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Abstract
Threshold-linear networks are a common class of firing rate models that de-

scribe recurrent interactions among neurons. Unlike their linear counterparts, these
networks generically possess multiple stable fixed points (steady states), making
them viable candidates for memory encoding and retrieval. In this work, we char-
acterize stable fixed points of general threshold-linear networks with constant ex-
ternal drive, and discover constraints on the co-existence of fixed points involving
different subsets of active neurons. In the case of symmetric networks, we prove
the following antichain property: if a set of neurons τ is the support of a stable
fixed point, then no proper subset or superset of τ can support a stable fixed point.
Symmetric threshold-linear networks thus appear to be well suited for pattern com-
pletion, since the dynamics are guaranteed not to get “stuck” in a subset or superset
of a stored pattern. We also show that for any graph G, we can construct a network
whose stable fixed points correspond precisely to the maximal cliques of G. As
an application, we design network decoders for place field codes, and demonstrate
their efficacy for error correction and pattern completion. The proofs of our main
results build on the theory of permitted sets in threshold-linear networks, including
recently-developed connections to classical distance geometry.
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1 Introduction
In this work, we study stable fixed points1 of threshold-linear networks with constant
external drive. These networks model the activity of a population of neurons with re-
current interactions, whose dynamics are governed by the system of equations:

dxi
dt

= −xi +

[
n∑
j=1

Wijxj + θ

]
+

, i ∈ [n]. (1)

Here [n] = {1, . . . , n} is the index set for n neurons, xi(t) is the activity level (firing
rate) of the ith neuron, and θ ∈ R is a constant external drive (the same for each neuron).
The real-valued n × n matrix W governs the interactions between neurons, with Wij

the effective connection strength from the jth to the ith neuron. The threshold-linear
function [y]+ = max{0, y} ensures that xi(t) ≥ 0 for all t > 0, provided xi(0) ≥ 0.

The equations (1) differ from the linear system of ODEs, ẋ = (−I +W )x+ θ, only
by the nonlinearity [ ]+. This nonlinearity is quite significant, however, as it allows the
network to possess multiple stable fixed points, even though the analogous linear sys-
tem can have at most one. Multistability is the key feature that makes threshold-linear
networks viable models of memory encoding and retrieval [1, 2, 3, 4]. If, for example,
W is a symmetric matrix with nonpositive entries, then the system (1) is guaranteed to
converge to a stable fixed point for any initial condition [5]. The threshold-linear net-
work thus functions as a traditional attractor neural network, in the spirit of the Hopfield
model [6, 7], with initial conditions playing the role of inputs and stable fixed points
comprising outputs.

In this paper, we characterize stable fixed points of general threshold-linear net-
works, and discover constraints on the co-existence of fixed points involving different
subsets of active neurons. In the rest of this section, we give an overview of our main re-
sults, Theorems 1.1 and 1.3, and explain their relevance to pattern completion. We then
illustrate their power in an application. The remainder of the paper lays the foundation
for proving the main results. Section 2 summarizes relevant notation and background
about permitted sets and their relationship to fixed points. In Section 3 we provide gen-
eral conditions that must be satisfied by fixed points of (1). Next, in Section 4, we prove
a key technical result using classical distance geometry. Finally, in Section 5 we prove
our main theorems by combining results from Sections 3 and 4.

1.1 Fixed points of threshold-linear networks
A vector x∗ ∈ Rn

≥0 is a fixed point of (1) if, when evaluating at x = x∗, we obtain
dxi/dt = 0 for each i. The support of a fixed point is given by

supp(x∗)
def
= {i ∈ [n] | x∗i > 0}.

We use greek letters, such as σ, τ ⊆ [n], to denote supports. A principal submatrix is
obtained from a larger n×n matrix by restricting both row and column indices to some

1Equivalently: steady states, fixed point attractors, or stable equilibria.
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σ ⊂ [n]. For example, Wσ is the |σ| × |σ| principal submatrix of connection strengths
among neurons in σ. Similarly, xσ is the vector of firing rates for only the neurons in σ.

Although a threshold-linear network may have many stable fixed points, each fixed
point is completely determined by its support. To see why, observe that if x∗ is a fixed
point with support σ ⊆ [n], then

x∗σ = [Wσx
∗
σ + θ1σ]+ > 0,

where 1σ is a column vector of all ones. This means we can drop the nonlinearity to
obtain (I −Wσ)x∗σ = θ1σ. If x∗ is a stable fixed point, then I −Wσ is invertible [8,
Theorem 1.2], and hence we can solve for x∗σ explicitly as

x∗σ = θ(I −Wσ)−11σ.

Of course, this is only a fixed point of (1) if x∗σ > 0 and x∗k = [
∑

i∈σWkix
∗
i + θ]+ = 0

for all k /∈ σ. If either of these conditions fail, then the fixed point with support σ does
not exist. If it does exist, however, the above formula gives the precise values of the
nonzero entries x∗σ, and guarantees that it is unique. Thus, in order to understand the
stable fixed points of a network (1) it suffices to characterize the possible supports.

1.2 Summary of main results
Given a choice of W and θ, what are the possible stable fixed point supports? In this
paper, we provide a set of conditions that fully characterize these supports for general
threshold-linear networks, and show how the conditions simplify when W is inhibitory
or symmetric (see Section 3). The compatibility of the fixed point conditions across
multiple σ ⊆ [n] enables us to obtain results about which collections {σi} of supports
can (or cannot) co-exist in the same network. Our strongest results in this vein arise
when specializing to symmetric W . In this case, we can build on the geometric theory
of permitted sets, as introduced in [9], in order to greatly constrain the collection of
allowed fixed point supports. The following is our first main result.

Theorem 1.1 (Antichain property). Consider the threshold-linear network (1), for a
symmetric matrix W with zero diagonal. If there exists a stable fixed point with support
τ ⊆ [n], then there is no stable fixed point with support σ for any σ ( τ or σ ) τ .

The proof is given in Section 5, and relies critically on a technical result, Proposi-
tion 4.1, which we state and prove in Section 4 using ideas from classical distance
geometry.

Theorem 1.1 has several immediate consequences. First, it implies that the set of
possible fixed point supports is an antichain in the Boolean lattice (2[n],⊆), where an
antichain is defined as a set of incomparable elements in the poset (that is, no two
elements are related by ⊆). Sperner’s theorem [10] states that the cardinality of a max-
imum antichain in the Boolean lattice is precisely

(
n
bn/2c

)
(see Figure 1). We thus have

the corollary:

Corollary 1.2. If W is symmetric with zero diagonal, then the threshold-linear net-
work (1) has at most

(
n
bn/2c

)
stable fixed points.
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We note, however, that this upper bound is not necessarily tight. We currently do
not know whether or not there exist networks with

(
n
bn/2c

)
stable fixed points for each

n. More generally, it is an open question to determine which antichains in the Boolean
lattice can be realized as the set of fixed point supports for a symmetric W .

111

101
011110

010100 001

000

Figure 1: A Boolean lattice for n = 3. A maximal antichain, σ1 = {1, 2}, σ2 = {1, 3},
and σ3 = {2, 3}, is shown in gray. This antichain has size

(
3
b3/2c

)
= 3, in agreement

with Sperner’s theorem.

A second consequence of Theorem 1.1 is that symmetric threshold-linear networks
appear well suited for pattern completion. A network can perform pattern completion
if, after initializing at a subset of a pattern, the network dynamics evolve the activity to
the complete pattern. In this context, a pattern of the network is a subset of neurons
corresponding to the support of a stable fixed point. Theorem 1.1 implies that if τ ⊆ [n]
is a pattern of a symmetric network, then the network activity is guaranteed not to “get
stuck” in a subpattern σ ( τ or a superpattern σ ) τ .

