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Abstract 

This paper describes FOX-GA, a genetic algorithm (GA) that generates and evaluates plans 
in the complex domain of military maneuver planning. FOX-GA’s contributions are to 
demonstrate an effective application of GA technology to a complex real world planning 
problem, and to provide an understanding of the properties needed in a GA solution to meet 
the challenges of decision support in complex domains. Previous obstacles to applying GA 
technology to maneuver planning include the lack of efficient algorithms for determining 
the fimess of plans. Detailed simulations would ideally be used to evaluate these plans, but 
most such simulations typically require several hours to assess a single plan. Since a GA 
needs to quickly generate and evaluate thousands of plans, these methods are too slow. To 
solve this problem we developed an efficient evaluator (wargamer) that uses course-grained 
representations of this problem domain to allow appropriate yet intelligent trade-offs between 
computational efficiency and accuracy. An additional challenge was that users needed a diverse 
set of significantly different plan options from which to choose. Typical GA’s tend to develop 
a group of “best” solutions that may be very similar (or identical) to each other. This may not 
provide users with sufficient choice. We addressed this problem by adding a niching strategy 
to the selection mechanism to insure diversity in the solution set, providing users with a more 
satisfactory range of choices. FOX-GA’s impact will be in providing decision support to time 
constrained and cognitively overloaded battlestaff to help them rapidly explore options, create 
plans, and better cope with the information demands of modern warfare. 
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1 Introduction 

This paper describes FOX-GA, a decision support tool that applies a genetic algorithm (GA) 
to generate and evaluate plans in the complex domain of military maneuver planning. These 
plans are called cozcrsesofacTion (COAs). The  GAuses a niching strategy to ensure that a diverse, 
yet high quality set of plan options are created. FOX-GA’s contributions are to demonstrate 
an effective application of GA technology to a complex real world planning problem, and to 
provide an understanding of the properties needed in a GA solution to meet the challenges of 
decision support in complex domains. The  name “Fox” refers to the animal, which is known 
for being smart and capable of “out-foxing” its enemies through clever planning. 

Requirements in the maneuver planning domain include the need to 1) assist users in 
identifylng the “best” of numerous solution options 2) provide diverse yet high quality options 
from which users can select and 3 )  rapidly generate and evaluate options under tight time 
constraints. Many of these these challenges are common to decision support tasks in other 
domains such as medical decision mahng, manufacturing planning, mechanical design, and 
architectural design. 

FOX-GA is implemented in C++. The great majority of the implementation effort 
went into the design and construction of the knowledge representation and the logic in the 
wargamer. Jmplenientation of the GA itself required only 5 percent of the effort. 

We will begin with overviews of the domain of battlefield reasoning, challenges in con- 
structing this application, and related work. We will follow it with a detailed explanation 
of FOX-GRs genetic algorithm, bit string representation, wargaming algorithm, and fitness 
function. Lastly we will discuss two experiments evaluating Fox’s performance, and possible 
future work. 

2 The Domain of Battlefield Reasoning 

The Army organizes its forces into hierarchcal echelons as shown in Figure 1. Each unit is 
composed of a set of smaller subordinate units that are under its command. Figure 1 shows 
a mechanized infantry brigade a t  the top, with its subordinates underneath. The  primary 
subordinates of the mechanized infantry brigade are the units that maneuver during combat. 
In this case the primary subordinates are three mechanized infantry battalions (on the far left 
in Figure l), and one armored battalion (immediately to their right). The  other units provide 
combat support. When the commander of a unit receives a tactical mission from his higher 
headquarters he directs his battlestaff to develop a set of possible “Courses of Action” (COAs) 
that can each accomplish the mission. Typical missions include “attack” and “defend”. hfter 
analyzing the alternative COAs the commander selects one COA for unit execution. 

The terrain on which a unit fights is referred to as the maneuver box. Maps provide 
ver): detailed representations of the terrain inside a maneuver box in terms of elevations, 
vegetation and hydrology. However, there are very specific abstractions which battlestaffs 
draw from the maneuver box terrain in order to plan. Figure 2 shows an example of abstract 
representations extracted by a battlestaff from the terrain in a maneuver box. This much 
simplified representation shows many of the essential terrain features used by battlestaffs for 
maneuver planning, just as the New York City subway map is a much simplified representation 
of New York showing essential information used by subway customers to do route planning. 

