
Classifier Fitness Based on Accuracy

Stewart W. Wilson
The Rowland Institute for Science
100 Edwin H. Land Blvd.
Cambridge, MA 02 142
wilson@smith.rowland.org

Abstract
In many classifier systems, the classifier strength parameter serves as a predictor of future
payoff and as the classifier’s fitness for the genetic algorithm. We investigate a classifier
system, XCS, in which each classifier maintains a prediction of expected payoff, but the
classifier’s fitness is given by a measure of the prediction’s accuracy. T h e system executes
the genetic algorithm in niches defined by the match sets, instead of panmictically. These
aspects of XCS result in its population tending to form a complete and accurate mapping
X x A + P from inputs and actions to payoff predictions. Further, XCS tends to evolve
classifiers that are maximally general, subject to an accuracy criterion. Besides introducing
a new direction for classifier system research, these properties of XCS make it suitable
for a wide range of reinforcement learning situations where generalization over states is
desirable.

Classifier systems, strength, fitness, accuracy, mapping, generalization, restricted mating,
niche genetic algorithm.

Keywords

1. Introduction

Traditionally in classifier systems, the classifier strength parameter serves both as a predictor of
future payoff and as the classifier’s fitness for the genetic algorithm (GA). However, predicted
payoff may inadequately represent fitness. For example, a low-predicting classifier may
nevertheless be the best one for its environmental niche. We investigate a classifier system,
XCS, in which each classifier maintains a prediction of expected payoff, but the classifier’s
fitness is not given by the prediction. Instead, the fitness is a separate number based on an
inverse function of the classifier’s average prediction error; that is, it is based on a measure of
the accuracy of the prediction, instead of the prediction itself. XCS also executes the genetic
algorithm in niches defined by the match sets (Booker, 1982) rather than panmicucally.

The present research-an investigation into classifier system technique-stemmed from
dissatisfaction with the behavior of traditional classifier systems, and the hypothesis that the
shortcomings were due in part to the definition of fitness. As we will discuss in Section 5.1,
some previous work had factored measures of accuracy into the fitness function. However,
the results with XCS show that a complete shift to accuracy-based fitness is not only possible,
but yields a classifier system that is superior to traditional systems in important respects.

Specifically, accuracy-based fitness, in combination with a niche GA, results in XCS’s
population tending to form a complete and accurate mapping X x A =+ P from inputs and ac-
tions to payoff predictions. Traditional classifier systems have not theoretically emphasized
or actually produced such mappings, which can make payoff-maximizing action-selection

@ 1995 The Massachusetts Institute of Technology Evolutionary Computation 3(2): 149-175

Stewart W. Wilson

straightforward. Further, XCS tends to evolve classifiers that are maximally general, subject
to an accuracy criterion, so that the mapping gains representational efficiency. In traditional
classifier systems there is in theory no adaptive pressure toward accurate generalization, and,
in fact, accurate generalized classifiers have rarely been exhibited, except in studies using
payoff regimes biased toward formally general classifiers (e.g., Wilson, 1987a). Besides in-
troducing a new direction for classifier system research, the mapping and generalization
properties of XCS should make it suitable for a wide range of reinforcement learning situa-
tions where generalization over states is important.

Section 2 motivates the shift from payoff-based to accuracy-based fitness. Section 3
presents XCS in sufficient detail to permit implementation. Section 4 tests the system
in single-step (Boolean multiplexer) and sequential (“woods”-like) environments, focusing
in both cases on mapping performance and generalization. Ln Section 5 we summarize
the article, discuss related work and directions for future research, and present our main
conclusions.

2 . How to Measure Fitness?

In many classifier systems (Holland, 1986; Wilson, 1994), a classifier’s strength parameter
estimates the payoff that the classifier will receive when, given satisfaction of its condition,
its action is chosen by the system. Strength is therefore important to the system’s perfor-
mance component, which is generally interested in choosing the most remunerative action.
But strength is also used as the measure of fitness for the discovery component’s genetic
algorithm; that is, higher strength classifiers are more likely to be selected for reproduction
and modification by genetic operators. Strength thus forms the basis for the system’s search
for improved structures.

Basing fitness on strength is reasonable: after all, shouldn’t better performing classifiers
lead the search? On closer examination, however, there are several problems.

1. Different niches of the environment usually have different payoff levels. (Here,
following Booker (1982), niche means a set of environmental states each ofwhich is
matched by approximately the same set of classifiers.) To prevent population takeover
by classifiers in high-payoff niches, i t is necessary to implement a sharing technique in
which the available payoff is divided among active classifiers instead of giving each one
the full value (for an analysis, see Horn, Goldberg, & Deb, 1994).

2. Sharing eliminates takeover effects but then a classifier’s strength no longer directly
predicts payoff; instead, the total of the shared strength (among matching classifiers
advocating the same action) predicts the payoff. This division of the prediction
becomes problematic because a given classifier, with its single strength value, is often
involved in numerous distinct matching sets, so that the meaning of the strength value
becomes unclear.

3. Moreover, it is still the case under sharing that more remunerative niches will get
more resources (classifiers) than less remunerative ones. That may be reasonable in
single-step decision problems. But classifier systems dealing with sequential problems
involving deferred reward often employ some form of payoff discounting so as to
encourage expeditious behavior. The result is that early-matching classifiers that “set
up’’ later ones in a chain will, due to the discounting, appear inherently less fit, so that
long chains cannot be sustained O/Vilson & Goldberg, 1989).

150 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

The last problem can be alleviated by conducting the genetic algorithm using popula-
tions restricted to the match sets (Booker, 1982), instead of panmictically using the population
as a whole. Differences in payoff between match sets will thus not affect a given classifier’s
selection chances. Competition will be restricted to classifiers within (i.e., matching) a niche
(sharing may or may not be maintained). However, even with such a niche GA, there remain
at least two problems:

4. The GA cannot distinguish an accurate classifier with moderate payoff from an overly
general classifier having the same payoff on the average. Thus overgenerals-
“guessers”-will be unduly encouraged, and in fact may proliferate because they occur
in many match sets and (especially under a niche GA) have many chances to reproduce.

5 . Classifier systems employ a “don’t care” (#) symbol in the syntax of their conditions
and thus permit the formation of generalizations. However, under payoff-based
fitness, there appears to be no clear tendency or, indeed, theoretical reason, for
accurate generalizations to evolve.

Given the above problems, it seemed reasonable to inquire whether there might exist a
more appropriate basis for classifier fitness than expected payoff. A first hint was provided
by problems 4 and 5 above: if estimated payoff does not distinguish between accurate and
overgeneral classifiers, why not base fimess on accuracy itself? The system might need to
be bigger because the number of accurate classifiers could exceed the number of highly
remunerative ones. However, overgeneral rules would be suppressed.

A second source of inspiration came from reinforcement learning (Sutton, 199 1), which
emphasizes the formation of relatively complete mappings X x A + P from the product
set of situations and actions to payoffs. In contrast, the general classifier system philosophy
(see, e.g., Holland, Holyoak, Nisbett, & Thagard, 1986) attempts more pragmatically to
discover the best rule in each niche without worrylng too much about knowing the payoff
consequences of every possible action. However, should a sub-optimal rule be converged
upon as a consequence of incomplete exploration, it may be difficult for the standard system
to discover and switch to a better one. If, on the other hand-as in reinforcement learning-
the system were oriented toward learning relatively complete maps of the consequences
of each action in each niche, then determining the most remunerative action would be
straightforward. For this, it seemed logical to base fimess on some measure of accuracy.

Out of the above considerations, it was decided to investigate systems in which the
classifier strength parameter would be replaced by three new ones: (1) prediction, an average
of the payoff received-internal or external-when that classifier’s action controlled the
system; (2) prediction error, an average of a measure of the error in the prediction parameter;
and (3)fi tness, an inverse function of the prediction error. The prediction (and possibly the
prediction error) would be used in the performance component-that is, in selecting actions.
The fitness parameter would be used in the genetic algorithm, which would occur in the
niches defined by the match sets.

3. Description of XCS

Figure 1 gives an overall picture of the system, which is shown in interaction with an en-
vironment via detectors for sensory input and effectors for motor actions. In addition, the
environment a t times provides a scalar reinforcement, here termed reward. Many aspects

Evolutionary Computation Volume 3, Number 2 151

Stewart W. Wilson

001 1 Environment
I

rum I @

[Effectors I
A

11#:00 32 .13 9

001#:01 27 24 3

lW1:lO 24 .17 15

W # : 1 1 14 .05 52 01

x 0 w i : i i ia .02 ez

(Reward)
Action Set

Prediction
W11:Ol 43 .01 99 ocfion

U O l I :01 43 .01 99

Update:
Previous Action Set

predictions

Figure 1. Schematic illustration of XCS.

of XCS are copied from ZCS (Wilson, 1994), a “zeroth-level” classifier system intended to
simplify Holland’s canonical framework while retaining the essence of the classifier system
idea. Some descriptive material is omitted here because it can be found in the ZCS paper.
The differences between XCS and ZCS lie in the definition of classifier fitness, the GA
mechanism, and the more sophisticated action selection that accuracy-based fitness makes
possible.

The box labeled [PI contains the classifier population, and shows some example clas-
sifiers. The left side of each classifier consists of a single condition; the right side codes
an environmental action. Associated with each classifier are prediction, prediction error,
and fitness parameters, symbolized by p, E , and F , respectively. The population has a fixed
maximum size N and may be initialized in a variety of ways: with N randomly generated
classifiers; with potentially useful “seed” classifiers; with no classifiers; or with one general
(condition consisting of #s) classifier for each action, and so on. The initial values of p , E,

and F can be set more or less arbitrarily; there is little effect on performance.

3.1 Performance Component
Given an input, a match set [MI is formed in the usual way (Wilson, 1994). The system
then forms a ystem prediction P(aJ for each action ai represented in [MI. There are several
reasonable ways to determine P(ai). We have experimented primarily with a fitness-weighted
average of the predictions of classifiers advocating a,. Presumably, one wants a method that
yields the system’s “best guess” as to the payoff-internal and/or external-to be received if
ai is chosen. The P(aJ values are placed in aprediction array (some of whose slots will receive
no values if there is no corresponding action in [MI), and an action is selected.

Many action-selection methods are possible. The system may simply pick the action
with the largest prediction; for brevity, we shall call this deterministic action selection. Al-

152 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

ternatively, the action may be selected probabilistically, with the probability of selection
proportional to P(ai); we shall call this roulette-wheel action selection. In some cases the
action may be selected completely at random (from actions with non-null predictions), ig-
noring the P(ai). There are, of course, additional schemes. Once an action is selected, the
system forms an action set [A] consisting of the classifiers in [MI advocating the chosen action.
That action is then sent to the effectors and an immediate reward rim may (or may not) be
returned by the environment.