In order to further illustrate the power of Theorem 1.1, we now turn to the special
case of symmetric threshold-linear networks with binary synapses. Here the connection
matrix W = W (G, ε, δ) is specified by a simple graph2 G, whose vertices correspond
to neurons:

Wij =


0 if i = j,

−1 + ε if (ij) ∈ G,
−1− δ if (ij) /∈ G.

(2)

The parameters ε, δ ∈ R satisfy 0 < ε < 1 and δ > 0, while (ij) ∈ G indicates
that there is an edge between vertices i and j. Note that since ε < 1, the network
is inhibitory (Wij ≤ 0). One might interpret Wij as the effective connection strength
between neurons i and j due to competitive inhibition that is attenuated by excitation
whenever (ij) ∈ G (see Figure 2).

In the case of binary symmetric networks, combining our characterization of fixed
point supports with Theorem 1.1 we obtain our second main result. To state it, we need
some standard graph-theoretic terminology. A subset of vertices σ is a clique of G if
(ij) ∈ G for all pairs i, j ∈ σ. In other words, a clique is a subset of neurons that is
all-to-all connected. A clique σ is called maximal if it is not contained in any larger
clique of G.

2Recall that a simple graph has undirected edges, no self-loops, and at most one edge between each
pair of vertices.
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Figure 2: Excitatory connections in a sea of inhibition. (A) Pyramidal neurons (black
triangles) have bidirectional synapses onto each other. Inhibitory interneurons (gray
circles) produce non-specific inhibition to all neighboring pyramidal cells. (B) The
graph of the network in (A), retaining only excitatory neurons and their connections. A
missing edge corresponds to strong competitive inhibition, −1− δ, while the presence
of an edge indicates attenuated inhibition, −1 + ε, resulting from the sum of global
background inhibition and an excitatory connection.

Theorem 1.3. Let G be a simple graph, and consider the network (1) with W =
W (G, ε, δ) for any 0 < ε < 1, δ > 0 and θ > 0. The stable fixed points of this
network are in one-to-one correspondence with the maximal cliques of G. Specifically,
each maximal clique σ is the support of a stable fixed point, given by

x∗σ =
θ

(1− ε)|σ|+ ε
1σ,

and there are no other stable fixed points.

The proof of Theorem 1.3 is given in Section 5, and demonstrates that it is possible to
have a network in which all stable fixed point supports correspond to maximal stored
patterns. This situation is ideal for pattern completion. We then show that this fea-
ture generalizes to a much broader class of symmetric networks (see Theorem 5.3 in
Section 5).

Theorem 1.3 provides additional insight into the question of how many stable fixed
points can be stored in a symmetric threshold-linear network of n neurons. Corol-
lary 1.2 gave us an upper bound of

(
n
bn/2c

)
, as a consequence of Sperner’s theorem and

Theorem 1.1. As a corollary of Theorem 1.3, we now obtain a lower bound.

Corollary 1.4. For each n, there exists a symmetric threshold-linear network of the
form (1) with 2bn/2c stable fixed points.

To see how this follows from Theorem 1.3, let m = bn/2c and consider the com-
plete m-partite graph G, where each part has 2 vertices. (Note that two vertices of G
have an edge between them if and only if they belong to distinct parts.) If n is odd,
let the last vertex connect to all the others. It is easy to see that G has precisely 2m

maximal cliques, obtained by selecting one vertex from each part. By Theorem 1.3, the
corresponding network with W = W (G, ε, δ) has 2m stable fixed points.

We end this section with a specific application of Theorem 1.3, illustrating the ca-
pability of binary symmetric networks to correct noise-induced errors in combinatorial
neural codes.
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1.3 Application: pattern completion and error correction for place
field codes

The hippocampus contains a special class of neurons, called place cells, that act as posi-
tion sensors for tracking the animal’s location in space [11]. Place fields are the spatial
receptive fields associated to place cells, and place field codes are the corresponding
combinatorial neural codes defined from intersections of place fields [12]. In this appli-
cation of Theorem 1.3 we examine the performance of a binary symmetric network that
is designed to perform pattern completion and error correction for place field codes. Our
aim is to illustrate how a simple threshold-linear network could function as an effective
decoder for a biologically realistic neural code. We do not wish to suggest, however,
that the specific networks considered in Theorem 1.3 are in any way accurate models of
the hippocampus.
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Figure 3: The binary symmetric network decoder has low mean distance error. (A)
The sequence of steps in one trial of the binary symmetric network decoder. A point p
is chosen uniformly at random from a two-dimensional stimulus space, and is passed
through an encoding map defined by the set of place fields, resulting in a codeword c.
The codeword then goes through a noisy channel, and the corrupted word xinit becomes
the input (initial condition) for the binary symmetric network decoder. The network
evolves to a fixed point x∗, which is then passed to the unencoding map. The final
output is an estimated point in the stimulus space, p̂. (B) 200 place fields covering
a 1x1 stimulus space, yielding a place field code of length 200 with an average of
14 neurons (7%) firing per codeword. Three place fields are highlighted in black for
clarity. (C) Performance of the code from (B) across a range of noisy channel conditions
(P17→0, P07→1). For each condition, 1,000 trials were performed following the process
described in (A). The distance error was calculated as ‖p − p̂‖. Colors denote mean
distance errors across 1,000 trials.

We generate place field codes from a set of circular place fields, U1, . . . , Un ⊂
[0, 1]2, in a square box environment (see Figure 3B). Each position p ∈ [0, 1]2 corre-
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sponds to a binary codeword, c = c1c2 · · · cn, where

ci =

{
1 if p ∈ Ui
0 if p /∈ Ui

.

The binary symmetric network corresponding to such a code has n neurons, one for
each place field, and assigns the larger weight, −1 + ε, to connections between neurons
whose place fields overlap:

Wij =


0 if i = j,

−1 + ε if Ui ∩ Uj 6= ∅,
−1− δ if Ui ∩ Uj = ∅.

(3)

This is precisely the matrix W (G, ε, δ), defined in (2), where G is the co-firing graph
with edges (ij) ∈ G if there exists a codeword c such that ci = cj = 1. It is easy to
see that the network W can be learned from a simple rule where each connection Wij is
initially set to −1− δ, and then potentiated to −1 + ε after presentation of a codeword
in which the pair of neurons i and j co-fire.

The above network can be used to correct errors induced by transmitting codewords
of the place field code through a noisy channel. Figure 3A shows the basic paradigm
of error correction by a network decoder. A point p in the stimulus space (the animal’s
square box environment) is encoded as a binary codeword via an encoding map given
by the place fields {U1, . . . , Un}. This codeword is then passed through a noisy channel,
and is received by the network decoder as a noisy initial condition. The network then
evolves according to (1), until it reaches a stable fixed point x∗ (see Appendix 6.1 for
further details). From x∗ we obtain an estimated point p̂ in the stimulus space, given by
the mean of the centers of all place fields Ui such that x∗i > 0. The distance error of the
network decoder on a single trial is the Euclidean distance ‖p− p̂‖.

To test the performance of the binary symmetric network decoder, we randomly
generated place field codes with 200 neurons, and an average of ≈ 7% of neurons
firing per codeword (see Appendix 6.1 for further details). Figure 3B illustrates the
coverage of the 1 × 1 square box environment by 200 place fields. For each code, we
computed W according to (3), with ε = 0.25 and δ = 0.5, to obtain the corresponding
network decoder. We then performed 1,000 trials for each of 100 different noisy channel
conditions. Each noise condition consisted of a false positive probability P07→1, the
probability that a 0 is flipped to a 1 in a transmitted codeword, and a false negative
probability P17→0, the probability of a 1 7→ 0 flip (see Figure 3A, top right). Figure 3C
shows the mean distance errors of the network decoder, for a range of noise conditions
(P17→0, P07→1). Note that because the expected number of 1s in each codeword is ≈ 14
(out of 200 bits), a value of P07→1 = 0.1 yields nearly 19 expected false positive errors
per codeword, while P17→0 = 0.5 results in only 7 expected false negative errors per
codeword. Most of the considered noise conditions yielded mean distance errors of 0.1
or less. Even for very severe noise conditions with large numbers of expected errors,
the mean distance error did not exceed 0.2, or about 20% of the side length of the
environment. These results are representative of all place field codes tested.
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2 Preliminaries
Here we introduce some notation and review some basic facts about permitted sets and
fixed points, including the connection to distance geometry in the symmetric case.

