ or F−+D− in the relevant sub-blocks in M+ or M− reflects

the fact that a saturated synapse cannot potentiate or depress, respectively,

any further, but that its filter state is nevertheless returned to zero when the

appropriate threshold is reached.

The matrices M+ and M− implement potentiation and depression steps on

synapses. The matrix superposition M = 1
2

(
M++M−

)
implements a plasticity

operation on a synapse that is potentiation with probability 1
2

and depression

with probability 1
2
. For n = 4 we schematically have

M =
1

2




F++F−+D− D−

D+ F++F− D−

D+ F++F− D−

D+ F++F−+D+




. (2.5)
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The equilibrium joint probability distribution of strength and filter states for a

synapse is determined by the eigenvector of M with unit eigenvalue. In equilib-

rium, for n = 2 synapses we previously found that the probability distribution

B of filter states has components

BI =
1

Θ2
(Θ − |I|) , (2.6)

regardless of the strength state (Elliott & Lagogiannis, 2012). This distribution

just corresponds to the (suitably normalised) eigenvector of the matrix 1
2

(
M++

M− +D+ +D−
)

with unit eigenvalue. Because the distribution B is symmetric

about its central, I = 0 component, we have that D+B ≡ D−B. The vector

B is therefore also an eigenvector of the two matrices 1
2

(
M+ + M− + 2 D+

)

and 1
2

(
M+ + M− + 2 D−

)
with unit eigenvalue. If we consider the probability

distribution

A
T =

1

n

(
B

T
∣∣ · · ·

∣∣BT

︸ ︷︷ ︸
n

)
, (2.7)

with A being a (2 Θ − 1)n-dimensional vector with B occurring once for each

strength state A, A = 1, . . . , n, then it is clear from the block structure of

the matrix M that A is an eigenvector of M with unit eigenvalue. The vector

A is therefore the equilibrium joint distribution of filter and strength states

for general n. All filter states are therefore distributed according to B in

equilibrium, regardless of the value of n, and we see that the strength states are

themselves uniformly distributed with probability 1/n in equilibrium because

of the common 1/n scaling factor in A.
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It is against the background of this equilibrium distribution A that the

definite memory ξ0 is stored at time t = 0− s. Synapse i will have distribution

M±A at time t = 0 s after the storage of ξ0 depending on the definite sign

of ξ0
i = ±1. For all subsequent memories ξα, α > 0, however, the relevant

matrix operator is M, which averages over both possible induction signals for

later memories at any given synapse, allowing us to average over all possible

subsequent memories as we are not interested in any particular realisation of

subsequent memories. With symmetric filters (equal upper and lower thresh-

olds, ±Θ), the two distributions M±A are exact mirror images of each other.

For n = 2, we previously showed that synapses experiencing an initial poten-

tiating induction signal (ξ0
i = +1) and those experiencing an initial depressing

induction signal (ξ0
i = −1) contribute identically to the tracked memory sig-

nal h(t) because the roles of weak (strength −1) and strong (strength +1)

synapses are reversed in their contributions to h(t), depending on the signs of

the induction signals (Elliott & Lagogiannis, 2012). Specifically, if we define

S̃i(t) = ξ0
i Si(t), so that

h(t) =
1

N

N∑

i=1

S̃i(t), (2.8)

then the various S̃i(0) are all identically distributed random variables, regard-

less of i. Furthermore, since all synapses subsequently experience only a su-

perposition of induction signals via the same matrix operator M in order to

average over all possible later memories ξα, α > 0, if S̃i(t) are identically dis-

tributed at t = 0 s, then they remain identically distributed for all time. It is
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then a statement in elementary probability that

µ(t) = E
[
S̃(t)

]
, (2.9)

σ(t)2 =
1

N
Var

[
S̃(t)

]
+

(
1 − 1

N

)
Cov(t), (2.10)

where E
[
S̃(t)

]
and Var

[
S̃(t)

]
denote the mean and variance, respectively, of

any one of the S̃i(t) variables, and Cov(t) denotes the covariance between

any two of them. This equivalence and resulting simplification arises because,

for n = 2 strength states, the two strengths are treated symmetrically. It is

therefore clear that for general n, provided that the various strengths are sym-

metrically distributed around zero (or, in general, around their mean value),

so that if for some strength state A there exists a strength state B such that

sA = −sB, as is true for Eq. (2.1), then the same arguments go through. In

fact, these arguments also go through for any model of synaptic plasticity in

which potentiation and depression processes are treated completely symmet-

rically (Elliott, 2014), and not just for filter-based mechanisms of synaptic

plasticity as considered here and elsewhere.

This equivalence between the two distributions M±A in terms of their

contributions to h(t) therefore means that we need only consider the joint

probability distribution of the filter and tilded-strength (rather than strength)

states, and we can therefore restrict without loss of generality to considering

only, say, the distribution of M+A at time t = 0 s. Defining ∆ = D+B

(or equivalently ∆ = D−B), which is a (2 Θ − 1)-dimensional vector with
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components ∆I = Θ−2 δI,0, where δI,J is the Kronecker delta symbol, we then

have that

(
M

+
A

)T
=

1

n

((
F

+
B

)T
∣∣∣
(
F

+
B

)T
+ ∆T

∣∣∣ · · ·
∣∣∣
(
F

+
B

)T
+ ∆T

︸ ︷︷ ︸
n−2

∣∣∣
(
F

+
B

)T
+ 2∆T

)

(2.11)

for the probability distribution of states immediately after the storage of mem-

ory ξ0. This follows directly from the block structure of M+ expressed in terms

of F+ and D+. The contributions from ∆ to the n − 2 intermediate strength

states with 2 ≤ A ≤ n − 1 arise from the upper filter threshold processes oc-

curring in states 1 ≤ A ≤ n − 2. There is no such contribution to the A = 1

state because there is no lower, A = 0 state. There are two such contributions

to the A = n state because one arises from the upper threshold process from

the A = n− 1 state and the other from the A = n state’s own upper threshold

process, which cannot induce an increment in strength because of saturation.

Summing over the filter states for each strength state in Eq. (2.11), we see that

1
n

∑
J

(
F+B + 0∆

)
J

= 1
n

(
1 − 1

Θ2

)
,

1
n

∑
J

(
F+B + 1∆

)
J

= 1
n
,

1
n

∑
J

(
F+B + 2∆

)
J

= 1
n

(
1 + 1

Θ2

)
,





(2.12)

which give the probabilities of the various strength states at time t = 0 s. The

intermediate (tilded-)strength states 2 ≤ A ≤ n− 1 therefore continue to have

probability 1/n immediately after the storage of ξ0, while the probability of

state A = 1 decreases to 1
n

(
1 − 1

Θ2

)
and that of A = n increases to 1

n

(
1 + 1

Θ2

)
.
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The initial mean memory signal µ(0) is therefore

µ(0) =
2

n

1

Θ2
. (2.13)

Finally, we note that the matrix operator M acts on the state M+A in such

a way that the probabilities of the intermediate states 2 ≤ A ≤ n − 1 remain

unchanged, at 1/n, and this remains true for all time. Only the probabilities

of the A = 1 and A = n states change over time. These always differ equally

but oppositely from 1/n, because the total probability of all strength states

must sum to unity.2 It is therefore straightforward to see that

E
[
S̃(t)2

]
=

1

3

n + 1

n − 1
, (2.14)

independent of t, because 1
n

∑n
A=1 s2

A = 1
3

n+1
n−1

and any deviations of the A = 1

and A = n states from probability 1/n cancel out in E
[
S̃(t)2

]
because s2

1 =

s2
n = 1.

3 Analytical Results

With our general formalism established, we may now derive an analytical ex-

pression for the mean memory signal µ(t). Analytical expressions for σ(t) are

very much harder to derive because of the covariance term (Elliott & Lagogian-

2The maximum possible initial memory signal is thus 2/n, achieved for a

trivial, Θ = 1 filter.
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nis, 2012). Even for n = 2 the generating matrix defining the Markov process

lacks a complete set of eigenvectors (that is, the matrix is defective), so tensor

product methods cannot be used to extract higher-order statistics (Elliott &

Lagogiannis, 2012). This difficulty remains for n > 2. For our purposes here,

it is sufficient to approximate the variance σ(t)2 using either Var
[
S̃(t)

]
/N or

even more simply E
[
S̃2(t)

]
/N , but where necessary we employ numerical ma-

trix methods to compute the full result.

3.1 Laplace Transform of µ(t)

Let fI|J(t) be the probability of a transition from filter state J to filter state

I in time t without filter thresholds being reached. An expression for fI|J(t)

was derived in Elliott & Lagogiannis (2012) although its explicit form is not re-

quired. Let G±
J (t) be the densities for first escapes through the upper and lower

filter thresholds, respectively, at time t. We have that G±
J (t) = r

2
f±(Θ−1)|J(t),

explicitly including the rate factor r. For a symmetric filter, we have that

G±
−J(t) = G∓

+J(t). Let HJ(t) be the probability of not having reached ei-

ther filter threshold, starting from filter state J , in time t. We have that

HJ(t) =
∑+(Θ−1)

I=−(Θ−1) fI|J(t), but also

HJ(t) = 1 −
∫ t

0

dt1
[
G+

J (t1) + G−
J (t1)

]
. (3.1)

HJ(t) is the probability that a random walk on filter states, starting from

state J , has yet to reach threshold (or absorbing boundaries) in time t. The
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sum G+
J (t) + G−

J (t) is the probability density for reaching either threshold, so

the integral in Eq. (3.1) gives the integrated probability density or just the

probability of having reached either threshold in time t. The probability of

not having reached either threshold then follows directly. Simple expressions

may be derived for the Laplace transforms of G±
J (t) (Elliott, 2011a). If Ĝ±

J (s)

denote these Laplace transforms with transformed variable s, then

Ĝ±
J (s) =

[
Φ+(s)

]Θ±J −
[
Φ−(s)

]Θ±J

[
Φ+(s)

]2Θ −
[
Φ−(s)

]2 Θ
, (3.2)

where Φ±(s) are the two solutions of Φ2 − 2(1 + s/r)Φ + 1 = 0, where the rate

factor r is retained for generality, so that Φ+(s) Φ−(s) = 1 and Φ+(s)+Φ−(s) =

2(1 + s/r).

Let p
A|B
I|J (t) be the probability of a transition from filter state J and strength

state B to filter state I and strength state A in time t. Then, generalising the

argument in Elliott & Lagogiannis (2012), we may write down the system of
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renewal equations for p
A|B
I|J (t) in terms of fI|J(t) and G±

J (t):

p
A|1
I|J (t) = fI|J(t) δA,1

+

∫ t

0

dt1

[
p

A|1
I|0 (t − t1) G−

J (t1) + p
A|2
I|0 (t − t1) G+

J (t1)
]
,

p
A|B
I|J (t) = fI|J(t) δA,B

+

∫ t

0

dt1

[
p

A|B−1
I|0 (t − t1) G−

J (t1) + p
A|B+1
I|0 (t − t1) G+

J (t1)
]
,

p
A|n
I|J (t) = fI|J(t) δA,n

+

∫ t

0

dt1

[
p

A|n−1
I|0 (t − t1) G−

J (t1) + p
A|n
I|0 (t − t1) G+

J (t1)
]
,

(3.3)

where the middle equation applies only for 2 ≤ B ≤ n − 1 so that it is the

general case rather that the boundary cases at B = 1 or B = n. The inho-

mogeneous term on the right hand sides (RHSs) arise only when A = B and

thus allow the possibility of changes in filter state without any threshold pro-

cesses arising. The homogeneous terms consider threshold processes leading to

changes in strength state (with or without saturation or reflecting boundary

dynamics), followed by further state transition processes after the first thresh-

old process. Let PI|J(t) be a matrix with components p
A|B
I|J (t), so a matrix of

strength change probabilities in time t for given initial and final filter states,
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and define the matrix

GJ(t) =




G−
J (t) G−

J (t)

G+
J (t) 0 G−

J (t)

G+
J (t) 0

. . .

. . . . . . . . .

. . . 0 G−
J (t)

G+
J (t) 0 G−

J (t)

G+
J (t) G+

J (t)




. (3.4)

Then, Laplace transforming Eq. (3.3), we have

P̂I|J(s) = f̂I|J(s) I + P̂I|0(s) ĜJ(s), (3.5)

where I is the n×n identity matrix. The first term on the RHS of this equation

for P̂I|J(s) describes changes in filter state, via f̂I|J(s), without any changes

in strength state, via the identity matrix I. The second term describes a

single increment or decrement in strength (subject to possible saturation) via

the matrix ĜJ(s) followed by further possible changes in both strength and

filter states, but starting from the zero filter state after the threshold process

associated with the strength change represented by ĜJ(s). The advantage

of the Laplace-transformed representation is that these sequential temporal

processes reduce to simple products. Setting J = 0 and defining W(t) =
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δ(t)I − G0(t) where δ(t) is the Dirac delta function, or its Laplace transform,

Ŵ(s) = I − Ĝ0(s), (3.6)

we have P̂I|0(s) = f̂I|0(s) Ŵ−1(s), so that

P̂I|J = f̂I|J I + f̂I|0 Ŵ
−1

ĜJ , (3.7)

where we drop the Laplace argument s for notational simplicity. The second

term in Eq. (3.5) has transformed into f̂I|0 Ŵ−1 ĜJ . We note that, formally,

Ŵ−1 =
∑∞

m=0

[
Ĝ0

]m
. A general term in this second term on the RHS of

Eq. (3.7) is therefore of the form f̂I|0

[
Ĝ0

]m
ĜJ . This product of matrices in

Laplace-transform space represents a first change in strength starting from

initial filter state J , followed by precisely m changes in strength associated

with transitions from the zero filter state back to the zero filter state via filter

threshold processes, and finally a change in filter state from the zero state to

state I without any change in strength. Eq. (3.7) therefore decomposes the

overall transition matrix PI|J into elementary, fundamental steps, and sums

over all possibilities.

