
1

An Online Structural Plasticity Rule for Gener-
ating Better Reservoirs

Subhrajit Roy

subhrajit.roy@ntu.edu.sg

School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore.

Arindam Basu

arindam.basu@ntu.edu.sg; Corresponding author

School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore.

Keywords: Reservoir Computing, Liquid State Machine, Structural Plasticity, Neu-

romorphic Systems, STDP, Unsupervised Learning

Abstract

In this article, a novel neuro-inspired low-resolution online unsupervised learning rule is
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proposed to train the reservoir or liquid of Liquid State Machine. The liquid is a sparsely

interconnected huge recurrent network of spiking neurons. The proposed learning rule

is inspired from structural plasticity and trains the liquid through formation and elimi-

nation of synaptic connections. Hence, the learning involves rewiring of the reservoir

connections similar to structural plasticity observed in biological neural networks. The

network connections can be stored as a connection matrix and updated in memory by

using Address Event Representation (AER) protocols which are generally employed in

neuromorphic systems. On investigating the ‘pairwise separation property’ we find that

trained liquids provide 1.36 ± 0.18 times more inter-class separation while retaining

similar intra-class separation as compared to random liquids. Moreover, analysis of

the ‘linear separation property’ reveals that trained liquids are 2.05 ± 0.27 times better

than random liquids. Furthermore, we show that our liquids are able to retain the ‘gen-

eralization’ ability and ‘generality’ of random liquids. A memory analysis shows that

trained liquids have 83.67± 5.79 ms longer fading memory than random liquids which

have shown 92.8 ± 5.03 ms fading memory for a particular type of spike train inputs.

We also throw some light on the dynamics of the evolution of recurrent connections

within the liquid. Moreover, compared to ‘Separation Driven Synaptic Modification’ -

a recently proposed algorithm for iteratively refining reservoirs, our learning rule pro-

vides 9.30%, 15.21% and 12.52% more liquid separations and 2.8%, 9.1% and 7.9%

better classification accuracies for four, eight and twelve class pattern recognition tasks

respectively.
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1 Introduction

In neural networks, ‘plasticity’ of synapses refers to their connection rearrangements

and changes in strengths over time. Over the past decade, a plethora of learning rules

have been proposed which are capable of training networks of spiking neurons through

various forms of synaptic plasticity (Gardner et al., 2015; Kuhlmann et al., 2014; Sporea

and Grüning, 2013; Florian, 2013; Ponulak and Kasiński, 2010; Gutig and Sompolin-

sky, 2006; Brader et al., 2007; Arthur and Boahen, 2006; Gerstner and Kistler, 2002;

Moore, 2002; Poirazi and Mel, 2001). A large majority of these works have explored

weight plasticity where a neural network is trained by modifying (strengthening or

weakening) of the synaptic strengths. We identify another unexplored form of plas-

ticity mechanism termed as structural plasticity that trains a neural network through

formation and elimination of synapses. Since structural plasticity involves changing the

network connections over time, it does not need the provision to keep high-resolution

weights. Hence, it is inherently a low resolution learning rule. Such a type of low-

resolution learning rule is motivated by the following biological observations:

1. Biological experiments have shown that the strength of synaptic transmission

at cortical synapses can experience considerable fluctuations “up” and “down”

representing facilitation and depression respectively, or both, when excited with

short synaptic stimulation and these dynamics are distinctive of a particular type

of synapse (Thomson et al., 1993; Markram and Tsodyks, 1996; Varela et al.,

1997; Hempel et al., 2000). This kind of short-time dynamics is in contrary to the

traditional connectionist models assuming high-resolution synaptic weight values
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and conveys that synapses may only have a few states.

2. Moreover, another experimental research on long-term potentiation (LTP) in the

hippocampus region of the brain revealed that excitatory synapses may exist in

only a small number of long-term stable states, where the continuous grading

of synaptic efficacies observed in common measures of LTP may exist only in

the average over a huge population of low-resolution synapses with randomly

staggered thresholds for learning (Petersen et al., 1998).

Since the learning happens through formation and elimination of synapses, struc-

tural plasticity has been used to train networks of neurons with active dendrites and

binary synapses (Poirazi and Mel, 2001; Hussain et al., 2015; Roy et al., 2013, 2014,

2015). These works demonstrated that networks constructed of neurons with nonlinear

dendrites and binary synapses and trained through structural plasticity rules can obtain

superior performance for supervised and unsupervised pattern recognition tasks.

However, till now structural plasticity has been employed as a learning rule only in

the context of neurons with non-linear dendrites and binary synapses. We identify that

it is a generic rule and can be tailored to train any neural network thereby allowing it to

evolve in low-resolutions. We intend to venture into this domain and as a first step we

have chosen to modify the sparse recurrent connections of a liquid or reservoir of Liq-

uid State Machine (LSM) (Maass et al., 2002) constructed of standard Leaky Integrate

and Fire (LIF) neurons through structural plasticity and study its effects. In our algo-

rithm, structural plasticity happening in longer timescales is guided by a fitness function

updated by a STDP inspired rule in shorter timescales. In contrast to the recently pro-

posed algorithms that aim to enhance the LSM performance by evolving its liquid (Xue
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et al., 2013; Hourdakis and Trahanias, 2013; Notley and Gruning, 2012; Obst and Ried-

miller, 2012), our structural plasticity-based training mechanism provides the following

advantages:

1. For hardware implementations, the ‘choice’ of connectivity can be easily im-

plemented exploiting Address Event Representation (AER) protocols commonly

used in current neuromorphic systems where the connection matrix is stored in

memory. Unlike traditional algorithms modifying and storing real-valued synap-

tic weights, online learning in real time scenarios is achieved by the proposed

algorithm through only modification of the connection table stored in memory.