2.1 Notation
Using vector notation, x = (x1, . . . , xn)T , we can rewrite equation (1) more compactly
as

ẋ = −x+ [Wx+ θ]+,

where ẋ denotes the time derivative dx/dt, and the nonlinearity [ ]+ is applied entry-
wise. Solutions to (1) have the property that x(t) ≥ 0 for all t > 0, provided that
x(0) ≥ 0. We use the notation x ≥ 0 to indicate that every entry of the vector x is
nonnegative. The inequalities >,<, and ≤ are similarly applied entry-wise to vectors.
If σ = supp(x), then the restriction of x to its support satisfies xσ > 0, while xk = 0
for all k /∈ σ.

Many of our results are most conveniently stated in terms of the auxiliary matrix

A = 11T − I +W, (4)

where 11T is the rank one matrix with entries all equal to 1. In other words,

Wij =

{
Aij for i = j,

−1 + Aij for i 6= j.

Recall that for any σ ⊆ [n], the principal submatrix of A obtained by restricting both
rows and columns to the index set σ is denoted Aσ. When Aσ is invertible, we define
the number

aσ
def
=
∑
i,j∈σ

(A−1σ )ij = − cm(Aσ)

det(Aσ)
, (5)

where the notation A−1σ = (Aσ)−1 6= (A−1)σ. The second equality is a simple conse-
quence of Cramer’s Rule, and connects aσ to the Cayley-Menger determinant,

cm(A)
def
=

(
0 1T

1 A

)
,

defined for any n × n matrix A. Here 1 denotes the n × 1 column vector of all ones,
and 1T is the corresponding row vector. Note that aσ has nice scaling properties: if

Aσ 7→ tAσ, then aσ 7→
1

t
aσ.

The Cayley-Menger determinant is well-known for its geometric meaning, which
we will review below. It also appears in the determinant formula (see [9, Lemma 7]),

det(−11T + A) = det(A) + cm(A), (6)

which holds for any n × n matrix A. We will make use of this formula in the proof of
Theorem 3.4.
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2.2 Permitted sets and fixed points
Instead of restricting to a single external drive θ for all neurons, prior work has consid-
ered a generalization of the network (1) of the form

ẋ = −x+ [Wx+ b]+, (7)

where b ∈ Rn is an arbitrary vector of external drives bi for each neuron. In this context,
Hahnloser, Seung, and collaborators [5, 13] developed the idea of permitted sets of the
network, which are the supports of stable fixed points that can arise for some b. The
set of all permitted sets of a network of the form (7) thus depends only on W , and is
denoted P(W ). We know from prior work [5, 8] that σ is a permitted set if and only if
(−I +W )σ is a stable matrix.3 In other words,

P(W ) = {σ ⊆ [n] | −11T + Aσ is a stable matrix}, (8)

since (−I +W )σ = −11T + Aσ.
In the special case considered here, where bi = θ for all i ∈ [n], it is clear that any

stable fixed point x∗ of (1) must have supp(x∗) ∈ P(W ). The converse, however, is
not true. Although all permitted sets have corresponding fixed points for some b ∈ Rn,
there is no guarantee that such a fixed point exists for b = θ. For example, in the case
of symmetric W it has been shown that σ ∈ P(W ) implies τ ∈ P(W ) for all subsets
τ ⊂ σ. This property appears to imply that such networks cannot perform pattern com-
pletion, since subsets of permitted sets are also permitted. However, Theorem 1.1 tells
us that if a permitted set is the support of a stable fixed point of (1), none of its subsets
can be a fixed point support in the case b = θ, despite being permitted.

2.3 Permitted sets for symmetric W
In order to prove Theorem 1.1, we will make heavy use of the geometric theory of
permitted sets that was developed in [9]. Here we review some basic facts from classical
distance geometry that allow us to geometrically characterize the permitted sets of a
network when W is symmetric.

An n × n matrix A is a nondegenerate square distance matrix if there exists a
configuration of points {pi}i∈[n] in the Euclidean space Rn−1 such thatAij = ||pi−pj||2,
and the convex hull of the pis forms a full-dimensional simplex. The Cayley-Menger
determinant cm(A) computes the volume of this simplex, and can be used to detect
whether or not a given matrix is nondegenerate square distance. In particular, if Aσ is
a nondegenerate square distance matrix with |σ| > 1, then Aσ is invertible and aσ > 0
[9, Corollary 8]. See [9, Appendix A] for a more complete review of these and other
related facts about nondegenerate square distance matrices.

In the singleton case, σ = {i} for some i ∈ [n], the matrix Aσ = [0] is always a
nondegenerate square distance matrix with cm(Aσ) = −1 6= 0, although det(Aσ) = 0.
Because of this, it is convenient to declare aσ = a{i} =∞ whenever Aii = 0. With this
convention, we can state the following geometric characterization of permitted sets for
symmetric networks, first given in [9].

3A matrix is stable if all of its eigenvalues have strictly negative real parts.
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Lemma 2.1 (Proposition 1, [9]). Let W be a symmetric network with zero diagonal, let
A = 11T − I + W , as in (4), and suppose σ ⊆ [n] is nonempty. Then σ ∈ P(W ) if
and only if Aσ is a nondegenerate square distance matrix with aσ > 1. Equivalently,
−11T + Aσ is a stable matrix if and only if Aσ is a nondegenerate square distance
matrix with aσ > 1.

3 Fixed point conditions
In this section, we derive general fixed point conditions for networks of the form (1), and
demonstrate simplifications of these conditions for inhibitory networks and symmetric
networks.

3.1 General fixed point conditions
Consider a fixed point x∗ with supp(x∗) = σ. The conditions for x∗ to be a fixed point
of (1) are given by the equation:

x∗ = [Wx∗ + θ]+,

together with the requirement that x∗i > 0 for all i ∈ σ, and x∗k = 0 for all k /∈ σ. For a
single neuron i ∈ [n], the fixed point equation becomes:

x∗i =

[∑
j∈σ

Wijx
∗
j + θ

]
+

=

[
x∗i −

∑
j∈σ

(11T )ijx
∗
j +

∑
j∈σ

Aijx
∗
j + θ

]
+

= [x∗i −m(x∗) + (Ax∗)i + θ]+ ,

where A is given by (4) and

m(x∗)
def
=

n∑
i=1

x∗i =
∑
i∈σ

x∗i

is the total population activity. Separating out the “on” neurons i ∈ σ from the “off”
neurons k /∈ σ, we obtain the following lemma.

Lemma 3.1. Consider a vector x∗, with supp(x∗) = σ. Then x∗ is a fixed point of (1)
if and only if

(Ax∗)i = m(x∗)− θ, for all i ∈ σ, and
(Ax∗)k ≤ m(x∗)− θ, for all k /∈ σ.

In particular,

(Ax∗)k ≤ (Ax∗)i = (Ax∗)j for all i, j ∈ σ, k /∈ σ.
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As an immediate consequence, we can list conditions that must be satisfied for fixed
points consisting of a single active neuron i, with firing rate x∗i > 0. In this case,
m(x∗) = x∗i , and so by Lemma 3.1,

(Ax∗)i = Aiix
∗
i = x∗i − θ, and (Ax∗)k = Akix

∗
i ≤ Aiix

∗
i , for all k 6= i.

