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Abstract

One of the major challenges in the field of neurally-driven evolved autonomous
agents is deciphering the neural mechanisms underlying their behavior. Aiming
at this goal, we have developed the Multi-perturbation Shapley value Analysis
(MSA) – the first axiomatic and rigorous method for deducing causal function
localization from multiple perturbations data, substantially improving on ear-
lier approaches. Based on fundamental concepts from game theory, the MSA
provides an intuitive and formal way of definining and quantifying the con-
tributions of network elements, as well as the functional interactions between
them. The previously presented versions of the MSA require full knowledge (or
at least an approximation) of the network’s performance under all possible multi-
perturbations, making them applicable only for systems with a relatively small
number of elements. This paper focuses on presenting new scalable MSA vari-
ants, allowing for the analysis of large complex networks in an efficient manner,
including large-scale neurocontrollers. The successful operation of the MSA along
with the new variants is demonstrated in the analysis of several neurocontrollers
solving a food foraging task, consisting of up to 100 neural elements.

Keywords: neurocontroller analysis, localization of function, multi-perturbations,
Shapley value, contributions, interactions
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1 Introduction

Neurally-driven Evolved Autonomous Agents (EAAs) are software programs embedded

in a simulated virtual environment, typically performing tasks such as navigating,

gathering food, evading predators, seeking prey and pursuing mating partners. An

EAA is controlled by an artificial neural network “brain”. This neurocontroller receives

and processes sensory inputs from the surrounding environment and governs the agent’s

behavior via the activation of motors controlling its actions. In recent years, much

progress has been made in developing methods to evolve EAAs which successfully cope

with diverse tasks [8, 11, 26, 19, 20, 3, 34, 33, 21], employing neurocontrollers composed

of several dozen neurons and hundreds of synapses (see [19, 35, 12] for reviews).

One of the major challenges in the field of EAAs is deciphering the mechanisms

underlying agents’ behavior by understanding the inner workings of the evolved neuro-

controllers. The challenge in this field is greater than in other neural computation fields

since the neurocontrollers are evolved, rather than trained, and they typically consist

of recurrent synaptic connections. EAAs are a very promising model for studying neu-

ral processing [23]. Mainly, they are less biased than conventional neural networks

used in neuroscience modeling as their architecture is typically emergent, rather then

pre-designed. Hence, the analysis of their inner workings, while also standing on its

own right, may serve as a testbed for analysis methods to be employed in biology.

In neuroscience, a fundamental challenge is to identify the individual roles of the

network’s elements, be they single neurons, neuronal assemblies or cortical regions,

depending on the scale on which the system is analyzed (single synapses, neurons or

groups of neurons in the context of EAAs). Such localization of specific functions is

conventionally done by recording neural activity during cognition and behavior, mainly

using electrical recordings and functional neuroimaging techniques, and correlating the

activations of the neural elements with different behavioral and functional observ-
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ables (similar correlative approaches have also been employed in the context of EAAs,

e.g. [7]). However, such correlations do not necessarily identify causality. To allow the

correct identification of the elements that are causally responsible for a given function,

the deficit in performance is measured after perturbing specific elements, mainly by

killing the elements, deactivating them or disrupting their activity using transcranial

magnetic stimulation (TMS). Most of the perturbation investigations in neuroscience

have been single-lesion studies, in which only one element is disabled at a time (similar

studies have also been performed in the context of EAAs, e.g. [2]). Such studies are

very limited in their ability to reveal the significance of interacting elements [1, 18],

such as elements that exhibit functional overlap.

Acknowledging that single perturbations are insufficient for localizing functions in

neural systems, Aharonov et al. [1] have presented a Functional Contribution Analysis

(FCA) and applied it for the analysis of EAAs. The FCA analyzes a data set composed

of numerous multiple perturbations that are inflicted upon a neurocontroller, along with

the performance scores in a given set of functions. In each multi-perturbation experi-

ment, several elements are perturbed, by concurrently disrupting their operation, and

the agent’s performance in each function is measured. The FCA is a machine learning

algorithm which uses these data to yield a prediction of the agent’s performance when

new, untested, multi-perturbations are imposed on it. It further yields a quantifica-

tion of the elements’ contributions to each function, as a set of values minimizing that

prediction error. This definition of the contributions within the FCA is an operative

one, based on minimizing the prediction error within a predefined prediction model. In

particular, the FCA arrives at different error minima in different runs, yielding diverse

contributions [18]. Moreover, since there is no inherent notion of correctness of the

FCA contributions, they might converge to unreasonable values [18].

Addressing the same challenge of defining and calculating the contributions of sys-

tem elements from a data set of multi-perturbations and their corresponding perfor-
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mance scores, while overcoming the shortcomings of the single-perturbation approaches

and the FCA, we have previously presented the Multi-perturbation Shapley value Anal-

ysis (MSA) [18]. In this framework, we view a set of multiple perturbation experiments

as a coalitional game, borrowing relevant concepts from the field of game theory. Specif-

ically, the desired set of contributions are defined to be the Shapley value [28], which

stands for the unique fair division of the game’s worth (the system’s performance score

when all elements are intact) among the different players (the system’s elements).

Hence, in this framework, a contribution of an element to a function measures its

importance, that is, the part it causally plays in the successful performance of that

function.