To compute µ(t), we must sum p
A|B
I|J (t) over the initial and final states

with suitable weighting factors. The final filter state I is irrelevant to µ(t) so

we directly sum over I. The final strength state A must be weighted by sA.

Defining the vector ST = (s1, . . . , sn) as the vector of strengths sA, we then
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have

∑

I

ST
P̂I|J = ĤJ ST + Ĥ0 ST

Ŵ
−1

ĜJ . (3.8)

To sum over the initial state, we must sum over the components of the vector

M+A because this gives the state of the system immediately after the storage

of the tracked memory ξ0 whose mean tracked memory signal µ(t) we wish to

determine. Let σJ be the n-dimensional vector of probabilities of a synapse’s

strength at time t = 0 s for each particular filter state J . Then we have that

µ̂(s) ≡ ∑
I,J ST

P̂I|J(s) σJ , so that

µ̂ =
∑

J

ĤJ

(
STσJ

)
+ Ĥ0 ST

Ŵ
−1

( ∑

J

ĜJ σJ

)
. (3.9)

Structurally, this equation for the mean memory signal should be compared

to the equation for PI|J in Eq. (3.7). The first term on the RHS describes the

contribution to µ that arises from the initial storage of the tracked memory

but without any subsequent changes in strength. This contribution decays

away monotonically, controlled by HJ , because the probability of no changes

in strength drops to zero as time increases. The second term on the RHS

describes the contributions arising from subsequent changes in strength after

the storage of the tracked memory. Again we may expand Ŵ−1 as before and

observe contributions from definite numbers of strength changes.

The vectors σJ can be read off from Eq. (2.11). Noting that the matrix F+

is just a shift operator on filter states, so that
(
F+B

)
J

= Θ−2
(
Θ−|J − 1|

)
, we
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can write

σJ =





1
n

1
Θ2

(
Θ − |J − 1|

)
n for J 6= 0

1
n

1
Θ2

(
Θ n + v

)
for J = 0

(3.10)

where vT = (−1,

n−2︷ ︸︸ ︷
0, . . . , 0, +1) and nT = (1, 1, . . . , 1, 1), both being n-dimen-

sional vectors. The J = 0 form accounts for the various ∆ contributions arising

in Eq. (2.11). Note that STn ≡ 0. We then have that STσJ = 2
n

1
Θ2 δJ,0, so that

the first term on the RHS of Eq. (3.9) becomes 2
n

1
Θ2 Ĥ0. Evaluating ĜJ σJ , we

readily find that

ĜJ σJ =





1
n

1
Θ2

(
Θ − |J − 1|

) [(
Ĝ+

J + Ĝ−
J

)
n +

(
Ĝ+

J − Ĝ−
J

)
v
]

for J 6= 0

1
n

1
Θ2 Ĝ0

[
2 Θ n + u

]
for J = 0

(3.11)

where uT = (−1,−1,

n−4︷ ︸︸ ︷
0, . . . , 0, +1, +1).3 To compute ST

Ŵ−1 ĜJ σJ , we first

write Ŵ = I − Ĝ0 C, setting G0(t) = G±
0 (t) as G+

0 (t) = G−
0 (t) for a symmetric

filter, where we define the matrix C by

C =




1 1

1 0 1
. . . . . . . . .

1 0 1

1 1




. (3.12)

3This form of u is valid for n ≥ 4. For n = 3, uT = (−1, 0, +1) and for

n = 2, uT = (0, 0). We may calculate with the general form for n ≥ 4 and

then confirm that our final results are in fact also valid for n = 2 and n = 3.

26



We may then formally write Ŵ−1 =
∑∞

m=0

(
Ĝ0

)m
Cm. We observe that if

some n-dimensional vector w is antisymmetric about its centre, so that wA =

−wn+1−A for any component A, then so is the vector Cw. Of course, S is such

a vector. Thus, the vector ST
Ŵ−1 is antisymmetric about its centre and so

ST
Ŵ−1n ≡ 0. Hence, all the n terms in ĜJ σJ in Eq. (3.11) are killed by

ST
Ŵ−1 and only the u and v terms survive. For the terms involving v, we

require

∑

J 6=0

(
Θ − |J − 1|

)(
Ĝ+

J − Ĝ−
J

)
= 2

∑

J>0

(
Ĝ+

J − Ĝ−
J

)
. (3.13)

For the term involving u, we observe that u = Cv and that

Ŵ
−1

C =
(
Ĝ0

)−1(
Ŵ

−1 − I
)
. (3.14)

Putting all this together, we may finally write

µ̂ =
1

n

1

Θ2
Ĥ0

[
1 + 2

∑

J>0

(
Ĝ+

J − Ĝ−
J

)]
ST

Ŵ
−1v. (3.15)

For n = 2, it is easy to see that ST
Ŵ−1v = 2 [this is true for any density

G0(t)], so that we obtain

µ̂2 =
1

Θ2
Ĥ0

[
1 + 2

∑

J>0

(
Ĝ+

J − Ĝ−
J

)]
, (3.16)

which is precisely the expression that we obtained before (Elliott & Lagogian-
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nis, 2012). We may then write

µ̂(s) =
1

n
µ̂2(s) ST

Ŵ
−1(s) v. (3.17)

We will interpret the terms in this equation for µ̂(s) momentarily.

It is striking that the form for µ̂ in Eq. (3.15) factorises into a form involv-

ing µ̂2 and the new contribution ST
Ŵ−1v. Immediately after the storage of

the tracked memory ξ0 at time t = 0− s, synapses may be in different filter

states, with probability distribution governed by Eq. (2.11). Consider, how-

ever, a scenario in which all synapses at time t = 0 s are in filter state I = 0.

Over time they escape through the upper or lower filter thresholds and are

returned to the I = 0 filter state, with associated steps in synaptic strength

where possible. In this scenario, synapses therefore perform a non-Markovian

but renewing random walk on the strength states A = 1, . . . , n with waiting

times between transitions governed by the densities G±
0 (t) [which for symmetric

filters are equal, G±
0 (t) = G0(t)]. The matrix C, or more correctly the matrix

1
2
C is precisely a stochastic matrix that implements an unbiased (that is, sym-

metric) random walk on n discrete states between two reflecting boundaries.

In section 4 of Elliott (2010), we derived general results for renewal processes

on bounded intervals in the presence of non-exponential waiting times between

transitions. Adapting those results to our notation here, if P(t) is the matrix

of transition probabilities with elements pA|B(t) for transitions from strength

state B to strength state A in time t (dropping filter indices because they are ir-
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relevant to the argument here), then we would have for the scenario considered

here that [cf. Eq. (4.8) in Elliott (2010)]

P̂(s)
[
I − Ĝ0(s) C

]
= Ĥ0(s) I, (3.18)

so that

P̂(s) = Ĥ0(s) Ŵ
−1(s). (3.19)

The interpretation of this equation for P̂(s) can be seen clearly by expanding

Ŵ−1(s) in powers of the stochastic matrix 1
2

C,

P̂(s) = Ĥ0(s)
∞∑

m=0

[
2 Ĝ0(s) × 1

2
C

]m
, (3.20)

and then taking the inverse Laplace transform using the convolution theorem,

P(t) = H0(t) I +

∫ t

0

dt1 H0(t − t1)
[
2 G0(t1) × 1

2
C

]

+

∫ t

0

dt1

∫ t−t1

0

dt2 H0(t − t1 − t2)
[
2 G0(t2) × 1

2
C

][
2 G0(t1) × 1

2
C

]

+ · · · . (3.21)

The third term on the RHS of this equation, for example, represents a change

in strength occurring at time 0 ≤ t1 ≤ t with probability density 2G0(t1)

followed by a second change in strength at later time 0 ≤ t1 + t2 ≤ t with

probability density 2G0(t2) and then no subsequent changes in strength, in-

dicated by the presence of the waiting time function H0(t − t1 − t2) over the
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remaining time interval. The changes in strength are signalled by the presence

of the stochastic matrix 1
2

C, which implements a single step is strength space

subject to possible saturation. These changes in strength are governed by fil-

ter transitions from the zero state through either filter threshold back to the

zero state, so are governed by the probability density 2G0(t). Similarly, the

general term Ĥ0(s)
[
2 Ĝ0(s) × 1

2
C

]m
in P̂(s) corresponds to the occurrence of

precisely m filter threshold escape processes and therefore m possible strength

changes giving rise to the m occurrences of 2 Ĝ0(s)× 1
2

C, followed by no filter

threshold escape processes, giving rise to the Ĥ0(s) waiting time factor. To

compute µ(t) in this scenario, suppose that the initial probability distribution

of strength states at t = 0 s is governed by that generated by the storage

of ξ0, despite considering all filter states to be I = 0 at time t = 0 s. This

distribution, from Eq. (2.12), is just

a =
1

n

(
n +

1

Θ2
v

)
. (3.22)

In this scenario, the mean memory signal is just µ(t) = ST
P(t) a, or

µ̂ =
1

n

1

Θ2
Ĥ0 ST

Ŵ
−1v. (3.23)

This result is obtained essentially by integrating out synapses’ internal filter

states and instead dealing directly with transitions in synaptic strength (cf. El-

liott, 2010). Comparing this result to Eq. (3.15), we see that we have all the
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terms except for that in square brackets. Most of the terms in the full form of µ̂

therefore arise from the unbiased, renewing random walk in bounded strength

space governed by the non-exponential waiting times G±
0 (t) = G0(t). The re-

maining term, in square brackets, must arise because of the preparation of the

initial filter states, and specifically because the initial filter states are not, in

general, I = 0 immediately after the storage of ξ0. In Appendix A, we provide

an alternative derivation of Eq. (3.15) using the argument in this paragraph,

but taking into account the correct distribution of initial filter states at time

t = 0 s.

With these considerations in hand, we may now interpret the two factors,

µ̂2(s) and ST
Ŵ−1(s) v, appearing in Eq. (3.17) for µ̂(s). Up to overall param-

eters and the function Ĥ0(s), the factor µ̂2(s) arises purely from the change

in the distribution of filter states induced by the storage of the tracked mem-

ory ξ0 and is independent of the number of states of synaptic strength, n.

This change in the distribution of filter states is therefore already captured en-

tirely by the particular case of binary synapses, n = 2, studied before (Elliott

& Lagogiannis, 2012). The contribution to the tracked memory signal from

multiple strength states and therefore general n is essentially confined to the

second factor, ST
Ŵ−1(s) v. It is important to note, however, that the filter

dynamics continue to exert an influence in this factor through the probability

density for escape through either filter threshold from the zero state, 2 G0(t).

As we have seen, the inverse matrix Ŵ−1(s) essentially generates a random

walk on strength states between reflecting barriers by summing over all possi-
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ble processes. The vector S in ST
Ŵ−1(s) v weights the final states by their

strengths, and the vector v is proportional to the shift in the distribution of

strength states induced by the storage of the tracked memory ξ0, since only

the A = 1 and A = n strength states change their probabilities. It is indeed

striking, and even remarkable, that µ̂(s) factorises in this way. However, this

factorisation of course reflects the separation of the underlying dynamics into

an initial phase governed by the change in filter distributions induced by the

storage of ξ0, and a later phase governed by transitions in synaptic strength

driven by a renewing but non-Markovian random walk regulated by the prob-

ability density 2G0(t). This probability density arises because once the state

of a filter immediately after the storage of ξ0 has been forgotten due to a filter

threshold process leading to a return of the filter to the zero state, later pro-

cesses naturally decompose into dynamics starting from the zero filter state

and returning to the zero filter state via a filter threshold process, leading

(possibly) to a change in strength. We must now determine the contribution

from these later processes by explicitly computing ST
Ŵ−1(s) v.

3.2 Computation of ST
Ŵ−1(s) v

In order to obtain the full form for µ̂(s), we must now compute ST
Ŵ−1(s)v.

We may do this using two different methods, both of which lead to different

but useful approximations, which we shall examine below.
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3.2.1 Method 1: Eigenanalysis

The first method is a direct computation of Ŵ−1. As the matrix C is tridi-

agonal, its eigenstructure may be computed explicitly. We give the details

in Appendix B. The stochastic matrix 1
2
C has eigenvalues λm given by

λm = cos
m π

n
, m = 0, . . . , n − 1, (3.24)

and corresponding normalised eigenvectors em with components em
A given by

em
A =





√
1
n

for m = 0

√
2
n

cos
[

m π
2 n

(2A − 1)
]

for m = 1, . . . , n − 1

. (3.25)

The matrix inverse Ŵ−1 =
[
I − (2 Ĝ0)

(
1
2
C

)]−1

is therefore given by

Ŵ
−1 =

n−1∑

m=0

1

1 − 2 Ĝ0 λm

em (em)T . (3.26)

We find that

STem =





0 for m = 0

− [1 − (−1)m]√
2 n (n − 1)

cos m π
2 n

sin2 m π
2 n

for m = 1, . . . , n − 1

, (3.27)

and

(em)T
v = −

√
2

n
[1 − (−1)m] cos

m π

2 n
, (3.28)
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where strictly this latter equation is valid only for m = 1, . . . , n− 1 but it also

generates the required result (of zero) for m = 0. Finally, then, we have that

ST
Ŵ

−1v =
2

n(n − 1)

n−1∑

m=1

[1 − (−1)m]

1 − 2 Ĝ0 cos m π
n

cot2 m π
2 n

. (3.29)

3.2.2 Method 2: Generating Function

The first method above for computing ST
Ŵ−1v involves a direct eigenanal-

ysis of the stochastic matrix 1
2
C. We may instead use a generating function

approach that implicitly determines all the matrix powers
(

1
2
C

)m
without a

direct eigenanalysis and in so doing obtain a very different representation of

ST
Ŵ−1v.