This allows us to solve for x∗i = θ/(1 − Aii), and to conclude Aki ≤ Aii. In order
for this fixed point to be stable, we must also have Aii < 1, and hence θ > 0 because
x∗i > 0. We collect these observations in the following proposition, together with the
case of empty support, x∗ = 0.

Proposition 3.2. Suppose |σ| ≤ 1. If σ = {i}, then there exists a stable fixed point x∗

of (1) with support σ if and only if the following all hold:

(i) Aii < 1 (equivalently, Wii < 1),

(ii) θ > 0, and

(iii) Aki ≤ Aii (equivalently, Wki ≤ −1 +Wii) for all k 6= i.

Moreover, if this stable fixed point exists, then it is given by x∗k = 0 for all k 6= i and

x∗i =
θ

1− Aii
.

Alternatively, if σ = ∅, then x∗ = 0 is a fixed point of (1) if and only if θ ≤ 0. If θ < 0,
then this fixed point is guaranteed to be stable.

Analogous conditions can be obtained for |σ| > 1, so long as Aσ is not “fine-tuned,” as
defined below.

Definition 3.3. We say that a principal submatrix Aσ of A is fine-tuned if either of the
following are true:

(a) det(Aσ) = 0, or

(b)
∑

i,j∈σ Aki(A
−1
σ )ij = 1 for some k /∈ σ.

Note that (b) depends on entries of the full matrix A, not just entries of Aσ.

We can now state and prove Theorem 3.4.

Theorem 3.4 (General fixed point conditions). Consider the threshold-linear network (1),
and let A = 11T − I + W , as in (4). Suppose σ ⊆ [n] is nonempty and Aσ is not fine-
tuned. Then there exists a stable fixed point with support σ if and only if θ 6= 0 and the
following three conditions hold:

(i) (permitted set condition) −11T + Aσ is a stable matrix.

(ii) (on-neuron conditions) There are two cases, depending on the sign of θ:

(a) θ > 0: either aσ < 0 and A−1σ 1σ < 0, or aσ > 1 and A−1σ 1σ > 0.

11



(b) θ < 0: 0 < aσ < 1 and A−1σ 1σ > 0.

(iii) (off-neuron conditions) For each k /∈ σ,
θ

aσ − 1

∑
i,j∈σ

Aki(A
−1
σ )ij <

θ

aσ − 1
.

Moreover, if a stable fixed point x∗ with supp(x∗) = σ exists, then it is given by

x∗σ =
θ

aσ − 1
A−1σ 1σ,

with total population activity
m(x∗) =

aσ
aσ − 1

θ.

Remark 3.5. For fixed points supported on a single neuron, σ = {i}, we may have
Aii = 0 so that Aσ is not invertible and is thus not covered by the theorem. This case,
together with the case σ = ∅, is covered by Proposition 3.2.

Proof of Theorem 3.4. (⇒) Suppose there exists a stable fixed point x∗ with nonempty
support, supp(x∗) = σ. Then σ is a permitted set and (−11T + A)σ is a stable matrix
(see equation (8)), so condition (i) holds. Next, observe that by Lemma 3.1 we have
(Ax∗)σ = Aσx

∗
σ = (m(x∗) − θ)1σ. Since det(Aσ) 6= 0 because Aσ is not fine-tuned,

we can write
x∗σ = (m(x∗)− θ)A−1σ 1σ.

Summing the entries of x∗σ we obtain

m(x∗) = (m(x∗)− θ)aσ. (9)

Since m(x∗) > 0, we must have aσ 6= 0. To see that θ 6= 0, note that if θ = 0, then
aσ = 1 and hence det(Aσ) + cm(Aσ) = 0. Using the determinant formula (6), we see
that this implies det(−11T + Aσ) = 0, which contradicts the fact that −11T + Aσ is
a stable matrix. We can thus conclude that θ 6= 0, which in turn implies that aσ 6= 1,
using equation (9). This allows us to solve for m(x∗) and x∗ as:

m(x∗) =
aσ

aσ − 1
θ, and x∗σ =

θ

aσ − 1
A−1σ 1σ,

yielding the desired equations for x∗σ and m(x∗).
To show that condition (ii) holds, we split into two cases depending on the sign of

θ. Case 1: θ > 0. Because m(x∗) > 0, we must have
aσ

aσ − 1
> 0, which implies either

aσ < 0 or aσ > 1. Since x∗σ > 0, in the aσ < 0 case we must have A−1σ 1σ < 0, and
in the aσ > 1 case A−1σ 1σ > 0. Case 2: θ < 0. Now m(x∗) > 0 implies

aσ
aσ − 1

< 0,

which yields 0 < aσ < 1. Since x∗σ > 0, we must have A−1σ 1σ > 0. Altogether, these
observations give condition (ii).

Finally, we find that for k /∈ σ,

(Ax∗)k =
∑
i∈σ

Akix
∗
i =

θ

aσ − 1

∑
i∈σ

Aki
∑
j∈σ

(A−1σ )ij ≤ m(x∗)− θ =
θ

aσ − 1
,

12



where the inequality follows because (Ax∗)k ≤ m(x∗)− θ by Lemma 3.1. Because Aσ
is not fine-tuned, this inequality must be strict, yielding condition (iii).

(⇐) Now, suppose θ 6= 0, and conditions (i)-(iii) all hold for a given σ, with Aσ not
fine-tuned. Consider the ansatz:

x∗σ =
θ

aσ − 1
A−1σ 1σ,

with x∗k = 0 for k /∈ σ. By (i), σ is a permitted set and hence any fixed point with
support σ is guaranteed to be stable, because Aσ does not satisfy condition (b) of the
definition of fine-tuned (this follows from Proposition 4 of [9]). It thus suffices to check
that x∗σ > 0 and that x∗ satisfies the fixed point conditions in Lemma 3.1. Since by

condition (ii) we assume in all cases that
θ

aσ − 1
A−1σ 1σ > 0, clearly x∗σ > 0. Moreover,

it is easy to see that the fixed point conditions in Lemma 3.1 are satisfied, using our

assumption that condition (iii) holds and the fact that m(x∗)− θ =
θ

aσ − 1
.

3.2 Inhibitory fixed point conditions
In special cases, the fixed point conditions can be stated in simpler terms than what we
had in Theorem 3.4. Here we consider the case where W is inhibitory, so that Wij ≤ 0
for all i, j ∈ [n]. In Section 3.3, we will see a very similar simplification when W is
symmetric.

Theorem 3.6. Consider the threshold-linear network (1), with W satisfying −1 ≤
Wij ≤ 0 for all i, j ∈ [n]. Let A = 11T − I +W , as in (4). If θ ≤ 0, then x∗ = 0 is the
unique stable fixed point of (1). If σ ⊆ [n] is nonempty and Aσ is not fine-tuned, then
there exists a stable fixed point with support σ if and only if θ > 0 and the following
three conditions hold:

(i) (permitted set condition) −11T + Aσ is a stable matrix.

(ii) (on-neuron conditions) A−1σ 1σ > 0 and aσ > 1.

(iii) (off-neuron conditions)
∑
i,j∈σ

Aki(A
−1
σ )ij < 1 for each k /∈ σ.

Proof. If W is inhibitory and θ ≤ 0, then the only possible fixed point of (1) is x∗ = 0,
because the fixed point equations are x∗ = [Wx∗ + θ]+, and Wx∗ + θ ≤ 0 for any
x∗ ≥ 0. By Proposition 3.2, this fixed point is guaranteed to be stable for θ < 0. Since
W is inhibitory, however, x∗ = 0 is also a stable fixed point for θ = 0.

