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Rhythm belongs with harmony, melody and timbre as one of the most funda-
mental aspects of music. Sound by its very nature is temporal, and in its most
generic sense, the word rhythm is used to refer to all of the temporal aspects of
a musical work, whether represented in a score, measured from a performance, or
existing only in the perception of the listener. In order to build a computer sys-
tem capable of intelligently processing music, it is essential to design representation
formats and processing algorithms for the rhythmic content of the music.

Computer systems reported in the literature offer different interpretations of the
words “automatic rhythm description” as they address diverse applications such as
tempo induction, beat tracking, quantisation of performed rhythms, meter induc-
tion and characterisation of intentional timing deviations. Although some rhythmic
concepts are consensual, no single representation of rhythm has been devised which
would be suitable for all applications. In this paper, we propose a unifying frame-
work for automatic rhythm description systems, and review existing systems with
respect to the functional units of the proposed framework.

1 Representing musical rhythm

A naive approach to describe the rhythm of musical data (whether audio or sym-
bolic) is to specify an exhaustive and accurate list of onset times, maybe together
with some other musical features characterising those events (e.g., durations, pitches
and intensities in the MIDI representation). However, such a representation lacks
abstraction. There is more to rhythm than the absolute timings of successive musi-
cal events. There seems to be agreement on the fact that, in addition, one must also
take into account the metrical structure, tempo and timing (Honing, 2001). How-
ever, there is no consensus regarding explicit representations of these three rhythmic
concepts.

A first reason is that different rhythmic features are relevant at each step in the
musical communication chain, at each step where rhythmic content is produced,
transmitted and/or received. As we illustrate in the next sections, metrical struc-
ture, tempo and timing take slightly different meanings for composers, performers
and listeners. Indeed, even if a goal in the field of music psychology is to seek repre-
sentational elements, or processes, that would stand as “universal” or “innate” (i.e.
functioning at birth, independent of environmental influence) (Drake and Bertrand,
2001), a more widespread objective is to determine differences in perception accord-
ing to listeners’ culture, musical background, age or sex (Drake, 1993; Lapidaki,
2000; Gabrielsson, 1973; Drake et al., 2000b).

A second reason is that the diverse media used for rhythm transmission suf-
fer a trade-off between the level of abstraction and the comprehensiveness of the
representation. Standard Western music notation provides an accepted method for



communicating a composition to a performer, but it has little value in representing
the interpretation of a work as played in a concert. On the other hand, a MIDI
file might be able to represent important aspects of a performance, but it does not
provide the same level of abstraction as the score. At the extreme end, an acoustic
signal implicitly contains all rhythmic aspects but provides no abstraction whatso-
ever. In an application context, the choice of a suitable representation is based on
the levels of detail (respectively abstraction) of the various aspects of music which
are provided by the representation.

1.1 Metrical structure

Western music notation provides an objective regular temporal structure underlying
musical event occurrences and organising them into a hierarchical metrical structure.
This is independent of the hierarchical phrase structure which may be explicit in
the notation or implicit in the composer’s, the performer’s and/or the listener’s
conceptualisation of the music.

The Generative Theory of Tonal Music (GTTM, Lerdahl and Jackendoff, 1983)
formalises this distinction by defining rules for a “musical grammar” which deals
separately with grouping structure (phrasing) and metrical structure. While the
grouping structure deals with time spans (durations), the metrical structure deals
with durationless points in time, the beats, which obey the following rules. Beats
must be equally spaced. A division according to a specific duration corresponds
to a metrical level. Several levels coexist, from low levels (small time divisions) to
high levels (longer time divisions). There must be a beat of the metrical structure
for every note in a musical sequence. A beat at a high level must also be a beat
at each lower level. At any metrical level, a beat which is also a beat at the next
higher level is called a downbeat, and other beats are called upbeats. Beats obey
a discrete time grid, with time intervals all being multiples of a common duration,
the smallest metrical level.

Music psychology research asserts that humans perceive at least part of the
objective temporal structure. Drake and Bertrand (2001) advocate a universal
“predisposition toward simple duration ratio”, and claim that “we tend to hear a
time interval as twice as long or short as previous intervals.” The Dynamic At-
tending Theory (Drake et al., 2000a; Jones and Boltz, 1989) proposes that humans
spontaneously focus on a “referent level” of periodicity, and they can later switch to
other levels to track events occurring at different time spans (for instance, longer-
span harmony changes, or a particular shorter-span fast motive). However, metrical
structure perception is strongly dependent on musical training (Drake et al., 2000a).

1.2 Tempo

Given a metrical structure, tempo is defined as the rate of the beats at a given
metrical level, for example the quarter note level in the score. There is usually a
preferred or primary metrical level, which corresponds to the rate at which most
people would tap or clap in time with the music, and this is commonly used to
define the tempo, expressed either as a number of beats per minute, or as the time
interval between beats (the inter-beat interval). In many cases the primary metrical
level corresponds to the denominator of the time signature, and the next one or two
higher levels are specified by the numerator of the time signature.

However, the perception of tempo exhibits a degree of variability. It is not always
correct to assume that the denominator of the time signature corresponds to the
“foot-tapping” rate, nor to the actual “physical tempo” that would be an inherent
property of audio flows (Drake et al., 1999). Differences in human perception of
tempo depend on age, musical training, musical preferences and general listening



Figure 1: Four time-lines, marked with onsets, illustrating the difference between
tempo and timing changes: (A) an isochronous pulse; (B) a local timing change;
(C) a global timing change; and (D) a tempo change.

context (e.g. tempo of a previously heard sequence, listener’s activity, instant of
the day) (Drake, 1993; Drake et al., 2000a; Lapidaki, 2000; Drake et al., 2000b).
Differences in tempo perception are nevertheless far from random; they most often
correspond to a focus on a different metrical level, e.g. differences of half or twice
the inter-beat interval (when hearing duple meter music) or one-third or three times
the inter-beat interval (when hearing triple or compound meter music).

1.3 Timing

Although it is supposed to model the listener’s intuitions, a major weakness of the
GTTM is that it does not deal with the departures from strict metrical timing
which are apparent in almost all styles of music. Thus it is only really suitable for
representing the timing structures of musical scores, or as an abstract representation
of a performance, where the expressive timing is not represented.

There are conceptually two types of non-metrical timing, which come under the
headings tempo and timing respectively. These are illustrated in Figure 1, which
shows a strictly metrical (isochronous) pulse (A), followed by three variations on
this pulse. There are two types of timing changes: in the first case (B), just one beat
in the pulse is displaced, whereas in the second case (C), all beats from a particular
time onwards are displaced, as when a pause occurs in the music. In both of these
cases, the change is in the timing; there is a discontinuity in the pulse, but the rate
of the pulse on both sides of the discontinuity is the same. In this sense we can
associate timing changes with short term changes in the pulse. On the other hand,
a tempo change is a change in the rate of the pulse (D), which is a long term change
in the pulse.