The stochastic matrix 1
2
C generates a random walk between reflecting

boundaries, so consider the probability distribution p(m) after m discrete time

steps, starting from some initial distribution p(0). Then p(m) =
(

1
2
C

)m
p(0).

Let the components of p(m) be pA(m), A = 1, . . . , n, the probability of being

in state A after m time steps. Define a generating function for pA(m) over

both states A and time steps m by writing

F (w, z) =
∞∑

m=0

wm

n∑

A=1

zA pA(m) =
n∑

A=1

zA

∞∑

m=0

wm pA(m). (3.30)

If we set w = 2 Ĝ0, then F (2 Ĝ0, z) essentially determines Ŵ−1, because

pA(m) =
[ (

1
2
C

)m
p(0)

]
A
. By writing out the set of equations for fA(m + 1) in

terms of fA(m) and taking into account the reflecting boundary conditions, a
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standard calculation (see, for example, van Kampen, 1992) produces

F (w, z) =
w z (1 − z)P1(w) − w zn+1(1 − z)Pn(w) − 2 z f(z)

w z2 − 2 z + w
, (3.31)

where PA(w) =
∑∞

m=0 wm pA(m) and f(z) =
∑n

A=1 zA pA(0). The function

f(z) is the generating function for the initial state at m = 0. Taking the initial

state to be B with probability unity, we have f(z) = zB. F (w, z) involves

the two unknown functions P1(w) and Pn(w), which arise from the reflecting

boundary conditions. However, these functions can be uniquely determined via

analyticity arguments in the complex z plane (Cox & Miller, 1965). Specifically,

F (w, z) is by construction a polynomial of degree n in z and so cannot contain

any singularities in z. Yet the denominator in Eq. (3.31) has zeros at the two

roots, call them z±(w), of the equation z2 − (2/w) z + 1 = 0. The numerator

must therefore also have zeros at these two locations. Hence, we may deduce

that

P1(w) =
2

w

zn
+(1 − z+)f(z−) − zn

−(1 − z−)f(z+)

(1 − z+)(1 − z−)(zn
+ − zn

−)
, (3.32)

Pn(w) =
2

w

(1 − z+)f(z−) − (1 − z−)f(z+)

(1 − z+)(1 − z−)(zn
+ − zn

−)
, (3.33)

although we do not, in fact, need to know Pn(w).

By writing z2 − (2/w) z + 1 = (1 − z− z)(1 − z+ z) in the denominator

of F (w, z), it is straightforward to obtain an expression for the coefficient of
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the zA, 1 ≤ A ≤ n, term in F (w, z).4 With f(z) = zB, this coefficient

is just
∑∞

m=0 wm
[(

1
2
C

)m]
AB

. Because we want to compute ST
Ŵ−1v with

vT = (−1, 0, . . . , 0, +1), it suffices to set B = 1. Setting B = n must by

symmetry produce the same final result, up to a sign. The required coefficient

is then

∞∑

m=0

wm
[(

1
2
C

)m]
A,1

= P1(w)
zA
+ − zA

−

z+ − z−
−

[
P1(w) +

2

w

]
zA−1
+ − zA−1

−

z+ − z−
, (3.34)

with P1(w) given by Eq. (3.32), and we need

ST
Ŵ

−1v

= −2
n∑

A=1

sA

∞∑

m=0

(
2 Ĝ0

)m [(
1
2
C

)m]
A,1

= 2
n∑

A=1

sA

{[
P1(2 Ĝ0) + (Ĝ0)

−1
] [

z+(2 Ĝ0)
]A−1 −

[
z−(2 Ĝ0)

]A−1

z+(2 Ĝ0) − z−(2 Ĝ0)

− P1(2 Ĝ0)

[
z+(2 Ĝ0)

]A −
[
z−(2 Ĝ0)

]A

z+(2 Ĝ0) − z−(2 Ĝ0)

}
. (3.35)

After a great deal of tedious but routine algebra, we eventually obtain the

4Writing, say, (1 − z− z)−1 =
∑∞

i=0(z− z)i, appears to remove the denomi-

nator and thus undermine the argument concerning its zeros. However, with

this rewriting, the radii of convergence of the two resulting series must be

considered, and these two radii are precisely |z±(w)|.
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remarkably simple form,

ST
Ŵ

−1v =
2

n − 1

1

1 − 2 Ĝ0



n −

√
1 + 2 Ĝ0

1 − 2 Ĝ0

[
z+(2 Ĝ0)

]n − 1
[
z+(2 Ĝ0)

]n
+ 1



 . (3.36)

We note that z+(2 Ĝ0) ≡ ΦΘ
+ for a definite choice of sign conventions.

3.3 Extraction of µ(t)

We now invert the Laplace transform µ̂(s) to obtain µ(t) for the two forms of

ST
Ŵ−1(s) v derived above. The two expressions for ST

Ŵ−1v in Eqs. (3.29)

and (3.36) are very different in structure, but each is useful for extracting

different approximations.

3.3.1 µ(t) from Eqs. (3.15) and (3.29)

Inserting Ĝ0(s) = [Φ+(s)]Θ /
{

[Φ+(s)]2Θ +1
}

into Eq. (3.29) and expanding in

1/s, we find that the leading order behaviour is ST
Ŵ−1(s) v ∼ 2 + O(1/s).

For n = 2, ST
Ŵ−1(s) v ≡ 2. It is therefore convenient to define

χ̂n(s) = 1
2
ST

Ŵ
−1(s) v − 1

=
1

n(n − 1)

n−1∑

m=1

[1 − (−1)m]
2 Ĝ0 cos m π

n

1 − 2 Ĝ0 cos m π
n

cot2 m π
2 n

, (3.37)

so that the Dirac delta function δ(t) present in ST
W−1(t) v is isolated and

made explicit. By the convolution theorem, we may directly invert Eq. (3.17),
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writing µ(t) in the form

µs(t) :=
n

2
µ(t) = µ2(t) + (µ2 ∗ χn) (t), (3.38)

which defines the scaled form of µ(t) to be µs(t), removing an overall factor of

2/n, and where (f ∗ g)(t) denotes the Laplace convolution,

(f ∗ g)(t) =

∫ t

0

dτf(t − τ)g(τ). (3.39)

Using µs(t) allows us to directly compare µ(t) for different values of n. The

form of Eq. (3.38) allows us to see that µs(t) deviates from and indeed exceeds

µ2(t) by a lagged response that is determined by χn(t) via the convolution

(µ2 ∗ χn) (t). We of course have that χ2(t) ≡ 0, so that µs(t) ≡ µ2(t) for n = 2.

The response is lagged because χn(t) rises from zero at t = 0 s. To obtain an

explicit formula for µs(t), we first reproduce here the result for µ2(t) derived

elsewhere (Elliott & Lagogiannis, 2012):

µ2(t) =
1

Θ3

Θ−1∑

l=0

cot2 (2 l+1)π
4Θ

exp
{
−t

[
1 − cos (2 l+1)π

2 Θ

]}

− 4

Θ3

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−t

[
1 − cos (2 l+1)π

Θ

]}
, (3.40)
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where ⌊x⌋ is the floor function. We must also determine χn(t) explicitly from

Eq. (3.37) by computing the inverse Laplace transform. We have that

Ĝ0(s)

1 − 2 Ĝ0(s) cos m π
n

=
[Φ+(s)]Θ

[Φ+(s)]2 Θ − 2 cos m π
n

[Φ+(s)]Θ + 1
, (3.41)

so there are poles in s at the roots determined by the solutions of [Φ+(s)]Θ =

exp(±i m π/n). Because Φ+(s) Φ−(s) = 1 and Φ+(s) + Φ−(s) = 2(1 + s), if

Φ+(s) = ω and Φ+(s) = ω∗ are a root and its complex conjugate in Φ+, then

Φ+(s)

[Φ+(s)]2 − (ω + ω∗) Φ+(s) + 1
=

1

2

1

s + 1 − 1
2
(ω + ω∗)

, (3.42)

so a root and its complex conjugate in Φ+ combine to create a simple pole in

s at s = 1
2
(ω + ω∗) − 1. With this observation, the inverse Laplace transform

is routine, and we obtain

L−1
[

bG0(s)

1−2 bG0(s) cos m π

n

; t
]

=
1

2 Θ

Θ−1∑

l=0

sin (2 l+m/n)π
Θ

sin m π
n

exp
{
−t

[
1 − cos (2 l+m/n)π

Θ

]}
,

(3.43)

whence,

χn(t) =
1

Θn(n − 1)

n−1∑

m=1

[1 − (−1)m] cot2 m π
2 n

cot m π
n

×
Θ−1∑

l=0

sin (2 l+m/n)π
Θ

exp
{
−t

[
1 − cos (2 l+m/n)π

Θ

]}
.

(3.44)
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Plugging Eqs. (3.40) and (3.44) into Eq. (3.38) and explicitly computing the

convolution, we obtain a messy expression for µs(t).

We do not reproduce in full this expression here because below we will ob-

tain a much simpler expression for µs(t) via Eq. (3.36). However, the advantage

of the convolution representation is that we may obtain an approximation to

µs(t) that is valid both at small times and at large times, but not at intermedi-

ate times. Because µs(t) is at small times very close to µ2(t) due to the lagged

response from χn(t), any good enough approximation to χn(t) will maintain

the behaviour µs(t) ≈ µ2(t) for small t. Furthermore, if we approximate χn(t)

with a form that improves and becomes asymptotically exact at large t, then

µs(t) under this approximation will become asymptotically exact. Replacing

χn(t) by just its slowest decaying mode [m = 1 and l = 0 in Eq. (3.44)] will

achieve this approximation, so writing

χn(t) ≈ 2

Θn(n − 1)
cot2 π

2 n
cot

π

n
sin

π

Θ n
exp

[
−t

(
1 − cos

π

Θ n

)]
. (3.45)

A different approximation can be achieved by retaining the full sum over l in

Eq. (3.44) and retaining only the m = 1 contribution from the sum over m,

but this approximation is necessarily more complicated than retaining just the

slowest decaying, m = 1 and l = 0 mode in Eq. (3.44).

In Fig. 2 we illustrate the result for χn(t) in Eq. (3.44) by plotting χn(t) as

a function of t for various choices of n and Θ. In Fig. 2A, for varying n and

fixed Θ, we see explicitly the lagged onset of χn(t), rising from zero, reaching
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a peak, and then falling back to zero. As n increases, the peak increases in

amplitude, is displaced somewhat later in time, and also broadens, becoming

plateau-like. In Fig. 2B we fix n and vary Θ. As Θ increases, χn(t) is overall

and significantly (note the log scale) scaled down, and its peak is increasingly

displaced towards later times. Comparing χn(t) to the probability density

2 G0(t) for escape through either filter threshold starting from the zero filter

state, plotted in Fig. 2C, we see that χn(t) tracks 2 G0(t) quite closely for

smaller times, with the overall scale of χn(t) being set by 2 G0(t). In fact, if

we expand the form for χ̂n(s) in Eq. (3.36) in terms of 2 Ĝ0(s), we find that

the leading order behaviour is governed by

χ̂n(s) ∼ n − 2

n − 1
× 2 Ĝ0(s), (3.46)

so that χn(t) ∼ n−2
n−1

× 2 G0(t) for small times. The escape density 2 G0(t)

therefore explicitly sets the scale for χn(t), up to the overall factor of n−2
n−1

. As

n increases, this factor approaches unity, and indeed we see all the curves for

χn(t) for increasing n in Fig. 2A converging for smaller times.

3.3.2 µ(t) from Eqs. (3.15) and (3.36)

We now obtain µ(t) using the form for ST
Ŵ−1(s) v in Eq. (3.36). Rather

than exploiting the convolution structure explicit in the product of two Laplace

transforms, we instead reduce Eq. (3.15) to its simplest form before evaluating

the inverse transform. We know that µ̂ = 1
n

µ̂2 ST
Ŵ−1v and from Eq. (A.50)

41



in Elliott & Lagogiannis (2012), we have that

µ̂2 =
1

Θ2

2 Φ+ (Φ+ + 1)

(Φ2 Θ
+ + 1) (ΦΘ

+ + 1)

(
ΦΘ

+ − 1

Φ+ − 1

)3

. (3.47)

Writing ST
Ŵ−1(s)v in Eq. (3.36) out in terms of Φ+(s), we obtain

ST
Ŵ

−1(s)v =
2 n

n − 1

Φ2Θ
+ + 1

(ΦΘ
+ − 1)

2 −
2

n − 1

(
Φ2Θ

+ + 1
) (

ΦΘ
+ + 1

)

(ΦΘ
+ − 1)

3

ΦΘ n
+ − 1

ΦΘ n
+ + 1

, (3.48)

so we have

µ̂s =
1

Θ2

1

n − 1

2 Φ+ (Φ+ + 1)

(Φ+ − 1)3

[
n

ΦΘ
+ − 1

ΦΘ
+ + 1

− ΦΘ n
+ − 1

ΦΘ n
+ + 1

]
. (3.49)

The inverse Laplace transform is routine, and we obtain

µs(t) =
2

Θ3(n − 1)




1

n

⌊
Θn−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ n

exp
{
−t

[
1 − cos (2 l+1)π

Θ n

]}

− n

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2 Θ

exp
{
−t

[
1 − cos (2 l+1)π

Θ

]} 
.