In [18] we have utilized the MSA for the analysis of a neurophysiological model of

lamprey swimming controller [5], providing new insights to the workings of this clas-

sical model. Specifically, the MSA uncovered the neuronal mechanism underlying the

controller’s oscillatory activity, as well as the redundancies inherent in it. Additionally,

the contributions of specific synapses to different characteristics of the oscillation, such

as frequency and amplitude, were inferred and analyzed. To test the applicability of

the MSA to the analysis of real biological behavioral data, we have also applied it to

reversible cooling deactivation experiments in cats [18]. The MSA correctly identified

the contributions of different sites to the brain function of spatial attention to auditory

stimuli, as well as a “paradoxical” type of interaction [32, 13]. This analysis was later

extended to testing spatial attention to visual stimuli [16]. The MSA is not limited to

the analysis of neural systems. Specifically, the MSA has been recently applied to the

analysis of gene multi-knockout studies [14]. This analysis quantified the importance

of genes in the Rad6 DNA repair pathway of the yeast, providing a new functional

description of the pathway. Incorporating the results with additional biological knowl-

edge has given rise to new hypotheses regarding the functional roles of the involved

genes.
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The Shapley value as a game theoretical tool requires for its calculation the full

knowledge of the behavior of the game at all possible coalitions (all multi-perturbation

experiments). Thus, the computations needed to calculate the Shapley value grow

exponentially with the number of elements in the analyzed system. This is reasonable

for the applications just presented, as they involve networks of a limited size (at most 9

elements). However, for larger systems such as EAAs’ neurocontrollers containing many

elements, these computations become infeasible. Hence, we have developed and studied

methods to compute an approximation of the Shapley value with high accuracy and

efficiency from a relatively small set of multi-perturbation experiments. Those MSA

variants, presented in this paper, are scalable in the number of elements, allowing

to perform multi-perturbation analysis of more complex systems, both artificial and

biological, in a computationally tractable manner.

This paper focuses on presenting the new scalable MSA variants. The operation

of the variants is tested and demonstrated in the analysis of several fully-recurrent

neurocontrollers. The rest of the paper is organized as follows: We start by presenting

the evolutionary environment and the different agents analyzed throughout the paper

(section 2). Section 3 introduces the relevant background from the field of game theory

and revisits the basic MSA [18], while presenting applications for the analysis of neu-

rocontrollers, both on neuronal and synaptic levels. Section 4 presents the predicted

Shapley value variant and section 5 the estimation variants, all with verifications of

their accuracy. The predicted Shapley value is based on a predictor, trained on a small

set of multi-perturbation experiments, to predict the performance of other experiments.

The estimated Shapley value is an unbiased estimator of the Shapley value, allowing

to approximate the contributions of elements, while quantifying their accuracy. In sec-

tion 5 an application of the MSA for pruning the synapses of a neurocontroller is also

presented and compared to pruning according to the FCA. In Section 6 a two-phase

scalable MSA variant is introduced, which, only after identifying the important ele-
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ments of a system, focuses on quantifying only their accurate contributions. Section 7

deals with the scenario in which it is not possible to concomitantly perturb any number

of the system’s elements; it examines the neurocontroller analysis under varying per-

turbation levels. The MSA framework also quantifies the interactions between groups

of elements [18], allowing for a higher order description of the system. The theory of

the interactions and its applicability to the analysis of neurocontrollers is detailed in

section 8. Our results and further applications of the MSA are discussed in section 9. A

matlab implementation of the MSA can be found at http://www.cns.tau.ac.il/msa.

2 The EAA Environment

The EAA environment used to study and develop the MSA is described in detail in [2].

A brief overview is provided herewith. The EAAs live in a virtual discrete 2D grid

“world” surrounded by walls. Poison items are scattered all around the world, while

food items are scattered only in a “food zone” located in one corner. An agent’s goal is

to find and eat as many food items as possible during its life, while avoiding the poison

items. The performance score of an agent is proportional to the number of food items

minus the number of poison items it consumes. The agents are equipped with a set of

sensors, motors, and a fully recurrent neurocontroller, which is evolved using a genetic

algorithm [2].

Four sensors encode the presence of a wall, a resource (food or poison, without

distinction between the two) or a vacancy in the cell the agent occupies and in the

three cells directly in front of it (Figure 1). A fifth sensor is a “smell” sensor which

can differentiate between food and poison directly underneath the agent, but gives

a random reading if the agent is in an empty cell. The four motor neurons dictate

movement forward (neuron 1), a turn left (neuron 2) or right (neuron 3), and control

the state of the mouth (open or closed, neuron 4). In each step a sensory reading
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Figure 1: The EAA environment. An outline of the grid world and the agent’s neuro-
controller. The agent is marked by a small arrow on the grid, whose direction indicates
its orientation. The curved lines indicate where in the arena each of the sensory inputs
comes from.

occurs, network activity is then synchronously updated, and a motor action is taken

according to the resulting activity in the motor neurons.

Previous analysis [2] revealed that successful agents possess one or more command

neurons that determine the agent’s behavioral strategy. Artificially clamping these

command neurons to either constant firing activity or to complete quiescence causes

the agent to constantly maintain one of the two behavioral modes it exhibits, regard-

less of its sensory input. These two behavioral modes are exploration and grazing.

Exploration, which normally takes place when the agent is outside of the food zone,

consists of moving in straight lines, ignoring resources in the sensory field that are

not directly under the agent, and turning at walls. Grazing, which usually takes place

when the agent is in the food zone, consists of turning towards resources to examine

them, turning at walls and maintaining the agent’s location on the grid in a relatively

small region.

Throughout this paper, we focus on the analysis of four agents, which have been
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successfully evolved in this environment. All four agents are equipped with the above

sensors and motors, and their neurocontrollers are all fully-recurrent, consisting of

10 internal neurons, including the motor neurons (not including the sensors). The

differences between the agents follow:

1. The neurocontroller of S10 [2] is composed of binary McCulloch-Pitts neurons,

whose synaptic strengths were evolved. This agent has been previously analyzed

using the FCA [1, 27].