The  broad arrows represent ovenzies ofapproach (Ah) .  AAs 1-3 are wide routes down 
which the subordinate units will move in order to attack. Typically there may be between two 
and five AAs in any given maneuver box. The large oval areas to the left are Tactical Assembly 
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Figure 1: Functional Organization of Army Units at  Each Echelon 

Areas (TAAs), which provide the starting locations for the friendly units. The ovals to the 
right provide objectives (OBJs) which represent goal locations for the friendly attack: they 
wish to reach or capture these locations. Additional, non-geographic goals may be to reduce 
the strength of enemy forces. The Fornard Edge of the Battlefield (FEBA) is the demarcation 
line between enemy and friendly forces prior to battle, and the Limit of Advance (LOA) is the 
demarcation afzer battle (if the attacker is completely successful). 

The gray vertical lines in Figure 2 are lines of defensible terrain (LDTs). LDTs are 
formed by identifylng narrow areas or choke points cutting across the AAs. A whole string of 
roughly adjacent choke points cutting across all AAs forms an LDT. When plotted on a map, 
the LDTs are not usually straight lines any more than subway routes are when shown on a 
scale city map. Lines of defensible terrain are usually good points at which to set up a defense. 
Hence they are also the places at which conflicts between attacker and defender tend to occur. 

In its most fundamental form, an offensive COA is the determination of how to assign 
and sequence subordinate units in the various AAs. Figure 3 shows an example of an offensive 
COA where a mechanized battalion attacks along AA-2 and the three other battalions attack 
in column along AA-3. There are many possible ways of organizing a set of subordinate units 
into COAs in a given maneuver box. COAs are also distinguished by the mission, number, 
and type of subordinates, and share of general resources assigned to each unit during battle. 
FOX-GA also considers more detailed distinctions between COAs as will be described later 
in this paper. 

The four LDTs facilitate defensive operations by taking advantage of the chokepoints 
that produce bottleneck problems for the attacker. Figure 4 shows an example of such a 
defensive COA where the enemy battalion defends with three companies abreast on LDT-1. 
The reserve force located at the intersection of LDT-2 and AA-2 is available to conduct a 
counterattack anywhere within the maneuver box. 

The user’s need for a diverse set of choices arises partly because mathematical fitness 
functions in complex domains are actually only approximations of the “true” function. The 
“true” (and probably unachievable) fitness function is one that correctly identifies the best 
option for the situation. An example of a plan, which we call the “sacrificial lamb” strategy 
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Figure 2 :  The Terrain hianeuver Box for the current implementation of FOX-GA 
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Figure 3 :  An Example of a Friendly Offensive Course of Action, judged by FOX-GRs fitness 
function to be of high quality (sacrificial lamb strategy) 
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Figure 4: An Example of a representative Enemy Defensive Course of Action 

3, will be described in later sections. This plan appears to be of very high quality to the GAS 
fitness function. However, it is not in fact an option most commanders would wish to chose 
without exploring alternative COAs that do not require the whole sacrifice of a subordinate. 

It is not the intention of this discussion to imply that humans evaluate options using 
the “true” fitness function. However, humans are very good at taking into account complex, 
highly situation dependent factors that may not be easy to capture in a mathematical function. 
The combination of the GI& fitness function with human judgment can create a powerful 
evaluation method that is more effective than either alone. 

’Thus, because of the approximate nature of all fitness functions in complex domains, the 
role of a GA in complex decision support should not just be to select the “best” solution for 
the user but to identify a diverse set of “good” candidate solutions while allowing the user to 
make their own assessments for the final decision. 

3 Challenges and Design Decisions in Fox-GA 

There were a number of challenges we had to address in adapting GA technology to fit users’ 
decision support needs in the context of the domain including the need to: 

1. Provide fast fitness evaluations for C O h ,  so as to provide users with candidate COAs in 
a timely manner. 

-7. Avoid overwhelming users with possible options. 

