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ABSTRACT

We examine the relationship between the
different geometries implicit in a
stereoscopic virtual environment. In
particular, we examine in detail the
relationship of retinal disparity, fixation
point, binocular visual direction, and
screen parallax. We introduce the concept
of a volumetric spatial unit called a
stereoscopic voxel. Due to the shape of
stereoscopic voxels, apparent depth of
points in space may be affected by their
horizontal placement.

1.0 INTRODUCTION

The display component of the most common
implementations of virtual environments
provides the user with a visual image that
incorporates stereopsis as a visual cue.
Examples include head-mounted displays
(Teitel, 1990), time-multiplexed CRT-based
displays (Deering, 1992), and time-
multiplexed projection systems (Cruz-Neira,
et al., 1992). It is not always recognized,
however, that the characteristics of a
stereoscopic image can be very different
from that of a monoscopic perspective
image. The visual impression given by
stereoscopic images are very sensitive to the
geometry of the visual system of a user, the
geometry of the display environment, and
the modeling geometry assumed in the
computation of the scene. In this paper we
present a tutorial whose purpose is to review
these basic geometries and to analyze their

relationship to each other in a stereoscopic
virtual environment.

In section 2.0 we review the geometry of
binocular vision and retinal disparity. In
section 3.0 we discuss modeling geometry
and its relationship to retinal disparity.
Section 4.0 describes the effects of the
discrete nature of display geometry and the
distortions causes by optical and tracking
artifacts. In section 5.0 we revisit our
approximate model of the visual system
geometry and discuss its limitations.

2.0 VISUAL SYSTEM GEOMETRY

Stereopsis results from the two slightly
different views of the external world that our
laterally-displaced eyes receive (e.g., Schor,
1987; Tyler, 1983). This difference is
quantified in terms of retinal disparity. If
both eyes are fixated on a point, {1, in space,
then an image of fl is focused at
corresponding points in the center of the
foveal! of each eye. Another point, f2, at a
different spatial location, would be imaged
at points in each eye that may not be the
same distance from the fovea. This
difference in distance is the retinal disparity.
Normally we measure this distance as the

sum of the angles &1 + &2 as shown in

Figure 1, where angles measured from the
center of fovea toward the outside of each

IThe fovea is the part of the human retina that
possesses the best spatial resolution or visual acuity.



eye are negative. In the example shown in
Figure 1, 81 has a positive value, 02 has a

negative value, and their sum 8] + &2 is
positive.

The retinal disparity that results from these
two different views can provide information
about the distance or depth of an object as
well as about the shape of an object.
Stereoacuity is the smallest depth that can be
detected based on retinal disparity. In some
humans, under optimal stimulus conditions,
stereoacuities of 5" or less can be obtained
(Westheimer and McKee, 1980; McKee,
1983), however stereoacuities of more than
5" are more common (Davis, King and
Anoskey, 1992; Shor and Wood, 1983).
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Figure 1. Retinal disparity.

2.1 Binocular visual direction.

Visual direction is the perceived spatial
location of an object relative to the observer.
Usually, it is measured in terms of azimuth
(left and right of the point of fixation) and of
elevation (above and below the point of
fixation). Often, the binocular visual
direction of an object is not the same as the
monocular visual direction of either eye.
(You can verify this yourself by looking at a
very close object first with one eye, then
with the other eye, then with both eyes.
Notice how the spatial location of the object
changes.) Hering proposed that binocular
visual direction will lie midway between the
directions of the monocular images; others
have reported that the binocular visual
direction will lie somewhere between the
left and right monocular visual directions,

but not necessarily midway (e.g., Tyler,
1983).

2.2 Convergence Angles and Retinal
Disparities.

For symmetric convergence of the two eyes
on a fixated point in space, f1, the angle of
convergence is defined as

o =2 arctan(i/2Dy)

where o is the angle of convergence, Dj is
the distance from the midpoint of the
interocular axis to the fixated point, f1, and i
is the interocular distance (Arditi, 1986;
Graham, 1965).2 (See Figure 2.) Notice
that the angle of convergence, Q. is inversely
related to the distance, Dj, of the fixated
point from the observer; this inverse relation
is nonlinear.