2. Due to the presence of positive feedback connections in liquid, training it through

‘weight plasticity’ might lead to an average increase in synaptic weight and even-

tually take it to the unstable region. We conjecture that since our connection based

learning rule keeps the average synaptic weight of the liquid constant throughout

learning, it reduces the chance of leading the liquid into instability.

The rest of the paper is organized as follows. In the following section, we shall

discuss the LSM framework and throw some light on the previous works on LSM and

structural plasticity. In Section 3, we will propose the structural plasticity based un-

supervised learning rule we have developed to train a liquid or reservoir composed of

spiking neurons. In Section 4, we shall share and discuss the results obtained from the

experiments performed to evaluate the performance of our liquid. We will conclude

the paper by discussing the implications of our work and future directions in the last

section. We have included an Appendix section where we list the specification of the
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liquid architecture and values of parameters used in this article.

2 Background and Theory

In this section, we shall briefly describe the LSM framework and look into few works

from the last few years that aspired to improve the liquid or reservoir of LSM. Next we

shall briefly review few supervised and unsupervised structural plasticity learning rules.

2.1 Theory of Liquid State Machine

LSM (Maass et al., 2002) is a reservoir computing method developed from the view-

point of computational neuroscience by Maass et al. It supports real-time computations

by employing a high dimensional heterogeneous dynamical system which is continu-

ously perturbed by time-varying inputs. The basic structure of LSM is shown in Fig. 1.

It comprises three parts: an input layer, a reservoir or liquid, and a memoryless readout

circuit. The liquid is a recurrent interconnection of a large number of biologically real-

istic spiking neurons and synapses. The readout is implemented by a pool of neurons

which do not possess any lateral interconnections. The spiking neurons of the liquid

are connected to the neurons of the readout. The liquid does not create any output, in-

stead it transforms the lower dimensional input stream to a higher dimensional internal

state. These internal states act as an input to the memoryless readout circuit which is

responsible for producing the final output of LSM.

Following (Maass et al., 2002), if u(t) is the input to the reservoir, then the liquid

neuron circuit can be represented mathematically as a liquid filter LM which maps the
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u(t)

LM

fM

y(t)

xM(t)
Liquid

Readout

Input

Figure 1: In this figure the LSM framework is shown. LSM consists of three stages with

the first stage being the input layer. The input stage is followed by a pool of recurrent

spiking neurons whose synaptic connections are generated randomly and are usually

not trained. The next stage is a simple linear classifier that is selected and trained in a

task-specific manner.

input function u(t) to the internal states xM(t) as:

xM(t) = (LMu)(t) (1)

The next part of LSM i.e. the readout circuit takes these liquid states as input and

transforms them at every time instant t into the output y(t) given by:

y(t) = fM(xM(t)) (2)

The liquid circuit is general and does not depend on the problem at hand whereas the

readout is selected and trained in a task-specific manner. Moreover, multiple readouts

can be used in parallel for extracting different features from the internal states produced
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by the liquid. For more details on the theory and applications of LSM, we invite the

reader to refer to (Maass et al., 2002).

2.2 Previous research on improvement of liquid

In (Xue et al., 2013), a novel Spike Timing Dependent Plasticity (STDP) based learn-

ing rule for generating a self-organized liquid was proposed. The authors showed that

LSM with STDP learning rule provides better performance than LSM with randomly

generated liquid. Ju et al. (2013) have studied in detail the effect of the distribution

of synaptic weights and synaptic connectivity in the liquid on LSM performance. In

addition, the authors have proposed a genetic algorithm based rule for the evolution of

the liquid from a minimum structure to an optimized kernel having an optimal number

of synapses and high classification accuracy. The authors of (Hourdakis and Trahanias,

2013) have used the Fishers Discriminant Ratio as a measure of the Separation Property

of the liquid. Subsequently, they have used this measure in an evolutionary framework

to generate liquids with suitable parameters, such that the performance of readouts get

optimized. Sillin et al. (2013) implemented a reservoir by using Atomic Switch Net-

works (ASN) that is capable of utilizing nonlinear dynamics without needing to control

or train the connections in the reservoir. They showed a method to optimize the phys-

ical device parameters to maximize efficiency for a given task. Schliebs et al. (2012)

have proposed an algorithm to dynamically vary firing threshold of the liquid neurons in

presence of neural spike activity such that LSM is able to achieve both a high sensitivity

of the liquid to weak inputs as well as an enhanced resistance to over-stimulation for

strong stimuli. Wojcik (2012) simulated the LSM by forming the liquid with Hodgkin-
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Huxley neurons instead of LIF neurons as used in (Maass et al., 2002). They have

done a detailed analysis of the influence of cell electrical parameters on the Separation

Property of this Hodgkin-Huxley liquid. In (Notley and Gruning, 2012), Notley et al.

have proposed a learning rule which updates the synaptic weights in the liquid by using

a tri-phasic STDP rule. Frid et al. (2012) have proposed a modified version of LSM

which can successfully approximate real-valued continuous functions. Instead of pro-

viding spike trains as input to the liquid, they have directly provided the liquid with

continuous inputs. Moreover, they have also used neurons with firing history depen-

dent sliding threshold to form the liquid. In (Hazan and Manevitz, 2012), the authors

have shown that LSM in its normal form is less robust to noise in data but when certain

biologically plausible topological constraints are imposed then the robustness can be

increased. The authors of (Schliebs et al., 2011) have presented a liquid formed with

stochastic spiking neurons and termed their framework as pLSM. They have shown that

due to the probabilistic nature of the proposed liquid, in some cases pLSM is able to pro-

vide better performance than traditional LSM. In (RhéAume et al., 2011), the authors

have proposed novel techniques for generating liquid states to improve the classifica-

tion accuracy. First, they have presented a state generation technique which combines

the membrane potential and firing rates of liquid neurons. Second, they have suggested

representing the liquid states in frequency domain for short-time signals of membrane

potentials. Third, they have shown that combination of different liquid states lead to

better performance of the readout. Kello and Mayberry (2010) have presented a self-

tuning algorithm that is able to provide a stable liquid firing activity in the presence of

a varied range of inputs. A self-tuning algorithm is used with the liquid neurons that
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adjusts the post-synaptic weights in such a way that the spiking dynamics remain be-

tween sub-critical and super-critical. In (Norton and Ventura, 2010), the authors have

proposed a learning rule termed as ‘Separation Driven Synaptic Modification (SDSM)’

for training the liquid, which is able to construct a suitable liquid in fewer generations

than random search.