3 .  Provide a diverse set of COAs, that also fit the users’ domain-based concepts of diversity. 
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4. Allow users to exercise their own judgment, which may disagree with the systems’ assess- 

5. Provide users with the flexibility to adapt the behavior of the GA according to their 

ments in selecting the “best” options. 

varylng needs for expediency, breadth of suggested options, etc. 

Providing fast fitness evaluations for COAs. A major obstacle we encountered in ap- 
plying GA technology to generating and evaluating COAs was the lack of efficient algorithms 
for evaluating COAs. Battlefield simulations can be used for evaluating and assessing the 
behavior and performance of COAs under battle conditions. However, most such simulators 
have been designed for detailed training purposes and require several hours to simulate a single 
COA in a single battle. They cannot be used to provide speedy evaluations having “ball-park” 
accuracy (which is all the accuracy needed for identifylng good candidate solutions for further 
study). Existing battle simulators were not practical for our purposes since we needed to 
evaluate thousands of COAs, each simulated in several battle situations, in order to identify 
the best candidates. All of these COAs need to be evaluated in a timely manner since user’s 
have limited time and patience to wait for results. If the decision support too tool is too slow, 
they will simply abandon the computer tool and resort to their standard manual methods. 

To address this need we developed an efficient wargamer that uses very course-grained 
representations of the problem domain. Our wargamer represents the battle at a very course 
grained level of abstraction and provides a less accurate assessment of COA performance 
than a detailed simulator would provide. However, it simulates a single battle in a fraction 
of a second, which is what is needed for the purpose of rapidly identifylng some “good 
guesses” of the best COA options. These options will be assessed a second time by the human 
users, who will then select a few of these initial options for further development and detailed 
assessment. Detailed assessment a t  this early phase of problem solving would, in fact, be 
counter-productive. The need to make trade-offs between efficiency and detail through use 
of estimates is a common one found not only in GAs but in engineering design in general 
(Ling et al., 1993), (Miller, 1996). 

Avoiding overwhelming users with possible options. Human users typically explore 
between 1 and 5 COA options. FOX-GA explores thousands. However, it would probably 
be counterproductive to decision making performance if all of these options were presented 
at  once to the user. He or she would be overwhelmed by the sheer volume of information. 
In order to avoid information overload, we use the performance assessments produced by the 
GA to rank order the options, and only present the best few to the user. We give the user the 
control to decide how many options they want to see. 

Providing diverse COA options. Users in this domain prefer to be presented with a 
diverse set of significantly different plan options from which they can choose, each offering 
different trade-offs. Diverse options offering various trade-offs are far more useful to them 
than small variants on essentially similar solutions. 

Standard GAs tend to develop a group of “best” solutions that are all very similar to each 
other. We addressed this challenge by adding a niching strategy to the selection mechanism 
to insure diversity in the solution set, providing users with a more satisfactory range of 
choices. However, the specific niching strategy used had to provide diverse options that 
fit the users’ domain-based conceptions of what makes one option distinct from another: 
there are particular characteristics which their experience has taught them to consider to be 
most important in making one choice different from another. Thus we faced the additional 
challenge of incorporating domain based conceptions of “different” into our niching strategy. 
This strategy will be described in more detail in a later section. 
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Allowing users to use their own judgment in selecting the “best” options. Po- 
tentially, FOX-GA could choose a small set of “best” COA options without input from the 
user based on the performance assessments it produces. However, users will neither trust 
nor accept a decision support tool that does not allow them to disagree with the system’s 
assessments, or to have the the final say in what solutions are chosen. Thus, we allow the user 
to over-ride FOX-GAis perforinance rankings of the COAs and to select what ever COAs they 
feel are best. 

This design decision is a recognition and accommodation of the fact that a) a GRs 
fitness function can a t  best be only an approximation of the “true” fitness assessments, and 
b) different indilldual users may favor different assessments of COAs based on differences in 
goals, preferences and experience. 