3.2 Reinforcement Component
XCS’s reinforcement component consists in updating thep, E , and F parameters of classifiers
in the previous time step’s action set [A] - 1 , as shown in Figure 1. Thep values are adjusted by
the technique of Q-learning (Watkins, 1989), which is implemented as shown in the figure
by the combination of talung the maximum P(aJ of the prediction array, “discounting” it by
multiplying by a factor y (0 < y 5 I), and adding in any external reward from the previous
time-step. The resulting quantity, called simply P, is used to adjust the predictions pJ of the
classifiers in [A]- 1 using the standard Widrow-Hoff delta rule (Wilson, 1994) with learning
rate parameter p (0 < p 5 1). That is, p, t pl + p(P - p,).

However, for each classifier in [A]_l, the update, in fact, begins by first recalculating
the fitness 4 using the current value of E], according to a technique to be described in
Section 3.4. Second, is itself adjusted using P and the current value ofp,. For this, the
Widrow-Hoff technique is used to adjust cJ toward the absolute difference (P - pJI. That is,
E, + + P(lP -pJl - E ~) . Finally, pJ is adjusted as described above. (The adjustment of F and
E makes the term “reinforcement component” something of a misnomer, but we shall stick
with this traditional usage for the component that modifies classifier parameters.)

The Widrow-Hoff procedure is used for p , E , and as part of the adjustment of F only
after a classifier has been adjusted at least 1 //? times. Prior to that, the new values in each
case are simple averages of the previous values and the current one. For example, the value
ofp, on the fourth adjustment will be just one-fourth of the sum of the first four P values, if
1 / p > 4. This two-phase technique causes the early parameter values to move more quickly
to their “true” average values, and makes the system less sensitive to initial, possibly arbitrary,
settings of the parameters. The technique, called MAM (moyenne adaptive modifiee), was
introduced in Venturini (1 994). To keep track of the number of updates, a classifier maintains
an experience parameter that is incremented every time the classifier belongs to [A].

Finally, we note that in single-step problems such as the Boolean multiplexer the updates
occur as described, but in the set [A], because each problem involves just a single action set.
In addition, P consists only of the current reward. Similarly, if a multistep problem happens
to take just one step (e.g., food is found within one step and that defines the end of the current
problem), the updates occur in [A] and P is just the current reward.

3.3 Discovery Component
As can be seen in Figure 1, the genetic algorithm acts on the match set [MI. It selects two
classifiers from [MI with probabilities proportional to their fitnesses, copies the classifiers,
performs crossover on the copies with probability x, and with probability /I per allele per-
forms mutation on them. If [PI contains less than N members, the copies are inserted into
the population and no compensating deletion occurs. Otherwise, two classifiers are deleted

Evolutionary Computation Volume 3, Number 2 153

Stewart W. Wilson

stochastically from [PI to make room. We have experimented with two methods of selecting
the classifiers to be deleted:

1. Every classifier keeps an estimate of the size of the match sets in which it occurs. The
estimate is updated every time the classifier takes part in an [MI, using the MAM
technique with rate p. A classifier’s deletion probability is set proportional to the
match set size estimate, which tends to make all match sets have about the same size,
so that classifier resources are allocated more or less equally to all niches (match sets).
This deletion technique is similar to one introduced in Booker (1989) for the same
purpose.

fraction 6 of the population mean fitness. Then the probability from (1) is multiplied
by the mean fitness divided by the classifier’s fitness. If, for example, 6 is 0.1, the result
is to delete such low-fitness classifiers with a probability 10 times that of the others.

2 . A classifier’s deletion probability is as in (I), except if its fitness is less than a small

Like the basic deletion technique of (l), the rate of incidence of the GA is controlled
with the aim of allocating classifier resources approximately equally to the different match
sets (such an allocation being consistent with the purpose of forming a relatively complete
mapping). This cannot, in general, be achieved if the GA simply occurs with a certain
probability in each match set. Depending on the environment, some match sets (niches)
may occur much more often than others. Instead, the GA is run in a match set if the number
of time-steps since the last GA in that match set exceeds a threshold. As a result, the rate
of reproduction per match set per unit time is approximately constant-except in the most
rarely occurring match sets. To implement this regime, each classifier is time stamped at
birth with the reading of a counter that is incremented on every time-step. When a match
set is formed, XCS computes the average time-stamp of its classifiers and executes the GA
if the difference between that average and the current counter reading exceeds a threshold
8. This technique and the deletion algorithm result in approximately equal allocation of
classifiers to the various niches.

Besides the GA, the discovery component contains a coveying mechanism (Wilson, 1985)
for use in two special circumstances. First, it sometimes happens that no classifiers match
a given input-[MI is null. In this case, XCS simply creates a classifier with a condition
matching the input and a randomly chosen action. The new classifier is inserted into [PI,
and a classifier is deleted as in the GA. Then the system forms a new [MI and proceeds as
usual. Covering is also used as a way of escaping if the system seems to be stuck in a l o o p f o r
example, if the action selection mechanism causes the system persistently to go back and forth
between two positions in the environment. The situation is detectable because the system’s
discounting mechanism will cause the predictions of the classifiers involved to fall steadily.
The creation of a new matching classifier with a random action can usually be relied upon
to break the loop; if it does not, another round of covering will do so, and so on. In practice,
loops are rare, and break as soon as the discounting mechanism causes one of the current
actions’ predictions to fall below that for some other action. Covering has only been needed
occasionally at the beginning of a run when alternative classifiers were not yet available.

3.4 The Fitness Calculation
As noted earlier, a classifier’s fitness is updated every time it belongs to [A]-1 (or [A], in
single-step problems). Broadly, the fitness is updated by a quantity that depends on the

154 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

classifier's accuracy relative to the accuracies of the other classifiers in the set. There are
three steps in the calculation. First, each classifier's accuracy K] is computed. Accuracy is
defined as a function of the current value of E]. We have experimented with a number of
functional forms. The best one so far is 'il = exp [(In a)(&] - E ") / E O)] for E] > EO, otherwise 1.
This function falls off exponentially for E~ > FO. The rate is such that the accuracy at E] = 2 ~ 0
equals cy (0 < cy < l), so smaller c\ means a steeper falloff. Next, a relative accuracy K; is
computed for each classifier by dividing its accuracy by the total of the accuracies in the
set. Finally, the relative accuracy is used to adjust the classifier's fitness I$ using the MAM
procedure. If the fitness has been adjusted a t least 1 / P times, f$ - 5 + d($ ~ 6). Otherwise,
5 is set to the average of the current and previous values of K;.

Because the relative accuracies sum to 1, the total of the fitness adjustments to the
members of [A]-1 is constant. The effect is that the various action sets within a given
match set [MI have approximately the same total fitness. Because reproduction depends on
fitness, approximately the same number of classifiers will be associated with each action that
is represented in [MI, supporting the general goal of assigning equal resources to all parts of
the X x A + P map.

However, within a given action set, the more accurate classifiers will have higher fimesses
than the less accurate ones. They will consequently have more offspring. But by becoming
relatively more numerous, those classifiers will gain a larger fraction of the total relative
accuracy (which always equals 1) and so will have yet more offspring compared to their less
accurate brethren. Eventually, the most accurate classifiers in the action set will drive out
the others, in principle leaving the X x A + P map with the best classifier (assuming the GA
has discovered it) for each situation-action combination.

3.5 Macroclassifiers
Whenever XCS generates a new classifier, either a t system initialization or later, the popu-
lation is scanned to see if the new classifier has the same condition and action as any existing
classifier. If so, the new classifier is not actually added to the population, but a numerosi9
field in the existing classifier is incremented by one. If, instead, there is no existing classifier
with identical condition and action, the new classifier is added to the population with its own
numerosity field initialized to one. We term such classifiers mawoclassijiers. They are essen-
tially a programming technique that speeds up matching [PI against an input (and speeds
other aspects of processing), because one macroclassifier with numerosity n is the structural
equivalent of n regular classifiers.

To be sure that the system still behaves as though it consists of N regular classifiers,
all system functions are written so as to be sensitive to the numerosities, if that is relevant.
For example, in calculating the relative accuracy shares of the last section, a macroclassifier
with numerosity n will be treated as though it is n separate classifiers; that is, it will get a
share n times bigger than if it had numerosity 1. Similarly, a macroclassifier's probability
of suffering a deletion is its numerosity times its match set size estimate, as described in
Section 3.3. If it is selected for deletion and its numerosity is greater than one, the numerosity
is simply decremented; if not, the macroclassifier is entirely deleted. The population as a
whole is always treated as though it contains N regular classifiers, though the actual number
of macroclassifiers, 111, may be substantially less than N-which gives the computational
advantage.

A potential question is whether, in fact, a population of macroclassifiers, even when
treated like the equivalent regular classifiers, behaves the same way. We have conducted
informal experiments to test this and found no apparent difference. Consequently, our

Evolutionary Computation Volume 3 , Number 2 155

Stewart W. Wilson

recent classifier system work, including that reported here, was done with macroclassifiers.
However, classifier system mechanics and theory appear to be more easily communicated
and understood in terms of regular classifiers, so that language will be used in most of this
article, and the term “classifier” will have the standard meaning. The term “macroclassifier”
will be reserved for the few situations in which it makes the explanation clearer.

3.6 Parameter List
The foregoing description of XCS has mentioned most of the system’s parameters. They are
summarized below. Some typical values can be seen in the captions to Figures 3,4, and 6.

N
I3

Y
O

Eo, ck

X
CL

6
4

Population size.
Learning rate for prediction, prediction error, and fimess updates.
Discount factor.
Do a GA in this [MI if the average number of time-steps since the last GA
is greater than 0.
Parameters of the accuracy function.
Probability of crossover per invocation of the GA.
Probability of mutation per allele in an offspring. Mutation takes 0, 1, #
equiprobably into one of the other allowed alleles.
Value of the fraction used in the second deletion method of Section 3 . 3 .
If the total prediction of [MI is less than 4 times the mean prediction of
[PI, covering occurs.
Probability of a # at an allele position in the condition of a classifier created
through covering and in the conditions of classifiers in an initial randomly
generated population.
Prediction, prediction error, and fitness assigned to each classifier in the
initial population.