To show the remaining statements, we fix nonempty σ ⊆ [n], where Aσ is not fine-
tuned, and apply Theorem 3.4. It follows from the arguments above that if a stable
fixed point x∗ with support σ exists, then θ > 0. Condition (i) follows directly from
condition (i) of Theorem 3.4. Since θ > 0, condition (ii,b) from Theorem 3.4 does not
apply, so it suffices to consider condition (ii,a), which splits into aσ < 0 and aσ > 1
cases. The remainder of this proof consists of showing that the aσ < 0 case does not
apply, yielding the appropriate specializations of conditions (ii) and (iii) above.
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Suppose aσ < 0. Then conditions (ii) and (iii) of Theorem 3.4 cannot be simulta-
neously satisfied, since condition (ii) requires A−1σ 1σ < 0 and condition (iii) simplifies
to ∑

i,j∈σ

Aki(A
−1
σ )ij > 1, for each k /∈ σ.

To see the contradiction, observe that (A−1σ 1σ)i =
∑

j∈σ(A−1σ )ij < 0 by condition (ii),
and so ∑

i,j∈σ

Aki(A
−1
σ )ij =

∑
i∈σ

Aki
∑
j∈σ

(A−1σ )ij ≤ 0,

since Aki = Wki + 1 ≥ 0, by assumption. We can thus eliminate the aσ < 0 case from
condition (ii,a), as only the aσ > 1 case can apply. Finally, for θ > 0 and aσ > 1 we
see that condition (iii) of Theorem 3.4 simplifies to

∑
i,j∈σ Aki(A

−1
σ )ij < 1.

Remark 3.7. Like Theorem 3.4, Theorem 3.6 does not necessarily cover the case of
fixed points supported on a single neuron, σ = {i}, when Aii = 0. This case is covered
by Proposition 3.2.

3.3 Symmetric fixed point conditions
As in the inhibitory case above, the fixed point conditions of Theorem 3.4 can also be
stated in simpler terms whenW is symmetric with zero diagonal, so thatWij = Wji and
Wii = 0 for all i, j ∈ [n]. Note that this implies the auxiliary matrix A, given by (4), is
also symmetric with zero diagonal.

Theorem 3.8. Consider the threshold-linear network (1), for W (and hence A) sym-
metric with zero diagonal. If θ < 0, then x∗ = 0 is the unique stable fixed point of (1).
If σ ⊆ [n] is nonempty and Aσ is not fine-tuned, then there exists a stable fixed point
with support σ if and only if θ > 0 and the following three conditions hold:

(i) (permitted set condition) −11T + Aσ is a stable matrix.

(ii) (on-neuron conditions) A−1σ 1σ > 0.

(iii) (off-neuron conditions)
∑
i,j∈σ

Aki(A
−1
σ )ij < 1 for each k /∈ σ.

Moreover, if a stable fixed point x∗ with supp(x∗) = σ exists, then aσ > 1.

Proof. The theorem consists of three statements, which we prove in reverse order. First,
recall from Lemma 2.1 that if −11T + Aσ is a stable matrix, then aσ > 1, yielding the
final statement. We now turn to the second statement, and show that it is a special
case of Theorem 3.4. Note that we can reduce to the aσ > 1 case in condition (ii) of
Theorem 3.4, which only applies if θ > 0. Since we must have aσ > 1 and θ > 0 in
order for the off-neuron conditions to be relevant, we see that condition (iii) above is the
correct simplification of condition (iii) in Theorem 3.4. Finally, note that for θ < 0 we
cannot have a stable fixed point supported on a nonempty σ, by the arguments above.
By Proposition 3.2, the fixed point x∗ = 0 with empty support exists and is stable in
this case, giving us the first statement.
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Theorem 3.8 does not cover the singleton case, σ = {i}, since in this case the
matrix Aσ is not invertible (because Aii = 0) and is thus fine-tuned. The following
variant of Theorem 3.8, which we will use in our proof of Theorem 1.1, does include
the singleton case. It is a consequence of Theorem 3.8, Lemma 2.1, Proposition 3.2
and the proof of Theorem 3.4 (in order to drop the fine-tuned hypothesis). Note that
Proposition 3.9 is not an “if and only if” statement; the conditions here are only the
necessary consequences of the existence of a stable fixed point.

Proposition 3.9. Consider the threshold-linear network (1), for W (and hence A) sym-
metric with zero diagonal. Let σ ⊆ [n] be nonempty. If there exists a stable fixed point
with support σ, then θ > 0 and the following three conditions hold:

(i) Aσ is a nondegenerate square distance matrix and aσ > 1.

(ii) A−1σ 1σ > 0 if |σ| > 1.

(iii) If |σ| > 1, then
∑
i,j∈σ

Aki(A
−1
σ )ij ≤ 1 for each k /∈ σ.

If σ = {i}, then Aki ≤ 0 for all k 6= i.

Proof. Suppose σ supports a stable fixed point. Then σ must be a permitted set, and so
condition (i) follows directly from Lemma 2.1. (Recall our convention from Section 2.3
that aσ = ∞ if σ = {i} and Aii = 0.) Next, observe that the θ > 0 requirement in
Theorem 3.8 holds even if Aσ is fine-tuned, because it only required invertibility of
Aσ in the proof of Theorem 3.4. Since, by condition (i), Aσ is a nondegenerate square
distance matrix, the only instance when it is not invertible is when |σ| = 1. In this case,
however, Proposition 3.2 implies that θ > 0.

For the remaining conditions, we split into two cases: |σ| > 1 and |σ| = 1. If
|σ| > 1, then Aσ is invertible, and so A−1σ 1σ > 0 (see the proof of Theorem 3.4),
yielding condition (ii). In the proof of the forwards direction of Theorem 3.4, we see
that condition (iii) holds without the strict inequality even when Aσ is fine-tuned, and
so the simplified version of this condition in Theorem 3.8 also holds, without the strict
inequality, for all Aσ. This gives us the first part of condition (iii).

If σ = {i}, Proposition 3.2 provides the on-neuron condition θ > 0, which is
automatically satisfied, so there is no further addition to condition (ii). It also gives us
the off-neuron condition Aki ≤ Aii for all k 6= i, which is the rest of condition (iii),
since Aii = 0.

4 Some geometric lemmas and Proposition 4.1
In addition to Proposition 3.9, the other main ingredient we will need to prove Theo-
rem 1.1 is the following technical result about nondegenerate square distance matrices:

Proposition 4.1. Let A be an n × n matrix, and let τ ⊆ [n] with |τ | > 1. If Aτ is a
nondegenerate square distance matrix satisfying A−1τ 1τ > 0, then for any σ ( τ with
|σ| > 1 there exists k ∈ τ \ σ such that

∑
i,j∈σ Aki(A

−1
σ )ij > 1.
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Proposition 4.1 is key to the proof of Theorem 1.1 because supports of stable fixed
points in the symmetric case correspond to nondegenerate square distance matrices Aσ
(see Lemma 2.1). Recalling Proposition 3.9, we see that Proposition 4.1 implies an
incompatibility between the fixed point conditions for nested pairs of supports σ, τ ⊆
[n], with σ ( τ . Specifically, if τ satisfies both the permitted set condition (i) and
the on-neuron conditions (ii) in Proposition 3.9, then Proposition 4.1 implies that the
off-neuron conditions (iii) cannot hold for a proper subset σ.

The remainder of this section is devoted to the proof of Proposition 4.1. Note that
the proposition assumes |σ|, |τ | > 1, so that the symmetric matrices Aσ and Aτ are
invertible. We will maintain this assumption throughout this section.

First, we need four geometric lemmas about nondegenerate square distance matri-
ces. These lemmas rely on observations involving moments of inertia and center of
mass for a particular mass configuration associated to the square distance matrix. Let
q1, . . . , qn ∈ Rd be a configuration of n points, with masses y1, . . . , yn assigned to each
point, respectively. Recall that the center of mass of this configuration is given by

qcm =
1

m(y)

n∑
i=1

yiqi,

where m(y) =
∑n

i=1 yi is the total mass. The moment of inertia about any point q ∈ Rd

is

Iq(y) =
n∑
i=1

‖q − qi‖2yi.