Providing users with flexibility to adapt the behavior of the GA. The  flexible nature 
of G 4 s  makes it easy for users to tailor the behavior of FOX-GA to suit their specific needs. 
For example, if they need a faster response, they can decrease the population size or  the 
number of generations used by the GA. If they want more diversity in the options they can 
increase the size of the initial population. 

4 Related Work 

‘The work most closely related to FOX includes the &!-Land Battle Management (ALBM) 
Project (.AL,BM, ) (developed a t  Lockheed Missiles and Space Company), and the Systems 
for Operations Crisis Action Planning (SOCAP) (UTilkins and Desimone, 1994) developed 
a t  Stanford Research Institute (SRI). Both systems focused on the automated generation 
of COL4s. ALBM specialized in probiding effective representations for human-computer 
interactions, while SOCAP specialized in efficient generation of COh .  Neither of these was 
intended to provide an assessment of how well the COAs would perform in combat against 
anticipated enemy Coils. 

A barrier to the use of ALBM’s methods in a GA, which needs to evaluate many battles per 
minute, was ALBM’s use of detailed terrain representations. This is a problem for rapid COA 
evaluation because it takes too much time to evaluate a t  a detailed level. The  ALBM team 
recognized a need to reduce through abstraction the amount of terrain information considered 
by ALBM. One contribution of the ALBM project was the development of basic terrain 
representations that would enable a computer to efficiently reason about units maneuvering 
on a battlefield (Reich, 1995). Unfortunately the representations were not comprehensive 
enough for our purposes. 

‘The goals of the Battlefield Reasoning System (BRS) Architecture (Schlabach, 1997) 
were to develop a comprehensive set of abstractions and to establish a reasoning framework 
to support effective and efficient battlefield reasoning for a critical set of tasks, one of which 
WAS COA generation. The  architecture provides appropriate abstract representations for 
concepts such as terrain, order of battle, decision points, and military intelligence proposi- 
tions. It expands _AL,BM’s terrain representations into a systematic and comprehensive set 
of d a t d  structures suitable for exploitation by battlefield reasoning applications. The  BRS 
Architecture also identifies a set of reasoning processes that comprise a primary “backbone” 
for battlefield reasoning coupling upstream processes like COA generation with downstream 
processes like intelligence analysis. FOX-GA is designed to operate in the context of the BRS 
Architecture, as one of a suite of coordinated intelligent battlefield reasoning agents. 

Two GA4 applications in other military domains investigated decision making in the 
si~nulation of small unit actions (Porto and Fogel, 1997) and control of Naval Surface-to-Air 
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output: 

Figure 5: FOX generates and analyzes Offensive COAs 

weapons (Kuchinsh, 1985). However, the domains of these applications provide only limited 
insights into the use of GAS for COA generation for battlestaffs. 

5 Approach 

FOX-GA uses a fixed scenario with the mechanized infantry brigade shown in Figure 1 attack- 
ing against an enemy mechanized infantry battalion. By using the knowledge representations 
(particularly of terrain - Figure 2) defined in the BRS Architecture, FOX-GA generates and 
evaluates COAs using causal reasoning to efficiently simulate friendly COAs against the en- 
emy. This efficiency is gained by abstracting away detail typically used in training simulations, 
but retaining most of the information pertinent for COA generation. The  accuracy of the 
wargaming evaluation is slightly degraded because FOX does not use all of the detailed terrain 
information available in modern digitized maps. Nor does FOX allow human guidance in 
the wargaming algorithm which could also increase accuracy. However, the efficiency gain is 
more important than the small accuracy loss. The  resulting increase in speed enables FOX- 
GA to evaluate significantly more COAs per minute than is possible using more detailed 
representations. 