(3.50)

This general n form is striking in its similarly to the n = 2 form in Eq. (3.40).

For n = 2, µs(t) reduces identically to µ2(t) because
⌊
Θ− 1

2

⌋
≡ Θ−1. By again

taking the slowest decaying mode from each of the two sums in Eq. (3.50), we
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obtain an extremely simple approximation to µs(t),

µs(t) ≈ 2

Θ3(n − 1)

{
1

n
cot2 π

2 Θ n
exp

[
−t

(
1 − cos

π

Θ n

)]

− n cot2 π

2 Θ
exp

[
−t

(
1 − cos

π

Θ

)]}
, (3.51)

or, taking only the slowest decaying term, the even simpler

µs(t) ≈
2

Θ3 n(n − 1)
cot2 π

2 Θ n
exp

[
−t

(
1 − cos

π

Θ n

)]
. (3.52)

This latter form is especially useful for determining SNR memory lifetimes

because it gives an extremely simple expression for µs(t) at large times.

Finally, we may extract some large n limits by considering the limiting be-

haviour of Eq. (3.36). Throwing away terms that are exponentially suppressed

in n, we have

ST
Ŵ

−1v ∼ 2

n − 1

1

1 − 2 Ĝ0


n −

√
1 + 2 Ĝ0

1 − 2 Ĝ0


 (3.53)

as an O(1/n) approximation, and as an O(1) approximation we have

ST
Ŵ

−1v ∼ 2

1 − 2 Ĝ0

. (3.54)
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The two corresponding forms of µs(t) are then

µs(t) ∼ n

n − 1




1

Θ
− 2

Θ3

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−t

[
1 − cos (2 l+1)π

2Θ

]} 


− 1

n − 1

1

Θ2

[
(1 + 2 t)I0(t) + 2 t I1(t)

]
exp(−t), (3.55)

and

µs(t) ∼ 1

Θ
− 2

Θ3

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−t

[
1 − cos (2 l+1)π

2Θ

]}
(3.56)

→ 1

Θ
as t → ∞, (3.57)

where I0(t) and I1(t) are modified Bessel functions of the first kind. Note the

remarkable behaviour that µs(t) asymptotes to a constant, 1/Θ, for large t in

the formal, n → ∞ limit. We may compare this O(1) approximation to the

large n form of the two-decay approximation in Eq. (3.51),

µs(t) ∼
8

π2

1

Θ
− 2

Θ3
cot2 π

2 Θ
exp

[
−t

(
1 − cos

π

Θ

)]
. (3.58)

This large n form of the two-decay approximation therefore underestimates the

asymptotic behaviour µs(t) ∼ 1/Θ by around 19%, since 8/π2 ≈ 0.81.

3.4 Results for a Stochastic Updater Synapse

To facilitate comparison, we also consider a simple, stochastic updater synapse

(Tsodyks, 1990). Such a synapse expresses potentiation or depression steps
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with a fixed probability p upon receipt of a plasticity induction signal. Pre-

viously, we compared such a synapse to a filter-based synapse, but only for

n = 2 (Elliott & Lagogiannis, 2012).

The transition matrix for single, one-step changes in synaptic strength for

a stochastic updater synapse is simply J = (1 − p) I + 1
2
p C, so the transition

matrix for changes in synaptic strength in time t is

P(t) = exp [t (J − I)]

=
n−1∑

m=0

em (em)T exp
[
−p t

(
1 − cos m π

n

)]
, (3.59)

where the second line follows immediately from the eigenstructure of 1
2
C con-

sidered above in section 3.2.1. The mean memory signal is as usual µ(t) =

ST
P(t)a, where a is the probability distribution of strength states immedi-

ately after the storage of memory ξ0. This distribution is just [cf. Eq. (3.22)]

a =
1

n
(n + p v) . (3.60)

We then obtain

µ(t) =
2 p

n2(n − 1)

n−1∑

m=1

[1 − (−1)m] cot2 m π
2 n

exp
[
−p t

(
1 − cos m π

n

)]
. (3.61)

For n = 2, µ(t) reduces to µ(t) = p exp(−p t), as it should (Elliott & Lagogian-

nis, 2012).

Because a stochastic updater synapse has no internal states, the argument
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leading to Eq. (3.23) applies with the replacements 1/Θ2 → p and G0(t) →

1
2
p exp(−p t), where G0(t) is just the density for the expression of either a

potentiation or a depression step. We may then use the large n approximations

to ST
Ŵ−1 v in Eqs. (3.53) and (3.54) to obtain large n forms for µ(t) for a

stochastic updater. We obtain

µs(t) ∼
n

n − 1
p − 1

n − 1
p
[
(1 + 2 p t)I0(p t) + 2 p t I1(p t)

]
exp(−p t), (3.62)

and

µs(t) ∼ p, (3.63)

respectively. We note that µs(t) ∼ µs(0), in the formal limit, n → ∞, so that

the scaled mean memory signal remains fixed for all time in this limit.

For a stochastic updater, we may also readily compute E
[
S̃1(t)S̃2(t)

]
and

hence Cov(t). To determine E
[
S̃1(t)S̃2(t)

]
we must work in the tensor product

space defined by any pair of synapses. The transition matrix over time t for

joint changes in strength between any pair of synapses is exp [t (J ⊗ J − I ⊗ I)],

so

E
[
S̃1(t)S̃2(t)

]
= ST ⊗ ST exp [t (J ⊗ J − I ⊗ I)] a ⊗ a. (3.64)

Letting the eigenvalues of J be Λm, where Λm = 1 − p
(
1 − cos m π

n

)
, for m =

0, . . . , n − 1, then em1 ⊗ em2 is an eigenvector of J ⊗ J − I ⊗ I with eigenvalue
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Λm1
Λm2

− 1. We then have

E
[
S̃1(t)S̃2(t)

]

=
4 p2

n4(n − 1)2

n−1∑

m1,m2=1

[1 − (−1)m1 ] [1 − (−1)m2 ] cot2 m1π
2 n

cot2 m2π
2 n

× exp [t (Λm1
Λm2

− 1)] . (3.65)

For n = 2, this reduces to E
[
S̃1(t)S̃2(t)

]
= p2 exp [−t p(2 − p)], as before (El-

liott & Lagogiannis, 2012). Eq. (3.65) does not factorise over the two sums and

so reduce to µ(t)2 because in general (Λm1
Λm2

− 1) 6= (Λm1
− 1) + (Λm2

− 1).

4 Memory Performance

Having derived exact and approximate results for µ(t) above, we may now

employ these results to examine the memory signal dynamics and their impact

on memory lifetimes.

4.1 Memory Signal Dynamics

We first consider the dynamics of the mean memory signal µ(t) and its scaled

version, µs(t). In Fig. 3 we verify our analytical results by comparing µ(t) to

simulation results for various choices of parameters. Full details of our simu-

lation protocols may be found elsewhere (Elliott & Lagogiannis, 2012; Elliott,

2014). Figs. 3A and 3B compare results for Θ = 4 and Θ = 8, respectively, each

for four different choices of n, as indicated. The agreement between analytical
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and simulation results is exact.

From Figs. 3A and 3B we see that µ(t) for n > 2 continues to exhibit the

very striking initial increase in the memory signal that we first reported for

binary, n = 2 synapses in the presence of a synaptic filter that integrates synap-

tic plasticity induction signals before expressing synaptic plasticity (Elliott &

Lagogiannis, 2012). Although µ(t) is progressively scaled down as n increases,

this signal rise is sustained somewhat longer as n increases, and then its sub-

sequent fall back to zero is attenuated and drastically slowed down so that, at

least for the parameters used in these figures, µ(t) for larger n will eventually

exceed µ(t) for smaller n, despite this overall scaling down. By using the scaled

mean memory signal µs(t) = n
2
µ(t), we may more easily visually compare the

memory signal dynamics for different values of n. Thus, in Figs. 3C and 3D,

the shift in the peak signal location as n increases is clearer. We also see that

in terms of the scaled signal, increasing n increases not only the time at which

the signal reaches its peak value but also the absolute value of the peak signal.

For small times, µs(t) is essentially independent of n, with µs(t) ≈ µ2(t). The

lagged influence of larger values of n then becomes apparent as t increases,

with µs(t) taking longer to reach higher signal peaks, and then taking longer

to relax back to equilibrium as t → ∞. These dynamics for µ(t) or µs(t) reflect

the dynamics for χn(t) discussed in Fig. 2.

For n = 2 synaptic strength states, the signal rise occurs because the storage

of the initial memory ξ0 at t = 0− s induces a systematic bias in the distri-

bution of synaptic filter states (Elliott & Lagogiannis, 2012). Those synapses
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experiencing an initial potentiating induction signal become more likely sub-

sequently to remain strong or to potentiate if not strong, and correspondingly

those synapses experiencing an initial depressing induction signal become sub-

sequently biased to remain weak or become weak. The signal rise for n = 2

occurs while this bias in filter states exists: the biased filter states induce pro-

gressively greater asymmetry in the distribution of synaptic strength states,

which translates directly into the rising memory signal. Once the filter states

have re-equilibrated and lost their bias, the memory signal stops rising and

then starts to fall as the distribution of synaptic strength states re-equilibrates

(Elliott & Lagogiannis, 2012). For n > 2, essentially identical dynamics occur.

However, for n > 2 synaptic strength states, the re-equilibration of filter states

takes somewhat longer and the subsequent re-equilibration of synaptic strength

states then takes considerably longer. We will quantify these statements using

the approximate forms for µ(t) derived above.

Before this quantification, we compare in Fig. 4 the various approximations

to µs(t) derived above to its exact form. In Fig. 4A, we examine the convo-

lution form of µs(t) in Eq. (3.38) together with the approximation to χn(t) in

Eq. (3.45). By construction, this approximate form for µs(t) agrees with the

exact form for both small times and large times, with discrepancies only at in-

termediate times. Because this approximation still involves a convolution over

µ2(t), using it to obtain the location of the signal peak would require yet fur-

ther approximations. In Figs. 4B and 4C we consider the one- and two-decay

forms of µs(t) in Eq. (3.52) and (3.51), respectively. Both forms necessarily
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agree with µs(t) for large times, while the two-decay form at least captures the

key dynamics of the initial signal rise and its subsequent fall, even if the ap-

proximation somewhat underestimates the amplitude of the signal peak. The

one-decay form is particularly simple, and because it matches the exact form

for large times, it is especially useful for determining memory lifetimes. The

two-decay form is useful for estimating the location and amplitude of the signal

peak. Finally, in Fig. 4D we examine the large n, O(1/n) form for µs(t) in

Eq. (3.55). The agreement with the exact result for all but large times, even

for the relatively small value of n = 10 used here, is remarkably good. Com-

paring Eq. (3.55) with the exact form for µs(t) in Eq. (3.50), we see that the

approximate form retains the second sum in Eq. (3.50), which does not depend

on n (except through overall multipliers) and essentially replaces the first, n-

dependent sum by two Bessel functions. As the second sum is also present in

µ2(t) and since µs(t) ≈ µ2(t) for small t, the first sum in Eq. (3.50) must es-

sentially encode the n-dependent signal dynamics that lead to changes in the

location and amplitude of the signal peak and its subsequent, slower decay.

Since the replacement of the first sum by the two Bessel functions constitutes

an O(1/n) approximation that becomes increasingly good as n increases, the

striking agreement in Fig. 4D should therefore perhaps not be too surprising.

From a purely numerical perspective, then, this large n approximation pro-

vides an extremely efficient approximation to Eq. (3.50) as we do not need to

compute the first sum with its nearly n Θ/2 terms. However, because it does

not capture the large time dynamics correctly, this approximation is not useful
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for estimating memory lifetimes.

The two-decay approximation to µs(t) in Eq. (3.51) provides, as we have

seen, an analytically very simple form that captures the key dynamics of both

the mean memory signal rise and its subsequent fall. Using this two-decay

form, we can estimate the location of the signal peak as

rtpeak ≈ 2

cos π
Θ n

− cos π
Θ

loge

(
n

cos π
2Θ

cos π
2Θ n

)
(4.1)

∼ 4 Θ2

π2

n2

n2 − 1
loge n ∼ 4 Θ2

π2
loge n (4.2)

where the second and third forms follow for n and Θ large enough. The location

of the signal peak therefore grows relatively mildly as a function of n, growing

only logarithmically. An estimate of the peak scaled memory signal is therefore

µpeak
s ≈ 8

π2

1

Θ

(
1 +

1

n

)
n−2/(n2−1), (4.3)

for n and Θ large enough. We note that as a function of n, this estimate

for µpeak
s first rises and then falls, asymptoting to (8/π2)(1/Θ). Fig. 3, how-

ever, indicates that µpeak
s actually increases monotonically as a function of n,

asymptoting to 1/Θ. This failure of the estimate for µpeak
s to capture the exact,

quantitative behaviour of µpeak
s is not an artifact of the large n approximations

used to derive it, but rather is a direct consequence of the two-decay approxi-

mation to µs(t). Specifically, if we insert the exact location of the peak of the

two-decay form of µs(t) in Eq. (4.1) into this two-decay form for µs(t), then
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it still exhibits the same overall dependence on n as the form in Eq. (4.3). In

order to obtain better approximations to µpeak
s , we would have to use better

approximations to µs(t), but then analytical approximations for µpeak
s would

become intractable.