2.3 Previous research involving Structural Plasticity

Poirazi and Mel (2001) showed that supervised classifiers employing neurons with ac-

tive dendrites i.e. dendrites having lumped non-linearities and binary synapses can be

trained through structural plasticity to recognize high-dimensional Boolean inputs. In-

spired by (Poirazi and Mel, 2001), Hussain et al. (2015) proposed a supervised classifier

composed of neurons with non-linear dendrites and binary synapses suitable for hard-

ware implementations. In (Roy et al., 2013, 2014) this classifier was upgraded to ac-

commodate spike train inputs and a spike-based structural plasticity rule was proposed

that was amenable for neuromorphic implementations. In (Roy et al., 2015) another

supervised spike-based structural plasticity rule inspired from Tempotron (Gutig and

Sompolinsky, 2006) was proposed for training a threshold-adapting neuron with active

dendrites and binary synapses. Moreover, an unsupervised spike-based strutural plas-

ticty learning rule was proposed in (Roy and Basu, 2015) for training a Winner-Take-All

architecture composed of neurons with active dendrites and binary synapses.

Till now, the works related to structural plasticity that we showcased in this subsec-

tion have been confined to networks employing neurons with nonlinear dendrites and

binary synapses. In recent years, structural plasticity has been used to train generic
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neural networks as well. For example, in (George et al., 2015), a STDP learning rule

interlaced with structural plasticity was proposed to train feed-forward neural networks.

In (George et al., 2015), this work was modified and applied to a highly recurrent spik-

ing neural network. In these two works, the synaptic weights are modified by STDP

and when a critical period is reached, the synapses are pruned through structural plas-

ticity. Unlike these works, that implement an interplay between STDP and structural

plasticity, in the proposed learning rule structural plasticity or connection modifications

happen on longer timescales (at the end of patterns) which is guided by the fitness func-

tion or correlation coefficient updated by a STDP inspired rule in shorter timescales

(at each pre- and post-synaptic spike). In the following section, we will propose our

connection based unsupervised learning rule.

3 Unsupervised structural plasticity in liquid

The liquid is a three-dimensional recurrent architecture of spiking neurons that are

sparsely connected with synapses of random weights. We used Leaky Integrate and

Fire (LIF) neurons and biologically realistic dynamic synapses to construct our liquids.

The specifications of the architecture and the parameter values are listed in the Ap-

pendix and unless otherwise mentioned, we use these values in our experiments. In the

proposed algorithm, learning happens through formation and elimination of synapses

instead of the traditional way of updating real-valued weights associated with them.

Hence, to guide the unsupervised learning, we define a correlation coefficient based fit-

ness value cij(t) for the synapse (if present) connecting the jth excitatory neuron to the
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ith excitatory neuron, as a substitute for its weight. Since the liquid neurons are sparsely

connected, cij(t)’s are defined only for the neuron pairs that have synaptic connections.

Note that the proposed learning rule only modifies the connections between excitatory

neurons. The operation of the network and the learning process comprises the following

steps whenever a pattern is presented:

• cij(t) is initialized as cij(t = 0) = 0 ∀ excitatory neuron pairs (i, j) having a

synaptic connection from the jth to the ith neuron. Here, Le is the number of

excitatory liquid neurons and i ∈ 0, 1, ...Le & j ∈ 0, 1, ...Le. Note that L is the

total number of neurons in the liquid which comprises of Le excitatory and Li

inhibitory neurons.

• The value of cij(t) is depressed at pre-synaptic and potentiated at post-synaptic

spikes according to the following rule:

1. Depression: If a post-synaptic spike of the jth excitatory neuron appears

after some time delay δij as a pre-synaptic spike to the ith excitatory neuron

at time tpre, then the value of cij(t) is updated by a quantity ∆cij(t
pre) given

by:

∆cij(t
pre) = − f̄i(t

pre) (3)

where fi(t) and f̄i(t) = K(t) ∗ fi(t) are the output and the post-synaptic

trace of the ith excitatory spiking neuron. In this work we have chosen an

exponential form of K(t) given by K(t) = I0(e
−t/τs − e−t/τf ).

2. Potentiation: If the ith excitatory neuron fires a post-synaptic spike at time

tpost then cij(t) for each synapse connected to it is updated by ∆cij(t
post)
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given by:

∆cij(t
post) = ēj(t

post) (4)

where δij and ēj(t) = K(t) ∗ fj(t − δij) are its delay and the pre-synaptic

trace of the spiking input it receives.

A pictorial explanation of this update rule of cij(t) is shown in Fig. 2.

• After the network has been integrated over the current pattern, the synaptic con-

nections of the excitatory neurons which have produced at least one spike are

modified.

• If we consider that Q out of Le excitatory neurons have produced a post-synaptic

spike for the current pattern, then the synaptic connections of the qth neuron

∀ q = 1, 2..., Q is updated by tagging the synapse (sqmin) having the lowest value

of correlation coefficient out of all the synapses connected to it, for possible re-

placement.

• To aid the unsupervised learning process, randomly chosen sets Rq containing

nR of the Le excitatory neurons are forced to make connections to the qth neuron

through silent synapses having same physiological parameters as sqmin ∀ q =

1, 2..., Q. We term these synapses as “silent” since they do not contribute to the

computation of the neuron’s membrane voltage V n(t) - so they do not alter the

liquid output when the same pattern is re-applied. The value of cqj(t) is calculated

for synapses in Rq and sqmin is replaced with the synapse having maximum cqj(t)

(rqmax) in Rq ∀q = 1, 2..., Q i.e. the pre-synaptic neuron connected to s(q)min is

swapped with the pre-synaptic neuron connected to rqmax.