It is important to note that at the time of the first change (the 4th beat in the
pulse), it is impossible to distinguish cases (B), (C) and (D). This makes causal
analysis impossible (i.e. algorithms which do not use information about future
events in analysing present events, as, for example, any real-time algorithm), since
with no knowledge of the future, a single “out of time” beat could be due to either
a tempo or timing change (Cambouropoulos et al., 2001).

One of the greatest difficulties in analysing performance data is that the two
dimensions of tempo and timing are projected onto the single dimension of time.
Mathematically, it is possible to represent any tempo change as a series of timing



changes and any timing change as a series of tempo changes, but these descriptions
are somewhat counterintuitive (Honing, 2001). The parsimony of the representation
is an important factor in its psychological plausibility (Tanguiane, 1993).

In order to represent changing tempi, various approaches can be used. If tempo is
considered as an instantaneous value, it can be calculated as the inter-beat interval
measured between each pair of successive beats. A more perceptually plausible
approach is to take an average tempo measured over a longer period of time. A
measure of central tendency of tempo over a complete musical excerpt is called the
basic tempo (Repp, 1994), which is the implied tempo around which the expressive
tempo varies. The end result of any of these approaches is a value of tempo as a
function of time, which is called a tempo curve. Often, timing is also modelled by
the tempo curve representation, an approach which is sharply criticised (Desain and
Honing, 1991; Honing, 2001) for failing to separate the dimensions of tempo and
timing. This criticism is well supported by examples where transformations applied
to a tempo curve representation do not preserve musically important features.

Among others, Bilmes (1993) and Baggi (1991) propose to represent timing
deviations as systematic event shifts occurring within the span of the fastest pulse,
while keeping a constant execution speed. They found evidence of the suitability
of such a representation in analysing respectively Latin percussion music and jazz
music. Friberg and Sundstrém (2002,1999) propose to focus on the swing. The
term originates in Jazz music, and is often characterised by the long-short pattern
of performing consecutive eighth-notes. The swing ratio refers to a mathematical
expression: the duration of the first eighth-note divided by that of the second.

Music psychology research presents evidence that listeners perceive performers’
intentional timing deviations. Clarke (1987) shows that “categorical perception” dif-
ferentiates expressive timing from rhythmic structure: a small number of categories
are used to characterise the continuously variable temporal transformation of the
discrete (integer ratio) structure. Further, timing and structure are tightly linked.
Repp (1992) confirms listeners’ sensitivity to timing deviations, but, most impor-
tantly, also shows that this sensitivity is a variable of the position in the metrical
structure. Complementary to this finding, there is strong evidence that performers
do not produce timing deviations at arbitrary points in time (Palmer, 1997). They
rather deviate from pure mechanical performance in specific ways. The metrical
structure provides “anchor points” for timing deviations, and “every aspect of mu-
sical structure contributes to the specification of an expressive profile for a piece”
(Clarke, 1999, p.492). Expressive timing is also systematic; the timing in repeated
performances can be very stable over a period of years (Clynes and Walker, 1982,
pp-181-187).

2 A common analytical framework for rhythm de-
scription systems

The chief goal in automatic rhythm description is the parsing of acoustic events
that occur in time into the more abstract notions of metrical structure, tempo and
timing, as illustrated in Figure 2, where the goal is to derive a representation like
(B) from (A) or (A’). A major difficulty is the inherent ambiguity of rhythm, as
discussed in the previous section. This concern is also expressed by Parncutt (1994,
p-423), Chung (1989, p.19) and Rosenthal (1992, p.12). This is a problem because
computer implementations demand precise definitions, and any systematic compar-
ison of program performances must be based on some “ground truth.” For instance,
it is difficult to compare programs that extract the tempo if their definitions of
tempo do not explicitly refer to the same metrical level. Indeed, tempo induction
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Figure 2: Example of an audio signal, examples of feature lists, corresponding
metrical structure and timing features, showing a gradually decreasing tempo.

systems typically make errors of simple integer ratios, such as 60 BPM instead of
120 (Dixon, 2001; Goto and Muroaka, 1997). Also, even if existing scores can be
taken as ground-truth references to the quantisation or time signature determina-
tion tasks, “correct” time signatures or quantised durations can always be the object
of controversy. For this reason Cemgil et al. (2000) define music transcription as
“the extraction of an acceptable ... music notation” (original emphasis).

The ambiguity of rhythm representations becomes apparent when we consider
the following questions: Given a musical signal, how many metrical levels are rel-
evant? Is there one most important level? Is there solely one correct perceptual
tempo? Which metrical level defines the MM tempo of the music? Which metrical
levels define the time signature? What are the relevant categories of timing devia-
tions? In terms of Figure 2, what elements of (B) are relevant, and how can they
be named and clearly defined? Are the answers to these questions common to all
listeners?

These questions have no simple answers. There is no canonical form for rep-
resenting rhythm, and lacking this ground truth, it is difficult, if not impossible,
to provide a meaningful quantitative comparison of the various computer systems
which each have different answers to these questions. Further, there is no common
database on which the systems have been tested.

Some systems derive the beats and the tempo of just one metrical level, where
this level is somewhat arbitrarily chosen. Others aim at deriving complete rhythmic
transcriptions (i.e. scores) from musical performances. Still other programs aim
at determining some timing features from musical performances, such as tempo
changes, event shifts (timing changes) and swing factors.

These computer programs share some functional aspects. For instance, a preva-
lent aspect is the handling of symbolic data derived from (or instead of) raw audio
data. These feature lists are usually made up of onset times (see (A’) in Fig-
ure 2), which are sometimes used in conjunction with other features (temporal,
timbral, harmonic or melodic). We define feature lists somewhat broadly, to in-
clude frame-based feature vectors as well as lists of symbolic events, since the algo-
rithms subsequently used to process the lists are similar for both cases, even though
the timescales differ by an order of magnitude. The distinction between high-level
and low-level representations, although conceptually important, does not necessar-
ily play a large role in determining the suitability of algorithms for the discovery of
temporal patterns.

This review provides a qualitative comparison of systems with respect to the
functional units of the general model illustrated in Figure 3, consisting of feature list
creation (e.g., onset detection), pulse induction (including periodicity computation
and handling of event shifts), pulse tracking, time signature and quantised duration
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Figure 3: Functional units of rhythm description systems

determination and finally estimation of short term timing features. In the remainder
of the paper, we discuss each of these functional units in turn.

3 Feature list creation

Some computer systems deal with symbolic data, such as MIDI or manually parsed
scores containing solely onset times and durations (Brown, 1993; Longuet-Higgins
and Lee, 1982). Recent systems tend to deal directly with acoustic signals or with
compressed audio (Wang and Vilermo, 2001), although some early systems also
used audio input (Schloss, 1985; Chowning et al., 1984). No matter what input
data is used, the first analysis step is the creation of a feature list, i.e. the parsing,
or “filtering”, of the data at hand into a sequence of features. These features range
from note onset features (as time, duration and amplitude) to frame-based signal
features, and they are assumed to convey the predominant information relevant to
rhythmic analysis.