2. P10 was obtained by a process in which, after the evolution of a successful agent,

its synapses are pruned using an evolutionary network minimization algorithm [9]

that deletes synapses and modifies the weights of the remaining ones so as to

produce a similar agent with smaller neurocontroller. Like S10, P10 is equipped

with a neurocontroller composed of binary McCulloch-Pitts neurons, but only

14 recurrent synapses out of the 100 original ones are left after applying the

minimization algorithm.

3. In order to encourage the creation of a fault-tolerant neurocontroller, F10 was

evolved using the same network architecture of S10, but while introducing faults

to the neurocontroller, resulting in a more robust agent [15].

4. Last, W10 copes with a more difficult version of the task, which also involves

counting, as the agent has to wait and remain still in a grid cell containing food

for 5 steps without moving or turning in order to eat [24]. Eating takes place

in this version only if the agent closes its mouth in the last waiting step. The

neurocontroller of W10 is composed of discrete-time integrate-and-fire neurons,

whose membrane time-constants were also evolved, in addition to the synaptic

strengths.

.
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3 The Shapley Value as a Contribution Measure

The starting point of the Multi-perturbation Shapley value Analysis (MSA) is a data

set of a series of multi-perturbation experiments studying a system’s (neurocontroller’s)

performance in a certain function. In each such experiment, a different subset of the

system’s elements are perturbed concomitantly (denoting a perturbation configuration)

and the system’s performance in the studied function following the perturbation is

measured. Given this data set, the main goal of the MSA is to ascribe to each element

its contribution (importance) in carrying out the studied function.

The basic observation underlying the solution suggested by the MSA to meet this

goal is that the multi-perturbation setup is essentially equivalent to a coalitional game.

That is, the system elements can be viewed as players in a game. The set of all elements

which are left intact in a perturbation configuration can be viewed as a coalition of

players. The performance of the system following the perturbation can then be viewed

as the worth of that coalition of players in the game. Within such a framework, an

intuitive notion of a player’s importance (or contribution) should capture the worth

of coalitions containing it (i.e. the system’s performance when the corresponding el-

ement is intact), relative to the worth of coalitions which do not (i.e. relative to the

system’s performance when this element, perhaps among others, is perturbed). This

intuitive equivalence, presented formally below, enables us to harness the pertaining

game theoretical tools to solve the problem of function localization in neurocontrollers.

We start by introducing some relevant background from the field of game theory:

A coalitional game is defined by a pair (N, v), where N = {1, . . . , n} is the set of all

players and v(S), for every S ⊆ N , is a real number associating a worth with the

coalition S, such that v(φ) = 0.1 In the context of multi-perturbations, N denotes the

set of all the system’s elements, and for each S ⊆ N , v(S) denotes the performance

1This type of game is most commonly referred to as a coalitional game with transferable payoff.
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measured under the perturbation configuration in which all the elements in S are intact

and the rest are perturbed.

A payoff profile of a coalitional game is the assignment of a payoff to each of the

players. A value is a function that assigns a unique payoff profile to a coalitional

game. It is efficient if the sum of the components of the payoff profile assigned is v(N).

That is, an efficient value divides the overall game’s worth (the system’s performance

when all elements are intact) between the different players (the system elements). An

efficient value that captures the importance of the different players may serve as a basis

for quantifying, in the context of multi-perturbations, the contributions of the system’s

elements.

The definite value in game theory and economics for this type of coalitional game

is the Shapley value [28], defined as follows: Let the marginal importance of player i

to a coalition S, with i /∈ S, be

∆i(S) = v(S ∪ {i}) − v(S). (1)

Then, the Shapley value is defined by the payoff

γi(N, v) =
1

n!

∑

R∈R

∆i(Si(R)) (2)

assigned to player i, for all i ∈ N , where R is the set of all n! orderings of N and Si(R)

is the set of players preceding i in the ordering R. The Shapley value can be interpreted

as follows: Suppose that all the players are arranged in some order, all orders being

equally likely. Then γi(N, v) is the expected marginal importance of player i to the set

of players who precede him. The Shapley value is efficient since the sum of the marginal

importance of all players is v(N) in any ordering. Alternative views of the Shapley

value in the context of multi-perturbations, including its axiomatic foundation, have

been presented in [18].
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The Shapley value can also be expressed in terms of a sum over all possible coali-

tions, namely

γi(N, v) =
1

n!

∑

S⊆N\{i}

∆i(S) · |S|! · (n − |S| − 1)!. (3)

Substituting according to equation (1) results in

γi(N, v) =
1

n!

∑

S⊆N,i∈S v(S) · (|S| − 1)! · (n − |S|)! −

1

n!

∑

S⊆N,i/∈S v(S) · (|S|)! · (n − |S| − 1)!, (4)

where each coalition S contributes a summand to either one of the two sums, depending

on whether player i belongs to it. Thus, the Shapley value calculation consists of going

through all coalitions and calculating for each element the two sums in the above

equation. This formulation highlights the fact that taking the average in equation (2)

over all orderings is equivalent to taking a weighted average over all coalitions, where

the weight of each coalition is determined by its size – the farther away the size is from

N
2
, the larger is the weight. Due to combinatorial considerations, there are considerably

more coalitions of sizes close to N
2

than coalitions of sizes close to 1 or N . Taking an

unweighted average of the marginal importance of a player over the set of all coalitions

would have therefore resulted in a value primarily determined by mid-sized coalitions.

The choice of weights used in equation (4), that is derived from the Shapley value

definition, entails that the part played by a set of all coalitions of a given size in

determining the value is independent of that size.