13



tpre1 tpre2

tpost3 tpost4

fj(t)

fj(t-δij)

ej(t)

fi(t)

fi(t)

Δcij(t)

tpost1 tpost2

Δcij(ti
post3) Δcij(ti

post4)
Δcij(tj

pre2)

δij δij

Figure 2: An example of the update rule of fitness value (cij(t)) associated with the

synapse connecting the jth excitatory neuron to the ith excitatory neuron is shown.

When a post-synaptic spike is emitted by excitatory neuron i at tpost3, the value of

cij(t) increases by ēj(tpost3). On the other hand, when excitatory neuron j emits a post-

synaptic spike at tpost2, it reaches neuron i at tpre2 = tpost2 + δij due to the presence of

synaptic delay. The arrival of a pre-synaptic spike at tpre2 reduces cij(t) by f̄ i(tpre2) as

shown in the figure.

• All the cij values are reset to zero and the above-mentioned steps are repeated for

every pre- and post-synaptic spike. The proposed learning rule is explained by

demonstrating the connection modification of a single neuron in Fig. 3.
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Figure 3: (Caption in the following page.)

4 Experiments and results

In this section, we will describe the experiments performed to evaluate the performance

of our algorithm and discuss the obtained results. We will employ various metrics to

explore different properties of our liquid and compare it with the traditionally used

randomly generated liquid. Moreover, we will compare its performance with another

algorithm that performs iterative refining of liquids.

4.1 Separation capability

In this sub-section, we throw some light on the computational power of our liquid

trained by structural plasticity by evaluating its separation capability on spike train in-

puts. As a first test, we choose the pairwise separation property considered in Maass

et al. (2002) as a measure of its kernel quality. First, we take a spike train pair u(t) and

v(t) of duration Tp = 1 sec and give it as input to numerous randomly generated liq-
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Figure 3: In this figure, the proposed learning rule is explained by showing an example

of synaptic connection modification. After the presentation of a pattern, a set of

excitatory neurons Q produces output spikes. Although connection modification takes

place for all the neurons in set Q, the 47th excitatory neuron is randomly chosen for

this example and all the stages of its connection modification are shown in (a)-(e). The

15th, 33rd, 64th and 79th excitatory neurons are connected to the 47th excitatory neuron

as shown in (a). Above each connection or synapse we mention the ci,j associated with

that synapse. Moreover, below each synapse we mention the set of physiological pa-

rameters Pi,j = {wij, δij, τij, Uij, Dij, Fij} associated with it which includes the weight

(wij), delay (δij), synaptic time constant (τij) and the Uij , Dij and Fij parameters.

Note that the Uij , Dij and Fij parameters are only applicable for dynamic synapses.

The cij values of all the connections are checked at the end of the pattern and the one

having the minimum value (s47min) is identified. In this example the connection from

the 64th excitatory neuron is identified as the minimum cij connection and tagged for

replacement (b). In the next step (c) a randomly chosen set of excitatory neurons are

forced to make connections to the 47th neuron through silent synapses. Note that the

physiological parameters for these silent synapses are set to P64,47 i.e. same as the

synapse connecting the 64th excitatory neuron to the 47th excitatory neuron. The next

step involves identifying the silent synapse having the maximum value of cij i.e. r47max

which is the connection from the 52nd excitatory neuron. Subsequently, our learning

rule swaps these connections to form the updated morphology as shown in ((d)-(e)).
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uids having different initial conditions in each trial. In this experiment, while the inputs

remain same, the liquids are different for different trials. The resulting internal states

of the liquid xMu (t) and xMv (t) are noted for u(t) and v(t) respectively. We calculate

the average Euclidean norm ||xMu (t) − xMv (t)|| between these two internal states and

plot them in Fig. 4 and 5 against time for various fixed values of distance d(u(t), v(t))

between the two injected spike trains u(t) and v(t). To compute the distance between

u(t) and v(t) we use the same method proposed in (Maass et al., 2002). Moreover, we

show the Pairwise Separation obtained at each trial at the output of the liquid which is

given by the following formula:

Pairwise Separation =
∑

n s.t. 0<tn<Tp

||xMu (tn)− xMv (tn)|| (5)

where the liquid output is sampled at times tn.

In Fig. 4 and Fig. 5, the blue curves correspond to the traditional randomly gen-

erated liquid with no evolution as proposed in Maass et al. (2002) and the red curves

correspond to the scenario when the same randomly generated liquid (for each trial) is

trained through structural plasticity. Hence, the blue curves indicate the initial condi-

tion for generation of the red curves. In Fig. 4(a) i.e. the curves for d(u(t), v(t)) = 0

are generated by applying the same spike train to two randomly chosen initial condi-

tions of the liquid. Hence, these curves show the noise level of the liquid. Fig. 4(b),

Fig. 5(a) and Fig. 5(b) correspond to d(u(t), v(t)) = 0.1, d(u(t), v(t)) = 0.2 and

d(u(t), v(t)) = 0.4 respectively. The parameters of the liquids are kept as shown in

Table 1 in the Appendix . Fig. 4(a) depicts that the separation of the liquid states are

similar for both the methods. This demonstrates that the noise level is same for both

the liquids. On the other hand, Fig. 4 (b) and Fig. 5(a)-(b) show that the proposed al-
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Figure 4: (Caption in the following page.)

gorithm is able to produce liquid states with more separation than the traditional liquid

with no evolution. In other words, morphologically evolved liquids are better in captur-

ing and amplifying the separation between input spike trains as compared to randomly

generated liquids.