In this step, monophonic excerpts are often parsed into sequences that resemble
note features (e.g. onset time, duration and pitch). For polyphonic music, Allen
and Dannenberg (1990) propose separating instrumental streams (a very challenging
goal) and building a feature list for each monophonic stream, which is merged with
other streams after some rhythmic analysis steps. Another possibility is to describe a
polyphonic excerpt by a single feature list, giving a global (homophonic) view where
features (“summary events” in Rosenthal, 1992, p.29) represent musical chunks such
as chords or energy components.

Omnset time The extraction of note onset times for rhythmic analysis is ubiqui-
tous in the literature. Musical event occurrence instants are very important cues
for rhythm perception. Onsets can be extracted (with more or less reliability) from
virtually any musical format. For instance, Longuet-Higgins (1987) processes on-
sets manually parsed from scores. They can also be easily parsed from MIDI data
(Cemgil et al., 2000; Raphael, 2002; Dixon and Cambouropoulos, 2000; Cemgil
et al., 2001). More complex is their automatic extraction from audio signals, the
details of which are out of the scope of this paper. An exhaustive overview of
musical onset detection can be found in (Bello, 2003).

Duration In addition to onset times, some systems also handle durations, or
alternatively inter-onset intervals (IOIs), which can be considered as roughly equiv-
alent to durations (Brown, 1993), and are easier to compute for audio data. Like on-



sets, durations can be easily parsed from MIDI or scores, but can not be computed
reliably from audio data (especially polyphonic music). Durations are extracted
from scores by Brown (1993) and Longuet-Higgins and Lee (1982), whereas Mont-
Reynaud and Goldstein (1985), Dannenberg and Mont-Reynaud (1987) and Allen
and Dannenberg (1990) use durations derived from MIDI data to filter out “weak”
onsets, being those onsets whose duration is either shorter than some fixed threshold
(20 to 50 ms for Allen and Dannenberg, 1990) or much shorter than the preced-
ing one. Chung’s “note importance agencies” (1989, pp.61-62) and Temperley and
Sleator’s model (1999) also parse MIDI data into note onsets and durations. Parn-
cutt (1994, p.426-432) weights onsets proportionally to their subsequent I0I, using
a perceptually justified “saturation function.” Perceptual experiments by Snyder
and Krumhansl (2001) show that timing information alone (onsets and durations)
is sufficient for the perception of a pulse in Ragtime music.

Relative Amplitude Relative amplitude is a factor which contributes to per-
ceptual accentuation, and is easily computable from MIDI or audio data, but it
is largely absent from score notation. Various systems use relative amplitude for
weighting onsets derived from symbolic (Smith and Kovesi, 1996; Smith, 1996;
Dixon and Cambouropoulos, 2000; Gasser et al., 1999) or audio data (Dixon, 2001;
Dixon et al., 2003).

Pitch  Pitch is easily obtained from scores and MIDI data, but can not be reliably
extracted from polyphonic audio. Pitch is rarely used in rhythmic analysis; an
exception is Dixon and Cambouropoulos (2000), who extract duration, amplitude
and pitch from MIDI data in order to calculate the “salience” of musical events,
which is shown to improve the performance of their beat tracking system.

Chords Chords are used in two ways in rhythmic analysis: by counting the
number of simultaneous notes as a measure of accentuation (Dixon, 2001; Rosenthal,
1992), and by detecting harmonic change as evidence of a downbeat (Goto and
Muraoka, 1999; Temperley and Sleator, 1999, p.25). Just like pitch, chords are
easily readable in scores and MIDI data, but much harder to derive from audio
data.

Percussive instrument classes Some authors use specific drum sounds (partic-
ularly snare and bass drum) as clues to distinguish between upbeats and downbeats
(Goto, 2001; Gouyon et al., 2000; Zils et al., 2002; Goto and Muroaka, 1995).

Percussive events can easily be extracted from MIDI data. Dealing with audio
signals, isolated percussion samples can be automatically classified with a high
reliability (Herrera et al., 2003). This facilitates labelling tasks in transcription
of percussive tracks (“drum loops”) whose onsets have been previously detected
(Schloss, 1985; FitzGerald et al., 2002; Bilmes, 1993). However, the recognition of
percussive events in polyphonic audio mixtures is still ongoing research (Herrera
et al., 2004; Gouyon et al., 2000; Zils et al., 2002).

Frame features Honing (1993) comments that “there seems to be a general con-
sensus on the notion of discrete elements (e.g. notes, sound events or objects) as the
primitives of music ... but a detailed discussion and argument for this assumption is
missing from the literature.” Further, Scheirer (2000) argues that solely well-trained
musicians hear the music in terms of its conventional musicological structures, and
he criticises the “transcriptive metaphor”’, maintaining that the modelling of the
perceptual mechanism should not be based upon abstract symbols such as dura-
tions, pitches, and chords. For example, he showed in an informal experiment that



replacing the harmonic content of a musical signal with modulated noise did not
change the sensation of tempo (Scheirer, 1998).

Based on this rationale, some systems do not focus on note onsets and their fea-
tures, but refer to a data granularity of a lower level of abstraction: frames. A frame
is a short chunk (typically 10 ms) of audio, from which both time and frequency
domain features can be computed. Consecutive frames are usually considered with
some overlap for smoother analyses. The analysis step, the hop size, equals the
frame size minus the overlap.

The simplest feature is energy, which can be calculated for the whole frame or
for frequency subbands of the frame. Assuming that low-frequency instruments
communicate much of the rhythmic information, Alghoniemy and Tewfik (1999)
and Blum et al. (1999) focus on the energy in low-frequency components, as a sim-
ple alternative to the percussion detection methods mentioned previously. Others
decompose the signal into several subbands, compute energy in each subband, then
optionally postprocess them (e.g. assign them different weights) and sum them back
(Vercoe, 1997; Tzanetakis et al., 2002). Finally, another procedure is to compute
one feature list per frequency subband, yielding e.g. 6 feature lists for Herre et al.
(2002) and Wang and Vilermo (2001), 20 for Pampalk et al. (2002) and 23 for
Sethares and Staley (2001).

Rather than focusing on frame energy values, some systems measure the varia-
tion of the energy between consecutive frames. For instance, Foote and Uchihashi
(2001) use the cosine distance between the magnitude spectra of consecutive frames.
In (Laroche, 2003) the magnitude spectrum is transformed by a compression func-
tion (e.g. a hyperbolic sinus) to give higher weights to high frequencies than low
frequencies, and then a first-order difference is computed. Scheirer (1998) also com-
putes the first-order difference of frame energy values in 6 frequency bands. In
(Klapuri, 2003), the computation of “registral accent” entails the aggregation of the
energy values computed in 36 frequency bands in a smaller set of feature lists (e.g.
6). Here also, a first-order difference replaces the frame energy value.