For another point in space, fp, located at a

distance D7, the angle of convergence is f3.
(See Figure 2.) Note that since

oo+a+c+b+d=180and
B +c+d=180, then
o-PB="a+"b=(01+02).

The difference in vergence angles (0—f) is
equivalent to the retinal disparity between
the two points in space, measured in units of
visual angle. This retinal disparity is
monotonically related to the depth between
the two points in space (i.e., at a constant
distance, D, a larger depth corresponds to a

2For asymmetric convergence of the two eyes, the
formula for the angle of convergence is basically the
same as that shown for symmetric convergence. The
difference is that D now represents the perpendicular
distance from the interocular axis to the frontoparallel
plane that intersects the asymmetrically converged
point of fixation. This interpretation of the
convergence angle formula for asymmetric
convergence is not exact, but it is a good
approximation.



larger retinal disparity); this monotonic
relationship is a nonlinear one.

If an object is closer than the fixation point,
the retinal disparity will be a negative value.
This is known as a crossed disparity because
the two eyes must cross to fixate the closer
object. Conversely, if an object is farther
than the fixation point, the retinal disparity
will be a positive value. This is known as
uncrossed disparity because the two eyes
must uncross to fixate the farther object. An
object located at the fixation point or whose
image falls on corresponding points in the
two retinae has a zero disparity.

Figure 2. Convergence Angles

2.3 Horopters

Corresponding points on the two retinae are
defined as being the same vertical and
horizontal distance from the center of the
fovea in each eye (e.g., Tyler, 1983; Arditi,
1986; Davis & Hodges, 1993). When. the
two eyes binocularly fixate on a given point
in space, there is a locus of points in space
that fall on corresponding points in the two
retinae. This locus of points is the horopter,
a term originally used by Aguilonius in
1613. The horopter can be defined either
theoretically or empirically.

The Vieth-Mueller Circle is a theoretical
horopter defined only in terms of
geometrical considerations. This horopter is

a circle in the horizontal plane that intersects
each eye at the first nodal point of the eye's
lens system (Gulick & Lawson, 1974; Ogle,
1968) (see Figure 3). This circle defines a
locus of points with zero disparity.
However, in devising this theoretical
horopter it is assumed that the eyes are
perfect spheres with perfectly spherical
optics and that the eyes rotate about axes
that pass only through their first optical
nodal points (e.g., Arditi, 1986; Bishop,
1985, Gulick & Lawson, 1974). None of
these assumptions is strictly true. Thus,
when one compares the Vieth-Mueller
Circle to any empirically determined
horopter there is a discrepancy between the
theoretical and empirical horopters. With
few exceptions (Deering, 1992) the eye
geometry used for image calculations for
stereoscopic virtual environments assume a
visual model consistent with the Veith-
Mueller circle. We will address the results
of this assumption in section 5.0.
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Figure 3. Vieth-Mueller Circle

Horopters usually describe a locus of points
that should result in zero disparity.
Stereopsis, however, occurs when there is a
non-zero disparity that gives rise to the
percept of depth. That is, an object or visual
stimulus can appear closer or farther than the
horopter for crossed and uncrossed disparity,
respectively.
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Figure 4. Screen Parallax

3.0 MODELING GEOMETRY

For any type of stereoscopic display, we are
modeling what would be seen by each eye if
the image were projected onto a screen or
window being viewed by an observer
(Hodges, 1992). The simplest case, which is
equivalent to the geometry of most head-
mounted displays, occurs when the
observer's eyes lie in a plane parallel to a
single planar projection screen on which
both the left- and right-eye projected views
of an image are displayed (Figure 4). If we
choose a point, P, on the object and follow
its projection vectors to each eye position,
then the screen parallax is the distance
between the projected location of P on.the
screen, Piefi, seen by the left eye and the
projected location, Pright, seen by the right
eye. Crossed or negative parallax (i.e., the
left-eye view of P is to the right of the right-
eye view of P) results in an image that
appears spatially in front of the display
screen. Uncrossed or positive parallax
results in an image that appears behind the
screen. Zero or no parallax results in a
spatial position at the plane of the screen.