The classical parallel axis theorem states that the moment of inertia depends on the
distance between the chosen point q and the center of mass qcm.

Proposition 4.2 (Parallel axis theorem). Let y1, . . . , yn ∈ R denote the masses assigned
to the points q1, . . . , qn ∈ Rd. For any q ∈ Rd,

Iq(y) = m(y)‖q − qcm‖2 + Iqcm(y).

This result is well known, and is a staple of undergraduate physics. It has also been
called Appolonius’ formula in Euclidean geometry [14, Section 9.7.6]. For complete-
ness, we provide a proof in Appendix 6.2, as a corollary of a novel and more general
result. From our proof, it is clear that Proposition 4.2 is valid for general dimension d
and general mass assignments, including negative masses.

We will exploit Proposition 4.2 by applying it to point configurations corresponding
to nondegenerate square distance matrices, Aσ. Let {qi}i∈σ be a representing point
configuration of Aσ in R|σ|−1, so that

Aij = ‖qi − qj‖2 for all i, j ∈ σ.

For this point configuration, let {yi}i∈σ be an assignment of masses to each point (not
necessarily nonnegative), given by

yi = (A−1σ 1σ)i for each i ∈ σ.
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Recall that because Aσ is a nondegenerate square distance matrix and |σ| > 1, Aσ is
invertible and hence these masses are always well defined. The total mass is

m(y) =
∑
i∈σ

yi =
∑
i,j∈σ

(A−1σ )ij = aσ.

Finally, note that because {qi}i∈σ is a nondegenerate point configuration, there exists a
unique equidistant point, pσ ∈ R|σ|−1, so that the distances ‖qi − pσ‖ are the same for
all i ∈ σ [14, Section 9.7.5]. The following lemma shows us that the equidistant point
coincides with the center of mass for this mass configuration.

Lemma 4.3. Let Aσ be a nondegenerate square distance matrix, and assign masses
yσ = A−1σ 1σ to a representing point configuration {qi}i∈σ, as described above. Then
qcm = pσ.

Proof. First, observe that the moment of inertia about any of the points qi is given by

Iqi(y) =
∑
j∈σ

‖qi − qj‖2yj = (Aσyσ)i = (AσA
−1
σ 1σ)i = 1, for each i ∈ σ.

On the other hand, the parallel axis theorem tells us that Iqi(y) = m(y)‖qi − qcm‖2 +
Iqcm(y), so we must have that ‖qi − qcm‖2 = ‖qj − qcm‖2 for all i, j ∈ σ. Clearly, these
equations imply that qcm = pσ.

For a given point configuration {qi}i∈σ, we denote the interior of the convex hull by

(conv{qi}i∈σ)o.

The next lemma states that the equidistant point pσ is inside the convex hull of its
corresponding point configuration if and only all entries of A−1σ 1σ are strictly positive.

Lemma 4.4. Let Aσ be a nondegenerate square distance matrix. Then A−1σ 1σ > 0 if
and only if pσ ∈ (conv{qi}i∈σ)o for any representing point configuration {qi}i∈σ.
Proof. Let {qi}i∈σ be a representing point configuration for Aσ, and assign masses
yσ = A−1σ 1σ, as in Lemma 4.3, so that qcm = pσ. Next, observe that qcm ∈ conv{qi}i∈σ
if and only if the masses are all nonnegative. Similarly, qcm ∈ (conv{qi}i∈σ)o if and
only if the masses are all strictly positive. It thus follows that pσ ∈ (conv{qi}i∈σ)o if
and only if A−1σ 1σ > 0.

Lemma 4.5. Let Aτ be a nondegenerate square distance matrix with representing point
configuration {qi}i∈τ . Suppose σ ( τ , with |σ| > 1, and let pσ denote the unique
equidistant point in the affine subspace defined by the points {qi}i∈σ. Then for any
k ∈ τ \ σ, we have

∑
i,j∈σ Aki(A

−1
σ )ij ≤ 1 if and only if ‖qk − pσ‖ ≤ ‖qi − pσ‖, for

i ∈ σ.

Proof. First, assign masses yσ = A−1σ 1σ to the subset of points {qi}i∈σ, and observe
that ∑

i,j∈σ

Aki(A
−1
σ )ij =

∑
i∈σ

Aki(A
−1
σ 1σ)i =

∑
i∈σ

‖qk − qi‖2yi = Iqk(y).

Next, recall from the proof of Lemma 4.3 that for each i ∈ σ, Iqi(y) = 1. Using
Proposition 4.2, we see that Iqk(y) ≤ 1 if and only if ‖qk − qcm‖ ≤ ‖qi − qcm‖. On the
other hand, Lemma 4.3 tells us that qcm = pσ, yielding the desired result.
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By definition of pσ, the distances ‖qi− pσ‖ for i ∈ σ in the statement of Lemma 4.5
are all equal. This distance to the equidistant point, ρσ = ‖qi − pσ‖, has in fact a
well-known formula in terms of the matrix Aσ (see [9, Appendix C]).

ρ2σ = −1

2

det(Aσ)

cm(Aσ)
=

1

2aσ
. (10)

To state the next lemma, we define

Bρσ(pσ)
def
= {q | ‖q − pσ‖ ≤ ρσ},

which is the closed ball of radius ρσ centered at pσ.

.

.

p
τ 

p
σ

H
σ

H
σ

+

..
. q

i

.q
k

ρ
τ 

ρ
σ 

H
σ

-

q
j

.
q

k’

Figure 4: Picture for the proof of Lemma 4.6.

Lemma 4.6. Let Aτ be a nondegenerate square distance matrix with representing point
configuration {qi}i∈τ . If pτ ∈ (conv{qi}i∈τ )o, and σ ( τ with |σ| > 1, then there exists
k ∈ τ \ σ such that qk /∈ Bρσ(pσ).

Proof. Note that since Aτ is a nondegenerate square distance matrix, so is Aσ. Let pτ
and pσ be the corresponding unique equidistant points, both embedded in R|τ |−1 (so
pσ lies in the affine subspace spanned by {qi}i∈σ). Let Hσ denote the hyperplane in
R|τ |−1 that contains pσ and is perpendicular to the line pσpτ (see Figure 4). Note that
because pτ is also equidistant to all {qi}i∈σ, the line pσpτ is perpendicular to the affine
subspace defined by {qi}i∈σ; hence Hσ contains all points {qi}i∈σ. Denote by H+

σ the
closed halfspace that contains pτ , and let H−σ denote the opposite halfspace, so that
H+
σ ∩ H−σ = Hσ. Because pτ ∈ H+

σ and pτ ∈ (conv{qi}i∈τ )o, we must have at least
one k ∈ τ \ σ with qk ∈ H+

σ \ Hσ. This implies qk /∈ Bρσ(pσ), since the only way a
point can lie both on the large sphere of radius ρτ and in the ball Bρσ(pσ) is if it lies in
H−σ (see qk′ in Figure 4).
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Finally, we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Suppose Aτ is a nondegenerate square distance matrix, satis-
fying A−1τ 1τ > 0. Let {qi}i∈τ be a representing point configuration. By Lemma 4.4,
we know that pτ ∈ (conv{qi}i∈τ )o. Now applying Lemma 4.6, we find there exists
k ∈ τ \ σ such that qk /∈ Bρσ(pσ). This means ‖qk − pσ‖ > ‖qi − pσ‖ for i ∈ σ, which
in turn implies that

∑
i,j∈σ Aki(A

−1
σ )ij > 1, by Lemma 4.5.

5 Proof of Theorems 1.1 and 1.3
In this section we prove Theorems 1.1 and 1.3. Following these proofs, we state and
prove a related result, Theorem 5.3.