Low-level features other than energy (e.g. spectral flatness, temporal centroid)
have also been recently advocated (Gouyon and Herrera, 2003b,a).

One might note that these procedures resemble the first stages of an onset de-
tector. The main difference is that there is no discretisation of frame energy values,
nor any explicit thresholding and peak-picking. Further rhythm description stages
deal with a data granularity defined by the hop size.

Features computed on lower metrical levels Several authors propose to
compute low-level features over the time span of a given metrical level. For instance,
Seppénen (2001) and Gouyon and Herrera (2003a) compute beat indexes from low
level features computed on segments of audio defined by the smallest metrical level.
Also, Goto and Muraoka (1999), Meudic (2002) and Gouyon and Herrera (2003b)
derive downbeat indexes from descriptors of beat segments. The latter points out
the relevance of a specific feature for downbeat computation: the temporal centroid
of the beat.

4 Pulse induction

A metrical level (a pulse) is defined as the periodic recurrence of a feature in time.
Therefore, computer programs generally seek periodic behaviours in feature lists in
order to select pulse periods and possibly also their phases. The process of pulse
induction aims at highlighting intrinsic periodicities of feature lists, and thus it is
central to any form of rhythm understanding (see Figure 3).



The resulting pulses often serve as input to a pulse tracker. This division in the
processing is motivated in Desain’s “(de)composable theory of rhythm perception”
(1992) that highlights the need to consider events with respect to the rhythmic
context. This context can be defined mathematically as an expectancy curve, a
function of past IOIs. Further, Desain and Honing (1999) argue that human per-
ception of pulse exhibits two dichotomic processes: a bottom-up process that forms
a pulse percept very rapidly from scratch, and a top-down process (a persistent
mental framework) that lets this induced percept guide the organisation of incom-
ing events.

In pulse induction, a fundamental assumption is made: the pulse period (and
phase) is stable over the data used for its computation. That is, there is no signif-
icant speed variation during the excerpt used for inducing a pulse. In that part of
the data, remaining timing deviations (if any) are assumed to be short term (con-
sidered as either errors or expressivity features). They are either “smoothed out”
or cautiously handled within the pulse induction process so as to derive patterns of
short term timing deviations as e.g. the swing.

For pulse induction, computer programs either proceed by pulse selection, eval-
uating the importance, or salience (Parncutt, 1994), of a restricted number of possi-
ble periodicities, or by a periodicity function computation, generating a continuous
function plotting pulse salience versus pulse period (or frequency). The former pro-
cedure is simpler, and is typically used for processing symbolic data, where pulse
selection is usually considered jointly with subsequent tracking. Systems handling
finer-grained data (e.g. frame features) often implement a periodicity function com-
putation. We now detail these two approaches in turn.

4.1 Pulse selection

The first approach to pulse selection is an instance-based approach, where each I0I
defines a possible pulse period, and the corresponding events define the phase. For
example, Longuet-Higgins and Lee (1982) simply consider the first two events as
the first two beats, whereas Dannenberg and Mont-Reynaud (1987) take the first
two agreeing I0Is as defining the pulse. In Allen and Dannenberg’s (1990) system,
the metrical value of the first event must be given, and the pulse is derived from this
value and the first IOI. Chung (1989) derives a number of pulse periods and phases
from the event list in a sequential manner. Like Longuet-Higgins and Lee (1982),
Chung considers the first two events as potential beats. Subsequent events are
considered in the light of this potential pulse: if they do not coincide with the pulse
(after allowing some tolerance), a new potential pulse is created, its period being set
to the most recent IOI, and the phase being specified by the current event. Limiting
the number of pulses is achieved by assigning to each pulse a score depending on:
the “importances” (i.e. durations) of its constituent events, the timing deviations of
beats from expected pulse positions and the number of syncopations. Solely the two
or three highest-scoring pulses are selected. Chung reports that the system usually
finds all relevant pulses within the first few bars.

It is also possible to seek periodic behaviors in the feature list by computing
a similarity measure between the list and several pulse tracks. This procedure
is foreshadowed by the “clock model” of Povel and Essens (1985), where “people
perceive, remember and reproduce temporal patterns by structuring their represen-
tation according to an internal clock” (McAuley and Semple, 1999, p.178) with a
period corresponding to the smallest IOI. This rationale is only suitable for parsed
scores and artificially created sequences where IOIs are exact integer multiples of
the clock period. In this case, goodness of fit between a pulse and an event list can
be estimated by positive evidence (the number of events that coincide with pulse
elements), or by negative evidence (the number of pulse elements with no corre-



sponding event), or by combining these two counts (McAuley and Semple, 1999).
Similarly, Parncutt (1994, pp.433-436) considers pulse induction on cyclically re-
peating musical patterns, by expressing pulse period and phase with respect to the
shortest I0I, and determining the “pulse-match salience” based on positive evidence
rather than negative evidence.

4.2 Computing a periodicity function

The alternative to pulse selection is the computation of a periodicity function: a
magnitude (or salience) corresponds to each period (or frequency) in the periodicity
continuum. In practice, the range of periods is not continuous but sampled, with
typical intervals being 5 or 10 ms. Some systems process several feature lists sepa-
rately, for example by calculating periodicities in each frequency subband and then
integrating the results (Paulus and Klapuri, 2002; Dixon et al., 2003; Scheirer, 1998;
Gouyon and Herrera, 2003a). The periodicity function may also be multiplied by
a tempo preference (probability) distribution (e.g. Parncutt, 1994, p.439, equation
7), implementing the fact that humans consider tempi with some a priori prefer-
ence. Some methods also let major periodicities affect rationally-related periods
(e.g. a 7-periodicity in the feature list contributing to the raising of several peak
magnitudes: at 7, 7/2, etc.), thus encoding aspects of the metrical hierarchy. In
some cases, an emphasis is given to the most recent samples, e.g. by multiplying
the data with a decreasing window (Desain and de Vos, 1990), (Goto, 2001, equa-
tion 7), or by the intrinsic exponential behavior of a comb filter impulse response
(Scheirer, 1998). Cemgil et al.’s “tempogram” (2001) also implements this feature
in its parameter a.

Periodicity functions are often calculated with standard signal processing algo-
rithms, such as the Fourier transform, which Blum et al. (1999) applies to onset
lists and Pampalk et al. (2002) uses on 20 frequency subbands of the audio signal.
Wavelets are used to capture temporal organisations at different hierarchical levels
in (Smith and Kovesi, 1996; Smith, 1996). The most common signal processing
technique for periodicity computation is the autocorrelation function (ACF), which
has been applied to subband signals and to onset lists represented as Dirac delta
functions (for scores or mechanical performances) or smoothed using e.g. a Gaus-
sian function (to cater for small changes in timing and tempo; see section “Event
shift handling”).