The amount of screen parallax in this case
may be computed with respect to the
geometric model of the scene as

p= i(D-dyD

where p is the amount of screen parallax for
a point, f1, when projected onto a plane a
distance d from the plane containing two
eyepoints. The modelled distance between
eyepoints is i and the distance from fl to
the nearest point on the plane containing the
two eyepoints is D (Figure 5).

Screen parallax does not correspond directly
to retinal disparity. Retinal disparity is
measured on the two retinae and its value is
relative to the current binocular fixation
point and convergence angle. Screen
parallax is measured on the surface of a
display device and its value is dependent on
the computational model of the observer
(i.e., distance of each eye position from the
projection plane and the orientation of the
plane relative to the plane containing the two
eye positions) and the display geometry
(how values are mapped to a display screen).



Points with constant screen parallax describe
a straight line that is parallel to a horizontal
plane through the two eye points. This
assumes that the eyepoints do not change
positions when the eyes converge and
accommodate on a different point. In reality
the location of the first nodal point of the
eye's lens system will vary slightly with
convergence and possibly also with
accommodation. We will address this issue
in section 5.0.

For now we assume a model in which
perfectly spherical eyes rotate about -the
eyepoint so that the eyepoint is stationary
with respect to the head position. For these
assumptions the resulting screen parallax
that is computed for each point in the scene
will produce proper retinal parallax for any
fixation point and resultant convergence
angles. This is illustrated in Figure 6.
Points f2 and f3 both have the same screen
parallax as point f1. These equal screen
parallaxes induce different convergence

angles o, B and 7y for points f1, £2, and {3,
respectively. If the observer is fixated on f1,
then the resultant retinal disparities for {2

and f3 are (0—B) and (0—y), respectively.

fl -
/'y
Projection D
Playd— p ¥ A
d
<« i > Vv
Left Right
eyepoint eyepoint

Figure 5. Screen parallax, p, is equal to
i(D-d)/D

Screen parallax is an absolute measure of a
point's distance from the plane of an
observer's eyepoints. To calculate retinal
disparity from screen parallax, however, we
must look at values that are proportional to

differences in screen parallax. For
symmetric convergence, this calculation is
straight-forward for points that lie on a line
along a given binocular visual direction. If
an observer's eyes are fixated on a point, f1,
in a stereoscopic virtual environment, then

there is a screen parallax pg, associated with
that point and an angle of convergence, O.
Another point, 2, with convergence angle,
B, would also have an associated screen
parallax, pg Remember that retinal
disparity is the difference in vergence angles

(0—-B) Dbetween two points in space,
measured in units of visual angle. For
points that lie on a line along the binocular
visual direction, the retinal disparity may be
closely approximated directly from the
screen parallax by the formula

2 [tan-1(po, / 2(D-d)) - tan-1(pg / 2(D-d))].

2 f1 £3

Projection

Plane W

Figure 6. Screen parallax and
convergence angles.

4.0 DISPLAY GEOMETRY

4.1 Stereoscopic Voxels

A stereoscopic display system provides a
partitioning of three-dimensional space into
volumetric spatial units which we shall refer
to as stereoscopic voxels. Each stereoscopic
voxel is defined by the intersection of the
lines of sight from each eye through two
distinct pixels. The size and shape of
stereoscopic voxels are determined by the
position of each eye as well as the pixel
pitch and shape. If we assume an idealized
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Figure 7. Cross-section of stereoscopic voxels.

rectangular pixel shape3, then stereoscopic
voxels can be modeled as six-sided
polyhedrons with diamond-shaped
horizontal cross section. A horizontal slice
(created by one row of pixels) is shown in
Figure 7. The distance, measured in number
of pixels between the eye points, specifies
the total number of discrete depth positions
at which a point may be placed. In Figure 7,
the number in each diamond cell indicates
the number of pixels of parallax that defines
that row of stereoscopic voxels. -All
stereoscopic voxels in a particular row have
the same volume. They differ in shape in
that each is a shear of the center (between
the eyepoints) stereoscopic voxel.