In the next experiment, we use the same liquid for all trials but vary the input spike

pairs. 500 different spike train pairs ui(t) and vi(t) (here i varies from 1 to 500) of

distance d(ui(t), vi(t)) = 0.2 are generated and given as input to the same liquid sep-

arately. The internal state distance separation for all the trials are averaged and plotted
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Figure 4: Same input, different liquid: In this figure, we compare the pairwise

separation property of randomly generated liquids and the same liquids when trained

through the proposed unsupervised structural plasticity based learning rule. While

the blue lines indicate the separation capability of randomly generated liquids, the

red lines are obtained by evolving the same liquids by the proposed algorithm. For

this simulation, in each trial the connections are updated for 15 iterations. In each

iteration one connection update happens for each spike train of the pair and hence the

liquid encounters 30 connection modifications during training. In this figure, (a) shows

that the noise level of both the random and the learnt liquid is similar. Hence, during

training our learning rule does not induce extra noise. Moreover, (b) depicts that liquid

trained by structural plasticity is able to obtain more separation than random liquids for

d(u(t), v(t) = 0.1 for all the trials.

in Fig. 6 against time for both the random and trained liquids. The input spike trains

typically tend to produce peaks and troughs in the state distance plot. They appear at

different regions for different input spike trains. However, these peaks and troughs av-

erage out in Fig. 6 since we take the mean of state distances obtained from 500 trials

with different inputs. This figure clearly depicts that a liquid trained through structural

plasticity consistently shows higher separation than a random liquid for different inputs.

Moreover, to evaluate the separability across a wide range of input distances, we

generate numerous spike train pairs having progressively increasing distances and note

the internal state distances of both the random and trained liquids. While the state dis-

tances at t = Tp = 1 sec for both the random and trained liquids are plotted in Fig.
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Figure 5: Same input, different liquid: In this figure, the experiment performed to

generate Fig. 4 has been repeated for input spike train pairs of distance d(u(t), v(t) =

0.2 (a) and 0.4 (b). Similar to Fig. 4(b) the trained liquids demonstrate more separation

for all trials.

7(a), their ratio is shown in Fig. 7(b). Fig. 7(a) and Fig. 7(b) suggest that for inputs

with smaller distance, which might correspond to the intra-class separation during clas-

sification tasks, the separability provided by both the liquids are close. On the other

hand, when the distance between inputs increase, which might correspond to inter-class

separation for classification tasks, the separation provided by trained liquids are more
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Figure 6: Same liquid, different input: In this figure, the same liquid is excited by 500

different input spike trains and the separation between the internal state distances are

recorded. The resulting state distance, averaged over 500 trials, is plotted for both the

randomly generated liquid and the same liquid when trained through structural plastic-

ity. It is clear that the trained liquid always produces more separation than the random

liquid at its output.

than random liquid. According to Fig. 7(b) the ratio of separation provided by our liq-

uid trained by structural plasticity and random liquid increases and finally saturates at

1.36. Hence, our trained liquid provides 1.36 ± 0.18 times more inter-class separation

than a random liquid while maintaining a similar intra-class separation. The increased

separation achieved by our morphological learning rule provides the subsequent linear

classifier stage with an easier recognition problem.

The pairwise separation property is a good measure of the extent to which the de-
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Figure 7: (a) The internal state distances (averaged over 200 trials) of randomly gen-

erated liquids and the same liquids when trained through structural plasticity is plotted

against the distances between the input spike trains. While at lower input distances

(intra-class) the separation achieved by both are similar, the trained liquid provides

more separation at higher input distances (inter-class). (b) The ratio (averaged over 200

trials) of state distance obtained by trained and random liquids gradually increases with

input distance and saturates approximately at 1.36 ± 0.18.

tails of the input streams are captured by the liquid’s internal state. However, in most

real-world problems we require the liquid to not only produce a desired internal state

for two, but for a fairly large number of m significantly different input spike trains. Al-

though we could test whether a liquid can separate each of the
(
m
2

)
pairs of such inputs,

we still would not know whether a subsequent linear classifier would be able to generate

given target outputs for these m inputs. Hence, a stronger measure of kernel quality is

required. Maass et al. (2005) addressed this issue and proposed a rank-based measure

termed as the linear separation property as a more suitable metric for evaluating a liq-
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uid’s kernel quality or computational power. Although for the sake of completeness we

discuss here how this quantitative measure is calculated for m given spike trains, we

invite the reader to look into (Maass et al., 2005) for its detailed proof.

The method for evaluating the linear separation property for a liquid C for m dif-

ferent spike trains is shown in Fig. 8. First, these spike trains are injected into the

liquid and the internal its states are noted (Fig. 8(a)-(c)). Next, a L ×m matrix Ms is

formed (Fig. 8(d)) for all the inputs u1(t), u2(t), .., ui(t), ..., um(t), whose columns are

the liquid states xMui (Tp) resulting at the end of the preceding input spike train ui of du-

ration Tp. Maass et al. (2005) suggested that the rank rs of matrix Ms reflects the linear

separation property and can be considered as a measure of the kernel quality or com-

putational power of the liquid C, since rs is the ‘number of degrees of freedom’ that a

subsequent linear classifier has in assigning target outputs yi to these inputs ui. Hence,

a liquid with more computational power or better kernel quality has a higher value of

rs. The proposed unsupervised learning rule modifies the liquid connections after the

end of each pattern. Hence in real-time simulations, where patterns are presented con-

tinuously, the connections within our liquid are modified through structural plasticity in

an online fashion. To show that the online update generates liquids with progressively

better kernel quality, we plot in Fig. 9 the value of the mean rank rs,mean against the

number of spike trains (Np) applied to the circuit. rs,mean is calculated by taking an av-

erage of the ranks rs obtained from each trial. In a real world implementation the liquid

connections will get updated without any intervention and hence calculation of rank is

not required. However, to probe into the performance of our learning rule, we create the

matrixMs after each input is presented based on all the input spike trains at our disposal
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and calculate its rank rs. The curves presented in Fig. 9 are generated by applying 100

different spike trains to liquids having random initial states for each trial. Each point in

the curves is averaged over 200 trials. Fig. 9 clearly shows that the average rank rs,mean

increases as more number of inputs are presented until it reaches saturation. This sug-

gests that our proposed unsupervised structural plasticity based learning rule is capable

of generating liquids with more computational power as compared to the traditional

method of randomly generating the liquid connections. Note that the point in the curve

rs,mean = 35.48 corresponding to Np = 1 reflects the kernel quality or computational

power of the traditional randomly generated liquid. The proposed algorithm is able

to generate liquids having rs,mean = 72.87 i.e. 2.05 ± 0.27 times better than random

liquids.