Brown (1993) computes a sample-by-sample ACF of a sequence of onsets sam-
pled at 200 Hz, weighted by their durations. Her results are best for longer values of
the integration time (the time span for the estimation of one correlation coefficient).
The integration time is also important because it determines the statistical relia-
bility of the estimate (Desain and de Vos, 1990). Scheirer and Slaney (1997) also
compute the ACF of onset trains, and Scheirer (1997) advocates summing ACFs
computed over several frequency channels.

The “Narrowed ACF” (NACF) was introduced by Brown and Puckette (1989):
the coefficient at lag k is computed as the weighted sum of the ACF coefficients
at lags which are integer multiples of k, where the weights decrease for larger mul-
tiples of k. The NACF implicitly encodes aspects of the metrical hierarchy (a
2*k-periodicity has an effect on the correlation coefficient of lag k) and gives bet-
ter period precision at the expense of worse time resolution. Improved precision is
a useful feature for signals that contain close periodicities, but this is an unlikely
situation in the context of pulse induction. It may be noted that Brown (1993,
p-1955) recognises that the NACF is not necessary. Vercoe (1997) proposes the use
of the “Phase-Preserving Narrowed Autocorrelation” in order to keep time locali-
sation normally lost in computing an ACF. The computation involves a simplified
NACF, i.e. with a very short integration time, which reduces the stability of the
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estimate.

Foote and Uchihashi (2001) propose two ways to compute periodicities (“self
similarity”) in feature lists: they build a similarity matrix and perform either sums
or correlations of the matrix diagonal elements. The first of these two options
resembles the computation of an ACF: the sum over the ith diagonal is similar to
the (normalised) autocorrelation of the signal frame parameters with a lag i. The
latter option is similar to the NACF, in that it goes further and accounts for aspects
of the metrical hierarchy.

ACEFs are also implemented in (Goto, 2001; Gouyon et al., 2000; Gouyon and
Herrera, 2003a,b; Dixon et al., 2003; Tzanetakis et al., 2002; Herre et al., 2002).

An alternative approach uses a bank of resonators, each tuned to a possible pe-
riodicity, where the output of the resonator indicates the strength of that particular
periodicity. Scheirer (1998) uses comb filters as resonators, and performs periodic-
ity analysis separately on 6 frequency subbands of the signal, and then sums the
filterbank outputs across the subbands. 150 resonators are used to cover a logarith-
mically spaced frequency range from 1 Hz to 3 Hz (i.e. 60 to 180 BPM). Scheirer
(1997,1998) details similarities and differences between the NACF and comb filter
approaches. This method also “encodes implicitly aspects of the rhythmic hierarchy”
(Scheirer, 2000, p.91).

The use of histograms of time intervals between similar events is also widespread.
These are typically IOI histograms, although Mont-Reynaud and Goldstein (1985)
builds histograms of time intervals between temporal patterns, resembling some-
what an ACF. Chowning et al. (1984, pp.17-19) and Schloss (1985, p.90) generate
a smoothed histogram by associating a Dirac delta function with each I0I, assigning
it a weight proportional to its value (i.e. longer IOIs are emphasised) and convolv-
ing them with a “bell shaped curve of appropriate bandwidth.” Similarly, Rosenthal
(1992, p.40) builds a discrete IOI histogram and smears it with a Gaussian curve.
Dixon’s IOI clustering scheme (Dixon, 2001,1999) is essentially similar to the build-
ing of an IOI histogram where the bins are not fixed. Clusters of similar IOIs are
given scores based on the number of elements in the cluster and the amplitudes of
their onsets. An adjustment of the scores (and cluster representative interval) then
favours rationally-related clusters, thus encoding aspects of the metrical hierarchy.
Seppédnen (2001) and Gouyon et al. (2002) also implement IOI histograms. In the
former, the computation is sequential and updated at each new event, emphasis
being given to the most recent ones.

Sethares and Staley (2001) propose the “periodicity transform”, which projects
the signal (here made up of frame energy in a subband) onto a set of basis vectors.
Unlike the Fourier and wavelet transforms, the basis vectors are not specified a
priori, rather the transform adapts to find the basis vectors which best match the
signal.

Cemgil et al. (2001) define the “tempogram” which induces a probability distri-
bution over the pairs {pulse period, pulse phase} given the onsets. Using a Bayesian
framework, this probability (posterior distribution) is proportional to the likelihood
of the observed onsets under given period and phase hypotheses, weighted by a
prior distribution (which in this case is flat, as they consider all tempi to be initially
equiprobable). For given periods and phases, the likelihood is computed as the inte-
gral, over all the onsets, of the product of a constant pulse track (with appropriate
period and phase) and a continuous representation of the onsets (onsets are smeared
with a Gaussian curve). It implements the assumption that a good pulse track is one
which matches all the onsets well. The tempogram marginal probability function
p(w|t) (integral of the tempogram with respect to phase) provides a 1-dimensional
representation of periodicities resembling those aforementioned (Cemgil et al., 2001,
figure 4).

Recall that the pulse selection method used by Parncutt (1994) and McAuley
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and Semple (1999) is based the computation of a similarity measure between event
lists and pulse track templates. It can be generalised to deal with musical patterns
which are not strictly metronomical and not cyclically repeating. In this case, the
“basic time unit” is not known, but it is possible to enumerate all possible pulse
track periods and phases, as do Gouyon et al. (2002), who use both positive and
negative evidence in the matching of onset lists and pulse tracks. If the feature
representation is continuous (e.g. when adding some degree of tolerance for onset
times, or when using frame energies), it is no longer meaningful to speak of positive
and negative evidence. However, computing the inner product between pulse tracks
and the continuous feature list is possible (Laroche, 2003, equation 5). This resem-
bles the aforementioned tempogram, the main differences are that the tempogram
accounts for weights on pulse track elements and considers all phase candidates
simultaneously.

4.2.1 Parsing the periodicity function

The desired output of the pulse induction process is a discrete pulse period (and op-
tionally its phase) for each periodicity, rather than a continuous periodicity function.
Therefore another step is needed in order to produce useful rhythmic information.
Usually, this is achieved by a peak-picking algorithm such as an N-point running
window method, which defines local maxima as points whose values are higher than
those of their direct neighbours (N/2 on the left and N/2 on the right). Peaks
must be subsequently interpreted with respect to their musical meaning, e.g. the
tick, tactus and measure periods, which are identified using heuristics (Goto, 2001;
Smith and Kovesi, 1996; Smith, 1996).