A point's apparent position may be defined
as the center of the cross-sectional area in

3 When displayed on a CRT, pixels actually have a
Gaussian shape and adjacent pixels may blend
together. LCD pixels have well-defined edges, but
most head-mounted displays incorporate an optical
low-pass filter to reduce the perception of this effect.
HMDs also incorporate optics that distort size and
location of pixels. :

which it resides.4 The diamond cross-
sectional shape of stereoscopic voxels means
that a point's horizontal placement can affect
its apparent depth location. In Figure 7,
point A would appear to be closer to an
observer than point B. Similarly the distinct
steps in depth at which a point may be
placed is affected by its horizontal
placement. For example, the position of the
triangular points in Figure 7 puts them only
in three different depth positions (1, 3, and
5). Yet, the square points, which exist in the
same range of depth, are positioned in five
depth positions (1, 2,3, 4 and 5).

Conversely, if we allow some jitter in a
pixel's depth location, then we can provide
an effective doubling of horizontal spatial
resolution for point positioning in
stereoscopic display as compared to
monoscopic display. For example, if we
allow points to be positioned in either rows
0 and 1 of Figure 8, then we have fifteen
horizontal positions represented across the
front of the eight-pixel screen in Figure 8.

4Alternately, we could think of the volume of a
stereoscopic pixel as a measure of the uncertainty in
the position of a point or as a type of spatial aliasing.
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achieve more horizontal resolution,

We can analytically characterize a
stereoscopic voxel in row j by the values,
dlneara djtar, djmid and djwidwh (figure 9). The
distance of nearest approach of a voxel j to
the plane of the display screen is djpear the
distance from the plane to the most dlstance
point of the voxel is d; ifar, the distance to the
widest width of the voxel is djmid, and i is the
maximum width of the voxel is djwidth-

From similar triangles we can derive the
following equations:

d; jnear = d(]-Z)f
d]far (J+1)pD/(l G+Dp)
d_]mld = (] Df.

djwidth = (]+1)P(d]far djmid) (djfar)

where p is the pixel pitch, the interocular
distance is i, and the distance from the
eyeplane to the projection plane is D.

Table 1 shows some representative values of
these parameters assuming an interocular
distance of 6.4 centimeters, a distance from
the eyeplane to the plane of the screen of 40
centimeters, and a pixel width (through the
optics) of 0.5 centimeters. These
parameters are consistent with those of
currently available head-mounted displays in

the $5000-7,000 price range (Robinett &
Rolland, 1992).
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Figure 9. Characterization
of stereoscopic voxel.

Table 1. Width and most distance point
from projection surface of voxels in rows 0
through 11 in centimeters assuming
interocular separation of 6.4 centimeters,
projection surface at 40 centimeters,
uncrossed parallax, and pixel width of 0.5
centimeters.

Row dfar dwidth
0 3.39 0.5
1 7.41 0.54
2 12.24 0.59
3 18.18 0.65
4 25.64 0.73
5 35.29 0.82
6 48.28 0.94
7 66.67 1.10
8 94,74 1.33
9 142.86 1.68
10 244.44 2.29
11 600.00 3.56

4.2 Geometric Distortion
Image distortion caused by display
technology can be a problem for both time-



multiplexed and head-mounted displays.
Two possible sources of distortion for time-
multiplexed CRT displays have been
analyzed by Deering (1992). The first
source of distortion is that standard
projection geometry assumes the display
surface of a CRT is planar. Modern CRT
screens, however, are shaped as a section of
a sphere or a cylinder with a radius of
curvature of about two meters. The second
source of distortion is that the phosphor
screen on a CRT is viewed through a thick
glass faceplate with an index of refraction
significantly higher than that of air. For a
viewing angle of 60 © relative to a normal
vector to the plane of the CRT, the curvature
of the CRT screen can cause positional
errors for objects at the surface of the
display screen on the order of 1.8
centimeters. For the same viewing angle,
the thickness of the glass faceplate can cause
positional errors at the surface of display
screen of up to 2.0 cm. These errors are
both viewpoint dependent and nonlinear.
Equations to compensate for these
distortions are described by Deering (1992).