Although the two-decay estimate of µpeak
s is only fair, we may nevertheless

use it to determine the qualitative dependence of the fall in µs(t) after attaining

its peak value on n. In particular, we may compute the time at which µs(t) or

equivalently µ(t) drops to some fraction, 1 − δ for δ small, of its peak value.

If this time is large enough so that we may use the one-decay form for µs(t),

then we can use Eq. (3.52) to solve the equation µs(t) = (1 − δ)µpeak
s for

t = t(1−δ)peak > tpeak. We obtain

rt(1−δ)peak ≈ 2 Θ2n2

π2
δ, (4.4)

again for n and Θ large enough, and for δ small enough. This time at which

the mean memory signal has fallen from its peak value by some faction δ ≪ 1

therefore grows quadratically in n.

The results in Eqs. (4.2) and (4.4) quantify our earlier statement above

regarding the re-equilibration of filter and strength states after the storage

of memory ξ0 at time t = 0−. Filter states re-equilibrate only marginally

(logarithmically) more slowly as n increases, but strength states re-equilibrate

significantly (quadratically) more slowly as n increases. Of course, the number

of filter states, 2 Θ − 1, does not by construction depend on the number of
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strength states n, so the mild dependence of the re-equilibration of filter states

on n may appear surprising. However, this dependence simply reflects the fact

that it takes longer for the systematic biasing in filter states over all strength

states [see Eq. (2.11)] to work out of the system.

We continue to explore these themes in Fig. 5 by examining µs(t) as n

increases. In Fig. 5A, we show µs(t) for progressively doubling values of n,

from n = 21 to n = 212 = 4096. Larger values of n are likely biologically

implausible but we consider them for illustrative purposes. We see clearly the

progressively but only mildly increasing signal peak location as n increases.

We also see the manner in which µs(t) attains the large n limit. The scaled

memory signal rises to very close to 1/Θ, which is the formal, asymptotic limit

in Eq. (3.57), remains very close to this value for increasingly long periods of

time as n increases, and then eventually peels away from it to relax back to

its equilibrium value. Fig. 5B indicates that precisely the same dynamics are

present in the two-decay approximation to µs(s) in Eq. (3.51). The two-decay

approximation underestimates the asymptotic value of 1/Θ, instead giving

(8/π2)(1/Θ), but otherwise captures identical memory signal dynamics. In

Fig. 5C we examine the dependence of the location of the signal peak on n,

both for the exact form for µs(t) (location determined numerically) and for

the two-decay form, for which the location is given by Eq. (4.1). The onset of

logarithmic behaviour for both forms as n increases is clear. We see that the

two-decay form systematically overestimates the location of the peak signal,

but the qualitative dependence on n is correct. Fig. 5D shows the time at which
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µs(t) has fallen to 95% of its peak value, again both for the exact form of µs(t)

and the two-decay form. These times for both forms of µs(t) are determined

numerically from Eqs. (3.50) and (3.51). We do not use the approximate

solution in Eq. (4.4) for the two-decay form, although this approximate solution

agrees with the numerically-determined solution for n large enough. For both

forms of µs(t) we see the onset of linearity in the log-log plot, and in fact the

gradient approaches precisely two, indicating quadratic growth in n, consistent

with Eq. (4.4). Again, the two-decay form systematically overestimates the

exact location of 95% of signal peak, but is qualitatively correct.

4.2 Memory Lifetimes

Having examined in the detail the dynamics of µ(t) and µs(t), we may now

consider the impact of these dynamics on memory lifetimes, gauged principally

by the SNR µ(t)/σ(t).

As we have discussed elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014),

the presence of covariance between any pair of synapses’ strengths induced by

driving memory storage as a continuous-time process considerably complicates

the computation of memory lifetimes using SNRs. However, if memory life-

times are sufficiently long that the covariance has died away by the time that

the SNR reaches unity, then we may safely approximate the variance σ(t)2

in Eq. (2.10) by dropping the covariance term. We may usually approximate

even further by replacing Var[S(t)] by E[S(t)2] because µ(t)2 is often small

enough to neglect. We validate these approximations for the more general,
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n > 2 case in Fig. 6. First, in Fig. 6A, we compare σ(t) determined exactly via

numerical matrix methods to results obtained in simulation. The agreement is

exact, although there is inevitably a little more noise in second order statistics

obtained via simulation compared to first order statistics. The variance σ(t)2

exhibits a double peak. Both peaks are increasingly suppressed as n increases,

but the second peak is suppressed more significantly than the first peak. This

enhanced suppression of the second peak is evident in the covariance between

pairs of synapses’ strength, shown in Fig. 6B. Such enhanced suppression for in-

creasing n, which we expect to be associated with increasing memory lifetimes

due to the sustained memory signal µ(t), helps to ensure that the covariance

term in Eq. (2.10) plays an increasingly insignificant role in the determination

of memory lifetimes. In Figs. 6C and 6D we plot the SNR µ(t)/σ(t) for two

sets of parameters leading, respectively, to shorter memory lifetimes and longer

memory lifetimes. For both figures, we use the three different forms of σ(t)2

discussed above: the full form in Eq. (2.10); Eq. (2.10) without the covariance

term; E[S(t)2]/N . In both figures, for small times there are large differences

in these different forms of SNR, specifically between the exact form and its ap-

proximate forms. The approximate forms significantly overestimate the SNR

because the large covariance significantly reduces the SNR. For large times,

however, the covariance dies away. If it dies away more rapidly than the mean

memory signal, then its effect becomes negligible and all three forms of SNR

coincide. In Fig. 6C, for a shorter memory lifetime, this coinciding of the three

forms does not occur before µ(t)/σ(t) reaches unity. In this case, use of the
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approximate forms of the SNR leads to an overestimate of memory lifetime by

around 20%. In Fig. 6D, however, for a longer memory lifetime, this coinciding

of the three forms does occur before µ(t)/σ(t) reaches unity, and use of the

approximate forms of SNR leads to only a 0.5% error in the computed memory

lifetimes. Generally speaking, memory lifetimes are increased by increasing Θ

or n (or both), so for Θ and n sufficiently large, we may approximate σ(t)2

either by dropping the covariance term in Eq. (2.10) or even more simply by

writing σ(t)2 ≈ E[S(t)2]/N . For large times, we may use the one-decay form

of µ(t) as an approximation to the exact form of µ(t). We may then easily

solve the SNR condition µ(τsnr)/σ(τsnr) = 1 for σ(t)2 ≈ E
[
S̃(t)2

]
/N , giving

rτsnr =
−1

1 − cos π
Θ n

loge

[
1

4

1√
3N

√
n + 1

n − 1
Θ3n2(n − 1) tan2 π

2 Θ n

]
(4.5)

∼ Θ2n2

π2
loge

(
768

π4

N

Θ2n2

)
, (4.6)

with the second line following for n large enough. We note in passing that

this solution for τsnr is completely unchanged even if we do not scale synaptic

strengths by an overall factor of n. Such scaling of course modifies both µ(t)

and σ(t) identically, and any such scaling therefore drops out entirely from the

ratio µ(t)/σ(t) used to determine SNR memory lifetimes.

In Fig. 7 we plot the evolution of the SNR in time for various choices of

n (Fig. 7A) and N (Fig. 7B) using σ(t)2 ≈ {E[S(t)2] − µ(t)2}/N , and the

dependence of memory lifetimes τsnr on N for various choices of n (Fig. 7C). In

Fig. 7A, we see that although µ(t)/σ(t) is overall scaled down as n increases,
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µ(t)/σ(t) is sustained for longer for increasing n because of the dynamics in

µ(t) discussed earlier. Up to a point, therefore, the solution to µ(t)/σ(t) = 1

increases as n increases, so that memory lifetimes increase with n. This increase

in memory lifetimes as a function of n is, at least initially, quadratic in n. For

example, we see from Fig. 7A that in moving from n = 2 to n = 8, the solution

to µ(t)/σ(t) = 1 increases around 100-fold, and similarly in moving from n = 4

to n = 16. However, the overall scaling down of µ(t) as n increases wins out, so

that for intermediate values of n, memory lifetimes stop increasing with n and

start decreasing (e.g., there is hardly any change in the solution to µ(t)/σ(t) =

1 in Fig. 7A in moving from n = 64 to n = 128), and eventually µ(t)/σ(t)

never exceeds unity at all. These interactions lead to an optimal choice for

n for maximally enhancing memory lifetimes that we will explore below. As

a function of N , memory lifetimes consistently and uniformly increase as N

increases, as shown in Fig. 7B. However, the enhancement in µ(t)/σ(t) as a

function of N is only logarithmic in N , as seen in Eq. (4.5). Increasing N

to increase memory lifetimes is therefore an extremely inefficient method, and

a biologically very expensive one. Finally, Fig. 7C explicitly plots memory

lifetimes as a function of N for various choices of n. We determine τsnr both

from the exact form of µ(t) using numerical methods (thick lines) and from the

solution to the one-decay form in Eq. (4.5) (thin lines). For N large enough,

these two solutions coincide exactly. For small N , however, the SNR will

not exceed unity, so a solution to µ(t)/σ(t) = 1 does not exist. A critical

value of N exists above which such a solution exists, so there is a bifurcation
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as N increases. The one-decay solution in Eq. (4.5), however, always exists,

although this solution will be negative (and thus meaningless) for N too small.

We may regard the transition from negative solutions to positive positions as

akin to a pseudo-bifurcation. The exact and approximate memory lifetimes

therefore typically differ near the (real or pseudo-) bifurcation point, but are

qualitatively very similar in the small N regime.

As discussed, there is a tension between the enhanced longevity of µ(t)

caused by increasing n and the overall scaling down of µ(t) as n increases. This

tension is clear in Eq. (4.6). Memory lifetimes grow initially quadratically in

n but the logarithmic term eventually wins out, halting and then reversing

the growth, so that memory lifetimes start falling at some critical value of n.

This critical value of n is an optimal value, call it nopt, for maximising memory

lifetimes. For fixed N and Θ, it is given by

nopt =

√
768

π4e

√
N

Θ
≈ 1.70

√
N

Θ
. (4.7)

Of course, alternatively we may regard both n and Θ as fixed and obtain

an optimal value of N , Nopt, or regard both n and N as fixed and obtain an

optimal value of Θ, Θopt. Inserting nopt into Eq. (4.6), we obtain the maximum

possible value of τsnr,

rτmax
snr =

768

π6 e
N ≈ 0.29N. (4.8)

Notice that an optimal choice of either n or Θ has therefore replaced the feeble

logarithmic growth of τsnr in N with linear growth in N . Alternatively, we may
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optimally choose N and instead obtain

rτmax
snr =

Θ2n2

π2
≈ 0.10 Θ2n2. (4.9)

In this case, the attenuated and reversed growth of τsnr for large n has been

removed, so that for optimally chosen N , τsnr grows quadratically in n (or Θ)

with no attenuation. For the specific case of n = 2, binary synapses, for Θ

large enough, Eq. (4.6) becomes

rτsnr ∼
4Θ2

π2
loge

(
256

π4

N

Θ2

)
, (4.10)

and for optimally chosen Θ,

Θopt =

√
256

π4e

√
N ≈ 0.98

√
N, (4.11)

we then obtain,

rτmax
snr =

1024

π6 e
N ≈ 0.39N. (4.12)

Comparing Eqs. (4.8) and (4.12), at first blush it may appear somewhat per-

verse that we obtain a 33% higher upper limit to memory lifetimes for n = 2,

binary synapses than for n > 2 synapses. However, these upper limits are

realised only for optimal parameter choices. Comparing Eqs. (4.7) and (4.11),

we see that the numerical values for optimal parameter choices may differ dra-

matically. For N = 104 synapse, Eq. (4.11) tells us that for binary synapses,

59



maximum memory lifetimes are achieved for the rather unrealistic filter size

of Θopt ≈ 100 states. However, from Eq. (4.7) for non-binary synapses,

nopt ≈ 170/Θ or equivalently Θopt ≈ 170/n. These optimal values for n > 2

synapses may therefore be brought down to more biologically plausible values,

of order 10. Thus, although slightly longer maximum memory lifetimes are the-

oretically achievable with binary synapses compared to non-binary synapses,

such a possibility is not in fact realisable with biologically plausible choices

of parameters. Non-binary synapses give only slightly reduced theoretically

possible maximum memory lifetimes, but importantly these limits are entirely

realisable with biologically plausible choices of parameters.