4. Experiments with XCS

4.1 Generalization Hypothesis
As noted in Section 2, our intention with XCS was to form accurate maps of the X x A 3 P
space, or payoff landscape, of the problem. We also hoped by basing fimess on accuracy to
suppress overgeneral classifiers. However, it appeared that the interaction of accuracy-based
fimess and the use of a niche GA could result in evolutionary pressure toward classifiers that
would be not only accurate, but both accurate and maximally general. That is, given an
accuracy criterion, classifiers would evolve to be as general as possible while still satisfymg
the criterion. In t h ~ s way, niches of the “landscape” that had the same payoff to within the
accuracy criterion, but presented different sensory inputs to the system, might be merged
into a single niche through evolution of classifiers that generalized over the differences.
The resulting population would be efficient in the sense of minimizing the number of sep-
arate “concepts” represented by the classifiers’ conditions. In terms of macroclassifiers, the
population’s physical size would be minimized as well.

The hypothesized mechanism was as follows. Consider two classifiers C1 and C2 having
the same action, where C2’s condition is a generalization of Cl’s. That is, C2’s condition can
be generated from Cl’s by changing one or more of Cl’s specified (1 or 0) alleles to don’t
cares (#). Suppose that C1 and C2 are equally accurate in that their values of E are the same.
Whenever C l and C2 occur in the same action set, their fitness values will be updated by the

156 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

same amounts. However, because C2 is a generalization of CI , it will tend to occur in more
match sets than C1. Because the GA occurs in match sets, C2 would have more reproductive
opportunities and thus its number of exemplars would tend to grow with respect to Cl’s (or,
in macroclassifier terms, the ratio of C2’s numerosity to Cl’s would increase). Consequently,
when C1 and C2 next meet in the same action set, a larger fraction of the constant fitness
update amount would be “steered” toward exemplars of C2, resulting through the GA in yet
more exemplars of C2 relative to C1. Eventually, it was hypothesized, C2 would displace
C1 from the population.

The generalization process should continue as long as more-general classifiers (strictly,
classifiers with more matching opportunities) can be formed without losing accuracy; oth-
erwise, it should stop. The stopping point should be controllable in the accuracy function.
Indeed, this is the role of EO in the function of Section 3.4: classifiers with error greater than
€0 have sharply lower fitness. So classifiers should evolve that are as general as possible while
still having errors less than Eo-the “accuracy criterion” referred to earlier. (Naturally, there
is the possibility of trade-off in which it is some function of both accuracy and generality-for
instance their product-that determines the point of maximum generalization.)

4.2
To test the generalization hypothesis, we sought a problem having a payoff landscape that
(1) contained potential generalizations, and (2) had generalizations that were expressible in
the syntax of classifier conditions. We also wanted to start with a single-step problem to avoid
any complications that might result from deferred external payoff. We designed a modified
form of the Boolean multiplexer function in which different payoffs were associated with
different parts of the function’s domain.

Tests on a Single-Step Problem

4.2.1 The 6-Multiplexer Boolean multiplexer functions are defined for binary strings
of length I = k + 2 k . The function’s value may be determined by treating the first k bits as an
address that indexes into the remaining 2 k bits, and returning the indexed bit. For example,
in the 6-multiplexer (I = 6), the value for the input string 100010 is 1, because the “address”,
10, indexes bit 2 of the remaining four bits. In disjunctive normal form, the 6-multiplexer is
fairly complicated (the primes indicate negation):

There are exactly eight classifiers that would give the right answer for the example string
above. The most specific is 100010: 1 and the most general is 10##1#: 1 (the other six replace
one or more of the #s in the latter by 0s). Notice that 10##1#:1 is correct for all (eight) inputs
it can match; in fact, it is maximally general in the sense that no further #s can be added to
its condition without producing an error.

The 64-string input space can be covered by exactly eight such maximally general
classifiers, each having three #s in its condition so it matches eight strings. They are

OOO###:O
001###:1
01#0##:0
0 I#l##: 1

Evolutionary Computation Volume 3 , Number 2 157

Stewart W. Wilson

1 O##O#:O
1 O## 1#: 1
11###0:0
11###1:1

To construct our payoff landscape, we associated two payoff values, 300 and 0, with the
eight strings matched by the first classifier above: payoff 300 was for the right answer, 0;
payoff 0 was for the wrong answer, 1. Thus for that part of the landscape, X x 0 =+ 300 and
X x 1 + 0. With the eight strings matched by the second classifier, we similarly associated
payoffs 400 and 100 for right and wrong answers, respectively. The payoffs continued to rise
in 100-point increments, ending with 1,000 and 700 for strings matched by the last classifier
in the list. The result was a landscape in which the mapping X x A + P had 16 levels each
associated with a generalization over eight input strings. The question then was: can XCS
learn this landscape in the sense of predicting the payoff associated with each X x A pair, and
will it evolve the above eight general classifiers, together with the eight classifiers (for the
“wrong” answers) that are identical to the above except that their actions are complemented?

In the experiment, input strings were randomly presented to XCS, which would choose
an action, receive the associated payoff from the environment, make its internal adjustments
including the GA, and go on to the next random string. The population was initially empty, so
that the first classifiers were created through covering. Values of the basic system parameters
are given in the caption to Figure 3 .

Because our aim in the experiment was to test the generalization hypothesis, we were
not immediately concerned with the system’s ability to chose the “right” answer. Rather, we
wanted to know if it could form a complete payoff map expressed in terms of the 16 maximally
general classifiers. At the same time, we were, of course, curious as to whether XCS could,
in fact, learn to choose the right answer if it had to! To address both purposes, we set the
system’s action-selection regme so that, given an input, it would with probability 0.5 choose
an action (1 or 0) at random, or it would choose the action that in the prediction array had
the higher prediction (note that higher payoff was always associated with the right answer).
Thus the system either acted randomly to gain information, or acted deterministically to gain
maximum payoff. The action-selection regime thus alternated probabilistically between what
one might term “pure explore” and “pure exploit” modes. In pure exploit mode classifier
parameter adjustments and the GA did not occur. To determine how well the system was
doing at getting the right answer, we simply kept track of the fraction of its decisions that
were correct over the preceding 50 exploit trials. (XCS has been run successfully in a variety
of other action-selection regimes.)

Figure 2 shows a portion of the macroclassifier population after 10,000 trials, or “prob-
lems,” from one run of the experiment. Each line represents a macroclassifier. The total
number of macroclassifiers in the population was 94; the total of their numerosities, and thus
N , the number of regular classifiers represented by the macroclassifiers, was 400. Shown for
each macroclassifier are its condition, action, predictionp, prediction error E , fitness F , and
numerosity n. The prediction error is expressed as a fraction of the total payoff range, 1,000.
The fitness is multiplied by the payoff range. The list is in ascending prediction order.

Notice that high-fitness, high-numerosity macroclassifiers correspond to maximal gen-
eralizations. Note also that classifiers with nonzero errors have low fitness-so they con-
tribute little in the prediction array calculation. The remaining 69 macroclassifiers in [PI
exhibit the same pattern, with a dominant macroclassifier for each of the 16 levels of the
payoff landscape. Thus in this experiment-Figure 2 is typical of all runs-XCS not only

158 Evolutionary Computation Volume 3, Number 2

Cond. Act

00 01 # # 1
00 00 # # 1
00 O # O # 1
00 O # # # 1
00 11 # # 0
00 10 # # 0
00 1# 1# 0
00 1# #1 0
00 1# # # 0
O O # #1 1
01 00 # O 1
01 00 # # 1
01 # O # D 1
01 # O # # 1

(

10 # O 1# 1
11 # O # # 0
10 # # 1# 1
1# O # # O 0
11 # O 00 0
11 #1 # O 0
11 # O # O 0
11 # # #O 0
11 # O #1 1
11 # # 01 1
11 # # #1 1

Pred
P

0 .
0.
0.
0.

100.
100.
100.
100.
100.
133.
200.
200.
200.
200.

Classifier Fitness Based on Accuracy

Er ro r Fitn. Num.
E F

.oo 57.

.oo 109.

.oo 43.

.OO 637.

.oo 48.

.oo 43.

.oo 47.

.oo 43.

.OO 725.

.22 4.

.15 14.

.oo 43.

.oo 48.

.OO 760.
.69 others . . .)
800. .oo
800. .10
800. .oo
809. .ll
900. .oo
900. .oo
900. .oo
900. - 00
1000. . o o
1 0 0 0 . . o o
1000. . o o

38.
28.
782.
0.

30.
128.
68.
638 ~

77.
38.
719.

n

1
2
1
14
1
1
1
1
16
1
1
1
1

18

1
1

23
1
1
3
2
19
2
1

20

Figure 2. Macroclassifiers from a 6-multiplexer experiment.

maps the landscape, but finds maximally general classifiers that drive out all other classifiers
except for a few that are slight specializations of the generals.

Figure 3 shows performance, system error, and macroclassifier population size averaged
over 10 runs of the experiment. Performance is the fraction of the last SO exploit trials that were
correct. System error is the absolute difference between the system prediction (Section 3.1) for
the chosen action and the actual external payoff, divided by the total payoff range (1,000) and
averaged over the last 50 exploit trials. Population size is M , the number of macroclassifiers.
Note that because XCS was in pure explore during about half of the total number of trials,
the graph indicates that essentially 100% performance was reached within approximately
2,000 explore trials. Because the system only adjusted parameters and performed the GA
during explore trials, one can say that XCS “learned the 6-multiplexer” within about 2,000
explore trials, and in a situation where the payoff difference between correct and incorrect
differed by just a fraction of the total payoff range.

The system error falls to zero at about the point the performance reaches 100%. Zero
error means that the X x A + P map is both complete and highly accurate. The population
size curve shows the change in the number of macroclassifiers, which grows from zero, then
settles back to about half its peak value. Informal observation suggests that the size grows

Evolutionary Computation Volume 3 , Number 2 159

Stewart W. Wilson

1 .o

0.8

0.6

0.4

0.2

0.0

-
--+- -- ---_ ------------I -..-,- ,/ - --

... ’...._ - /4.

, - - - - _ _ _ , --.. /
/ I I I 1

System error
Pop. size (/1000)
_ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - -

Figure 3. Results in a 6-multiplexer experiment. Solid curve: Performance, the fraction of last 50
exploit problems correct. Dotted curve: System error as a fraction of total payoff range. Dashed curve:
Population size in macroclassifiers (divided by 1,000). Parameters: N = 400, p = 0.2, y = 0.71,tJ = 25,
E,, = 0.01, a = 0.1, x = 0.8, p = 0.04, 6 = 0.1, 4 = 0.5, P# = 0.33,pr = 10.0, €1 = 0.0, FI = 10.0. Curves
are averages of 10 runs.

until the system has found accurate, though still fairly specialized, classifiers for all parts of its
map, then “condenses” as the population finds maximally general classifiers and eliminates
many of the specialists.