4.2 Generalization capability

Till now we have looked into the separation capability of a liquid to assess its com-

putational performance. However, this is only one piece of the puzzle with another

being its capability to generalize a learned computational function to new inputs i.e.

input it has not seen during the training phase. It is interesting to note that Maass et al.

(2005) suggested using the same rank measure used in Sec. 4.1 to measure a liquid’s

generalization capability. However, in this case, the inputs to the liquid are entirely

different from the ones used in Sec. 4.1. For a particular trial, a single spike train is

considered and s noisy variations of it are created to form the set Suniv. In other words,

Suniv = {u1(t), u2(t), ......, us(t)} contains many jittered versions of the same input

signal. Similar to Sec. 4.1 a L × s matrix Mg is formed by injecting these spike trains
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Figure 8: In this figure we explain the process of creating the matrix Ms, the rank of

which is used to assess the quality of a liquid. (a) m different input spike trains of

duration Tp are shown. (b) The input spike trains are injected into the liquid having

L neurons to obtain the post-synaptic spikes from all the neurons. FM
ui

(t) denotes the

firing profile of the liquid when the ith input spike train is presented. (c) FM
ui

(t) is

passed through an exponential kernel to generate the liquid’s internal states xMui (t). (d)

The internal states at the end of the spike trains i.e. xMui (Tp) are read for each input spike

train, to create the matrix Ms.
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Figure 9: (Caption in the following page.)

into a liquid and by noting the liquid states resulting at the end of the preceding input

spike train ui of duration Tp. However, unlike Sec. 4.1 a lower value of rank rg of

the matrix Mg corresponds to better generalization performance. To assess our liquid’s

generalization capability we provide s = 100 input spike trains to the liquids produced

at each stage of learning corresponding to the evolution of rs,mean curve in Fig. 9 and

note the average rank rg,mean of matrix Mg. rg,mean. rg,mean vs. the number inputs (Np)

presented to the liquid is shown in Fig. 9. An almost flat curve shown in Fig. 9 suggests

that our morphologically trained liquids are capable of retaining the generalization per-

formance shown by random liquids. This revelation combined with the insight from

Sec. 4.1 suggests that our trained liquids are capable of amplifying the inter-class sep-

aration while retaining the intra-class distances for classification problems.
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Figure 9: This figure shows the rank of the matrices Ms and Mg, averaged over 200

trials and denoted by rs,mean and rg,mean respectively, against the number of input spike

trains Np presented in succession. At each point of the curves, the rank is calculated

based on all the spike trains. Hence, the value of rs,mean and rg,mean for Np = 1

corresponds to a randomly generated liquid. Our learning rule trains this randomly

generated liquid through structural plasticity as the input spike trains are gradually

presented. The curve shows that rs,mean gradually increases until it reaches saturation at

Np = 41. Moreover, this figure depicts that by applying an unsupervised low-resolution

training mechanism, we are able to generate liquids with 2.05 ± 0.27 times more

computational power or better kernel quality as compared to traditional randomly

liquids. Furthermore, this figure throws some light on the generalization performance

of liquids trained through our proposed structural plasticity based learning rule. The

matrix Mg is formed from liquids produced at each stage of training corresponding

to the evolution of rs,mean. Its rank (averaged over 200 trials) denoted by rg,mean is

plotted against the number of different input spike trains Np presented successively

presented to the liquid. The almost flat line represents that our learning rule can retain

the generalization ability of random liquids. At a particular value of Np, rs,mean and

rg,mean are calculated based on the same liquid thereby providing an insight to both its

separation and generalization property.
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4.3 Generality

By performing the previous experiments we got a fair idea about the separation and

generalization property of our trained liquids. Next, we look into its generality i.e.

whether the trained liquid is still general enough to separate inputs which it has not seen

before and which are not related (noisy, jittered, etc.) to the training inputs in any way.

We consider the initial random liquid before training and the final trained liquid after

training on 100 spike train inputs of Fig. 9 from each trial and separately inject both

of them with 500 different spike train pairs ui(t) and vi(t) having d(u(t), v(t)) = 0.2.

We note the average state distances of both the liquids for these 500 spike train pairs

for the current trial. This experiment is repeated for each trial of Fig. 9 and the mean

state distances are shown in Fig. 10. It is clear from the two closely placed curves of

Fig. 10 that the trained and random liquids show similar generality. We conclude that

even if a liquid is trained on a set of inputs, it is still fairly general to previously unseen

significantly different inputs.

4.4 Fading memory

Till now we discussed the separation property, generalization capability and generality

of liquids. Another component which defines a liquid is its fading memory. Since a

liquid is a recurrent interconnection of spiking neurons, the effect of an input applied to

it may be felt at its output even after it is gone. A liquid with a superior fading memory

is able to remember a given input activity for a longer duration of time. To study the

effect of our structural plasticity rule on a liquid’s fading memory we performed the

following experiment. First, an input spike train of duration Tp = 1sec was generated
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Figure 10: In this figure, we assess the effect of training on the generality of liquids.