Chowning et al. (1984, pp.17-19) and Schloss (1985, p.90) perform peak-picking
on a smoothed IOT histogram, and keep the highest peak, qualifying it as the “im-
portant duration.” Likewise, Rosenthal (1992, p.41) takes the maximum peak as
being the tactus, using a peak-picking algorithm with a bias towards smaller 101s.
In Foote and Uchihashi’s (2001) “beat spectrum”, the pulse period is determined as
the maximal peak, also by peak-picking. In (Brown, 1993), the pulse of interest is
the downbeat (measure). All the peaks in the ACF are detected and the measure
period is taken from the peak whose height is greater than those of all previous
peaks and all subsequent peaks up to twice its period.

Some systems (e.g. comb filter, tempogram) compute the pulse phase (hence all
beat positions) jointly with the period. In other cases (e.g. ACF), the computation
of the period entails the loss of time localisation, and the phase has to be computed
subsequently, either during pulse tracking (e.g. Dixon, 2001) or by enumerating
possible phases once the period is known, and calculating the best match (Gouyon
et al., 2002).

4.3 Event shift handling

Short term timing deviations always exist in any musical data other than parsed
scores and artificial sequences. Feature periodicities are always approximate. This
is a problem especially when processing discrete event lists represented as a sum of
Dirac delta functions.

One solution is to consider events as having a “tolerance interval” (Longuet-
Higgins, 1987). Dixon (2001) uses a fixed tolerance interval of 25 ms (the “cluster
width”) for I0Is, whereas Dixon et al. (2003) and Chung (1989, p.65) employ
tolerance intervals proportional to the I0Is, so that longer IOIs allow for greater
variations. Seppanen (2001) quantises the IOI histogram into a specific number of
bins, giving a fixed tolerance interval, but does not state the number of bins. A
tolerance interval can also be considered in the creation of the feature list, such
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as the “summary events” of Rosenthal (1992, p.29) which merge note events into
chords if their onset times are within a timing tolerance of 10 ms. Similarly, Dixon
and Cambouropoulos (2000) use a tolerance of 70 ms to define onset simultaneity.

The previous procedures can be interpreted as convolving the event list with
a rectangular window. This helps in processing music with short term timing de-
viations, but the resulting representation is still discontinuous (the sum of Dirac
functions has been transformed into a step function). This can be improved by
using smoother curves for smearing, such as a Gaussian window (Schloss, 1985;
Rosenthal, 1992; Gouyon et al., 2002; Cemgil et al., 2001; Chowning et al., 1984),
an exponential window (Dannenberg and Mont-Reynaud, 1987, p.245), or a trian-
gular window (Tanguiane, 1994).

5 Pulse tracking

Pulse tracking and pulse induction often occur as complementary processes. Pulse
induction models consider short term timing deviations as noise, assuming a rela-
tively stable tempo, whereas a pulse tracker handles the short term timing deviations
and attempts to determine changes in the pulse period and phase, without assum-
ing that the tempo remains constant. Another difference is that induction models
work bottom-up, whereas tracking models tend to follow top-down approaches, for
example, driven by the pulse period computed by the pulse induction module.

Pulse tracking is often implemented with online algorithms, making real-time
implementations possible. Previous data is used to compute pulse period and phase
that are used as predictions propagated onto incoming data, and tracking is then
a process of reconciliation between these predictions and the observed data. An
important part of this process is entrainment, adapting the pulse period and phase
based on the observations, which must find a good balance between reactiveness
and inertia. Reactiveness determines how quickly the system responds to a change,
and reflects the importance given to the incoming data, while inertia determines the
stability of the system and reflects the importance attached to the context given by
past data.

Diverse formalisms and techniques have been used in the design of pulse track-
ers: rule-based, problem-solving, agents, adaptive oscillators, dynamical systems,
Bayesian statistics and particle filtering. The framework of state models is general
enough to describe and compare pulse trackers: they can all be defined by a set of
state variables, an initial situation (initial values for these variables), observations
(incoming data), a goal situation (finding the best explanation for the observations),
a set of actions (adapting the state variables in order to reach the goal situation)
and methods to discriminate good and bad actions. In the remainder of this sec-
tion, we review how diverse models deal with the adaptation of state variables to
the observations.

5.1 Observations and state variables

Observed musical events are usually onset features: onset times, durations (or I0Is)
and dynamics. Tracking models follow two different rationales regarding observa-
tions: they either consider events sequentially (i.e. each incoming event is processed
and influences the tracker) or they consider predicted beat positions (i.e. only events
around predicted beats are processed; others are disregarded). State variables usu-
ally account for the pulse period or tempo, and the pulse phase, expressed as either
the current beat position or the first beat. Some models also include other vari-
ables, such as the estimated metrical position or a performance measure indicating
the tracker’s self-evaluation.
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5.2 Actions

Adaptive oscillators predict the next beat position as the current beat position plus
the pulse period, and then choose the closest event to this predicted position and
adapt the state variables accordingly (McAuley, 1995; Large and Kolen, 1994). For
instance in (Large and Kolen, 1994) a simple oscillator, called the “driven” unit,
embodies the period and phase variables and adapts to incoming events emitted
by the “driver” unit. Each event from the driver perturbs the phase of the driven
unit by an amount determined by the coupling strength, which in turn determines
the balance between reactiveness and inertia of the model. McAuley (1995) and
Large and Kolen (1994) both suggest connecting several oscillators in a network so
that they can interact, in order to model several metrical levels jointly (see also Eck
et al., 2000; Gasser et al., 1999).

In the rule-based approach (e.g. Desain and Honing, 1999; Longuet-Higgins
and Lee, 1982), the state variables are the pulse period and the first and current
beats. A set of “if-then” rules adapts these variables as each event is observed,
and predicts the next beat. For instance, in (Longuet-Higgins and Lee, 1982), a
beat is predicted at the current beat position plus the pulse period, and the pulse
period is then adapted by two rules: “conflate” and “stretch.” The former achieves
a doubling of the pulse period when an onset is observed on the predicted beat, the
latter changes the period if an onset is observed before the predicted beat (then
the period is set to the distance between this new onset and the penultimate beat).
Pulse phase is adapted by the rule “update” if no onset is observed at the predicted
beat (nor before it), the first beat is shifted to the current beat and the current
beat to the predicted beat (regardless of the fact that there is no onset there). This
approach seems biased towards reactiveness rather than inertia.

In (Dannenberg and Mont-Reynaud, 1987), incoming events are considered se-
quentially and the pulse period is updated as follows. An integer divisor (or mul-
tiple) of the pulse period is assigned to the next observation (e.g. 1, 1/2, 1/3, 2,
etc.) as the closest metrical position to the actual event position. The resulting
deviation then serves to update the pulse period. This updating mechanism de-
pends also on the event position in the metrical hierarchy: events close to multiples
of the expected pulse period have a greater impact on the updating mechanism
than other events, e.g. half-periods (see Dannenberg and Mont-Reynaud, 1987,
“Confidence” parameter). Finally, the balance between reactiveness and inertia is
explicitly monitored by the “Decay” parameter.