4.2.2 The 11-Multiplexer A similar experiment was done using the 1 1-multiplexer
function (1 = 11). Because the 1 1-multiplexer has 32 maximally general covering classifiers,
the landscape was designed with 32 payoffs instead of 16. As in Figure 2, the population
evolved to contain a complete set of high-fitness maximally general classifiers, together with
a residue of low-fitness slight specializations of the generals. Figure 4 is a graph of the results.
Note its similarity in form to Figure 3 , but note also that the horizontal scale is different
by a factor of two. Broadly, it appears that the 1 1-multiplexer is approximately 3 times as
difficult as the 6-multiplexer. For example, the performance reaches 100% and system error
reaches zero at about 12,000 problems instead of 4,000, the population peak is a t about 600
macroclassifiers instead of 200, and the final size is around 300 instead of 100.

This difference in difficulty would not be suggested by the difference in the search-
space sizes for the two problems. The ratio of input space sizes is 211/26 = 32. The ratio
of classifier-space sizes is 2 x 3 l 1 /2 x 36 = 243. At the same time, the ratio of the number
of maximal generalizations in the two problems is 2. This suggests the hypothesis that the
difficulty of learning a payoff landscape scales more according to the number of concepts
(generalizations) it contains than exponentially with its dimensionality-at least for systems
that can detect and exploit the generalizations, as XCS is apparently able to do. We will test
this hypothesis on the 20-multiplexer (k = 4) in future experiments.

160 Evolutionary Computation Volume 3 , Number 2

Classifier Fitness Based on Accuracy

1 .o

0.8

0.6

0.4

0.2

0.0

Figure 4. Results in an 1 1-multiplexer experiment. Curves have the same meaning as in Figure 3.
Parameters are the same as in Figure 3, except N = 800. Curves are averages of 10 runs.

4.3 Multistep Environments
The multiplexer problems of the previous two sections were single-step in that external re-
ward was received on every time-step and the environmental input for each time-step was
completely independent of that for the prior time-step. Problems involving categorization
of data examples are typically single-step, because a decision is made, and reinforcement
as to the quality of the decision is received, in a single time-step, and the examples to be
categorized are usually independent. In a seyuential, or multistep problem, reward may occur
(though not necessarily) on any time-step, and the input on a time-step is dependent on a t
least the prior input and the system’s last action. A major research use of sequential problems
is to model, in part, the adaptive interaction of a system such as an animal or robot with its
environment. In this simplified view, the system seeks to get as much reward as possible,
and must learn associations between environmental inputs and its own actions that will lead
to reward, even when-as with food located sparsely in the environment-many actions will
receive no immediate reward (food). This is the general setting of the reinforcement learning
problem, and has been studied using a variety of methods, including classifier systems (e.g.,
Wilson, 1 9S5), neural networks (e.g., Lin, 1993), and, especially formally, complete listings
of state-action pairs and their outcomes (e.g., Sutton, 1991, Watkins & Dayan, 1992).

In a basic land of multistep environment, the next inputy (and the reward, if any)
encountered by the system depends only on the current input x and the current action a;
there is no further history dependence. Such an environment is described as “Markovian
with delayed rewards” or, in the terminology of Wilson (1991), it is a “Class 1” environment.
The predictability ofy given x and a makes it possible for the widely used technique called
Q-learning (Watluns, 1989) to learn apoliy (i.e., which a to choose for each x) that is optimal
in the sense that it maximizes the discounted sum of future rewards that the system receives.
In this article we shall not review Q-learning except to note that the algorithm works by
associating a quantity Q with every input-action pair. AS experience occurs, the algorithm
updates that value, using the Widrow-Hoff rule, with an adjustment equal to the sum of the

Evolutionary Computation Volume 3 , Numher 2 161

Stewart W. Wilson

current external reward, if any, and the product of a discount factor y (0 < y < 1) and the
largest of the Q values associated with the following input y. Watkins proved that in Class 1
environments this procedure, if done often enough for every input, would converge to a
function Q(x, a) such that the policy that always executed the action with the maximum Q
for each x would be optimal in the above sense.

Several articles (e.g., Roberts, 1993; Twardowski, 1993; Dorigo & Bersini, 1994; Wilson,
1994) have drawn attention to the relationship between the Q-learning update procedure
and various versions of the classifier-system bucket-brigade algorithm, especially a version
in which the payoff value is, as in Q-learning, a discounted sum of immediate reward and
the sum of strengths of the maximum strength action in the next match set (Wilson, 1994).
The major difference is precisely that it is this sum of strengths that represents the Q value,
not a single number as in Q-learning. That is, assuming sharing of strength as discussed
in Section 2, the system’s Q information is distributed over sets of classifiers, sets that are
subject to abrupt membership changes due to the GA. In XCS, however, the relation to
Q-learning is closer and more stable because each classifier uses Q-learning to predict the
payoff directly, independent of the other classifiers, and the system prediction is an average
instead of a sum.

Recall that XCS, as shown in Figure 1, updates predictions p j of classifiers in [A]-,
with a Q-learning-like quantity P that is based on the system predictions contained in the
prediction array (and any prior-step external reward). The system predictions are fimess-
weighted averages of the predictions of classifiers in [MI, and, as noted, should be more
accurate than the sums of strengths in other classifier systems. The update procedure is not
quite identical with Q-learning, in that Q-learning updates a single Q(x, a) value (stored in
a table) and not a number of predictors (classifiers) whose predictions get averaged. But
the connection is close enough to suggest that the X x A 3 P map constructed by XCS
should converge to predict Q(x, a). In single-step problems such as the multiplexers, the map
converged to predict the external reward, as indicated both by convergence of the predictions
of high-fitness classifiers and the reduction of the system prediction error to near zero. In a
multistep problem, XCS adjusts classifier predictions to predict a payoff P, which is, in fact,
the Q-learning-like combination of the current reward and the next time-step’s maximum
system prediction. The question is whether the system predictions and the predictions of
high-fitness classifiers converge to the same values that Q-learning would converge to.

If so, there is the further possibility that XCS’s generalization mechanism will cause it to
exploit any generalization possibilities in Q(x, a), that is, to evolve classifiers that generalize
over inputs x having the same Qvalue for a given a. Generalization using Q-learning in multi-
step environments has been difficult to achieve. Proofs of convergence of the basic algorithm
are known only for systems that enumerate all input-action pairs (x, a) in a table and have no
natural generalization mechanism. Some success has been reported by supplementing the
table with statistical clustering methods (Mahadevan & Connell, 1992) or by using neural
networks &in, 1993) that implicitly generalize but may learn slowly. In contrast, XCS’s
generalization mechanism is intrinsic to the system, explicitly exhibits the generalizations
found (as classifiers), and the learning rate may be reasonable. In Section 4.2, we observed
XCS’s generalization ability in the multiplexer problem, a single-step environment. We next
test it in a multistep one.

4.3.1 Wilson (1994) reported experiments in a two-dimensional, Class 1 envi-
ronment called Woodsl. For experiments with XCS, we retained Woodsl’s basic pattern,
but made it more challenging by defining Woods2, shown in Figure 5 (the left and right edges

Woods2

162 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

.

.QQF..QQF..OQF..QQG..OQG..OQF.

.OOO..QOO..OQO..OOQ..QQO..QQQ.

.OOQ..OQQ..OQQ..QQO..OOO..QQO.

.

.

.QOF..QOG..QOF..OOF..OOG..QOG.

.QQO..QOO..OOO~.OQO..QQO..QOO.

.QQQ..OOO..OQO..QOQ..QOQ..OQO.

.

.

.QOG..QOF..OOG..OQF..OOG..OOF.

.OOQ..OQQ..QQO..OQQ..QQO..OQQ.

.QQO..OOO..OQO..OOQ..OQQ..QQQ.

.
Figure 5. Environment “Woods2” with animat. Empty cells are indicated by “.”

of Woods2 are connected, as are the top and bottom). Woods2 has two kinds of “food” and
two kinds of “rocks,” compared with one h n d of each in Woods1 . F and G are the two kinds
of food, with sensor codes 110 and 1 11, respectively. 0 and Q are the two kinds of rocks,
with sensor codes 010 and 01 1, respectively. Blanks, denoted by “.”, have sensor code 000.
The system, here regarded as an animat (Wilson, 1985) or artificial animal, is represented by
*. To sense its environment, * is capable of detecting the sensor codes of objects occupying
the eight nearest cells (sensing 000 if the cell is a blank). For example, in the position shown,
* ’s detector input is the 24-bit string 0000000000000000 100 10 1 10. The left-hand three bits
are always those due to the object occupying the cell directly north of *, with the remainder
corresponding to cells proceeding clockwise around it. The animat’s available actions con-
sist of the eight one-step moves into adjacent cells, with the move directions similarly coded
from 0 for north clockwise to 7 for north-west. If a cell is blank, * simply moves there. If the
cell is occupied by a rock, the move is not permitted to take place, though one time-step still
elapses. If the cell contains food, * moves to the cell, “eats” the food, and receives a reward
(Y,,,, = 1000).

Woods2 was constructed by repeating a basic block of nine objects and 16 blanks, with
Fs and Gs assigned at random to the food position in the upper-right corner of the block, and
0 s and Qs assigned a t random to the other positions. The blank positions of the resulting
environment yield a total of 70 distinct input strings. Due to the random assignment of
symbols, the right-hand bit of the sensor code is not of much use to a food-seeking animat,
because its value does not distinguish between food and rock, and does not reliably distinguish
between object and blank. In contrast, the left-hand bit is completely sufficient to determine
whether or not an object is food; fancifully, it might be termed the “aroma” bit. Similarly,
the middle bit reliably distinguishes between object and blank; it could be called “opacity.”
We added the right-hand bit to the code with the intention of introducing regions of the
X x A + P mapping that could be generalized over without introducing errors. The
hypothesis was that high-fitness classifiers would “hash out” this bit, because an accurate
classifier that did so would have more matching opportunities than an accurate one that did
not.