Fig. 8 illustrates many of these issues for non-binary synapses. In Figs. 8A

and 8B we plot SNR memory lifetimes τsnr against n for various choices of Θ and

N , respectively. Memory lifetimes are determined numerically. We explicitly

see a maximum in τsnr at a particular, Θ- and N -dependent value of n, and we

may confirm that this value coincides with that given in Eq. (4.7). We note

that from Eq. (4.7), doubling Θ halves nopt, while Eq. (4.6) indicates that if

the product Θ n is fixed, then τsnr is unchanged. This reciprocal relationship

between n and Θ while leaving τsnr unchanged is clear in Fig. 8A. Furthermore,

Eq. (4.8) indicates the maximum possible value of τsnr as a function of N , for

optimally chosen n (or Θ). For N = 104 used in Fig. 8A, this maximum possible

SNR memory lifetime is around 3000/r s, and we see precisely this maximum

value for each choice of Θ in Fig. 8A for some particular (optimal) value of

n. According to Eq. (4.7), increasing N by a factor of 10 increases nopt by a
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factor of
√

10 ≈ 3.2, and this is also confirmed in Fig. 8B. More important, in

Fig. 8B we observe the maximum possible value of τsnr growing linearly rather

than logarithmically with N , being maximised for optimal choices of n (or Θ).

Again, we see directly from Fig. 8B that the maximal value of τsnr is around

0.3N/r, agreeing with Eq. (4.8).

In Fig. 8C, we compare SNR and MFPT memory lifetimes as a function of

n for fixed Θ and N . SNR lifetimes are determined as usual numerically while

MFPT lifetimes are determined in simulation using methods described in detail

elsewhere (Elliott, 2014). There is good agreement between τsnr and τmfpt for

smaller n. However, although τsnr exhibits its characteristic profile as a function

of n, with an optimal value nopt maximising τsnr, strikingly τmfpt exhibits no

such maximum but instead rises monotonically with n without any indication

of optimality. We may resolve this apparent inconsistency between SNR and

MFPT definitions of memory lifetimes by considering the variance in the first

passage lifetimes. In Fig. 8D we plot the one standard deviation region around

the MFPT-defined lifetimes. As n increases, the variance in the first passage

lifetime increases so that for relatively small n, the MFPT-defined lifetime

becomes indistinguishable from zero at the level of one standard deviation in

the first passage lifetime. To understand this radical difference between the

behaviour of the MFPT and SNR memory lifetimes, we must consider the

storage of the tracked memory, ξ0. Immediately after its storage, the mean
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and variance in the initial memory signal, call it h0 = h(0), are

µ0 =
2

n

1

Θ2
, (4.13)

σ2
0 =

1

N

[
1

3

n + 1

n − 1
− µ2

0

]
, (4.14)

respectively. If µ0 ≤ σ0, then according to the SNR definition of memory

lifetimes, the memory ξ0 is not stored successfully at t = 0− s and its lifetime is

zero. However, h0 has a non-singular distribution, so there is a finite probability

Prob
[
h0 > σ0

]
that ξ0 is in fact stored successfully, in the sense that for

some particular realisation, h0 is distinguishable from zero at the one standard

deviation level. MFPTs are averages over both unsuccessful (giving a first

passage time of zero) and successful (giving a first passage time greater than

zero) initial memory storage events. An MFPT lifetime may therefore be

positive while an SNR lifetime is zero. To compute Prob
[
h0 > σ0

]
, we observe

that because h0 is the sum over N identically-distributed, independent random

variables, by the central limit theorem h0 will be distributed very nearly as a

normal distribution, N (µ0, σ
2
0), for N large enough. Thus, the probability of

the successful storage of ξ0 is

Prob
[
h0 > σ0

]
≈ 1

2

[
1 + erf

(
µ0 − σ0

σ0

√
2

)]

∼ 1

2

[
1 + erf

(
− 1√

2

)]
≈ 0.16, (4.15)

where the asymptotic form arises for n or Θ large enough; erf is the error func-
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tion. Thus, the probability that ξ0 is successfully stored remains reasonably

non-zero, at around 16%, even in the large n limit. This is despite the fact

that the mean memory signal scales down inversely with n. As n increases,

the probability of the successful storage of ξ0 decreases and asymptotes to

around 0.16. A significant fraction of attempted storage events fail and re-

turn a zero first passage time; this fraction increases, but asymptotes, with

n, accounting for the increasing variance in the first passage times. Those

16% of storage events that are successful, however, will contribute increasingly

significantly to the MFPT because of both the Θ-dependent signal rise and

the increasing longevity of µ(t) and thus of successfully stored memories, as n

increases. These dynamics explain why τmfpt behaves rather differently from

τsnr in Fig. 8C but also why the variance in the first passage lifetimes grows to

swamp the MFPT, as seen Fig. 8D.

4.3 Comparison to Stochastic Updater

In Fig. 9, we briefly consider results for a stochastic updater synapse, compar-

ing them to those for a filter-based synapse. We set p = 1/25 = 0.04, which

is equivalent, at least in terms of the initial mean memory signal, to a Θ = 5

filter-based synapse. In Fig. 9A, we plot µs(t) for progressively increasing n,

similarly to Fig. 5A for a filter-based synapse. For a stochastic updater, µs(t)

falls monotonically, but as n increases, µs(t) takes progressively longer to peel

away from its initial value of p. In the formal, n → ∞ limit, µs(t) ≡ p for

all time. Figs. 9B and 9C show the equivalents of Figs. 7A and 7C. Because
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there is no signal growth but only decay for a stochastic updater, the over-

all scaling down of µ(t) as n increases has a relatively greater impact on the

SNR µ(t)/σ(t), so that for smaller values of n than for a matched filter-based

synapse, a stochastic updater’s SNR will not exceed unity. This then directly

and significantly impacts memory lifetimes, as seen in Fig. 7C, with larger

values of N being required to achieve positive memory lifetimes.

We may repeat the analysis above of optimal parameter choices and maxi-

mally enhancing τsnr. The one-decay form of Eq. (3.61) is

µ(t) ≈ 4 p

n2(n − 1)
cot2 π

2 n
exp

[
−p t

(
1 − cos

π

n

)]
, (4.16)

which should be compared to the one-decay form in Eq. (3.52) for a filter-

based synapse. Structurally these one-decay forms for a filter-based synapse

and a stochastic updater synapse are virtually identical, ultimately reflecting

the underlying random walk on n strength states in both cases. From this

one-decay form for a stochastic updater, we obtain

rpτsnr =
−1

1 − cos π
n

loge

[
1

4

1√
3N

√
n + 1

n − 1

1

p
n2(n − 1) tan2 π

2n

]

∼ n2

π2
loge

(
768

π4

p2N

n2

)
. (4.17)

For optimality we require,

nopt = p

√
768

π4e

√
N ≈ 1.70 p

√
N, (4.18)
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giving rise to

rτmax
snr =

768

π6e
pN ≈ 0.29 pN. (4.19)

This equation is identical to Eq. (4.8) except for the presence of a factor of

p. By setting p = 1, we may therefore obtain the same maximum theoreti-

cally possible SNR memory lifetimes for a stochastic updater synapse as for a

filter-based synapse. Again, given the simplicity of a p = 1 stochastic updater

synapse compared to a filter-based synapse, this may appear perverse. How-

ever, we must again consider whether this theoretical limit is in fact biologically

realisable for a stochastic updater synapse. Setting p = 1 to extremise τmax
snr

forces nopt ≈ 1.70
√

N and this, for N = 104, gives nopt ≈ 170 states, which

is implausibly large. We may trade nopt and p, just as we traded nopt and Θ

for a filter-based synapse, and so reduce nopt by reducing p. However, we then

significantly reduce τmax
snr ≈ 0.29 pN . For example, a choice of p = 1/10 to

reduce nopt to around 17 for N = 104 synapses would reduce τmax
snr ≈ 0.29 pN

to 0.03N . A stochastic updater synapse therefore cannot reconcile the dual

requirements of biologically plausible values of n while maintaining reasonable

SNR memory lifetimes. In contrast, a filter-based synapse reconciles these

requirements easily and very naturally.

5 Discussion

We have extended our earlier analysis of associative memory in a feedforward

framework with binary-strength, integrative, filter-based synapses to consider
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the more general case of discrete, multi-level synapses with n states of synaptic

strength. The natural, easily-generalisable structure of our filter model ensures

that exact analytical results may continue to be derived for the memory signal

dynamics. Good, simplifying approximations to these exact results, specifically

in the large time or large n limits, may also be extracted, facilitating the

derivation of good estimates of SNR memory lifetimes.

For binary synapses, we previously observed that the memory signal ini-

tially rises before it reaches a maximum and then begins to fall back to its

equilibrium value (Elliott & Lagogiannis, 2012). Ongoing memory storage ac-

tually facilitates this initial memory signal rise, in radical contrast to all other

related but non-integrative models, in which the memory signal falls mono-

tonically, and often exponentially fast. With general, discrete-state synapses,

we continue to observe similar memory signal dynamics to the binary-strength

case. Indeed, these dynamics are further enhanced for n > 2. The location

of the memory signal peak is somewhat enhanced, increasing logarithmically

with n. Relative to the binary-strength case, the (scaled) memory signal also

reaches higher values. The memory signal then starts to fall, but as n in-

creases, a quasi-plateau in the memory signal emerges, so that the memory

signal remains approximately constant, falling only very slowly, for a period

of time that grows quadratically with n. The usual, exponential decay then

takes over, with the memory signal falling to equilibrium. These overall mem-

ory signal dynamics translate into SNR memory lifetimes that are initially

quadratically enhanced as n increases, but the overall scaling down of the
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memory signal with n eventually reduces and then cuts off this enhancement,

reducing memory lifetimes above some optimal choice of n.

Using our exact results or the various approximations to them, an explicit

formula for SNR memory lifetimes was derived. These lifetimes may be opti-

mised by optimal selections of either n, Θ or N , with the other two param-

eters regarded as constants. A maximum memory lifetime of approximately

0.29N/r s is attainable with either n or Θ set optimally (when these parameters

are adequately large to make approximations valid), so that SNR memory life-

times grow linearly rather than logarithmically with the number of synapses.

For the specific case of binary, n = 2 synapses, this upper limit reaches around

0.39N/r s, although it is harder to realise, biologically-speaking. With an op-

timal choice of N instead, memory lifetimes grow quadratically in both n and

Θ.

Many authors have previously considered memory dynamics with binary-

strength or discrete synapses in either recurrent or feedforward networks, using

various metrics to gauge memory lifetimes or memory capacity (see, for exam-

ple, Willshaw et al., 1969; Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al.,

2005, Leibold & Kempter, 2006, 2008; Rubin & Fusi, 2007; Fusi & Abbott,

2007; Barrett & van Rossum, 2008; Huang & Amit, 2010, 2011). For example,

Amit & Fusi (1994) observed that the usual logarithmic dependence of mem-

ory lifetimes on N could be overcome by setting parameters optimally. Fusi

& Abbott (2007) showed that under optimal choices with discrete synapses,

memory lifetimes increase quadratically with n, under balanced potentiation
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and depression, as here. They argue, however, that such balanced processes

constitute fine-tuning. In other work, Fusi et al. (2005) showed that cascade-

type, binary-strength synapses do not exhibit such fine-tuning problems, and

that memory lifetimes can grow like N2/3, although the exponent appears to

depend quite sensitively on the precise details of the fits used and may be

somewhat lower (our own unpublished observations). Barrett & van Rossum

(2008) considered an information-theoretic approach, computing Shannon in-

formation per synapse with discrete synapses. Under optimal choices of the

learning rule (that is, the entire rule is optimised rather than merely a hand-

ful of synaptic parameters), they found that discrete, bounded synapses can

perform similarly to continuous, unbounded synapses, although it is harder to

relate their results directly to ours because of the focus on information content.

The argument that balanced potentiation and depression represents unde-

sirable fine-tuning (Fusi & Abbott, 2007) is based, however, on an incomplete

analysis, as we have argued elsewhere (Elliott, 2010a). Such analyses are typ-

ically based on Markov models in which the rates of potentiation and depres-

sion processes are free parameters that are set, and fixed, by hand. Essentially,

then, the postsynaptic firing rate is decoupled from the presynaptic firing rate.

Yet, with synaptic and other types of plasticity, changes in synaptic strengths

will feed directly back into changes in postsynaptic firing rates. In models of

synaptic plasticity that are intrinsically stable, perhaps because of an inherent

fixed-point structure, and that do not require artificial hard (or soft) bounds to

prevent run-away learning to stabilise them, synaptic strengths will evolve to
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fixed points in which, essentially by definition, potentiation and depression pro-

cesses are, on average, precisely balanced (see, for example, Bienenstock et al.,

1982; Burkitt et al. 2004, Appleby & Elliott, 2006). By effectively removing

the potentially stabilising mechanisms of synaptic plasticity that couple post-

synaptic firing to presynaptic firing, analyses that consider fixed firing rates

therefore somewhat ironically fail to consider properly the very mechanisms

of synaptic plasticity (for example leading to memory storage) that are under

investigation. On this view, any viable model of synaptic plasticity should

reasonably be expected to dynamically regulate the postsynaptic firing rate

precisely so that depression and potentiation processes are (on average) bal-

anced. We would not expect real synapses to rely on saturation of synaptic

strengths to impose stability, because this would decrease the effective dynam-

ical range of strengths available to synapses. Even with a finite, discrete set

of strength states, we would not expect synapses’ strengths to be clustered at

the upper or lower ends of the available range.