The proof of Theorem 1.1 follows from Propositions 3.9 and 4.1, together with a
simple lemma (below). Recall from Section 2.2 that for a given connectivity matrix
W , P(W ) denotes the set of all permitted sets of the corresponding threshold-linear
network. We will use the notation Pmax(W ) to denote the maximal permitted sets, with
respect to inclusion. In other words, if σ ∈ Pmax(W ), then τ /∈ P(W ) for any τ ) σ.

Lemma 5.1. Consider the threshold-linear network (1), for W symmetric with zero di-
agonal. If there exists a stable fixed point x∗ with support σ = {i}, then σ ∈ Pmax(W ).

Proof. Suppose σ = {i} is not a maximal permitted set, so that σ ( τ for some
τ ∈ P(W ). Since Aτ must be a nondegenerate square distance matrix, and |τ | ≥ 2,
it follows that Aki > 0 for all k ∈ τ \ {i}. But this contradicts condition (iii) of
Proposition 3.9, so we can conclude that σ ∈ Pmax(W ).

Recall that Proposition 4.1 implies that if τ satisfies conditions (i) and (ii) of Propo-
sition 3.9, then no σ ( τ with |σ| > 1 can possibly satisfy condition (iii). Lemma 5.1
allows us to extend this observation to the case of |σ| = 1, as singletons can only sup-
port stable fixed points if they are maximal permitted sets. Proposition 3.9 also tells us
that the existence of a stable fixed point with nonempty support τ implies θ > 0, ruling
out the possibility of the stable fixed point with empty support, x∗ = 0. Thus, the above
consequence of Proposition 4.1 can be extended to all σ ( τ . We are now ready to
prove Theorem 1.1

Proof of Theorem 1.1. Suppose there exists a stable fixed point with support τ . We will
first show that for σ ( τ , σ cannot support a stable fixed point. We may assume τ
is nonempty (otherwise it has no proper subsets). It follows from Proposition 3.9 that
θ > 0. We consider three cases: σ = ∅, |σ| = 1, and |σ| ≥ 2.

Suppose σ = ∅. Since θ > 0, we know that σ cannot support a stable fixed point,
by Proposition 3.2. Next, suppose |σ| = 1. Here we can also conclude that σ cannot
support a stable fixed point, by Lemma 5.1. (Note that σ /∈ Pmax(W ) because σ ( τ ,
and we must have τ ∈ P(W ).) Finally, suppose |σ| ≥ 2. Since both |σ|, |τ | > 1, we can
apply Proposition 4.1. All hypotheses are satisfied because τ is the nonempty support
of a stable fixed point, and so by Proposition 3.9 we know that Aτ is a nondegenerate
square distance matrix with A−1τ 1τ > 0. It thus follows from Proposition 4.1 that σ
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cannot satisfy condition (iii) of Proposition 3.9, so σ cannot be a stable fixed point
support.

Finally, observe that for any proper superset σ ) τ , if σ is the support of a stable
fixed point, then the above logic implies that τ cannot support a stable fixed point,
contradicting the hypothesis. Thus, there is no stable fixed point with support σ for any
σ ( τ or σ ) τ .

We now turn to the proof of Theorem 1.3. We will use the following simple lemma.

Lemma 5.2. Let G be a simple graph, and consider the binary symmetric network
W = W (G, ε, δ), for some 0 < ε < 1 and δ > 0, as in (2). Let A = 11T − I + W , as
in (4). If σ is a clique of G with |σ| > 1, then

(i) −11T + Aσ is stable, and

(ii) A−1σ 1σ =
1

ε(|σ| − 1)
1σ (and thus aσ =

|σ|
ε(|σ| − 1)

).

Proof. We first prove (i), and then (ii).
(i) Observe that if σ is a clique and |σ| > 1, then −11T + Aσ is a matrix with

all diagonal entries equal to −1 and all off-diagonal entries equal to −1 + ε. Thus,
−11T +Aσ = (−1 + ε)11T − εIσ. The term (−1 + ε)11T is a rank one matrix, whose
only non-zero eigenvalue is |σ|(−1+ε), corresponding to the eigenvector 1σ. Thus, the
eigenvalues of−11T +Aσ are |σ|(−1+ε)−ε and−ε. The eigenvalue |σ|(−1+ε)−ε is
negative precisely when ε < |σ|/(|σ| − 1). This always holds since |σ| > 1 and ε < 1.
We conclude that all eigenvalues of −11T + Aσ are negative, and hence −11T + Aσ is
stable.

(ii) Notice that since σ is a clique, Aσ = ε(11T − I)σ. It is easy to check that A−1σ
satisfies,

A−1σ =
1

ε(|σ| − 1)


−|σ|+ 2 1 1 . . . 1

1 −|σ|+ 2 1 . . . 1
1 1 −|σ|+ 2 . . . 1
...

...
. . .

...
1 1 1 . . . −|σ|+ 2

,
from which it immediately follows that A−1σ 1σ =

1

ε(|σ| − 1)
1σ.

Proof of Theorem 1.3. First we show that non-cliques cannot support stable fixed points,
because they are not permitted sets. Then we show that all maximal cliques do support
stable fixed points, and derive the corresponding expression for x∗σ. Finally, we invoke
Theorem 1.1 to conclude that there can be no other stable fixed points.

Let σ ⊆ [n] be a subset that is not a clique in G. In the case σ = ∅, we know from
Proposition 3.2 that there is no x∗ = 0 fixed point because θ > 0. Suppose, then, that
σ is nonempty. Since single vertices are always cliques, we know that |σ| ≥ 2 and
there exists at least one pair i, j ∈ σ such that (ij) /∈ G. The corresponding principal
submatrix (−11T + Aσ){ij} is given by

[
−1 −1− δ
−1− δ −1

]
. Since both the determinant

and trace of this submatrix are negative, it must have a positive eigenvalue and is thus
unstable. By the Cauchy Interlacing Theorem (see [9, Appendix A] or [15]),−11T +Aσ
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must also have a positive eigenvalue, rendering it unstable. It follows from (8) that σ is
not a permitted set, so there is no stable fixed point with support σ.

Next, we show that all maximal cliques support stable fixed points. We split into
two cases: |σ| = 1 and |σ| > 1. Let σ = {i} be a maximal clique consisting of a
single vertex, i. Since Aii = 0 < 1 and θ > 0, conditions (i) and (ii) of Proposition 3.2
are always satisfied. Since {i} is a maximal clique, (ik) /∈ G for all k 6= i, and so
Aki = −δ < 0 = Aii for all k 6= i. Thus, condition (iii) of Proposition 3.2 is also
satisfied. It follows that σ = {i} supports a stable fixed point, given by x∗i = θ and
x∗k = 0 for all k 6= i, in agreement with the desired formula for x∗σ with |σ| = 1.

Now suppose σ is a maximal clique with |σ| > 1. Note that Aσ is not fine-tuned, so

Theorem 3.8 applies. By Lemma 5.2,−11T+Aσ is stable andA−1σ 1σ =
1

ε(|σ| − 1)
1σ >

0. Thus, conditions (i) and (ii) of Theorem 3.8 are satisfied, and θ > 0 by assumption.
It remains only to show that condition (iii) holds. Since σ is a maximal clique, for all
k /∈ σ there exists some ik ∈ σ such that (ikk) /∈ G, and thus Akik = −δ. We obtain:

∑
i,j∈σ

Aki(A
−1
σ )ij =

∑
i∈σ

Aki
∑
j∈σ

(A−1σ )ij =
1

ε(|σ| − 1)

∑
i∈σ

Aki =
−δ +

∑
i∈σ\{ik}Aki

ε(|σ| − 1)
,

where we have used part (ii) of Lemma 5.2 to evaluate the row sums of A−1σ . Since
Aki ≤ ε for each i ∈ σ, it follows that

∑
i∈σ\{ik}Aki ≤ ε(|σ|−1), and so condition (iii)

is satisfied: ∑
i,j∈σ

Aki(A
−1
σ )ij ≤

−δ
ε(|σ| − 1)

+ 1 < 1.