The blue and the red curves (averaged over 200 trials) correspond to the separation

of random and trained liquids respectively when they are injected with 500 previously

unseen and significantly different (with respect to the training set) input spike train pairs

of distance d(u(t), v(t)) = 0.2. The comparable curves obtained by both the random

and trained liquids suggest that our structural plasticity rule does not decrease a liquid’s

generality.

having a burst of spikes at a random time. Next, this spike train was injected into a

randomly generated liquid and the post-synaptic spikes of its neurons were recorded.

Subsequently, this liquid was trained through our learning rule and the same spike train

was reapplied. This experiment was repeated N times for different spike trains and

liquids and time of the last spike at the liquid output were noted for all these trials to

29



compute the following measure:

TLSdiff =
1

N

N∑
i=1

(
ttr,lasti − tran,lasti

)
(6)

where tran,lasti and ttr,lasti are the time to last spike at the output of random and trained

liquids for the ith trial. The computed metric TLSdiff serves as a parameter to assess

the amount of additional fading memory provided by our training mechanism. For our

simulations we keep N=200.

In Fig. 11, we show the outcome of a single trial. Fig. 11(a) shows that an input

spike train with a burst of spikes around 500ms is given as input to a random liquid and

its corresponding output is recorded. We train this random liquid through the proposed

algorithm and show in Fig. 11(b) its output when the same spike train is reapplied. It

can be seen from Fig. 11 that tran,lasti = 0.6128 secs and ttr,lasti = 0.6929 secs i.e. the

last spike provided by the trained liquid occurs 80.1 ms after the one provided by the

random liquid. Combining the result from all the trials we obtain that trained liquids

provide TLSdiff = 83.67± 5.79ms longer fading memory than random liquids having

92.8 ± 5.03 ms fading memory. This experiment suggests that the fading memory of a

liquid can be increased by applying structural plasticity.

4.5 Liquid connectivity

In the previous sections, we have analyzed the output of our morphologically trained

liquids in various ways and for different inputs. Here we will delve into the liquid itself,

and analyze the effect of our learning rule on the recurrent connectivity. Fig. 12 shows

a representative example of the conducted experiments which depicts the number of

post-synaptic connections each neuron in the liquid has before (Fig. 12(a)) and after
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Figure 11: (a) An input spike train with a burst of spikes around 500 ms is presented

to a randomly generated liquid. Its output is shown and the portion of its output where

spikes are present is magnified. (b) The random liquid is taken and trained by our

structural plasticity rule. Subsequently, it is injected with the same input spike train and

its output (along with the magnified version) is shown. Comparing the last two figures

of (a) and (b) it is clear that our learning rule endows the liquid with a higher fading

memory.
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(Fig. 12(b)) training on Np=100 distinct spike trains. The triangles in Fig. 12 identifies

the neurons which have the input spike train as a pre-synaptic input. While the number

of post-synaptic connections are distributed uniformly across the neurons of the random

liquid as shown in Fig. 12(a), in Fig. 12(b) we see that some neurons have more post-

synaptic connections compared to others. Since the number of connections are same for

both Fig. 12(a) and Fig. 12(b), during learning the post-synaptic connections of some

neurons increase while the others decrease.

A close inspection of Fig. 12(b) reveals that most of the neurons which have more

post-synaptic connections than the others have the input line as a pre-synaptic connec-

tion. This essentially means that the neurons to which the input gets randomly dis-

tributed are more likely to be selected as a replacement during the connection swapping

procedure (Sec. 3) of our learning.

4.6 Comparison with other works

After its inception in (Maass et al., 2002), researchers have looked into improving the

reservoir of Liquid State Machine and we have provided a brief survey of the same in

Sec. 2.2. Out of the algorithms showcased in Sec. 2.2, we compare the proposed learn-

ing rule with the work, termed as SDSM, provided in (Norton and Ventura, 2010) since

it is architecturally similar to our algorithm and iteratively updates a randomly gener-

ated liquid like us. The authors of (Norton and Ventura, 2010) derived a metric based

on the separation property of the liquid and used it to update the synaptic parameters.

We consider the pattern recognition task described in (Norton and Ventura, 2010) and

compare the performance of the proposed algorithm with the results obtained by SDSM

32



0 20 40 60 80 100 120
0

10

20

30

40

50

Neuron Index

#p
os

t−
sy

na
pt

ic
 c

on
ne

ct
io

ns

Before training

0 20 40 60 80 100 120
0

10

20

30

40

50

Neuron Index

# 
po

st
−

sy
na

pt
ic

 c
on

ne
ct

io
ns

After training (a)

(b)

Figure 12: (a) The number of post-synaptic connections vs. the neuron index is shown

before training i.e. for the random liquid. The connections are uniformly distributed

across the neurons of the liquid. (b) The number of post-synaptic connections vs. the

neuron index is shown after the training is complete. The connections get rearranged

during learning in such a way that after training some neurons have more post-synaptic

connections than the others. Note that the total number of connections are same for both

the figures since it remains constant throughout the learning procedure. Our learning

rule does not create any new connections, instead, it reorganizes them. The downward-

triangle denotes the neurons which have the input line as pre-synaptic connection. The

figure reveals that most of the neurons having increased post-synaptic connections have

the input line as a pre-synaptic connection.
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(Norton and Ventura, 2010).

In this task, a dataset with variable number of classes of spiking patterns is consid-

ered. Each pattern has eight input dimensions and patterns of each class are generated

by creating jittered versions of a random template. The random template for each class

is generated by plotting individual spikes with a random distance between one another.

This distance is drawn from the absolute value of a normal distribution with a mean of

10 ms and a standard deviation of 20 ms. The amount of jitter added to each spike is

randomly drawn from a normal distribution with zero mean and 5 ms standard devia-

tion. Similar to (Norton and Ventura, 2010), we consider four, eight and twelve class

versions of this problem. The number of training and testing patterns per class have

been kept to 400 and 100 respectively.