Perhaps a more significant argument against maximising memory lifetimes

via the device of optimally setting parameter values is that it is unlikely that

neurons can tune either n (the number of available strength states) or N (the

number of synapses) in the manner required. Indeed, we would expect large

variations in N between neurons, and perhaps even large variations in n within

any given neuron’s many synapses. It is therefore unclear how a real memory

system could realise optimal memory lifetimes. Furthermore, as we have seen,

the optimal values of, for example, n can be implausibly large, from a biological
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point of view. Given that synaptic plasticity at individual synapses is governed

by a relatively small available pool of large macromolecules (see, for example,

Harris & Stevens, 1989; Nusser et al., 1998; Bagal et al., 2005; Miller et al.,

2005; Asrican et al., 2007) it is unlikely that the number of states of strength, or

indeed the number of putative filter states, available to a synapse exceeds more

than a few tens at most. Yet, a stochastic updater synapse with p = 1 requires

nopt ≈ 170 and a filter-based, binary-strength synapse requires Θopt ≈ 100, for

N = 104. These numbers of likely an order of magnitude too high. Moreover,

there is the tantalising possibility that such optimality conditions are purely

an artifact of the SNR metric used to gauge memory lifetimes, because we

do not in fact see memory lifetimes exhibiting a maximum under variation of

parameters when using MFPTs: they appear to continue to grow indefinitely.

Although the variance in memory lifetimes increases, this is principally due

to increasing memory encoding failure. However, the failure rate saturates

at somewhat under 100%. At the worst, 16% of storage attempts succeed,

so a memory system could simply employ roughly a six-fold redundancy in

its architecture to ensure successful memory storage even in this worst-case

scenario. If there is one thing that the mammalian brain does not lack, it is

neurons.

Notwithstanding the considerations in the preceding paragraph, we note

that in a filter-based model with discrete synapses, SNR memory lifetimes

depend on both n and Θ, with these playing essentially identical roles. Be-

cause the key combination is the product Θn, we may trade one for the other.
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Specifically, increasing Θ allows us to decrease n. Although we should be

cautious of näıve optimality arguments for the reasons discussed above, by

considering n and Θ to be of order 10, we can satisfy the dual constraints of

biologically-plausible synaptic values and memory lifetimes that are not too

far to the left or too far to the right of the peak in maximum SNR mem-

ory lifetimes (see Fig. 8A). We might refer to this as the “sweet spot” or the

“Goldilocks regime”. Without the presence of the synaptic filter variable Θ,

the requirement that n be plausibly-sized would mean that memory lifetimes

are too short, while the requirement that memory lifetimes are not too short

would require than n is implausibly large. Introducing Θ allows us to bring

n down to reasonable values and simultaneously ensure that memory lifetimes

are not significantly compromised. Essentially, we trade “external” synaptic

states (states of strength) for “internal” synaptic states (filter states). If we

imagine these each to be encoded by the configurations of a single molecule

(or a small ensemble of identical molecules), then for a filter-based synapse,

we require two (sets of) molecules with a small handful of states, while a non-

filter-based synapse requires a single molecule (or a single set of molecules)

with potentially of order one hundred states.

We have also argued before that the filter size Θ may be under dynamic

regulation, with larger Θ being used to stabilise existing memories and smaller

Θ being used to promote the rapid learning of new memories (Elliott, 2011a;

Elliott & Lagogiannis, 2012). Such dynamic regulation could be achieved by

regulating the kinase and phosphatase activity that is known to be critical in
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synaptic plasticity (Malenka et al., 1989; Mulkey et al., 1993; Ferrell, 1996;

Lisman & Zhabotinsky, 2001; Pi & Lisman, 2008; Pagani et al., 2009). Al-

though we think it unlikely that synapses regulate their filter thresholds to

achieve precisely optimal memory lifetimes (because there is too much vari-

ability between synapses and neurons), the dependence of memory lifetimes

on Θ derived above does raise the possibility that regulating Θ could be used

as a mechanism for actively changing memories’ average lifetimes.

If synaptic strengths are genuinely discrete, then how many strength states

does a synapse typically have? Some evidence suggests that synapses are binary

(Petersen et al., 1998; O’Connor et al., 2005b) while other evidence suggests

that they may be ternary (Montgomery & Madison, 2002, 2004). The inter-

pretation of such evidence is highly problematic. For example, Montgomery &

Madison report the existence of one strength state (or range of strength states)

for “näıve” synapses that have not undergone a long term potentiation (LTP)

or long term depression (LTD) protocol, and two other strength states for

synapses that have undergone LTP or LTD. We have previously argued, how-

ever, that LTP and LTD protocols may be saturating, forcing synapses to the

extremes of their possible strength range, while näıve, unstimulated synapses

may more naturally occupy a large range of possible strengths (Elliott, 2010a).

Specifically, we showed that if a synapse has access to around 10 or more states

of strength, and if LTP and LTD protocols are indeed saturating, then synapses

would exhibit an effective, ternary-like structure (Elliott, 2010a). In the same

work, we also used spike-timing-dependent plasticity (STDP) data from sin-
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gle spine-head experiments (Harvey & Svoboda, 2007) to try to estimate the

number of states of strength available to a synapse. Such an estimate can

be extracted from the prediction that the classic exponential curves of STDP

would be cut off at shorter interspike intervals due to saturation effects with

discrete synapses (Elliott, 2010a). Although the data set is far too small for

definitive conclusions, it is at least intriguing that our fits to Harvey & Svo-

boda’s data preferred fewer states of strength rather than more. Specifically,

fits are better for n around 10. Such numbers should of course be interpreted

with extreme caution, but it is at least consistent that all these analyses, in-

cluding the one performed here, cohere and suggest that the number of states

of synaptic strength available to a synapse may be of order 10. A very re-

cent study, based on a full reconstruction of a small volume of hippocampal

neuropil, corroborates this order by finding evidence for 26 distinguishable

synaptic strengths (Bartol et al., 2015).

With the assumption that synaptic strengths scale with n as in Eq. (2.1),

the overall mean memory signal is scaled down as n increases. While many

authors choose to scale in this manner, some do not [for example, Barrett &

van Rossum (2008) do not]. From the point of view of SNR memory lifetimes,

this scaling is completely irrelevant, because overall scale factors cancel in such

a ratio. Physiologically, however, for larger values of n, would we expect a neu-

ron’s activation level (akin to its membrane potential) to remain low and its

firing rate therefore to remain low? As we have seen, the maximum possible

initial memory signal is 2/n, which is a function of both the scaling down and
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the uniform, equilibrium distribution of synaptic strengths. The scaled mean

memory signal µs(t) = n
2
µ(t) removes this scaling down and can reach its max-

imum possible value of unity. If a neuron is relatively quiescent, we would

expect homeostatic plasticity mechanisms (Turrigiano & Nelson, 2004) to in-

tervene and restore a neuron’s activity by scaling up its synaptic strengths.

Therefore, although the distinction between µ(t) and µs(t) is irrelevant for

SNR memory lifetimes, it is critically important from a physiological point of

view in determining a neuron’s absolute response to a memory. It seems more

likely that µs(t) is the relevant indicator of the tracked memory signal. On this

view, a synaptic filter in the presence of more general, discrete synapses actu-

ally increases the absolute memory signal peak compared to binary-strength

synapses.

In discussing our filter-based, integrative model of synaptic plasticity and

related but non-integrative models, we have not considered the transition from

early-phase to late-phase plasticity, which is governed by protein synthesis-

dependent processes (Reymann & Frey, 2007). Late-phase plasticity appears

to be controlled by synaptic tagging at strongly-stimulated synapses and their

subsequent capture of plasticity-related proteins (PRPs) (Frey & Morris, 1998).

However, weakly-stimulated synapses can also capture these PRPs and ex-

press late-phase rather than just early-phase plasticity if stimulated sufficiently

closely in time to strongly-stimulated synapses. A few models of the transi-

tion from early-phase to late-phase plasticity exist (Clopath et al., 2008; Bar-

rett et al., 2009; Päpper et al., 2011). Such models could exhibit a delayed
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augmentation of the memory signal because of the cross-capture of PRPs by

weakly-stimulated synapses. Such dynamics would be reminiscent of the signal

rise in our filter-based model. However, in the former case, these dynamics are

driven heterosynaptically and still non-integratively, while in the latter case,

they are driven homosynaptically and via explicit, integrative mechanisms.

Finally, we note that in our analysis of memory lifetimes above, we have

not considered the possibility of a sparse coding regime. Sparseness may mean

either that only a small fraction of neurons is active in any given population,

or that all (or many) neurons are active but only with low firing rates. Sparse

coding extends memory lifetimes when memories are correlated (Tsodyks &

Feigel’man, 1988). It achieves this both by reducing the rate of plasticity in-

duction signals experienced at individual synapses (which merely dilates time)

and by reducing the interference between correlated memories. The role of

sparseness in more complicated models of synaptic plasticity has also been

considered (Rubin & Fusi, 2007; Leibold & Kempter, 2008). Were we to ex-

tend our analysis above to consider sparse coding and correlated memories, we

would not expect the conclusions of these earlier works to be fundamentally

modified. That is, we would expect that sparseness serves to extend mem-

ory lifetimes even further in a filter-based framework such as that considered

here. Our present focus has been on establishing our basic framework and

showing that it operates as a viable model of synaptic plasticity in different

contexts. Future work could extend to including a detailed analysis of the im-

pact of sparseness on memory lifetimes in our filter-based approach to synaptic
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plasticity.

Appendix A Averaging Over Initial Filter

States

We show that by averaging over the initial filter states immediately after the

storage of ξ0, we may modify the argument leading to Eq. (3.19) and instead

directly derive Eq. (3.15), therefore showing explicitly that the term in square

brackets in Eq. (3.15) arises directly from averaging over the initial filter states.

We saw in Eq. (3.20) that the general term Ĥ0(s)
[
2 Ĝ0(s) × 1

2
C

]m
corre-

sponds to the occurrence of precisely m filter threshold escape processes each

with total escape density 2G0(t), followed by no filter threshold escape pro-

cesses, giving rise to the Ĥ0(s) factor. Specifically, the first strength change

process in the scenario considered there is governed by the probability density

2 G0(t) because that scenario considered all filters to be prepared initially in

the zero state. In order to account for the more general initial filter state distri-

bution at time t = 0 s, it is therefore enough to modify the very first transition

process and its associated waiting time, and thereafter consider the identical

renewal processes that are associated with the probability density 2 G0(t) and

stochastic matrix 1
2

C for all subsequent changes in strength. Let the matrix

K(t) encode the average filter threshold escape densities immediately after the

storage of ξ0 and let the diagonal matrix T(t) encode the waiting times for

these average filter threshold processes. Then we may modify Eq. (3.20) to
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account for the initial filter states by instead writing

P̂(s) = T̂(s) + Ĥ0(s) K̂(s) + Ĥ0(s)
[
Ĝ0(s) C

]
K̂(s)

+ Ĥ0(s)
[
Ĝ0(s) C

]2
K̂(s) + Ĥ0(s)

[
Ĝ0(s) C

]3
K̂(s) + · · ·

= T̂(s) + Ĥ0(s)
[
I − Ĝ0(s) C

]−1

K̂(s)

≡ T̂(s) + Ĥ0(s) Ŵ
−1(s) K̂(s). (A.1)

To determine K(t), we define ρA
I to be the probability that a synapse in strength

state A is in filter state I immediately after the storage of ξ0. We then have

that the average filter threshold escape densities are just

K±
A (t) =

∑

I

ρA
I G±

I (t), (A.2)

and the corresponding waiting times are TA(t) = 1−
∫ t

0
dt1

[
K+

A (t1) + K−
A (t1)

]
.

From Eqs. (2.11) and (3.10) we deduce that

K±
A (t) =





1
Θ2−1

[
L±(t) + 0 G0(t)

]
for A = 1

1
Θ2+0

[
L±(t) + 1 G0(t)

]
for 2 ≤ A ≤ n − 1

1
Θ2+1

[
L±(t) + 2 G0(t)

]
for A = n

, (A.3)

where we have defined L±(t) =
∑

I

(
Θ − |I − 1|

)
G±

I (t). If Θ = 1, then K±
1 (t)
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are defined to be zero. The matrix K(t) is then

K(t) =




K−
1 (t) K−

2 (t)

K+
1 (t) 0 K−

3 (t)

K+
2 (t) 0

. . .

. . . . . . . . .

. . . 0 K−
n−1(t)

K+
n−2(t) 0 K−

n (t)

K+
n−1(t) K+

n (t)




, (A.4)

and T(t) = diag{TA(t) |A = 1, . . . , n}. It remains to compute ST
P̂(s) a, where

a is given in Eq. (3.22). We obtain

ST
T̂(s) a =

2

n

1

Θ2
Ĥ0(s), (A.5)

and we find that

K̂(s) a =
1

n

1

Θ2

{[
L̂+(s) + L̂−(s) + 2 Ĝ0(s)

]
n

+
[
L̂+(s) − L̂−(s)

]
v + Ĝ0(s) C v

}
, (A.6)

so that

ST
Ŵ

−1
K̂(s) a =

2

n

1

Θ2

{ ∑

J>0

[
Ĝ+

J (s) − Ĝ−
J (s)

]}
ST

Ŵ
−1v

+
1

n

1

Θ2
Ĝ0(s) ST

Ŵ
−1

C v. (A.7)
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The mean memory signal ST
P̂(s) a then reduces exactly to Eq. (3.15), showing

that the term in square brackets arises precisely from averaging over the initial

filter states immediately after the storage of ξ0 while the other terms arise

from the non-Markovian random walk in synaptic strength with waiting times

governed by G0(t).