In the fifty years since its construction, the Shapley value as a unique fair solution

has been successfully used in many fields. Probably the most important application is

in cost allocation, where the cost of providing a service should be shared among the

different receivers of that service. This application was first suggested in [30], and the

theory was later developed by many authors (e.g. [22, 4]). This use of the Shapley
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value has received recent attention in the context of sharing the cost of multicast

routing [6]. In epidemiology, the Shapley value has been utilized as a mean to quantify

the population impact of exposure factors on a disease load [10]. Other fields where

the Shapley value has been used include, among others, politics (starting from the

strategic voting framework introduced in [29]), international environmental problems

and economic theory (see [31] for discussion and references).

The MSA, given a data set of multi-perturbations, uses the Shapley value as the

fair division of the system’s performance between the different elements, assigning to

each element its contribution, as its average importance to the function in question2.

The higher an element’s contribution according to the Shapley value, the larger is the

part it plays in the successful performance of the function3. This set of contributions is

a unique solution, in contrast to the multiplicity of possible contributions assignments

that may plague an error minimization approach like the FCA [1].

Once a game is defined, its Shapley value is uniquely determined. Yet, employing

different perturbation methods may obviously result in different values of v and as a

consequence, different Shapley values. The perturbation methods employed throughout

this paper for the analysis of EAAs’ neurocontrollers have been presented in [1] and

in [17]. In section 9 we return to discuss the effects of different perturbation methods

on the elements’ contributions.

The rest of this section deals with the ideal situation in which the full set of all 2n

possible perturbation configurations are given, along with the performance measure-

ment for each. Hence, the Shapley value may be straightforwardly calculated using

equation (4), where the summation runs over all 2n configurations of n elements. We

apply this full information analysis to agent P10 in order to determine the contribu-

2Since v(φ) = 0 does not necessarily hold in practice, as it depends on the performance measure-
ment definition and the perturbation method, Shapley value efficiency transcribes to the property
according to which the sum of the contributions assigned to all the elements equals v(N) − v(φ).

3Since no limitations are enforced on the shape of v, a negative contribution is possible, indicating
that the element hinders the performance of the function studied on the average.
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tions of each of its 14 synapses to its performance (defined in section 2). To this end,

we measure the agent’s performance score under the entire set of 214 synaptic per-

turbation configurations, where each synaptic perturbation configuration indicates for

each of the 14 recurrent synapses in the neurocontroller whether it is perturbed or left

intact. The perturbation method used is stochastic lesioning [1], which is performed

by randomizing the activity of a perturbed element, while keeping the mean activity

unchanged. Figure 2 plots the Shapley value, calculated in a straightforward manner

using the full information. The four most important synapses are, by order of impor-

tance, the synapse from the right motor to the left one, from the forward motor to the

command neuron (neuron number 8), the recurrent synapse from the command neuron

to itself and the synapse from the command neuron to the right motor. The analysis

uncovers the main mechanism underlying this minimized neurocontroller’s operation,

while quantifying the part played by each of the mechanism’s constituents. The rest

of the synapses exhibit minor contributions, with two synapses ((7,1) and (7,3)) hav-

ing negative contributions, testifying to the fact that, on the average, they hinder the

performance. For comparison with the previous, FCA method, Figure 2 also presents

the FCA contributions yielded when training the FCA 10 times with the training set

consisting of all 214 configurations. Only for 2 out of the 14 synapses the FCA con-

tribution is within one standard deviation of the corresponding contribution defined

by the Shapley value, which captures the fair axiomatic division of the contributions.

Moreover, the FCA assigns a near-vanishing contribution to the self-synapse of the

command neuron, which has been shown to facilitate the short-term memory of the

agent and to be essential to its neural underpinnings [2].

For W10, the counting agent, the performance score under the entire set of 210 neu-

ronal perturbation configurations was measured using stochastic lesioning and from

which the neurons’ contributions were calculated (Figure 3). Previous analysis [24]

revealed neuron number 10 to be the command neuron, neurons number 4 and number
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Figure 2: Shapley value and FCA normalized contributions of the synapses of P10.
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Figure 3: Shapley value of the neurons of W10.

9 to participate in the temporal counting required for the precise timing of food con-

sumption, and neuron number 1, the forward motor, to count the last two steps before

moving forward. The MSA accurately reveals those neurons to be the most significant

ones.

4 Predicted Shapley Value

Obviously, calculating the performance levels of all perturbation configurations re-

quired for the calculation of the Shapley value is often intractable. In such cases, one

may train a predictor, using a given subset of perturbation configurations, to predict

the performance levels of all unseen configurations. Given such a predictor, a predicted

Shapley value [18] can be calculated as the Shapley value based on the predicted perfor-

mance levels. Unlike the FCA, where the predictor component and the calculation of

the contributions are intertwined, the MSA enjoys a function uncoupling between the

14



two and hence may utilize any predictor relevant for the data, without employing any

constraints. In the results to follow, the FCA itself is used as the predictor within the

MSA framework. It is merely used as a ‘black box’ for predicting the performance of

perturbation configurations, without considering the values of contributions it yields.

Other predictors have also been used within the framework of the MSA [18, 14]

To test the accuracy of the predicted Shapley value, predictors were trained with

training sets of randomly chosen synaptic perturbation configurations of P10 of sizes

100, 200, . . . , 1000 (out of 214 = 16384 configurations). Figure 4 plots the predicted

Shapley value contribution of the most important synapse of P10, against the number

of configurations in the training set, along with the real Shapley value. The predicted

Shapley value is very close to the real one, even for very small numbers of perturbation

configurations used for training, and exhibits stability across the different runs, as

noted by the small standard deviations. Remarkably, this is true even though the

prediction is not very accurate (average test MSE corresponding to explaining less

than 60% of the variance when 100 perturbation configurations are used for training;

the prediction improves as the training set size increases). This might be explained

by the fact that the Shapley value is obtained via an averaging of a large number of

predictions. Assuming that the prediction is unbiased, prediction errors cancel each

other out, resulting in a predicted Shapley value which is very similar to the real one.