For head-mounted displays there are image
distortions introduced by the optics of the
system, by improper alignment of the user's
eye position with respect to ‘the
mathematical model of eye position, and by
mismatches between the display's field-of-
view and the software's implicit
mathematical model for field-of-view. Of
particular interest are the distortions caused
by the optical system in the head-mounted
display. The purpose of the optical system
is to provide an image to the user that is
located at a comfortable distance for
accommodation and magnified to provide a
reasonable field-of view. The optics also
cause nonlinear distortions in the image so
that straight lines in the model appear curved
in the visual image. Robinett and Rolland
(1992) have developed a computational
model for the geometry of head-mounted
displays to correct for these distortions.
Hodges & Watson (1993) have
demonstrated a real-time implementation of
this model.

4.3 Head-Tracking

Accurate head-tracking is crucial to the
presentation of spatially consistent
stereoscopic images. Screen parallax
information is computed based on implied
eye-point positions relative to head position
and head orientation. If the observer's head
1s not exactly in the position reported by the
head-tracker, then scaling and distortion
effects in the image occur. If the observer's
head is further away from the plane of the
display than reported by the head-tracker,
then the image is elongated in depth. If his
head is closer, then the image is compressed
in depth. If the observer's head is
incorrectly tracked for side-to-side or up-
down motion, the image is distorted by a
shear transformation.

5.0 A DOSE OF REAL REALITY

From our analysis in section 3 we observed
that screen parallax is dependent on the
display geometry and the value chosen for
interocular distance in the modeling
geometry, but independent of the fixation
point and of the visual direction. In that
section we assumed that the eyes were
perfect spheres with perfectly spherical
optics and that each eye rotated about its
first nodal point (the eyepoint for
perspective projection). This model is
implicit in all current implementations of
stereoscopic virtual environments.

As indicated by the Hering-Hillenbrand
deviation between an empirically
determined horopter and the Vieth-Mueller
Circle, however, these assumptions are only
approximations of the true geometry of the
eye. For example, the first nodal point does
not actually correspond to the center of
rotation of the eye (Deering, 1992, Ogle,
1968). As a result, if the eye rotates, then
the first nodal point of each eye also shifts
position depending on the current visual
direction. The shifting creates a change in
eyepoint separation. The greatest changes
occur for symmetric convergence on points
close to the observer. Figure § illustrates the
range of change for an assumed separation
of 6.4 centimeters between the centers of
rotation of the eyes and a distance of 0.6



centimeters between the first nodal point and
the center of rotation for each eye.

From section 2.2 we know that the angle of

convergence, o, for a fixated point, f1, is
dependent not only on the distance to the
point but also on eyepoint separation. If we
correctly model the location of the eyepoint
of a user and locate the center of rotation of
each of his eyes, then we can compute the
eye separation for any fixated point.
Stereopsis is dependent on relative
convergence angles specific to a particular
fixated point. The result is that the screen
parallax must be recomputed based on the
current fixation point if we want to get
retinal disparities in the three-dimensional
virtual scene that are identical to retinal
disparities created by a real image with the
same geometry. For example, consider
symmetric convergence on a fixated point
thirty centimeters from the eyeplane, 6.4
centimeters interocular distance and 0.6
centimeters between the center of rotation of
each eye and the first nodal point. We can
compute the retinal disparity between that
point and another point 100 centimeters
along the same gaze direction as
approximately 521 minutes of arc. If we
now fixate on the point 100 centimeters
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away, the change in eye separation results in
a retinal disparity of approximately 514
minutes of arc between the two points. This
difference based on fixation point and gaze
direction can not be modeled without an
accurate description of the optical
characteristics and physiology of the
individual user's eye.

6.0 SUMMARY

Geometric considerations are critical in the
visual display of stereoscopic virtual
environments. The geometry of the two
eyes, the geometry of the display system
and the geometry implicit in the graphics
model all must be carefully coordinated to
create an accurate visual representation.

In particular, we have examined in detail the
relationship of retinal disparity, fixation
point, binocular visual direction, and screen
parallax. We also have shown geometrically
that a stereoscopic display partitions three-
dimensional space into volumetric spatial
units (stereoscopic voxels). Due to the
shape of stereoscopic voxels, apparent depth
of points in space may be affected by their
horizontal placement.
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Figure 8. Change in eyepoint separation with change in point of fixation.
Centers of rotation of the eyes are assumed to be 6.4 centimeters apart.
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