Inputs: As shown in Figure 5 FOX-GA takes two types of inputs: 1) a set of user specified 
parameters, and 2) a fixed set of parameters which are specified inside the program which 
define a battlefield scenario. The  scenario specification is made up of the terrain maneuver 
box (Figure 2 ) ,  six scripted representative enemy COAs (one of which is shown in Figure 4), 
and a description of available friendly forces (Figure 1). Although the current proof of concept 
implementation considers only one scenario, the technique can be extended in future work 
without loss of efficiency or effectiveness, to consider any combination of terrain, enemy 
COAs, and available friendly forces. The six enemy COAs are generic representations of 
typical enemy options. The  user inputs include: allowable risk, status of friendly forces, status 
of enemy forces, fitness evaluation mode (terrain or enemy options to be explained later), 
population size for the GA, and number of generations for the GA. 

Outputs: FOX-GA outputs a set of n best COAs (as measured by the fitness function 
which will be described later). The  size of n is set by the user. 

lFOX-GA can fight 300 battles per second whereas the typical simulator built for training requires at least several 
hours to fight one battle. 
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Figure 6: FOX-GA’s Bit String Representation for tactical Courses of Action (COAs) 

6 System Description 

FOX-GA was implemented in C++ on a SUN Ultra 1 workstation. The  major components of 
the FOX-GA system include the genetic algorithm which uses a niching strategy, the bit string 
used by the GA to represent knowledge about COAs, the combat wargamer used to estimate 
losses incurred in battle using each COA in a variety of situations, and a fitness function used 
to assess the quality of the COXs combat performance as assessed by the wargamer. 

6.1 Bit String Representation 

FOX-GA uses the bit string representation illustrated in Figure 6. The  bit string is composed 
of ten variables representing the COA properties listed below, which are of importance to 
battlestaff planners in representing COAs for wargaming. These variables are used in FOX- 
GA by both the GA (to create COAs) and by the wargamer (to evaluate their performance). 
There are two halves to the wargamer, The first half calculatesfom mtioswhich are the relative 
strengths of opposing units, and the second half applies combat rules that determine the next 
move of all units. We mention this because the ten variables can be further subdivided as 
shown in Figure 6 into those used in computing force ratios (the first six variables) and those 
used by the combat rules (the last four variables). 

0 Formation of Subordinates refers to the way in which the mechanized infantry brigade 
allocates and sequences its four battalions (subordinates) used in FOX’S problem scenario 
to the three Avenues of Approach. For the chosen terrain and forces there are 60 possible 
formations. The Formation of Subordinates variable is the most important one on the 
list for organizing COAs. Each of the 60 possible formations is generally considered 
by battlestaff to represent distinctly different COA families (also referred to as COA 
neighborhoods) while variations in the other variables produce what battlestaff consider 
to be minor variants within the same COA family. Because of its importance, this variable 
has been placed at the front of the bit string. This variable is also important in the niching 
strategy which will be explained later in the section on the genetic algorithm. 

IVhen we designed the implementation we placed the 60 formations contiguously in an 
indexed look-up table such that the majority of neighbors differ only by a “swap in place” 
of the armor battalion with one of the three mechanized battalions. This is important 
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for evolutionary computing in order to insure that a small mutation will result in only a 
slight difference in fitness. 

0 Allocation of Subordinate’s Subordinates refers to the number of mechanized infantry 
and armor companies (subordinates of the subordinates) that will be attached to each of 
the four available battalions. There are a total of 12 mechanized and 4 armored com- 
panies available for allocation to the subordinate battalions. Each subordinate battalion 
will receive between two and five (inclusive) companies, for a total of 1013 unique per- 
mutations of the 16 companies to the four battalions. The indexing scheme for this set 
of bits also retains relations between neighbors. 

0 Priority of Effort Ranking Units have limited resources, and they cannot always give 
their subordinates all the resources they desire. Priority of effort ranking indicates 
the relative importance of a subordinate role with respect to the overall mission. For 
example, if a subordinate has first priority it will receive the lion’s share of artillery, 
intelligence, logistics, and other support. There are 24 possible prioritization schemes 
for the four subordinates. The indexing scheme for this set of bits retains relations 
between neighbors. 

0 Severity of prioritization refers to the percentage of resources that will be allocated 
to the number one priority a t  the expense of lower priority subordinates. This is a 
hand-scripted set of eight distributions where the first distribution is “flat” (first priority 
receives only slightly more support than the last priority), and the eighth distribution is 
“steep” (first priority receives all extra resources). 