As further evident from Figure 4, the FCA contribution differs significantly from the

Shapley value and exhibits a large standard deviation across different runs, much larger

than that of the predicted Shapley value contribution, even though both contributions

are based on the same data, the FCA’s predictions.
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5 Estimated Shapley Value and Estimated Predicted

Shapley Value

The predicted Shapley value (section 4) relieves the MSA of the need for the full set

of 2n perturbation configurations. Nevertheless, n · 2n computations are still required

for its calculation (summing over all predicted configurations for each element). When

the number of elements is too large for such a method to be tractable, sampling may

be used, facilitating the MSA’s scalability. Rather than sampling single configura-

tions, the estimated MSA variant samples whole permutations of the n elements. Let

R̂ be a randomly sampled set of permutations (with replacement). Then, based on

equation (2),

γ̂i(N, v) =
1

|R̂|

∑

R∈R̂

∆i(Si(R)) (5)

is an unbiased estimator of the Shapley value γi(N, v). In order to calculate these esti-

mates for every i, for each permutation a1, . . . , an in R̂, the performance measurements

v(φ), v({a1}), v({a1, a2}), . . . , v({a1, a2, . . . , an−1}), v(N) are needed. Notice, however,

that a perturbation configuration should be calculated only once while it may appear

in different permutations. Thus, the number of new multi-perturbation experiments to

be performed for each sampled permutation tends to decrease as more permutations

are sampled. The resulting estimated Shapley value is an efficient value, since the sum

of the marginal importance of all elements in any permutation is v(N) − v(φ).

The empirical standard deviation of the marginal importance of element i,

si(N, v) =

√

1

|R̂|

∑

R∈R̂

(∆i(Si(R)) − γ̂i(N, v))2, (6)

yields an estimator of the standard deviation of the Shapley value estimator γ̂i(N, v)

σ̂(γ̂i(N, v)) =
si(N, v)
√

|R̂|
. (7)
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The standard deviation measures how close the estimated Shapley value is to the

true value. Specifically, using the Shapley value estimator and the standard devia-

tion estimator, confidence intervals for the contribution of each of the elements can

be constructed. It is further possible to test statistical hypotheses on whether the

contribution of a certain element equals a given value (e.g., zero or 1/n). Both the

confidence intervals and the hypothesis tests are based on the t-distribution. Sampling

permutations for constructing the set R̂ can be done with a given sample size or se-

quentially, for instance, stopping when reaching a fixed maximal limit for the number

of performance calculations (the number of perturbation configurations) or when all

standard deviation estimates are small enough.

The multi-perturbation experiments that should be performed in the estimated

Shapley value method are dictated by the sampled permutations. At times, however,

one is given an existing dataset of performance measures for some set of perturbation

configurations, which does not necessarily match a random permutation sample. In

this case, the MSA offers an additional estimation variant: A performance predictor

is trained using the given set of perturbation configurations and serves as an oracle

supplying performance predictions for any perturbation configuration as dictated by

the sampled permutations, resulting in an estimated predicted Shapley value.

Figure 4 plots the estimated Shapley value, along with its standard deviation es-

timate, for the most important synapse of P10, against the number of perturbation

configurations used4. As expected from the theory, the estimated Shapley value ap-

pears to be an unbiased estimator for the real Shapley value and its standard deviation

generally decreases with the sample size. Notably, the standard deviation of the esti-

mated Shapley value is much larger than that of the predicted Shapley value.

4Since whole permutations are sampled, the actual number of configurations used for a defined size
s is between s and s + n − 2, where n = 14 in this case.
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We now turn to examine a case where the entire set of 2n predictions needed for

extracting the predicted Shapley value is computationally intractable – the analysis

of the full recurrent synaptic neurocontroller of S10, consisting of 100 synapses. An

estimated Shapley value is calculated based on a sample of 100 permutations (9833

perturbation configurations), where a more minute perturbation method is employed

in order to capture the long-term contributions (ILM, developed in [17], lesioning level

of 0.5). Training a predictor with the same sample, the estimated predicted Shap-

ley value is computed by sampling configurations from the predictor using sequential

sampling, stopping when the standard deviation estimates of all 100 estimated pre-

dicted contributions are below 0.005. Arbitrarily defining an important synapse as one

with a normalized contribution above 0.03 (3% of the total performance of the neu-

rocontroller), the same nine synapses are yielded as important by both the estimated

Shapley value and the estimated predicted one (Figure 5), with very similar contri-

butions. These conclusions are rather insensitive to the choice of threshold used for

defining an important synapse. By finding the important synapses, the MSA reveals

the recurrent backbone of the neurocontroller, containing, in this case, only 9 out of

the 100 synapses. Focusing on the backbone may simplify the further analysis of such

fully recurrent networks [1, 18].

The MSA may be useful for pruning a neurocontroller, by removing the synapses ac-

cording to the magnitude of their contributions, in ascending order. In [1] it was shown

that pruning by the FCA contributions outperforms pruning by synaptic weights mag-

nitude. To compare the validity of the contributions obtained by the MSA with those

obtained by the FCA, we incrementally pruned the full recurrent synaptic neurocon-

troller of S10 using the two methods. Figure 6 depicts the performance of the agent as

a function of the number of pruned synapses, starting from the intact neurocontroller.

It compares pruning according to the above estimated Shapley value with pruning us-

ing the FCA contributions, when the FCA is trained using the same random sample.
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Figure 5: Estimated Shapley value and estimated predicted Shapley value of the im-
portant synapses of S10. Error bars of both denote the standard deviation estimates.