Evolutionary Computation Volume 3 , Number 2 163

Stewart W. Wilson

1 .o

0.8

0.6

0.4

0.2

0.0

I

Steps to food (/lo)
System error
Pop. size (/1000)
Optimum (/lo)

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -

- _ _ - - - - -

0 1 2 3 4
Problems (1000s)

Figure 6. Results in a Woods2 experiment. Solid curve: Performance, average steps to food in last 50
exploit problems (divided by 10). Dotted curve: System error as a fraction of external reward. Dashed
curve: Population size in macroclassifiers (divided by 1,000). Dash-dot curve: Optimum performance
(divided by 10). Parameters are the same as in Figure 3 except N = 800,p = 0.01, and P# = 0.5. Curves
are averages of 10 runs.

4.3.2 Experiments in Woods2 In an experiment, the animat repeatedly executed “prob-
lems,” each consisting of being placed in a randomly chosen blank cell of Woods2 and then
moving under control of the system until a food object was eaten, at which point the food
instantly regrew and a new problem began. As with the multiplexers, the experiments used a
50-50 explore/exploit regme. At the start of a problem, XCS would decide with probability
0.5 whether or not action selection throughout the problem would be random (explore) or
deterministic (exploit). In explore mode, both the reinforcement and discovery components
operated normally, but in the performance component, actions were selected at random
from among those that had non-null predictions in the prediction array. In exploit mode,
the performance component selected the action with the maximum prediction. The discov-
ery component was turned off (except for covering), but in the reinforcement component
updates occurred normally for [A] - 1 (but not [A]). Updates to [A] - 1 were maintained to
allow escape, via covering, from occasional loops early in a run. To keep track of exploit
mode performance, the system kept a moving average, over the past 50 exploit problems,
of the length of each problem in time-steps. As with the multiplexers, the population was
initially empty.

Experiments were typically run for several thousand problems. Under a variety of
parameter regimes and initializations, XCS quite reliably achieved optimal performance
within roughly 1,000 explore problems. For Woods2, optimal performance is 1.7 steps to
food. This is the average of the shortest path to food from every starting position; no system
having the same actions can do better in Woods2. Figure 6 shows performance (in average
steps to food), system error (average absolute difference between the system prediction
for the chosen action and P), and population-size curves for the experiment with the best
performance so far (to show the curves on the same scale, performance and population size

164 Evolutionary Computation Volume 3 , Number 2

Classifier Fitness Based on Accuracy

Figure 7. Example of system predictions learned in Woods2. Line length is proportional to the
prediction in that direction, scaled so half the length of a cell edge equals the external reward.

were divided by the factors indicated before plomng). The performance curve begins off-
scale, with steps-to-food generally at least 27 (the random value), then falls rapidly within
500 problems (or about 250 explore problems) to 2.0 and gradually approaches the optimum
over the next 500 problems. The system error, shown as a fraction of the external reward
value (1,000) is about 10% by 100 problems, then falls slowly to around 2 % . The population
size in macroclassifiers rises rapidly at the beginning to around 500, and stays near tha t value
for the rest of the experiment.

That the X x A + P map has converged to Q(x, a) is suggested by the reduction in system
error to a few percent and, as will be seen, by the predictions of high-fitness classifiers. The
mapping may be visualized in a different way in Figure 7, which symbolizes, for each blank
position in the repeat pattern of Woods2, the system prediction associated with each of the
eight directions of movement at 4,000 problems in one run of the experiment. The length
of a line segment represents the prediction for the associated direction, and is scaled so that a
prediction of 1,000 equals half a cell side. The diagram shows that the mapping is complete
in that all actions are represented in all cells. It may be seen to be roughly accurate by noting
that actions that are one step from food have predictions of 1,000, actions two steps away (i.e.,
after talung the action, the shortest resulting path to food is one step long) have predictions
roughly 1,000 y = 710 in length, and actions three steps away have predictions roughly
710 y = 504 in length. Further evidence of accuracy is given in Section 4.3.3. (Figure 7 was
computed by placing the system in 16 cells with 0 s and F as neighboring objects, so it does
not represent predictions over all positions in Woods2 and is strictly only suggestive of the
mapping’s convergence.)

4.3.3 The population-size result in Figure 6
is a first indication of the system’s generalization ability in this kind of environment. Note
that 500 is less than the size of the table required by standard Q-learning for Woods2.
Because Woods2 produces 70 distinct inputs for the system and there are eight directions of
movement, the table size would be 560. This is not a dramatic difference, but may imply that
XCS’s advantage would be bigger in larger problems. Recall that the 6-multiplexer required

Evidence of Generalization in Woods2

Evolutionary Computation Volume 3 , Number 2 165

Stewart W. Wilson

Condition A c t .

O## O O # O## # # # 000 #1# # # # 1## 7
O## O#O # O # #O# #10 ### O # O # # # 4
O## O#O #O# # O # #1# # # # O # O # # # 4
O## O## O## 000 110 # # # 000 O O # 4
O # # O## O## 000 11# # # # 000 O O # 4
O # # O## O## 000 11# # # # O#O O O # 4
0## 0## 0## 0## 0## 0## 1## ### 6
O## O## O## O## #1# #1# 000 OO# 4
O## O## # # # O## O O # #1# O## 1## 7
O## # # # # # # O## 000 #1# O## 1## 7
O## # # # # # # O## O O # O## 01# 1## 7
O## ### ### O## OO# #1# O## 1## 7
O## # # # ### # # # O # O #1# O## 1## 7

Pred.
P

1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.

Error
&

. o o

. o o
- 0 0
. o o
. o o
. o o
- 0 0
.oo
. o o
. o o
. o o
.oo
.oo

F i t n
F

73.
102.

8 4 .
73.
384.

7 6 .
119.
79.
158.
250.
73 *

155.
8 8 .

NUm.
n

1
2
1
1
5
1
1
1
2
3
1
2
1

Figure 8. First 1 3 macroclassifiers from the experiment of Figure 6 a t 4,000 problems.

about 200 classifiers peak and settled to about 100. The Q table size for that problem
would be 64 x 2 = 128, again not a dramatic difference. However, the 11-multiplexer
required 600 classifiers peak and settled to around 300. For that problem, the Q table
requires 2048 x 2 = 4096 entries, suggesting an increasing advantage for the classifier system
in larger problems. It should be mentioned that not all experiments with Woods2 had a
steady or falling population size by 4,000 problems. However, population sizes like tha t in
Figure 6 were obtained by lowering the mutation and crossover rates. This, in fact, improved
performance, suggesting that appropriate parameter regimes will not trade off performance
and population stability.

The actual classifiers evolved by XCS turned out to be a rich source of information.
Unfortunately, space limitations preclude exhibiting more than a sample of them. The
general picture was that by 4,000 problems the vast majority predicted, with essentially
zero error, either 1,000, 710, or 504; that is, they predicted the values of Q(x,a) precisely.
In addition, they covered all (x,a) situations. A second and surprising observation was
that besides discovering and largely exploiting the generalization that we contrived for the
right-hand sensor code bit, XCS discovered in Woods2 dozens of generalizations that we
had not suspected were present. In fact, the landscape is crisscrossed with intersecting
generalizations, some applying in many situations, some in just two.

We look first at some classifiers predicting 1,000. Figure 8 shows the first 13 macro-
classifiers from a listing of the population in descending prediction order. They all match in
positions adjacent to food. Look first at the six macros (with total numerosity 10) that have
action 7. Each requires that the “aroma” bit in direction 7 be a I , indicating food. Each also
has a hash symbol in most positions corresponding to the redundant right-hand sensor code
bit. However, a number of other positions contain 0, and there is even a 1 in the “opacity”
position in direction 5 in all but one of the classifiers. What is going on? Why are not all
of these positions hashed out, since the aroma bit in direction 7 is necessary and sufficient
for predicting 1,000 with zero error? The reason is that each of the six classifiers matches in
every cell for which food is in direction 7; no classifier obtained by changing one of these bits
to a # would match (and predict accurately) more often. As a result they cannot be displaced
by a classifier that is formally more general (i.e., has more #s).

From the point of view of minimizing population size, it would be desirable to see these

166 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

unnecessarily specific bits-let us call them “optional”-replaced by hashes. But Woods2
provides no evolutionary pressure to do so. The six classifiers are, so to speak, on an evolu-
tionary plateau that is maximal in terms of accuracy and reproductive opportunity. If food
objects, that is, objects with aroma bit set, occurred in a greater variety of contexts, there
would be pressure to hash out the optionals. In the multiplexer environments, every input
bit occurred in the context of every other input bit value, so the system indeed “drove”
toward generalizations that were both formally and pragmatically maximal. But Woods2 is
sparse in the sense that the input strings that actually occur form a minute fraction of those
that are possible under the coding, with the result that winning generalizations will very
likely contain bits that could optionally be replaced by #s. The effect contributes to making
populations in sparse environments larger than they might ideally be.

The six classifiers in Figure 8 with action 4 illustrate how the system can discover and
maintain more than one “concept” to describe a particular situation. Note that three of them
have aroma bit 1 in direction 4, as might be expected. But two of the others recognize the
“food to the south” situation via the combination of the opacity bit set to 1 in that direction
(which is not in itself sufficient) plus the opacity bit set to 0 in direction 3 (south-east). Finally,
the sixth classifier apparently achieves its accuracy through the combination of opacity bit
set to 1 in directions 4 and 5, plus the aroma bit set to 0 in direction 3. This “concept” is
rather complicated but because no other is more accurate and frequent in that situation, it
survives.

The classifiers just examined match in exactly one position of the basic repeat pattern
of Woods2. They generalize over the details of the 18 different versions of that pattern.
But they do not match at different positions within the pattern. We now give examples
of classifiers that do match, and therefore generalize over, several such positions. They
were identifiable in the population as classifiers with both high fitness and high numerosity.
Shown are the classifier, its prediction, an interpretation of the prediction, and the number
of places in the basic pattern that the classifier matches. The phrase “food is x steps” in a
given direction means if the system moves in that direction, the shortest path to food from
there will be x - 1 steps long. (Note that XCS only makes payoff predictions and acts on
them; the interpretations are strictly from the standpoint of an observer!)

O##O##O#################: 1503

“Food is 3 steps NVV” (16 places).

Holds everywhere. Note that the three 0s are optional. That is, changing them to #
does not increase the number of matching situations.

######0##0##000#########: 2 497

“If there’s a blank to the S, food is 3 steps E” (13 places).

This covers all positions except the three along the top of the block.

###0##0#####00#0##0##01#: 6501

“If there’s a rock NW, food is 3 steps W (4 places).

Holds for four positions below and to the right of the block.

#l#O########OOO#########: 3 710

“If there’s opacity to the N, food is 2 steps SE” (3 places).