0 Degree of Control refers to the amount of centralization (as opposed to autonomy) that 
the brigade gives to the four subordinate battalions. This is an unsigned binary coded 
integer of four discrete values. 

0 Sharing of Planning time Available is the percentage of planning time allocated to 
the brigade staff to produce its Operation Order (OPORD). Since Battalion staffs can’t 
begin their planning until they receive Brigade’s Order, this variable determines how 
much time the Battalion Staffs will have to produce their OPOFtDs. The more time 
a battlestaff has to plan, the better they will be able to synchronize their forces during 
battle, which translates directly into a combat multiplying effect. Hence, there is a natural 
competition between subordinate and superior staffs for planning time. FOX-GA allows 
four different planning time allocation schemes for planning. This is an unsigned binary 
coded integer of four discrete values. 

0 Bypass Criteria is the size of the largest allowable enemy force that an attacking battalion 
may bypass when moving to the next piece of terrain. Bypassing a large unit is considered 
risky (with a possible high payoff) whereas bypassing a small unit is conservative (with a 
guaranteed lower payoff). The risk is derived from the fact that bypassed enemy units have 
excellent opportunities to counterattack against the brigade’s softer rear units. However, 
bypassed enemy units typically surrender or attempt to withdraw back to enemy lines. 
This is an unsigned binary coded integer of four discrete values. 

0 Triggerability of Reserve refers to how bad a crisis or how good an opportunity has to 
be before the brigade commits the reserve. This is an unsigned binary coded integer of 
four discrete values. 

0 Use of Reserve refers to whether the Brigade uses a “Crisis” or “Opportunity” phi- 
losophy. In the crisis mode the reserve helps struggling friendly forces no matter how 
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vulnerable a local enemy situation might be. In the opportunity mode the reserve attacks 
when it sees an opportunity to take advantage of enemy vulnerabilities, regardless of the 
friendly situation. This is a one bit toggle switch where “0” decodes to a crisis philosophy 
and “ I  ” decodes to an “opportunity” philosophy. 

0 Conservation of Strength specifies the threshold of losses a unit is willing to endure 
and still continue its mission. This is an unsigned binary coded integer of eight discrete 
values. 

This representation allows for approximately 45 billion valid friendly Courses of Action 
after subtracting the 20 billion illegal string combinations. There is a test in the genetic 
algorithm to check for the validity of the bit strings. 

6.2 Genetic Algorithm 

FOX-(;A employs a genetic algorithm for search, and a niching strategy to maintain popula- 
tion diversity. The GA implements single point random crossover with mutation using elitist 
tournament style selection without replacement (described earlier in the overview of genetic 
algorithms). The  mutation scheme provides for one bit chosen at random immediately after 
crossover. This is different than the traditional “bitwise” mutation schemes. 

The initial population of COAs is generated randomly. To produce a new population, 
FOX-GA mates each member of the old population with another COA string a t  random. 
Since mates are not replaced after they are chosen for mating, each COA mates exactly 
once per generation (until it dies through non-selection). The  crossover point between the 
two parents is chosen a t  random to produce two children, which are then subjected to a small 
mutation rate ( 2 . 5  percent) which might flip one of their bits. Finally, the children are checked 
to ensure that they represent valid friendly COAs. An example of an invalid bitstring is one 
which has a “64” in the first six bits. The  index of “64” is illegal because it is outside the range 
of the 60 legal values for this variable. If COAs fail this validity check they are mutated until 
they become legal (which is not difficult since there are twice as many valid as invalid COAs). 

The fitness of the two children is based upon their performance in wargaming. The 
combat warganier runs them through this process and generates parameters to describe their 
performance. These parameters are used to determine fitness. Of the four members within 
the nuclear family (two parents and two children), two COAs are selected for survival to 
the next generation. This elitist tournament selection causes the population to temporarily 
double in size every generation, but only the more fit half will survive to the next generation. 