We conclude that there exists a stable fixed point for each maximal clique σ. Using the
formula for x∗σ from Theorem 3.4, together with the expressions for A−1σ 1σ and aσ from
Lemma 5.2, we obtain the desired equation for the fixed point:

x∗σ =
θ

aσ − 1
A−1σ 1σ =

θ

(1− ε)|σ|+ ε
1σ.

Finally, observe that since any non-maximal clique is necessarily a proper subset of
a maximal clique, Theorem 1.1 guarantees that non-maximal cliques can not support
stable fixed points. Thus, the supports of stable fixed points correspond precisely to
maximal cliques in G.

In Theorem 1.3, we saw that all fixed point supports corresponded to maximal per-
mitted sets, as these were the maximal cliques of the underlying graph G. This situa-
tion is ideal for pattern completion, as it guarantees that only maximal patterns can be
returned as outputs of the network. Our final result shows that this phenomenon gen-
eralizes to a broader class of symmetric networks, provided all maximal permitted sets
τ ∈ Pmax(W ) satisfy the on-neuron conditions, A−1τ 1τ > 0, from Theorem 3.8.

Theorem 5.3. Let W be symmetric with zero diagonal, and suppose that θ > 0 and
A−1τ 1τ > 0 for each τ ∈ Pmax(W ) with |τ | > 1. If x∗ is a stable fixed point of (1), then
supp(x∗) ∈ Pmax(W ).
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Proof. Let σ = supp(x∗) be the support of a stable fixed point x∗. Observe that σ 6= ∅,
since Proposition 3.2 states that x∗ = 0 can only be a fixed point when θ ≤ 0. If
σ = {i} for some i ∈ [n], then by Lemma 5.1 we have that {i} ∈ Pmax(W ).

Next, consider |σ| > 1. Since σ ∈ P(W ), there exists some τ ∈ Pmax(W ) such
that σ ⊆ τ . Since τ is a permitted set, Aτ is a nondegenerate square distance matrix
(Lemma 2.1). By hypothesis, A−1τ 1τ > 0, so Proposition 4.1 applies. If σ ( τ is a
proper subset, then there exists k ∈ τ \ σ that violates condition (iii) of Theorem 3.8,
contradicting the assumption that σ is a stable fixed point support. It follows that σ = τ,
and thus σ ∈ Pmax(W ).

6 Appendix

6.1 Additional details for the simulations in Section 1.3
Network implementation. We solved the system of differential equations (1), with
θ = 1, using a standard Matlab ode solver for a length of time corresponding to 50τ

L
,

where τ
L

is the leak time constant associated to each neuron. This length of time was
sufficient for the network to numerically stabilize at a fixed point x∗. Note that τ

L
is

omitted from our equations because we have set τ
L

= 1, so that time is measured in
units of τ

L
.

Generation of 2D place field codes. Two-dimensional place field codes were gen-
erated following the same methods as in [12]. 200 place field centers were randomly
chosen from a 1 × 1 square box environment, with each place field a disk of radius
0.15. This produced place field codes with an average of 7% of neurons firing per code-
word. As described in [12], the place field centers were initially chosen randomly from
uncovered regions of the stimulus space, until complete coverage was achieved. The re-
maining place field centers were then chosen uniformly at random from the full space.
Here we introduced one modification to the procedure in [12]: our place field centers
were generated 50 at a time, repeating the process from the beginning for the four sets
of 50 neurons in order to guarantee that every point in the stimulus space was covered
by a minimum of four place fields. This ensured that all codewords had at least four 1s
(out of 200 bits).

6.2 A generalization of the parallel axis theorem
Here we present a new, more general version of the parallel axis theorem (Proposi-
tion 4.2), which was used in Section 4.

Proposition 6.1. LetA be an n×n matrix, and y ∈ Rn a vector such thatm = m(y) =∑n
i=1 yi 6= 0. Then there exists a unique λ = (λ1, . . . , λn) such that

Ay = Λy, where Λij = λi + λj.

Explicitly,

λi =
(Ay)i
m
− y · (Ay)

2m2
. (11)
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Proof. First, observe that Ay = Λy implies

(Ay)i = (Λy)i =
∑
j

(λi + λj)yj = mλi + λ · y.

Since m 6= 0, λi =
(Ay)i − λ · y

m
. Taking the dot product with y yields

λ · y =
1

m
y · (Ay)− 1

m
(λ · y)

∑
i

yi =
1

m
y · (Ay)− λ · y,

allowing us to solve for λ · y =
1

2m
y · (Ay). Plugging this into the above expression for

λi yields the desired result.

We can now obtain the classical parallel axis theorem as a special case of Proposi-
tion 6.1. Consider the case where A is the square distance matrix for a configuration of
points q1, . . . qn ∈ Rd, and y = (y1, . . . , yn)T is a vector of masses, one for each point,
whose sum m =

∑n
i=1 yi is nonzero. In this case, Aij = ‖qi − qj‖2, the center of mass

is qcm =
1

m

∑n
i=1 qiyi, and it is not difficult to check that

λi =
(Ay)i
m
− y · (Ay)

2m2
= ‖qi − qcm‖2.

(Without loss of generality, choose qcm = 0 and use this fact to cancel terms of the form∑
i qiyi that appear when you rewrite Aij = (qi − qj) · (qi − qj) and expand.) Recall

that the moment of inertia of such a mass configuration about a point q ∈ Rd is given
by Iq(y) =

∑n
j=1 ‖q − qj‖2yj. If q = qi for some i ∈ [n], then we have

Iqi(y) =
n∑
j=1

‖qi − qj‖2yj = (Ay)i.

We can now prove Proposition 4.2, which states that:

Iq(y) = m‖q − qcm‖2 + Iqcm(y).

Proof of Proposition 4.2. Without loss of generality, we can assume that q = qi for
some i ∈ [n]. (If not, add the point q to the collection {qi} and assign it a mass of 0.) As
observed above, Iq(y) = Iqi(y) = (Ay)i, and recall from the proof of Proposition 6.1
that (Ay)i = mλi +λ · y. Since λi = ‖qi− qcm‖2, and thus λ · y = Iqcm(y), substituting
these expressions into the equation for (Ay)i immediately yields the desired result.

To see why Proposition 6.1 may be useful more generally, consider the situation
where y ∈ Rn is proportional to the vector of firing rates at a fixed point of a threshold-
linear network (1). Specifically, suppose y has support σ, and yσ = A−1σ 1σ. In this case,
m =

∑
i∈σ(A−1σ 1σ)i = aσ, (Ay)i = 1 for all i ∈ σ, and y · (Ay) =

∑
i∈σ yi = m = aσ.

It follows that
λi =

1

2aσ
for all i ∈ σ.
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On the other hand, for k /∈ σ we have (Ay)k =
∑

i∈σ Akiyi =
∑

i,j∈σ Aki(A
−1
σ )ij, so

that

λk =
1

aσ

(∑
i,j∈σ

Aki(A
−1
σ )ij −

1

2

)
for all k /∈ σ.

Assuming aσ > 0, the off-neuron conditions of Theorem 3.6 and Theorem 3.8 are

satisfied if and only if λk <
1

2aσ
= λi. Thus, λi for i ∈ σ generalizes the quantity

‖qi − qcm‖2 = ‖qi − pσ‖2 = ρ2σ =
1

2aσ
,

which appeared in Section 4 for A a nondegenerate square distance matrix (see equa-
tion (10)). Similarly, for k /∈ σ, the condition λk < λi generalizes the requirement
‖qk − pσ‖ ≤ ‖qi − pσ‖ from Lemma 4.5. This suggests that it may be possible to
generalize Proposition 4.1, and thus Theorem 1.1, beyond the symmetric case.
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