For fair comparison, the readout and the experimental setup have been kept sim-

ilar to (Norton and Ventura, 2010). The readout is implemented by a single layer of

perceptrons where each perceptron is trained to identify a particular class of patterns.

The results are averaged over 50 trials and in each trial the liquid is evolved for 500

iterations. The liquids are constructed with LIF neurons and static synapses and the

parameters have been set to the values listed in (Norton and Ventura, 2010).

The liquid separation and classification accuracy for the testing patterns, averaged

over 50 trials, are plotted in Fig. 13(a) and Fig. 13(b) respectively. It is evident from

Fig. 13 that LSMs with liquid evolved through structural plasticity obtain superior

performance as compared to LSMs trained through SDSM and LSMs with random

liquid. Quantitatively, our algorithm provides 9.30%, 15.21% and 12.52% increase in

liquid separabilities and 2.8%, 9.1% and 7.9% increase in classification accuracies for
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Figure 13: (a) Mean separation and (b) mean accuracy are shown for random liquids

and for the same random liquid when trained separately through SDSM and the pro-

posed structural plasticity based learning rule. The results depict that our algorithm

outperforms the SDSM learning rule.
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four, eight and twelve class recognition tasks respectively, as compared to SDSM. Since

the proposed learning rule creates liquids with higher separation as shown in Fig. 13(b),

the readout is able to provide better classification accuracies.

5 Conclusion

In this article, we have proposed an unsupervised learning rule which trains the liquid

or reservoir of LSM by rearranging the synaptic connections. The proposed learning

rule does not modify synaptic weights and hence keeps the average synaptic weight of

the liquid constant throughout learning. Since it only involves modification and stor-

age of the connection matrix during learning, it can be easily implemented by AER

protocols. An analysis of the ‘pairwise separation property’ reveals that liquids trained

through the proposed learning rule provide a 1.36 ± 0.18 times more inter-class sep-

aration while maintaining similar intra-class separation as compared to the traditional

random liquid. Next we looked into the ‘linear separation property’ and from the per-

formed experiments it is clear that our trained liquids are 2.05 ± 0.27 times better than

random liquids. Moreover, experiments performed to test the ‘generalization property’

and ‘generality’ of liquids formed by our learning algorithm reveal that they are capa-

ble of inheriting the performance provided by random liquids. Furthermore, we have

shown that our trained liquids have 83.67 ± 5.79 ms longer fading memory than ran-

dom liquids providing 92.8 ± 5.03 ms fading memory for a particular type of spike

train inputs. These results suggest that our learning rule is capable of eliminating the

weaknesses of a random liquid while retaining its strengths. We have also analyzed
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the evolution of internal connections of the liquid during training. Furthermore, we

have shown that compared to a recently proposed method of liquid evolution termed as

SDSM, we provide 9.30%, 15.21% and 12.52% more liquid separations and 2.8%, 9.1%

and 7.9% better classification accuracies for four, eight and twelve class classifications

respectively on a task described in Sec. 4.6.

The plans for our future work include developing a framework that combines the

proposed liquid with the readout proposed in (Roy et al., 2014) which is composed

of neurons with nonlinear dendrites and binary synapses and trained through structural

plasticity. (Banerjee et al., 2015) have proposed a hardware implementation of this read-

out and the next step is to implement the proposed liquid in hardware. Subsequently,

we will combine them to form a complete structural plasticity based LSM system and

deploy it for real-time applications. Moreover, having achieved success in applying

structural plasticity rules to train a generic spiking neural recurrent architecture, we

will move forward to develop spike-based morphological learning rules for multi-layer

feedforward spiking neural networks. We will employ these networks to classify indi-

viduated finger and wrist movements of monkeys (Aggarwal et al., 2008) and recognize

spoken words (Verstraeten et al., 2005).

Appendix

In this table, we list specification of the liquid architecture and values of the parame-

ters used in this paper. Unless otherwise mentioned, these are the values used for the

experiments.
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Liquid specification

Number of neurons (L) 135

Percentage of excitatory neurons (Le∗100
L

) 80

Percentage of inhibitory neurons (Li∗100
L

) 20

Structure Single 15× 3× 3 column

Excitatory-excitatory connection probability 0.3

Excitatory-inhibitory connection probability 0.2

Inhibitory-excitatory connection probability 0.4

Inhibitory-inhibitory connection probability 0.1

Leaky Integrate and Fire (LIF) neuron parameters

Membrane time constant 30 ms

Input resistance 1 MΩ

Absolute refractory period of excitatory neurons 3 ms

Absolute refractory period of inhibitory neurons 2 ms

Threshold voltage 15 mV

Reset voltage 13.5 mV

Constant nonspecific background current 13.5 nA

Dynamic Synapse parameters

Excitatory-excitatory Umean 0.5

Excitatory-excitatory Dmean 1.1 sec

Excitatory-excitatory Fmean 0.05 sec

Excitatory-inhibitory Umean 0.05
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Excitatory-inhibitory Dmean 0.125 sec

Excitatory-inhibitory Fmean 1.2 sec

Inhibitory-excitatory Umean 0.25

Inhibitory-excitatory Dmean 0.7 sec

Inhibitory-excitatory Fmean 0.02 sec

Inhibitory-inhibitory Umean 0.32

Inhibitory-inhibitory Dmean 0.144 sec

Inhibitory-inhibitory Fmean 0.06 sec

Standard deviation of U , D and F 50% of respective mean

Time constant of excitatory synapse (τs) 3 ms

Time constant of inhibitory synapse 6 ms

Excitatory-excitatory transmission delay 1.5 ms

Transmission delay of other connections 0.8 ms

Structural Plasticity parameters

Number of silent synapses (nR) 25

Slow time constant of kernel K (τs) 3 ms

Fast time constant of kernel K (τf ) Very small positive value

Table 1: Liquid specification and parameter values
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