Appendix B Eigenstructure of C

We define Cn to be the n×n matrix C in Eq. (3.12), and the auxiliary matrix

En to be identical to Cn except that the 1, 1 entry of En is zero instead of unity.

We then have, schematically,

Cn+1 =




1 1 0 · · ·
1

0 En

...




and En+1 =




0 1 0 · · ·
1

0 En

...




. (B.1)

We define E1 = 1 so that C2 and E2 are correct. We define xn = det (Cn − Λ In)

and yn = det (En − Λ In), where In is the n × n identity matrix. With these

definitions, from the tridiagonal structure of Cn and En we then have the

recurrence relations

xn = (1 − Λ) yn−1 − yn−2, (B.2)

yn = −Λ yn−1 − yn−2, (B.3)
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where y1 = 1−Λ and we take y0 ≡ 1 to ensure that x2 and y2 are correct and

hence all subsequent values. The solution of Eq. (B.3) is

yn =
Ψn

+ (1 + Ψ+) − Ψn
− (1 + Ψ−)

Ψ+ − Ψ−

, (B.4)

where Ψ± = 1
2

(
−Λ ±

√
Λ2 − 4

)
, or Ψ+ + Ψ− = −Λ and Ψ+Ψ− = 1. Inserting

this solution for yn into Eq. (B.2), we find that

xn = (2 − Λ)
Ψn

+ − Ψn
−

Ψ+ − Ψ−

. (B.5)

The RHS always simplifies to a polynomial of degree n in Λ, as it should. The

n eigenvalues Λm, m = 0, . . . , n − 1, of Cn are therefore Λ0 = 2 and Λ =

−Ψ+−1/Ψ+ where the Ψ+ are determined from the n−1 solutions of Ψ2 n
+ = 1

in the lower half of the complex plane, or Ψ+ = −eimπ/n, m = 1, . . . , n − 1.

(The solutions in the upper half of the complex plane merely enumerate the

eigenvalues in reverse order, or amount to the re-definition m → n − m.)

We therefore have Λm = 2 cos mπ
n

, for m = 1, . . . , n − 1, although m = 0

also correctly reproduces Λ0 = 2. Hence, we may write Λm = 2 cos mπ
n

for

m = 0, . . . , n− 1. The eigenvalues of 1
2
C are then just λm = 1

2
Λm = cos mπ

n
, as

stated in Eq. (3.24).

We now determine the normalised eigenvector em of C corresponding to

eigenvalue Λm. The vector em has components em
A , A = 1, . . . , n. Ignoring

for the moment the two boundary cases, these components must satisfy the
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recurrence relation

em
A−1 − Λm em

A + em
A+1 = 0. (B.6)

Comparing this equation to the recurrence relation for yn,

yn−1 + Λm yn + yn+1 = 0,

the components em
A satisfy em

A ∝ (−1)A−1yA−1, or

em ∝
(
+y0,−y1, +y2,−y3, . . . , (−1)n−1yn−1

)T
. (B.7)

It is important to note that the sequence of determinants in this expression

is computed using Eq. (B.4) but with n in Ψ± = −e±imπ/n held fixed at the

dimensionality of em. Using Eq. (B.4), we then find that

em
A ∝ sin

Amπ

n
− sin

(A − 1)mπ

n
, (B.8)

for m > 0, and e0
A ∝ 1 for the particular case m = 0. We may check explicitly

that the two boundary equations,

0 = (1 − Λm)em
1 + em

2 ,

0 = em
n−1 + (1 − Λm)em

n ,

are also satisfied. Normalising and simplifying, we finally obtain the results

for em
A stated in Eq. (3.25).
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Päpper, M., Kempter, R., & Leibold, C. (2011). Synaptic tagging, evaluation

of memories, and the distal reward problem. Learn. and Mem., 18, 58–70.

Parisi, G. (1986). A memory which forgets. J. Phys. A: Math. Gen., 19,

L617–L620.

Petersen, C.C.H., Malenka, R.C., Nicoll, R.A., & Hopfield, J.J. (1998). All-or-

none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. U.S.A.,

95, 4732–4737.

Pi, H.J., & Lisman, J.E. (2008). Coupled phosphatase and kinase switches

produce the tristability required for long-term potentiation and long-term

depression. J. Neurosci., 28, 13132–13138.

Reymann, K., & Frey, J. (2007). The late maintenance of hippocampal LTP:

87



Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implica-

tions. Neuropharm., 52, 24–40.

Rubin, D.D.B.D., & Fusi, S. (2007). Long memory lifetimes require complex

synapses and limited sparseness. Front. Comput. Neurosci., 1, 7.

Sobczyk, A., & Svoboda, K. (2007). Activity-dependent plasticity of the

NMDA-receptor fractional Ca2+ current. Neuron, 53, 17–24.

Tsodyks, M.V. (1990). Associative memory in neural networks with binary

synapses. Mod. Phys. Lett. B, 4, 713–716.

Tsodyks, M.V., & Feigel’man, M.V. (1988). The enhanced storage capacity in

neural networks with low activity levels. Europhys. Letts., 6, 101–105.

Turrigiano, G.G., & Nelson, S.B. (2004). Homeostatic plasticity in the devel-

oping nervous system. Nature Rev. Neurosci., 5, 97–107.

van Kampen, N.G. (1992). Stochastic Processes in Physics and Chemistry.

Amsterdam: Elsevier.

Willshaw, D.J., Duneman, O.P., & Longuet-Higgins, H. (1969). Nonholo-

graphic associative memory. Nature, 222, 960–962.

Yasuda, R., Sabatini, B.L., & Svoboda, K. (2003). Plasticity of calcium chan-

nels in dendritic spines. Nature Neurosci., 6, 948–955.

88



Figure Captions

Figure 1: A filter-based mechanism for the integration of synaptic plastic-

ity induction signals leading to the expression of synaptic plasticity at fil-

ter thresholds. Synaptic filter states are represented by the circled numbers,

−(Θ − 1), . . . , +(Θ − 1). Plasticity induction signals occur at Poisson rate

r, with potentiation signals (arrows ↑ and ⇑) and depression signals (arrows

↓ and ⇓) being equiprobable, with probability 1
2
. Potentiating induction sig-

nals acting on filter states −(Θ − 1), . . . , +(Θ − 2) lead only to increments

in filter state (indicated by ↑), while a potentiating induction signal acting

on filter state +(Θ − 1) causes the filter to reach its upper threshold, lead-

ing to the expression of a potentiation step if possible (⇑) and resetting the

filter state to zero. Similarly, depressing induction signals acting on states

−(Θ − 2), . . . , +(Θ − 1) decrement the filter state (↓) while a depressing in-

duction signal acting on state −(Θ− 1) leads to the expression of a depression

step is possible (⇓) and resetting the filter state to zero.

Figure 2: The function χn(t) as a function of time, for different choices of

n and Θ. (A) χn(t) for n = 22, 23, 24, 25 and 26 (moving right to left in the

graph, with smaller n corresponding to overall smaller χn(t)) for the particular

choice, Θ = 4, as indicated. (B) χn(t) for Θ = 2, 4, 6, 8 and 10 (moving top

to bottom in the graph, with smaller Θ corresponding to larger maxima for

χn(t)) for the particular choice, n = 8, as indicated. (C) For comparison, we
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show the probability density for escape through either filter threshold starting

from the zero filter state, 2G0(t), for the same values of Θ used in (B), with

again smaller values of Θ corresponding to larger maxima for 2G0(t). The

initial, small time profile of χn(t) in B follows very closely that for 2G0(t).

Figure 3: Validation of analytical results for the mean memory signal. (A)

Comparison between analytical and simulation results for Θ = 4 for different

choices of n, as indicated. The agreement is exact. Simulations are averaged

over 104 trials, and we have used N = 104 synapses for better self-averaging

within trials, although the analytical result for µ(t) is independent of N . (B)

Same as A, except that Θ = 8. (C) and (D) show the scaled mean memory

signal µs(t) = n
2
µ(t). The scaling allows us to see much more clearly that

increasing n causes the memory signal to rise for longer and decay at least

initially more slowly.

Figure 4: Comparison between exact and approximate results for µs(t). (A)

Use of the approximate form for χ(t) given in Eq. (3.45) in the convolution

form for µs(t) in Eq. (3.38). This approximation preserves µs(t) ≈ µ2(t) at

small times and asymptotes to the exact form of µs(t) at large times, deviat-

ing from µs(t) only at intermediate times. (B) Use of the one-decay form in

Eq. (3.52) in which only the slowest decaying term in Eq. (3.50) is retained.

This approximation, being asymptotically exact at large times, is useful for

determining memory lifetimes. (C) Use of the two-decay form in Eq. (3.51),
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which retains the slowest decaying term from each of the separate sums in

Eq. (3.51). This approximation is useful for estimating the location of the

peak in the mean memory signal and its subsequent decay dynamics. (D) Use

of the large n form in Eq. (3.55). This approximation for µs(t) is essentially

exact for all except large times. In all cases we have set Θ = 6 and n = 10,

with even this relatively small value of n being sufficiently large for the large

n limiting forms of µs(t) to provide good approximations.

Figure 5: Dynamics of scaled mean memory signal for large n. (A) µs(t) for

n = 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212 (solid lines, moving left to

right in the figure), and for the formal O(1) limit, n → ∞ in Eq. (3.56) (dotted

line, which can only be distinguished from the solid lines at large times). (B)

Comparison between the exact form of µs(t) (solid lines) and the two-decay

form in Eq. (3.51) (dashed lines) for n = 22, 25, 28, 211 (moving left to right in

the figure). Also shown as the dotted lines are the large n forms in Eqs. (3.56)

and (3.58). (C) The location of the peak in the mean memory signal from

both the exact form and the two-decay form of µs(t), as a function of n. The

location increases only logarithmically in n for both forms, although the two-

decay approximation systematically overestimates the peak location. (D) The

time at which the mean memory signal falls to 95% of its peak value. For n

sufficiently large (which is only n ∼ 10 or n ∼ 20), this time grows quadrati-

cally in n. Again, the two-decay approximation overestimates the location of

95% of the signal peak.
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Figure 6: Determination of memory lifetimes based on various approxima-

tions to the signal-to-noise ratio. (A) Validation of numerical matrix methods

by comparing the numerically-computed variance σ(t)2 in the tracked memory

signal to that obtained from simulations. The agreement is exact. Simu-

lations are averaged over 104 trials. (B) The dependence of the covariance

between two synapses’ strengths on n over time. The second peak in covari-

ance is increasingly suppressed relative to the first peak as n increases. (C)

The SNR µ(t)/σ(t) for three different forms of σ(t), as indicated: the full,

exact form in Eq. (2.10); the full form but without the covariance term, so just

σ(t)2 ≈ {E[S(t)2] − µ(t)2}/N ; the simplest form σ(t)2 ≈ E[S(t)2]/N . When

the memory lifetime is relatively small, approximations to σ(t) overestimate

rτsnr. For this choice of Θ, n and N , the approximate forms overestimate rτsnr

by around 20%. (D) As C, but for different parameters, leading to longer

memory lifetimes. In this case the overestimate is merely around 0.5%.

Figure 7: Parameter-dependence of SNRs and memory lifetimes, using σ(t)2 ≈

{E[S(t)2]−µ(t)2}/N . (A) SNRs for different values of n as a function of time.

Although increasing n suppresses µ(t) by 1/n, the mean memory signal near

peak is sustained roughly speaking n2-fold longer, offsetting this 1/n suppres-

sion. (B) SNRs for different values of N as a function of time. Increasing

N also increases the SNR, but memory lifetimes increase only logarithmically

with N . (C) Dependence of SNR memory lifetimes on N for different values of
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n. Thick lines show results from the exact form for µ(t), while thin lines show

for comparison results from the one-decay form for µ(t) leading to Eq. (4.5).

For N too small, the SNR never exceeds unity, so a bifurcation exists in N ,

defining a critical value of N above which memories are successfully stored.

The equation for τsnr in Eq. (4.5) takes no account of this bifurcation.

Figure 8: Optimal values of n or N establish maximal memory lifetimes.

(A) Dependence of SNR memory lifetimes on n for various choices of Θ, for

N = 104. For each choice of Θ there exists an optimal value of n that max-

imises memory lifetimes. (B) Dependence of SNR memory lifetimes on n for

various choices of N , for Θ = 5. Again, an optimal value of n maximises mem-

ory lifetimes. (C) Comparison between SNR and MFPT memory lifetimes.

Although the SNR memory lifetime exhibits a maximum for a particular value

of n, the MFPT memory lifetime does not. (D) For the same parameters used

in C, we show the one standard deviation region around the MFPT, deter-

mined from the variance in the first passage times. For n large enough, the

MFPT is indistinguishable from zero at the one standard deviation level.

Figure 9: Memory performance of a stochastic updater synapse with p =

1/25. (A) µs(t) for n = 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212 (moving

left to right in the figure). (B) SNRs for different values of n as a function of

time, using σ(t)2 ≈ {E[S(t)2] − µ(t)2}/N . (C) Dependence of SNR memory

lifetimes on N for different values of n. Lifetimes are determined numerically
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rather than from a one-decay approximation to Eq. (3.61).
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