Allen and Dannenberg (1990) propose to add some flexibility to the previous
model by fine-tuning the “Decay” and “Confidence” parameters, depending on the
musical style. However, observing that this model does not possess the capability to
recover after an error, they introduce the notion of concurrent hypotheses, where a
hypothesis is a sequence of states. Incoming events are also considered sequentially
in this model, but the system does not commit to a decision at each observation.
Rather, the evolutions of several concurrent hypotheses are evaluated with some
delay with respect to real-time, so that decisions are not taken on the basis of a
given state, but on the basis of a sequence of states. In addition to the period and
phase variables, a metrical position and a “credibility” (performance measure) are
also state variables. In this framework, the number of hypotheses increases with each
observation, resulting in a search tree. The tree is pruned to an acceptable size by
discarding some hypotheses based on heuristics which implement simple aspects of
musical knowledge (e.g. “quarter-notes must start on the downbeat or the upbeat”).
Other techniques to reduce the number of hypotheses are by using best-first search,
discarding hypotheses which duplicate the current state of other hypotheses, and
limiting the number of likely metrical positions. Temperley and Sleator (1999) use
dynamic programming to search the solution space of possible mappings of events
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to a metrical grid, where the search is guided by a set of preference rules based on
GTTM.

Dixon (2001) presents another multiple hypothesis search approach, using an
agent paradigm, where each agent has a state (state variables are period and phase
of a pulse) and a history (“the sequence of beat times selected to date by the agent”).
These agents are comparable to the hypotheses of Allen and Dannenberg (1990),
except that observations are only processed if they occur around the predicted beat
locations, i.e. “within a window whose width depends on the pulse period.”

Cemgil et al. (2001) address pulse tracking through the use of a dynamical
system, a “metronome model” that updates state variables at each inferred beat.
The system is defined with two hidden state variables: the period and the phase
of a metronome. Transition from one metronome beat to the next is modeled by
a simple set of state equations. The model is fully determined if the initial state
variables are given. To this deterministic model, they add a noise term (a Gaussian
random vector whose covariance matrix will be estimated through a training phase)
that models the likely tempo variations. Observations to the dynamical system
(“noisy metronome beats”) are given by the computation of a “tempogram” from
incoming onsets. The hidden state variables are estimated by means of a Kalman
filter and extensions to the Kalman filter are proposed.

5.2.1 Tracking as repeated induction

Some systems address pulse tracking by repeated induction of the pulse (e.g. Foote
and Uchihashi, 2001; Dixon et al., 2002; Scheirer, 1998; Chung, 1989). A pulse is
induced on a short analysis window (usually around 5s of data), then the window
is shifted in time to include the next event and another induction step takes place.
(If the feature list consists of frame features, the hop size is constant.) In this
framework, observations to the tracking process are no longer events as used above,
but the period and phase of a pulse. Determining the tempo evolution is then
reduced to connecting the observations at each step.

In addition to computational overload, one problem that arises with this ap-
proach to tracking is the lack of continuity between successive observations. A
continuity constraint is implicitly present in the fact that the analysis hop size is
usually much smaller than the window size but this results in a strong bias towards
inertia rather than reactiveness and an impossibility to model sharp tempo changes.

If each induction step yields several pulse period and phase hypotheses, finding
the final tempo curve and beat locations sums up to finding the best path that
connects successive hypotheses, e.g. by dynamic programming (Laroche, 2003).
‘Best’ can be formalised, here again, by costs assigned to the several ways of adapting
state variables (i.e. pulse periods and phases and measures of self-evaluation).
For Goto (2001) and Laroche (2003), this entails continuity and non-syncopation
constraints.

6 Further aspects of metrical structure

Deriving a complete rhythmic transcription of an audio signal (i.e. producing a
score) requires the determination of a reference metrical level and its tempo, the time
signature, durations for notes and silences quantised with respect to the reference
pulse, and measure boundaries (bar lines). We now briefly address the second and
third of these points.
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6.1 Time signature determination

Few algorithms for time signature determination exist. The simplest approach is
based on parsing the peaks of the periodicity function to find two significant peaks,
which correspond respectively to a fast pulse, the time signature denominator, and
a slower pulse, the numerator (Brown, 1993). The ratio between the pulse periods
defines the time signature. Another approach is to consider all pairs of peaks as
possible beat/measure combinations, and compute the fit of all periodicity peaks to
each hypothesis, using a weighted sum, where the weights represent the likelihood
of each metrical unit appearing as a strong periodicity, given the metre (Dixon
et al., 2003). The time signature is implicitly calculated by systems that induce a
complete metrical structure (e.g., Temperley and Sleator, 1999). Another strategy
is to break the problem into several stages: the determination of the time signa-
ture denominator (e.g. by tempo induction and tracking), the segmentation of the
musical data with respect to this pulse, the definition of features at this temporal
scope and subsequently the detection of periodicities in feature lists (Meudic, 2002;
Gouyon and Herrera, 2003b). Goto and Muraoka (1999) detect chord changes as
indicators of higher level metrical boundaries such as bar lines; however their work
is restricted to music with a 4/4 time signature.

6.2 Rhythm parsing (quantisation)

Rhythm parsing can be seen as a by-product of the induction of several metrical
levels (e.g. Chung, 1989), which together define a metrical grid. The rhythm of
a given onset sequence can be parsed by assigning each onset (independently of
its neighbours) to the closest element in this hierarchy. The weaknesses of such
an approach are that it fails to account for musical context (e.g. a triplet note is
usually followed by 2 more) and tempo changes.

Models by Desain and Honing (1989) and Cemgil et al. (2000) do account for
musical context and possible distortions of the metrical structure. However such
distortions would in turn be easier to determine if the quantised durations were
known (Allen and Dannenberg, 1990). Therefore, rhythm parsing is often consid-
ered as a process simultaneous with tempo tracking, rather than subsequent to it.
Here also, the joint estimation of tempo and rhythm can be seen as a process of rec-
onciliation between predicted values for state variables and sequential observations.
The main difference with tempo tracking lies in the fact that the state variables
explicitly specify the interdependency between tempo and rhythm.

For instance, in (Rosenthal, 1992) the state variables account for three met-
rical levels simultaneously and observations are not defined by sequential events,
but only by events which are close to beats at one of the metrical levels. The
pruning techniques are comparable to those used by Allen and Dannenberg (1990),
but adapted to the fact that states (and therefore hypotheses) are more complex
(Rosenthal, 1992, pp.57-68). In (Raphael, 2002) and (Cemgil and Kappen, 2003),
events are considered sequentially. Concurrent hypotheses are expressed as poste-
rior probabilities of a probabilistic model whose hidden layers (i.e. state variables)
account for score notation and ideal timing in addition to tempo. They implement
different strategies for parsing the tree of hypotheses and keeping it from growing
exponentially. For instance, particle filters are suitable (see also Hainsworth and
Macleod, 2003, for a similar approach using audio data). Temperley and Sleator
(1999) also process events sequentially, using dynamic programming and a simple
set of preference rules to infer up to 5 metrical levels.