20



0 10 20 30 40 50 60 70 80
0.91

0.94

0.97

1

Number of pruned synapses

P
er

fo
rm

an
ce

By MSA

By FCA

Figure 6: Agent S10’s normalized performance as a function of pruning level, by MSA
and by FCA. In both methods the synapses are incrementally pruned by ascending
order of their contribution. The figure focuses on the first 80 synapses pruned, where
the agent has still viable performance, after which its performance drastically decreases
with both methods of pruning.

Evidently, the degradation in the performance using MSA-based pruning is slower than

with the FCA, testifying that the MSA better captures the inherent importance of the

synapses.

6 A Two-Phase Procedure for Large Scale Analysis

Within the MSA framework, we suggest another scalable method for handling systems

with a large number of elements. This two-phase MSA procedure is motivated by the

observation that often only a small fraction of the possibly large number of elements

significantly contributes to the specific function tested within the analysis. The first

phase hence finds those elements with significant contributions. This phase uses a small

sample in order to calculate the estimated Shapley value and the standard deviation

estimates (section 5). A two-sided t-test is then performed on the contribution of
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each element, where the null hypothesis indicates that the contribution is zero, thus

identifying the significant elements.

The second phase focuses on finding the accurate contributions of the significant

elements. This phase may use the same small sample from the first phase, but it

focuses on the coalitional game (N ′, vN ′

), where N ′ is the set of elements found as

significant in the first phase. Given the characteristic function v of the original game

consisting of all elements, vN ′

may be defined such that for S ⊆ N ′, vN ′

(S) equals the

average of v(T ) over all T ⊆ N satisfying T ∩N ′ = S. Thus, using the original sample,

some of the vN ′

are based on an average over many perturbation configurations, while

others might not be evaluated due to lack of data. In the case where the characteristic

function vN ′

can not be fully calculated, a predictor is trained using the available data

(section 4). The predictor is trained on perturbation configurations of size |N ′| and

not of size |N |, allowing for faster training and for an increased scalability. In the case

where the number of significant elements is too large for the explicit calculation of a

predicted Shapley value, sampling is incorporated (section 5) also in this second phase,

using the much smaller configuration space.

We begin by applying the two-phase MSA procedure to the analysis of a moderate

size system in order to allow for the comparison of the results of the procedure with

the real Shapley value. Such a moderate size system is obtained by focusing on part

of S10’s synaptic network, analyzed in section 5, consisting of 14 synapses out of the

100, after pruning the rest of the synapses. Those 14 synapses are the ones previously

found as most important by the FCA [17]. First, we perform a full information MSA

to identify the true contributions. Then, we perform a two-phase analysis. In the

first phase of the latter, a small random sample of 20 permutations (227 perturbation

configurations out of the 214) is used to estimate the Shapley value and the standard

deviations. Performing t-tests (two-sided, α = 0.05) using the estimates results in

the identification of 11 significant synapses (out of the 14 found as most important
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by the FCA). The second phase focuses on those significant synapses, based on the

same sample of 227 configurations. A predictor is trained on the sample5, and a two-

phase predicted Shapley value is calculated using the predictions for the full set of 211

configurations. Figure 7 presents the results of this analysis. First, the three synapses

with near-vanishing contributions according to the real Shapley value are the ones

found as insignificant in the first phase of the procedure. Second, the final two-phase

predicted Shapley value is much closer to the true contributions than the estimated

Shapley value calculated in the first phase, and with a much smaller standard deviation.

To examine the two-phase MSA procedure on a larger scale (thus losing the ability

to calculate and compare to the true contributions), we turn to analyze the full recur-

rent synaptic network of S10, consisting of all 100 synapses. The first phase, using a

very small random sample consisting of 10 permutations, identifies 20 synapses as sig-

nificant (two-sided t-tests, α = 0.05). A predictor is trained on the set induced by this

sample and a two-phase predicted Shapley value is calculated from the predictions for

the full set of 220 synaptic perturbation configurations. The mean normalized training

MSE corresponds to explaining more than 99.8% of the variance, which is five times

more accurate than when training on the original sample consisting of configurations

of all 100 synapses. Figure 8 displays the two-phase predicted Shapley value for the 20

significant synapses, illustrating small standard deviations of the contributions, testi-

fying to their consistency. In this two-phase procedure, the nine synapses with largest

contributions are the same ones found using the single-phase MSA methods (section 5).

5The insignificant synapses are ignored in the perturbation configurations, and the performance
scores of identical configurations are averaged, resulting in 164 configurations out of the 211 possible
ones.
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Figure 7: Shapley value, estimated Shapley value (with standard deviation estimates)
and two-phase predicted Shapley value (mean and standard deviation across 10 pre-
dictors in the second phase) for the 14 synapses network (see main text). Synapses
found as insignificant in the first phase ((1,3), (4,3) and (6,5)) are assigned a two-phase
predicted contribution of zero. In order for the different values to be comparable, they
are not normalized, but rather the sum of the Shapley value and the sum of the esti-
mated one equal v(N) − v(φ), where N is the group of all 14 synapses, and the sum
of the two-phase predicted ones equals vN ′

(N ′)− vN ′

(φ), where N ′ is the group of the
11 significant synapses.
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Figure 8: Two-phase predicted Shapley value of the 20 synapses of S10 found as sig-
nificant in the first phase (mean and standard deviation across 10 predictors).