Each time a new generation of COAs is created, its quality is estimated by 1) running each 
COA through a combat warganier that usesfoize ratios” to assess the probable lossesincurred 
on each side in a variety of situations, and 2 )  running a fitness function (set by the users 
preferences) to tabulate remaining friendly strength, enemy strength, and gains or losses in 
terrain holdings. A fitness score is computed for each COA depending on how important 
each of these factors are to the user. 

‘Force ratios compare the relative strenyths of the attacking and defending forces. They  are used to predict how 
Inuch loss nil1 he incurred on each side u-hen a friendly and an enemy unit engage in battle. They  are empirically 
derived from historical data and they are hased situational factors such as the size and composition of each side, the 
terrain conditions. etc. 
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6.3 Niching Strategy 

The selection made by the elitist tournament strategy is constrained by a niching strategy 
which ensures FOX-GA will return a wide variety of diverse COAs. Diversity is obtained in a 
niching strategy by favoring distinctly different COAs occurring in different neighborhoods, 
rather than multiple copies of the best COA found. 

Most niching strategies find niches automatically. However, since it was of critical 
importance in this application that users be able to understand the outputs of the GA, we were 
concerned that the GA% niches might not make sense to the domain experts. For example, 
two COAs that are judged by the GA to be in different niches, may appear to the user to 
be virtually identical variations of the same COA since he or she may judge “difference” by 
another set of criteria. The GA judges difference between two COAs by the total number 
of similar and dissimilar parameters. Additionally, human experts appear to apply different 
weights to different parameters; they are not all considered to be of uniform importance. 
In this application, the first bit string parameter “formation of subordinates” is considered 
to be of far more importance than the other parameters and thus has the most weight in 
determining whether a pair of COAs is considered to be distinctly different from each other. 
Thus, if two COAs differ in their value only for this single parameter, they are considered to 
be different COAs even if the rest of the parameters are identical. 

In domain terms, this parameter is of such great importance to the user because each 
arrangement of units represents a different distribution of forces and resources across the 
terrain on which the battle will take place. One of the major issues in this task is to guess 
where the enemy will put most of its forces, and to counter appropriately with friendly forces. 
All other parameters that determine issues such as which unit has first access to the gasoline 
or ammunition are minor compared to the basic positioning of forces against the enemy. 

In order to match the domain experts’ concept of difference between solutions it was 
necessary to implement a variation of existing niching strategies that used this domain-based 
concept of neighborhoods instead of letting the GA find its own neighborhoods. In particular, 
we implemented a variation of niching which we call “fixed neighborhood niching” in which 
we impose a set of domain-relevant neighborhoods on the niching strategy, a priori. 

This strategy does not allow the two surviving COA bitstrings from any given nuclear 
family to be in the same “neighborhood.” FOX-GA defines 60 neighborhoods which represent 
families of closely related COAs. If two COAs allocate their major subordinates in the same 
manner, then those two COAs are considered to be in the same neighborhood (or family). 
Since there are 60 ways to allocate major subordinates, there are 60 neighborhoods. Only 
the better of two in the same neighborhood will survive. This niching strategy ensures that 
the GA produces a population of high quality COAs that are diverse from a domain experts’ 
perspective. 

6.4 Combat Wargamer 

The majority of the implementation effort (approximately 95 percent) in FOX-GA went into 
designing and building the wargamer. The wargamer can be viewed as a course grained, 
agent-based simulator (somewhat similar in spirit to Laird’s TacAir-Soar aones et al., 1994)). 
We hesitate to use the term “simulator” because in this domain it usually implies a much more 
detailed replication of battlefield events. However, we feel that much of the information 
available in such detailed simulations (built for training purposes) is not pertinent to COA 
generation and analysis. 