Thornburg (2001) also follows the same rationale, however he includes audio
segmentation (onset detection) as a third interdependent process, rather than a
preprocessing step before rhythm parsing and tempo tracking. He argues that these
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tasks should be considered jointly: polyphonic audio segmentation is necessary
to provide data to the rhythm tracker, but rhythm tracking should also orient
(i.e. provide prior probabilities to) the segmentation task. This helps to ensure
robustness against spurious onsets, which are a common problem in polyphonic
audio segmentation. The systems based on MIDI input (Temperley and Sleator,
1999; Raphael, 2002; Cemgil and Kappen, 2003) account inherently for noise in
onset timing, but not for spurious onsets.

6.3 Systematic deviation estimation

In the pulse induction process, short term timing deviations can be “smoothed out”
or cautiously handled so as to derive patterns of short term timing deviations such
as swing. Foote and Uchihashi (2001) suggest that swing could be measured by
inspection of a periodicity function (there, the “beat spectrum”) within the pulse
induction process. This is illustrated by the positions of secondary peaks with
respect to some higher ones in (Foote and Uchihashi, 2001, figure 3), but they do not
suggest any extraction procedure. Another problem is that periodicity functions do
not distinguish the order of events, e.g., the difference between a long-short pattern
and a short-long pattern.

Laroche (2001) proposes to estimate the swing jointly with tempo and beats
at the half-note level, assuming constant tempo. The procedure is conceptually
similar to pulse induction using a pulse track matching function, but enumerating
all possible pulse periods and phases, like Cemgil et al.’s tempogram, and searching
for the one which best matches the onsets. The number of candidate pulse tracks
(the search space) is in fact even larger, as tracks have a third parameter to be
estimated (the swing) in addition to the tempo and phase parameters. In this
case the pulse tracks are no longer isochronous, but correspond to the long-short
timing pattern that we wish to find in the data. The amount of deviation from
an isochronous track defines the swing ratio. Gouyon et al. (2003) estimate swing
ratio in a comparable fashion.

7 Summary - Discussion

Within any computational modelling paradigm, systematic evaluations of compet-
ing models is highly desirable. However, there are several reasons why such an
evaluation is not possible for rhythm description. First, there are many models,
but few open source implementations, and few models are described completely
enough in order to reimplement them. Further, there is no common database of
test music labelled with the “ground truth” (but see Temperley, 2004, for a recent
proposal regarding MIDI data). Another reason is that there are no precise prob-
lem definitions or evaluation criteria, since rhythm description systems have been
built for diverse applications using diverse data sets. This review has provided a
qualitative comparison of existing systems with respect to the functional units of a
general model (Figure 3).

A common aspect of all computational models is the handling of feature lists,
either as a starting point (for scores or MIDI data) or as a mid-level representation
(for models that process audio). These features (e.g. onsets, amplitudes, pitches,
percussive instrument classes, frame subband energy) are assumed to convey the
predominant information relevant to a rhythmic analysis. Except in the case of
frame-based features, the features are high-level, entailing an “implicit symbolism”
(Scheirer, 2000). The first stages of human rhythm perception achieve a comparable
parsing of auditory streams into feature lists, however, the actual modelling of these
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perceptual processes (the definition of perceptually relevant features) is still ongoing
research.

We depicted two procedures for pulse induction: pulse selection and periodicity
function computation, and gave examples of various implementations. Computing
a periodicity function is usually more powerful than just selecting a pulse. How-
ever, there is a trade-off between the amount of data used for induction and the
likelihood that the tempo-stability assumption holds. Using few data (typical of
pulse selection methods) lowers the reliance on a constant tempo but generates
less reliable predictors, whereas using many data (typical of periodicity computa-
tion methods) generates more reliable predictors but only when the tempo remains
relatively unchanged over this longer duration.

The modelling and processing of short term timing deviations are particularly
relevant. Some pulse induction methods encode (implicitly or explicitly) aspects of
the metrical hierarchy by letting large time-scale phenomena influence responses at
smaller time scales (and inversely), e.g. comb filters. In fact, this encodes the as-
sumption that the perception of high metrical levels, e.g. the measures, orients the
perception of lower metrical levels from which they are derived. Parncutt (1994,
p.434) questions this assumption, writing “each pair of events in a rhythmic se-
quence initially contributes to the salience of a single pulse sensation” (emphasis
ours), and later that “pulse sensations can enhance the salience of other, consonant
pulse sensations.” One may understand the ‘initially’ above as an indication not to
implement influential schemes between metrical levels in the induction process, but
indeed to do it in the tracking process, which is also in agreement with the Dynamic
Attending Theory (Drake et al., 2000a; Jones and Boltz, 1989).

A number of diverse formalisms have been used to implement pulse tracking
models. An important aspect is the balance between inertia and reactiveness of
the model. Models with a sufficient degree of inertia can be built by accounting
for several concurrent hypotheses. This seems a must for preventing “garden-path
errors” (Rosenthal, 1992, p.11) and keeping the possibility of recovering after an
error. Another important aspect lies in the consideration of incoming data on an
event by event basis or a predicted beat by predicted beat basis. Following the
former strategy is in fact making a first step towards quantising the data, not solely
tracking a pulse. Al formalisms have been proposed recently to enhance tempo
trackers and address quantisation and pulse tracking jointly.

Very few algorithms for time signature determination exist. They usually en-
tail the computation and parsing of a periodicity function, as in pulse induction.
Apart from swing estimation, systematic timing deviation estimation is the object
of few computational models. The usual rationale behind swing estimation is to
consider that the tempo is constant (i.e. no long term timing deviations) and to
seek predefined patterns of short term timing deviations within a pulse induction
process.

Current research in rhythm description addresses all of these aspects, with vary-
ing degrees of success. For instance, determining the tempo of music with minor
speed variations is feasible for almost all musical styles, if we do not insist that the
system finds a specific metrical level. Recent pulse tracking systems (Dixon, 2001;
Cemgil et al., 2001) also reach high levels of accuracy. On the other hand, accu-
rate quantisation, score transcription, determination of relevant rhythmic features,
determination of time signature and characterisation of intentional timing devia-
tions are still open questions. Particularly, it remains to be seen how well recently
proposed models generalise to different musical styles.

New research directions include the determination of highly abstract rhythmic
features required for music content processing and music information retrieval appli-
cations, as tackled by e.g. the European projects SIMAC (www.semanticaudio.org),
Semantic HIFI (www.ircam.fr) and GOASEMA (www.ipem.rug.ac.be).
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