Evolutionary Computation Volume 3 , Number 2 167

Stewart W. Wilson

Holds along the bottom of the block.

###O#O#O#####l####OO#O##: 0 503

“If there’s opacity to the S, food is 3 steps N” (3 places).

Holds along the top of the block.

0##0##0#####000####1####: 0708

“If there’s opacity to the W, food is 2 steps N (3 places).

Holds along the right side of the block.

O##O###l#######O##O#####: 1502

“If there’s opacity to the E, food is 3 steps NE” (3 places).

Holds along the left side of the block.

######O##Ol#OO#O########: 6 708

“If there’s a rock to the SE and a blank to the S, food is 2 steps W” (3 places).

Holds in 3 cells NW of the left side of the block.

Large numbers of such generalizations can be found in the population. XCS gives
the impression of tending to ferret out every possible grouping (permitted by the coding)
of situations having equal payoff. The result is a network of overlapping generalizations
covering the space of X x A. However, the cover is more than sufficient to solve the problem;
that is, many classifiers could be removed without affecting the system’s performance. Thus
while the system’s generalization drive aids efficiency by grouping situations under single
classifiers, the system may find more generalizations than are actually needed, offsetting the
gained efficiency. Nevertheless, XCS’s ability to arrive at numerous accurate generalizations
is an advance compared with previous classifier systems, which had no natural mechanism
for producing them.

5. Discussion

This article has described and reported experimental results with a classifier system, XCS, in
which fitness is based on the accuracy of a classifier’s prediction, not the prediction itself, and
the genetic algorithm is conducted in the match sets, instead of over the population as a whole.
The results indicate that XCS is capable of forming complete X x A + P maps of its payoff
landscape, and that classifiers that accurately generalize over sets of inputs are discovered and
emphasized. Due to the generalization ability, the number of classifiers required to solve the
multiplexer problem grows much more slowly than the size of the input space. The results in
the multistep environment Woods2 are less certain in t h s respect, though still promising. A
further aspect of XCS is that, in some contrast with earlier classifier system architectures, the
role of the GA is more natural and constructive. Rather than pitting classifiers against each
other for their payoff-getting ability-with the side effects discussed in Section 2-in XCS
they compete based on the accuracy and generality of their knowledge of the environment.
This kind of competition does not interfere with their ability to cooperate.

168 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

5.1 Related Work
The first article on classifier systems (Holland, 1976) proposed that classifier fitness be based
not only on predicted payoff, but also on the consistency of the prediction, among other
measures of worth. The idea was implemented in Holland and Reitman (1978). Later,
however, Holland focused on payoff-based fitness in connection with the bucket-brigade
algorithm (e.g., Holland, 1986).

As noted earlier, Booker (1982) introduced the idea of conducting the genetic algo-
rithm in the “niches” defined by classifier match sets. His reasoning was that the classifiers
in a match set were relevant to the same or similar problems, so crossovers among them (a
form of “restricted mating”) were likely to be more fruitful than a panmictic regime that
crossed classifiers drawn from the general population, that is, from probably quite unre-
lated niches. Booker built on the niche GA idea in several subsequent articles, culminating
in Booker (1989), in which he presented GOFER-1, a classifier system that, via operators
triggered in various circumstances, used nonpayoff as well as payoff information in its dis-
covery component. Two aspects of this sophisticated system seem most important here.
First “effectiveness,” Booker’s measure of classifier worth or, simplifylng somewhat, fitness,
was the product of three factors: 7r (“impact”), essentially a prediction of local (i.e., bucket-
brigade-like) payoff; (“consistency”), proportional to one minus normalized mean-squared
prediction error; and p (“match score”), a measure of the classifier’s specificity. Effectiveness
is thus a quantity that combines the perspectives of payoff and accuracy. Second, the system
employed a deletion method proportional to match-set size, which tended to equalize the
resources (classifiers) devoted to each niche of the environment; as noted in Section 3, XCS
uses basically the same technique.

Booker presented results of tests on a 6-multiplexer problem in which the payoff land-
scape had reward 1,000 for the right answer and 0 for the wrong answer. Using a deterministic
measure of performance, GOFER-1’s performance exceeded “the 97% level after 2,500 input
strings” (1989, p. 272) (2,500 explore trials using a form of roulette-wheel selection). This
is similar to XCS’s performance on the 16-reward-level 6-multiplexer (Figure 3). The latter
would appear to be a more difficult problem, and it would be interesting to know GOFER-
1’s performance on it. Booker also tested his system on the state space search problem of
Grefenstette (1988) with good results.

GOFER-I anticipates XCS in the niche GA and in the use of at least some accuracy
information in the fitness measure. Booker states that the system’s goal is to “build a useful
internal model of the environment, not merely to optimize the strength of rewarded stimulus-
response pairs” (1989, p. 265). This also anticipates XCS, but it is not clear from the
article just what the internal model looks like, or whether any generalization-accurate or
inaccurate-is occurring. No classifiers are exhibited. In addition, the system appears to
have more mechanisms and parameters than XCS. Nevertheless, Booker’s approach is a very
important line of classifier system research from which, obviously, much can be learned.

Frey and Slate (1991) presented a classifier system in which predictive accuracy rather
than payoff-based strength was the central quantity. They investigated a letter-recognition
task in which the system was first trained on a large number of exemplars, then tested
on additional exemplars. Initial experiments were done with a strength-based system, but
the authors found they could get as good results, with less concern for precise parameter
settings, by shiftmg to the accuracy approach. In more detail, a classifier kept a record of its
“accuracy,” defined as the “cumulative ratio of the number of [its] correct bids to the total
number of [its] bids” (p. 180). Ln Frey and Slate’s system, a classifier’s action was a letter name.
When it matched an input, the classifier would assert the letter name. The accuracy was the

Evolutionary Computation Volume 3 , Number 2 169

Stewart W. Wilson

cumulative fraction of the assertions that were in fact correct. The performance component
used it as the classifier’s “bid,” with the the system’s decision being the letter asserted by the
highest bidding member of the match set. Accuracy was also used as the fitness measure
when the discovery component employed a (panmictic) GA-the authors also experimented
with exemplar-based and random generation of rules. Apparently because accuracy alone
tended to produce rules that were too specific in a population of a given size, the authors
added a second measure, “utility.” This was “the number of correct winning bids divided by
the [total] number of stimulus items presented [to the system] during the lifetime of the rule,”
so that utility measured the frequency with whtch the rule successfully controlled the system
(p. 176). Classifiers whose utilities fell below a threshold were deleted, which pushed the
population toward accurate but also more useful (more frequently matching and correctly
bidding) rules.

Although Frey and Slate’s system predicted a category instead of a payoff quantity,
it anticipated XCS’s emphasis on accuracy. Frey and Slate’s use of the “utility” measure
evidently resulted in greater generalization than would otherwise have occurred, though
they do not show any classifiers. They note that their system is not directly applicable to
reinforcement learning problems but might be so adapted.

The idea of keeping track of the variance of a classifier’s payoff occurs in Goldberg
(1988). Goldberg discusses an action-selection method in which, for each matching classifier,
a weighted sum of its strength and a Gaussian based on its payoff variance is calculated.
Then the action of the classifier with the largest sum is selected. The method, termed
variance-sensitive bidding, causes action selection to become increasingly deterministic as the
classifiers’ payoff estimates become increasingly reliable. The variance calculation is similar
to the error estimate in XCS, but the Goldberg article does not consider including a function
of the variance in the fitness calculation.

Grefenstette, Ramsey, and Schultz (1990) also calculate the variance but redefine classi-
fier strength as the payoff estimate minus the variance. Action selection is based probabilis-
tically on strength, so that the selection is biased toward classifiers with high payoff and low
variance. This technique was used as part of Grefenstette’s SAMUEL system, in which the
genetic algorithm operates on classifier sets, not individual classifiers, so that the concept
of the fitness of individual classifiers does not apply. Later, however, Grefenstette (1991)
extended the use in SAMUEL of the above kind of strength to affect the probabilities of
deletion and the application of certain mutation operators, so that payoff variance had an
influence on the survival and modification of individual rules.

Separately, mention should be made of Grefenstette’s (1 988) study of classifier-system
credit assignment. He exhibits circumstances in which strength, as traditionally defined and
employed in the bucket-brigade algorithm, does not correctly predict external payoff. The
problem arises when two different environmental states are matched by a single classifier
and the external payoffs resulting from t h a t classifier’s action are different. As a result,
earlier classifiers in the corresponding chains acquire strengths reflecting a mixture of the
two payoffs. In effect, the problem occurs because the matching classifier is not sufficiently
specific to distinguish the two states, yet it (presumably) survives because its fitness is based
on payoff instead of accuracy. From the present perspective, thls is a good example of the
problem noted under (4) in Section 2: overgeneral classifiers can survive under payoff-based
fitness. With XCS, overgeneral classifiers do not, in general, survive, and we would not
expect to observe the situation Grefenstette presents.

Finally, the present work is related to Wilson (1994) in that XCS deliberately changes
the fimess measure and GA method of ZCS, but retains many elements of the earlier system.

170 Evolutionary Computation Volume 3 , Number 2

Classifier Fimess Based on Accuracy

The two systems can be experimentally compared because ZCS learned in Woodsl, a simple
version of Woods2. In Woodsl, ZCS’s performance never reached the optimum, which, as
in Woods2, was 1.7 steps. Instead, ZCS did not do better than about 3.2 steps (see Figure 3
of Wilson [1994]). In addition, the X x A =+ P map was incomplete in that the match
sets contained classifiers for only one or two of the possible actions (compare Figure 4 of
Wilson [1994] with the present Figure 7). Finally, no significant accurate generalizations
were found. These deficiencies were overcome in XCS through use of accuracy-based fitness
and a niche GA. However, the case for these changes is not quite closed, because the two
systems employed different action-selection regimes. ZCS employed roulette-wheel action
selection. A tax on classifiers not selected increased the probability of choosing the highest
strength action, but also tended to cause convergence on suboptimal classifiers. Had ZCS
used some form of pure explore/pure exploit regime as in XCS, the results might have
been better. This is an experimental question and should be investigated. We predict that
ZCS’s inability to suppress overgenerals, together with the distribution of the prediction over
multiple classifiers would still result in a performance and accuracy shortfall versus XCS.