7 Bounded Perturbation Level Analysis

In scenarios where it might not be possible to concomitantly perturb any number of a

system’s elements, as is the case in most types of biological experiments, a more delicate

procedure should be carried out. Specifically, suppose that, for some perturbation level

k, one is given with all perturbation configurations in which no more than k elements

are perturbed. In such a case, let the marginal importance of element i to a coalition

S, with i /∈ S, be

∆k
i (S) =











v(S ∪ {i}) − v(S) : |S| ≥ n − k

0 : |S| < n − k
(8)

Then, the contribution of element i, in the spirit of the Shapley value (equation (2)),

can be defined as

γk
i (N, v) =

1

k(n − 1)!

∑

R∈R

∆k
i (Si(R)). (9)

These MSA k-bounded contributions coincide with the Shapley value for k = n and

with single lesion analysis for k = 1. Similarly to the full (k = n) case, if the calculation
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of all perturbation configurations with up to k perturbed elements is intractable, a

predictor can be trained to predict the performance levels of all those configurations,

and predicted k-bounded contributions can be calculated. Further, when the set of

those configurations is too large to even enumerate them, an unbiased estimator for

the k-bounded contributions, estimated k-bounded contributions, can be calculated by

sampling permutations while ignoring the configurations with more than k perturbed

elements in each permutation. Based on these, an estimated predicted variant, as in

section 5, can also be calculated, as well as a two-phase procedure be carried out, as

in section 6.

The k-bounded contributions enable one to examine the space between the contribu-

tions yielded by single perturbations only (single lesion analysis) and the contributions

yielded by a full MSA. For each k = 1, 2, .., 10, we calculated the k-bounded contri-

butions of the neurons of the fault-tolerant agent F10. Figure 9 depicts the distance

between the normalized k-bounded contributions vector and the normalized Shapley

value vector of contributions, as a function of k. The k-bounded contributions grad-

ually approach the Shapley value, starting from the single-perturbation contributions

which in this case are as far from the Shapley value as random normalized vectors are.

A previous analysis has revealed the distance between the k-bounded contributions

and the Shapley value to be larger for fault-tolerant neurocontrollers than for regular

ones [15].

8 Two-Dimensional MSA

The Shapley value serves as a summary of the game, indicating the average marginal

importance of an element over all possible elements permutations. For complex sys-

tems, where the importance of an element may depend on the state (perturbed or

intact) of other elements, a higher order description is necessary to capture sets of
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Figure 9: k-bounded contributions versus Shapley value contributions. The Euclidean
distance between the normalized MSA k-bounded contributions and the normalized
full MSA contributions (the Shapley value) as a function of the perturbation level k,
for agent F10.

elements with significant interactions. For example, when two elements exhibit a high

degree of functional overlap, that is, redundancy, it is desired to capture this inter-

action, aside from the average importance of each element. We focus here on the

description of two-dimensional interactions, elaborated upon in [18], and present its

applicability for the analysis of neurocontrollers.

A natural definition of the interaction between a pair of elements is as follows: Let

γi,j̄ = γi(N\{j}, vN\{j}) be the Shapley value of element i in the subgame of all elements

without element j. Intuitively, this is the average marginal importance of element i

when element j is perturbed. Let us now define the coalitional game (M, vM), where

M = N \ {i, j} ∪ {(i, j)} ((i, j) is a new compound element) and vM(S), for S ⊆ M , is

given by

vM(S) =











v(S) : (i, j) /∈ S

v(S \ {(i, j)} ∪ {i, j}) : (i, j) ∈ S
(10)
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where v is the characteristic function of the original game with elements N . Then,

γi,j = γ(i,j)(M, vM), the Shapley value of element (i, j) in this game, is the average

marginal importance of elements i and j when jointly added to a configuration. The

two-dimensional interaction between element i and element j, j 6= i, is then defined as

Ii,j = γi,j − γi,j̄ − γj,̄i (11)

which quantifies how much the average marginal importance of the two elements to-

gether is larger (or smaller) than the sum of the average marginal importance of each of

them when the other one is perturbed. Intuitively, this symmetric definition (Ii,j = Ij,i)

states how much “the whole is greater than the sum of its parts”, where the whole is

the pair of elements. In cases where the whole is indeed larger than the sum of its

parts, the interaction is positive (synergism). In cases where the whole is smaller than

the sum of its parts, that is, when the two elements exhibit functional overlap, the

interaction is negative (antagonism).

Based on the two-dimensional interactions presented above, Figure 10A portrays

the results of a two-dimensional analysis performed on the counting agent W10, extend-

ing the one-dimensional analysis (section 3). Evidently, all pairs of significant neurons

found previously in the one-dimensional analysis (1, 4, 9 and 10) exhibit strong syner-

gism, while the pairs involving non-significant neurons exhibit weak synergism or very

weak antagonism. Specifically, neurons number 4 and number 9, participating in the

counting process when waiting in a food cell, exhibit the strongest interaction. Further

examining the marginal contributions of each with respect to the other, neuron number

9 has a very significant contribution of 0.16 when neuron 4 is intact. When neuron

number 4 is perturbed, however, neuron number 9 has a near-vanishing contribution of

0.005, showing that neuron number 9 cannot count by itself, without neuron number

4. The opposite is also true, as neuron number 4 has a significant contribution of 0.15

when neuron number 9 is intact and a vanishing contribution when it is perturbed.
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Figure 10: Two-dimensional interactions. The symmetric interaction Ii,j between each
pair of neurons (i < j) is portrayed for agent W10 (A) and agent F10 (B). The figures
present the absolute values of the interactions, with dark bars denoting the negative
(antagonistic) interactions and light bars denoting the positive (synergistic) ones. Note
the different scale of the two figures.

Interestingly, the multitude of synergistic over antagonistic interactions indicates that

there is an evolutionary pressure towards the formation of cooperation between neu-

rons.