5.2 Future Research Directions
An important objective in future XCS research is to increase the efficiency with which the
X x A + P map is represented. One point of attack would be to reduce the number
of accurate, general classifiers that nevertheless contain “optional” specific bits. This can
perhaps be accomplished through a modified fitness function that favors formal generality
(i.e., more #s) when E is below a low threshold (initial experiments indicate that this technique
is effective). A second approach would be to develop methods of “condensing” the population
to remove classifiers unnecessary to the generalization cover. For example, the first classifier
shown in Section 4.3.3 renders redundant all other classifiers with action 1; eliminating
them would substantially shrink the population. Informally, we have been able to reduce
the population without loss of performance by running the GA with mutation and crossover
turned off. That is, classifiers were selected, reproduced, and deleted without the formation
of any new macroclassifiers. Large (e.g., 75%) reductions in population size were obtained
before a needed classifier was finally deleted and system performance decreased. Similarly,
in regular experiments, we have noticed a rather strong dependence of ultimate population
size on the mutation and crossover, that is, search, rates. So it would appear important to
investigate techniques that adaptively control the search rate.

In principle, search should be vigorous when little is known or the system is in trouble;
once a problem is solved, search is unnecessary. Of course, the information and decision
procedures needed to achieve such control successfully in learning systems represent a large
and relatively unexplored research area. We are not spealung here of finding the “right”
fixed explore/exploit regime, but instead of dynamic control of the explore/exploit regime
throughout learning. In fact, experiments were done with the multiplexers using annealing
of the percentage of explore trials from 100% a t the start down to 0%, and a switched regime
in which 100% explore was conducted up to a certain trial after which the system changed
to 100% exploit. The total number of explore trials required for a given performance
was found to be comparable in both these and the SO-SO regime of Section 4.2. Thus
XCS would appear suitable for a variety of explore/exploit regimes. What is more difficult,
however, is to find ways of controlling exploration adaptively, where exploration includes
both exploratory actions and search via the GA. Initial experiments indicate that XCS’s
error measures may be useful in this regard, somewhat in the spirit of Goldberg’s (1988)
variance-sensitive bidding.

Evolutionary Computation Volume 3, Number 2 171

Stewart W. Wilson

Another approach to increased efficiency would be through changes in input repre-
sentation that would more concisely capture the regularities of the environment. This is
the potential benefit of s-classifiers (Wilson, 1994), that is, classifiers whose conditions are
expressed in the language of LISP s-expressions (the system’s discovery component would
employ a version of genetic programming Boza, 19921). As a simple example, Boolean OR
could be represented in a single classifier condition, permitting a single classifier to express
a generalization that required OR. In contrast, traditional classifier syntax can only repre-
sent the AND of variables and their negations, so that a generalization involving OR requires
at least two classifiers. If s-classifiers were extended to calculate their prediction (instead of
merely asserting a statistic) single classifiers might be evolved that were capable of predicting
correct values in an even wider variety of situations.

Adherents of payoff-based fitness might suggest that the efficiency issue arises because
accuracy-based fitness, as demonstrated, results in relatively complete maps of the payoff
landscape, whereas traditional classifier systems “go for the best” (paying classifiers) and ig-
nore the rest. They might say that the latter pragmatic approach is the only practical one in
large problems (Holland et al. 1986). Against this one can note that the traditional classifier
system has no principled approach to achieving generalization-the lack of which may well
offset whatever is gained through pragmatics-and the solutions converged upon are often
suboptimal. Nevertheless, in many problems large regions of the X x A 3 P map will be rel-
atively unremunerative, and techniques for reducing exploration there need to be developed.

Asecond major direction for future research is development of systems that learnfinctzon
approximations. In contrast to traditional classifier systems, XCS emphasizes the formation
of a well-defined prediction prior to talung an action or generating a message. In effect,
improving the prediction means learning a better and better approximation to a function
f (x , a) of the system’s inputs and actions. Furthermore, there is no essential reason why the
inputs x need to be binary. They could be continuous, with the classifier condition being
a conjunct of “receptive fields” having adaptive centers and widths corresponding to each
input variable, or, indeed, the condition could be an s-expression.

From this perspective, XCS could be used to learn approximations to functions f (x) ,
where x is a vector of input variables, by providingf(x) as the value to be “predicted” and
defining just one (dummy) action. There are already, of course, well-developed approaches
to such problems (Albus, 1975; Poggo & Edelman, 1990), and classifier systems have been
combined with fuzzy logc to a similar end (Valenzuela-Rendbn, 1991; Parodi & Bonelli,
1993; Bonarini, 1994). Generally missing, however, have been mechanisms that automati-
cally adapt the approximation’s structures to the function’s curvature, so that fewer resources
(basis functions, classifiers) are employed where the function is changng slowly. XCS’s
generalization ability may be able to contribute significantly in this respect.

A third major research direction concerns the problem of classifier systems with tempo-
rary memory, that is, systems that either post messages to an internal message list (Holland,
1986; Robertson & Riolo, 1988; Smith, 1991) or set register bits that can be matched on the
next time-step (Ross, 1994; Wilson, 1994). Broad success with temporary memory would
open the way to systems with variable event-granularity (e.g., getting a coffee, getting a
degree) and hierarchical behavior (Wilson, 1987b). At this point it is still not clear how best
to organize these more complicated systems, though basing fitness on accuracy of prediction
instead of the prediction itself seems intuitively sounder in systems that are increasingly more
cognitive than reactive.

Finally, a fourth and related direction for future research concerns classifier systems that
learn predictive models of the environment. XCS models its environment only in the sense of

172 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

learning payoffs, that is, the X x A + P map. It does not learn what input sensation will
follow a given action. That is, it does nor learn an X x A + Y map, where Y is the following
sensation. However, Riolo (1991) and Holland (1990) (see also Sutton, 1991 and Drescher,
1991) developed classifier systems in which each classifier has a condition, an action, and a
prediction of the resulting sensation (which, echoing the use of “taxon” for condition, we
could call an “expecton”). The expectons permitted forward chaining of classifier conditions
and consequences, so these systems could look ahead and plan. However, fitness in both
systems was still implicitly based on payoff (the experiments reported did not involve the
discovery component). Clearly, the concept of fitness based on accuracy of prediction could
be extended to classifiers with expectons. Besides rating how well a classifier predicted payoff,
the fitness might also, or separately, represent the accuracy of the expecton in predicting the
next sensation. The latter fimess could cause the GA to evolve classifiers that model “what
follows what” in the world.

5.3 Conclusion
Much work remains to understand how to make XCS’s mapping and generalization fully
efficient, and to extend the system’s principles to more challenging problems and environ-
ments. But the results in this article demonstrate that accuracy-based fimess and a niche
GA can evolve-perhaps for the first time seen in classifier systems-complete payoff maps
containing accurate maximally general classifiers. The results point to the conclusion that
accuracy-based fitness and a niche GA form a promising foundation for future classifier-
system research, and underline classifier systems’ relevance to the broader field of reinforce-
ment learning. Further, it is perhaps not premature to suggest that the use of strength as the
dominant component of fitness in classifier systems is fundamentally inadequate. Strength is
sufficient for simple problems, or where the quality of learning need not be high. However,
as research moves on to tackle more complex environments, increased examination of other
concepts of classifier fitness is surely in order.

Acknowledgments
I am grateful to Peter M. Todd for his interest and suggestions during the course of this work,
to John Holland for his long-term inspiration and breadth of view, and to the Rowland
Institute for Science for continued support. The article benefited from the comments of
three anonymous reviewers.

References
Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model articulation con-

troller (CMAC).3ournul of Dynamic Systems, Meamrement, and Control, Trans. ASME, Series G, 97(3),
200-22 7.

Bonarini, A. (1994). Evolutionary learning of general fuzzy rules with biased evaluation functions:
Competition and cooperation. Proceedings of the First IEEE Conference on Evolutionary Computation
(pp. 5 1-56). Piscataway, NJ: IEEE Press.

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. Unpublished disserta-
tion (Computer and Communication Sciences). University of Michigan, Ann Arbor.

Booker, L. B. (1989). Triggered rule discovery in classifier systems. In J. D. Schaffer (Ed.), Proceedings
of the Third International Conference on Genetic Algorithms (pp. 265-274). San Mateo, CA: Morgan
Kaufmann.

Dorigo, M., & Bersini, H. (1994). A comparison of Q-learning and classifier systems. In D. Cliff,
P. Husbands,].-A. Meyer, & S. W. Wilson (Eds.), From Animals to Animats 3: Proceedings o f the Third

Evolutionary Computation Volume 3, Number 2 173

Stewart W. Wilson

International Conference on Simulation of Adaptive Behavior (pp. 248-2 55). Cambridge, MA: MIT
PresdBradford Books.

Drescher, G. L. (1991). Made-up minds: A conmctivist approach to artzjicial intelligence. Cambridge,
MA: MIT Press.

Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine
Learning, 6, 161-182.

Goldberg, D. E. (1988). Probability matching, the magnitude of reinforcement, and classifier system bidding
(Technical Report TCGA-88002). Tuscaloosa: University of Alabama, Department of Engineering
Mechanics. (Also Machine Learning, 5,40742 5 .)

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algorithms.
Machine Learning, 3, 225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-agent environments. In L. Booker & R. Belew
(Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms (pp. 303-3 10). San
Mateo, CA: Morgan Kaufmann.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. C. (1990). Learning sequential decision rules using
simulation models and competition. Machine Learning, 5, 355-3 8 1.

Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in theoretical biology, 4
(pp. 263-293). New York: Plenum.

Holland, J. H. (1 986). Escaping brittleness: The possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning, an lartificial intelligence approach. Volume II (pp. 593-623). Los Altos, CA: Morgan
Kaufmann.

Holland, J. H. (1990). Concerning the emergence of tag-mediated lookahead in classifier systems.
Physica D, 41, 188-201.

Holland, J. H., Holyoak, K. J,, Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes ofinference,
learning, and discovey. Cambridge, MA: MIT Press.

Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A.
Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic Press.

Horn, J., Goldberg, D. E., & Deb, K. (1994). Implicit niching in a learning classifier system: Nature’s
way. Evolutionary Computation, 2(1), 37-66.

Koza, J. R. (1992). Geneticprogramming. Cambridge, MA: MIT PredBradford Books.

Lin, L.-J. (1 993). Reinforcement learningfar robots using neural networks. Unpublished doctoral disser-
tation, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

Mahadevan, S., & Connell, J. (1992). Automatic programming of behavior-based robots using rein-
forcement learning. Artificial Intelligence, 55, 3 1 1-365.

Parodi, A., & Bonelli, P. (1993). A new approach to fuzzy classifier systems. In S. Forrest (Ed.),
Proceedings of the Fifib International Conference on Genetic Algorithms (pp. 223-230). San Mateo, CA:
Morgan Kaufmann.

Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional objects.
Nature, 343,263-266.

Riolo, R. L. (1991). Lookahead planning and latent learning in a classifier system. In J.-A. Meyer
& S. W. Wilson (Eds.), From Animals to Animats: Proceedings of the First International Conference on
Simulation ofAdaptive Behavior (pp. 3 16-326). Cambridge, MA: MIT Press.

Roberts, G. R. (1993). Dynamic planning for classifier systems. In S. Forrest (Ed.), Proceedings of
the Fzfib International Conference on Genetic Algorithms @p. 23 1-237). San Mateo, CA: Morgan
Kaufmann.

174 Evolutionary Computation Volume 3, Number 2

Classifier Fitness Based on Accuracy

Robertson, G. G., & Riolo, R. L. (1988). A tale oftwo classifier systems. MachineLearning, 3, 139-1 59.

Ross, S. (1994). Accurate reaction or reflective action? Experiments in adding memory to Wilson’s ZCS.
Unpublished master’s dissertationlthesis, University of Sussex, England.

Smith, R. E. (1991). Default hierarchy formation and memory exploitation in learning class2fier Tstems.
Unpublished doctoral dissertation, University of Alabama, Tuscaloosa.

Sutton, R. S. (1991). Reinforcement learning architectures for animats. In J.-A. Meyer & S. W. Wilson
(Eds.), From Animals to Animats: Proceedings of the First International Conference on Simulation of
Adaptive Behavior (pp. 288-296). Cambridge, MA: MIT Press.

Twardowski, K. (1993). Credit assignment for pole balancing with learning classifier systems. In
S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 2 3 8-245).
San Mateo, CA: Morgan Kaufmann.

Valenzuela-Renddn, M. (1 99 1). The fuzzy classifier system: A classifier system for continuously varying
variables. In L. Booker & R. Belew (Eds.), Proceedings of the Fourth International Conference on Genetic
Algorithms (pp. 346-353). San Mateo, CA: Morgan Kaufmann.

Venturini, G. (1 994). Apprentissage Adaptatzfet Apprentissage Superuise’par Algorithm Genetique. [Adap-
tive and supervised learning using Genetic Algorithms.] Unpublished doctoral dissertation, Uni-
versite‘ de Paris-Sud.

Watkins, C. (1 989). Learning @om delayed rewards. Unpublished doctoral dissertation, Cambridge

Watkins, C., & Dayan, P. (1992). Technical note: Q-Learning. Machine Learning, 8, 279-292.

Wilson, S. W. (1985). Knowledge growth in an artificial animal. In Proceedings of the First International
Conference on Genetic Algorithms and TheirApplications (pp. 16-23). Hillsdale, NJ: Lawrence Erlbaum
Associates.

University, England.

Wilson, S. W. (1987a). Classifier systems and the animat problem. Machine Learning, 2, 199-228.

Wilson, S. W. (1987b). Hierarchical credit allocation in a classifier system. In Proceedings of the
Tenth InternationalJoint Conference on Artificial Intelligence (pp. 2 17-220). Los Altos, CA: Morgan
Kaufmann.

Wilson, S. W. (1991). The anirnat path to AI. In J.-A. Meyer & S. W. Wilson (Eds.), From Animals to
Animats: Proceedings of the First International Conference on Simulation ofAdaptive Behavior (pp. 1 5-2 1).
Cambridge, MA: MIT Press.

Wilson, S. W. (1994). ZCS: A zeroth order classifier system. Evobtionary Computation, 2, 1-18.

Wilson, S. W., & Goldberg, D. E. (1989). Acritical review of classifier systems. In J. D. Schaffer (Ed.),
Proceedings of the Third International Conference on Genetic Algorithms (pp. 244-255). San Mateo, CA:
Morgan Kaufmann.

Evolutionary Computation Volume 3 , Number 2 175

This article has been cited by:

1. Eduardo R. Miranda, Larry Bull, François Gueguen, Ivan S. Uroukov. 2009. Computer Music Meets
Unconventional Computing: Towards Sound Synthesis with In Vitro Neuronal NetworksComputer
Music Meets Unconventional Computing: Towards Sound Synthesis with In Vitro Neuronal
Networks. Computer Music Journal 33:1, 9-18. [Citation] [PDF] [PDF Plus]

2. Larry Bull, Adam Budd, Christopher Stone, Ivan Uroukov, Ben de Lacy Costello, Andrew
Adamatzky. 2008. Towards Unconventional Computing through Simulated Evolution: Control of
Nonlinear Media by a Learning Classifier SystemTowards Unconventional Computing through
Simulated Evolution: Control of Nonlinear Media by a Learning Classifier System. Artificial Life 14:2,
203-222. [Abstract] [PDF] [PDF Plus]

3. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, David E. Goldberg. 2007. Generalization
in the XCSF Classifier System: Analysis, Improvement, and ExtensionGeneralization in the XCSF
Classifier System: Analysis, Improvement, and Extension. Evolutionary Computation 15:2, 133-168.
[Abstract] [PDF] [PDF Plus]

4. Matthew Studley, Larry Bull. 2007. Using the XCS Classifier System for Multi-objective
Reinforcement Learning ProblemsUsing the XCS Classifier System for Multi-objective
Reinforcement Learning Problems. Artificial Life 13:1, 69-86. [Abstract] [PDF] [PDF Plus]

5. Martin V. Butz, Martin Pelikan, Xavier Llorà, David E. Goldberg. 2006. Automated Global Structure
Extraction for Effective Local Building Block Processing in XCSAutomated Global Structure
Extraction for Effective Local Building Block Processing in XCS. Evolutionary Computation 14:3,
345-380. [Abstract] [PDF] [PDF Plus]

6. Jorge Muruzábal. 2006. A Probabilistic Classifier System and Its Application in Data MiningA
Probabilistic Classifier System and Its Application in Data Mining. Evolutionary Computation 14:2,
183-221. [Abstract] [PDF] [PDF Plus]

7. Tim Kovacs, Manfred Kerber. 2006. A Study of Structural and Parametric Learning in XCSA Study of
Structural and Parametric Learning in XCS. Evolutionary Computation 14:1, 1-19. [Abstract] [PDF]
[PDF Plus]

8. Tim Kovacs . 2004. Rule Fitness and Pathology in Learning Classifier SystemsRule Fitness and
Pathology in Learning Classifier Systems. Evolutionary Computation 12:1, 99-135. [Abstract] [PDF]
[PDF Plus]

9. Christopher Stone , Larry Bull . 2003. For Real! XCS with Continuous-Valued InputsFor Real! XCS
with Continuous-Valued Inputs. Evolutionary Computation 11:3, 299-336. [Abstract] [PDF] [PDF
Plus]

10. Martin V. Butz , David E. Goldberg , Kurian Tharakunnel . 2003. Analysis and Improvement of Fitness
Exploitation in XCS: Bounding Models, Tournament Selection, and Bilateral AccuracyAnalysis and
Improvement of Fitness Exploitation in XCS: Bounding Models, Tournament Selection, and Bilateral
Accuracy. Evolutionary Computation 11:3, 239-277. [Abstract] [PDF] [PDF Plus]

11. Ester Bernadó-Mansilla , Josep M. Garrell-Guiu . 2003. Accuracy-Based Learning Classifier Systems:
Models, Analysis and Applications to Classification TasksAccuracy-Based Learning Classifier
Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary Computation 11:3,
209-238. [Abstract] [PDF] [PDF Plus]

12. Xavier Llorà , David E. Goldberg . 2003. Bounding the Effect of Noise in Multiobjective Learning
Classifier SystemsBounding the Effect of Noise in Multiobjective Learning Classifier Systems.
Evolutionary Computation 11:3, 279-298. [Abstract] [PDF] [PDF Plus]

13. Larry Bull , Jacob Hurst . 2002. ZCS ReduxZCS Redux. Evolutionary Computation 10:2, 185-205.
[Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1162/comj.2009.33.1.9
http://www.mitpressjournals.org/doi/pdf/10.1162/comj.2009.33.1.9
http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj.2009.33.1.9
http://dx.doi.org/10.1162/artl.2008.14.2.203
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2008.14.2.203
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2008.14.2.203
http://dx.doi.org/10.1162/evco.2007.15.2.133
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2007.15.2.133
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2007.15.2.133
http://dx.doi.org/10.1162/artl.2007.13.1.69
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2007.13.1.69
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2007.13.1.69
http://dx.doi.org/10.1162/evco.2006.14.3.345
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2006.14.3.345
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2006.14.3.345
http://dx.doi.org/10.1162/evco.2006.14.2.183
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2006.14.2.183
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2006.14.2.183
http://dx.doi.org/10.1162/evco.2006.14.1.1
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2006.14.1.1
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2006.14.1.1
http://dx.doi.org/10.1162/evco.2004.12.1.99
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2004.12.1.99
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2004.12.1.99
http://dx.doi.org/10.1162/106365603322365315
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603322365315
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603322365315
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603322365315
http://dx.doi.org/10.1162/106365603322365298
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603322365298
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603322365298
http://dx.doi.org/10.1162/106365603322365289
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603322365289
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603322365289
http://dx.doi.org/10.1162/106365603322365306
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603322365306
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603322365306
http://dx.doi.org/10.1162/106365602320169848
http://www.mitpressjournals.org/doi/pdf/10.1162/106365602320169848
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365602320169848

14. Thomas H. Westerdale . 2001. Local Reinforcement and Recombination in Classifier SystemsLocal
Reinforcement and Recombination in Classifier Systems. Evolutionary Computation 9:3, 259-281.
[Abstract] [PDF] [PDF Plus]

15. Andy Tomlinson , Larry Bull . 2001. Symbiogenesis in Learning Classifier SystemsSymbiogenesis in
Learning Classifier Systems. Artificial Life 7:1, 33-61. [Abstract] [PDF] [PDF Plus]

16. Pier Luca Lanzi , Stewart W. Wilson . 2000. Toward Optimal Classifier System Performance
in Non-Markov EnvironmentsToward Optimal Classifier System Performance in Non-Markov
Environments. Evolutionary Computation 8:4, 393-418. [Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1162/106365601750405993
http://www.mitpressjournals.org/doi/pdf/10.1162/106365601750405993
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365601750405993
http://dx.doi.org/10.1162/106454601300328016
http://www.mitpressjournals.org/doi/pdf/10.1162/106454601300328016
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106454601300328016
http://dx.doi.org/10.1162/106365600568239
http://www.mitpressjournals.org/doi/pdf/10.1162/106365600568239
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365600568239