Observing the interactions between all pairs of neurons of the fault-tolerant agent

F10 (Figure 10B) reveals many negative ones, pointing to pairs of neurons which backup

each other’s function. These results exemplify the multiplicity of negative interactions

in agents evolved while faults are introduced to the neurocontrollers. The necessity

of fault-tolerance induces the emergence of functional overlap between the neurons, at

the expense of the formation of cooperation [15].

9 Discussion

Over the last couple of years we have developed and described a new framework for

quantitative causal function localization via multi-perturbation experiments. Depart-

ing from the original ad-hoc error minimization approach [1, 27, 17], we recently pre-
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sented the MSA – an axiomatic framework based on an analytical definition of all

elements’ contributions via the Shapley value [18] . In this paper we further develop

this framework and present estimation and prediction variants, which allow it to effi-

ciently and accurately identify the contributing elements of much larger systems. We

demonstrate the MSA’s applicability by applying it to a group of agents solving a sim-

ilar food-foraging task and guided by fully-recurrent neurocontrollers consisting of up

to a hundred synapses. The analysis uncovers the important neuronal and synaptic

elements in each agent and quantifies their contributions to its performance, as well as

their functional interactions. The MSA was further utilized to prune the synapses of a

successful agent’s neurocontroller while maintaining a high level of performance.

While this paper has focused on the analysis of EAAs’ neurocontrollers, the MSA

is a general function localization framework applicable to a wide variety of systems.

Indeed, there are only two requirements for a system to be eligible to such an anal-

ysis – an ability to inflict multi-perturbations upon its constituent elements, and an

ability to measure its performance in respect to the studied functions. Moving beyond

artificial systems, recent technological advances have enabled real biological systems

to meet these requirements. In neuroscience, lesioning, reversible deactivations, and

transcranial magnetic stimulation (TMS) all allow the collection of multi-perturbation

performance data. Outside of neuroscience, the recent development of RNA interfer-

ence (RNAi) has made multiple concomitant gene knockouts possible, opening the way

for a multi-perturbation analysis of genetic networks. As the biological systems un-

der investigation grow in size, the estimation variants of the MSA will be required for

a computationally tractable. analysis. The k-bounded MSA presented in this paper

should be particularly useful for such analyses, as current techniques can only perturb

a relatively small number of elements concomitantly.

The predicted and estimated variants of the MSA also make possible studies where a

large number of different systems must be analyzed, and the full-information MSA will
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simply take too much time to complete. An interesting direction might be studying

the course of neurocontroller evolution. Analyzing representative agents of different

generations may provide insight into the manner in which neurons differentiate and

take on different roles in the network.

An essential issue in any causal localization analysis is the choice of functions to

be analyzed. Applying the MSA for different functions performed by the same system

will uncover the contribution of each element to each function separately. A thoughtful

specification of these functions may help to illuminate different aspects of the system’s

behavior. Aharonov et al. [1] used the FCA to analyze agents developed in the en-

vironment presented in this paper in respect to two performance measures, reflecting

the two modes of behavior these agents display (see section 2). The first measures the

agent’s capacity to travel long distances, and hence reflects its capacity for exploration.

The second, reflecting its capacity for grazing, measures the agent’s ability to cover

large areas in its search for food. The contributions derived from this analysis were

then used to assess the degree of localization of each task, as well as the extent to

which each neuron is specialized to a given task. As mentioned in the introduction,

we used the full-information MSA on a single segment of a neurophysiological model

of a swimming lamprey to uncover the synaptic backbones underlying its oscillatory

activity and various characteristics of these oscillations [18]. This was achieved by

defining a different function for each characteristic of interest and running the MSA on

the multi-perturbation data gathered for each function. Saggie et al. [25] focus on the

study of counting agents such as W10 mentioned in this paper. A careful definition of

the function to be analyzed allowed the MSA to reveal those synapses specifically in

charge of counting, differentiating them from the synapses which contribute to other

aspects of the agent’s performance.

Another issue that was only briefly touched upon in this paper is the choice of

perturbation method. Much as in the choice of function, different perturbation methods
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may be used to illuminate different aspects of the system’s functioning. While the most

natural choice for perturbing a neural element would probably be simply removing

it from the network, this is by far not the only alternative. Indeed, Aharonov et

al. [1] suggested using stochastic lesioning, which effectively negates the information

content of the perturbed element’s activity, without changing its mean firing rate, and

hence, without affecting the mean input field of other elements. Keinan et al. [17]

generalized this concept in the development of the Informational Lesioning Method

(ILM), which makes available a whole range of increasingly minute perturbations, once

again affecting only the information content of the perturbed element. It was shown

that different perturbation magnitudes tend to reveal different aspects of the neural

functioning, with the smaller magnitudes accentuating neural elements involved in

longer range dynamics. Lastly, Saggie et al. [25] evolved neurocontrollers composed

of discrete-time integrate-and-fire neurons. In order to determine the contributions of

the neurons’ integration capability to the agent’s overall performance (as opposed to

the importance of the neuron’s information content, as revealed by using stochastic

lesioning), they used a perturbation method which simply set a perturbed neuron’s

membrane time-constant to zero, thereby rendering it a standard McCulloch-Pitts

neuron.

As evolved neurocontrollers grow more and more complex, there is a clear need for

principled methods for their analysis. As pointed out previously, and as evident from

effects such as functional overlap, single lesion approaches do not suffice to portray

the correct function localization in a system. Aiming at a causal analysis, multi-

perturbations must be afflicted upon the neurocontroller. The MSA is the first frame-

work to make sense out of such multi-perturbation experiments in a formal, axiomatic

and rigorous manner. The newly introduced variants now extend its capabilities by

increasing its scalability and allowing for the efficient analysis of large scale systems.
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