Evolutionary Computation Volume 7, Number 1 57 



J. Schlabach, C. Hayes and D. Goldberg 

FOX-GAls combat wargamer models the overall battle as a collection of minor engage- 
ments between subordinate forces. Each friendly and enemy subordinate unit acts as an agent. 
The agents follow a set of combat mles to determine appropriate maneuvers and changes in 
mission during battle. The  intersections between the lines of defensible terrain (LDTs) and 
avenues of approach (AAs) form the vertices of a grid on which the agents can move. These 
intersections are significant because they represent the choke points in the AAs where enemy 
forces might set up defenses. These intersections form a superset of eligible locations where 
fights might occur. At each time step, each agent can either stay in place, or move forward, 
backward, or laterally by one vertex. Additionally, each agent may change its mission sta- 
tus at each time step. For example, an agent representing a reserve may change its status 
during the course of battle from “reserve” to “attack” to “disengaged.” The agents change 
position and mission status in accordance with guidance encoded in each COA bitstring (such 
as conservation of strength). This helps ensure that the agents “cooperate” and act in unison. 

Each friendly COA is made to fight 6 battles against a variety of enemy COAs in order 
to determine how each will perform under a variety of enemy situations. This is important 
because the commander typically does not know what the enemy will do. It is therefore 
important to assess each COA3 overall robusmess under varylng circumstances. The enemy 
COAs are fixed (not computed by the FOX-GA) and are representative of the superset of 
COAs available to the enemy commander. 

Initially, all friendly subordinate units start out in the tactical assembly areas (TAAs) (see 
Figure 2 ) .  Depending upon the enemy COA, the enemy forces start defensive operations on a 
mixture of positions on LDTs I and 2 .  Given these starting conditions the combat wargamer 
iterates through the following sequence of actions until there is no more fighting in any AA 
(termination conditions), or 20 time steps have passed (each iteration represents one time 
step): 

Examine intersections of LDTs and AAs. Identify all intersections having both friendly 
and enemy units on them. These are the locations a t  which fire fights will occur. 
Depending upon the interaction of the combat rules each intersection may have zero, 
one, or more units. 

0 Compute force ratios to assess losses for each side. 

0 Apply combat rules to allow all agents (units) to decide (in accordance with the explicit 
guidance of the governing COA) both their next move and whether to change their 
mission status. 

Force ratios. Force ratios are a traditional method of computing the losses inflicted 
on each side during battle. This system of modeling combat has been empirically derived 
from historical studies of combat. The Army invests considerable resources to maintain 
accurate values for various types of units in order to insure that force ratio calculations 
provide reasonable estimations of battle results. FOX-GA uses generic representations of this 
system, but can be “tuned” using the more comprehensive and accurate Army models. 

The  first step in computing force ratios is to estimate the “base strength” of each unit. 
This strength is estimated by examining the size and composition (e.g., armor or mechanized 
infantry) of each subordinate unit. This base strength is then multiplied with combat multipliers 
that impact the effectiveness of each unit. The factors that contribute combat multipliers to a 
unit include the availability of general resources (such as field artillery and military intelligence) 
and how well the available terrain supports offensive and defensive operations. 

58 Evolutionary Computation Volume 7, Number 1 



FOX-GA 

Once the strengths of the friendly and enemy units have been computed, they are com- 
pared by examining their ratio (attackeddefender). This is the force ratio. A ratio of 3:l 
(attacker:defender) will result in equal percentages of loss for both sides.3 A larger ratio favors 
the attacker and a smaller ratio favors the defender. 

Example of a combat rule. The combat rules represent the most important and most 
knowledge intensive portion of FOX-GA. Combat rules tend to be complex and situation de- 
pendent. They use the parameters set in FOX-G& bit string representation such as “Bypass 
criteria” and “Conservation of Strength” in order to automatically replicate the commander’s 
decision making. The COA parameters guide the agents’ application of the combat rules so 
that they can cooperate and act in unison. Following is a portion of an example combat rule: 

Situation: A friendly and an enemy unit are at  the same location (choke point). In engaging 
the enemy the friendly forces have acquired a “penetration“ by destroying a platoon of the 
enemy’s defense. 

Conditional Responses: 

0 If the friendly unit has a sister unit in a “Follow and Support“ status, then the original 
friendly force will exploit the penetration by bypassing the enemy defense, leaving the 
Follow and Support unit to mop up the remaining enemy. 
action: Move friendly unit forward one vertex to the next LDT. 

0 If the friendly unit does not have a sister unit in a “Follow and Support” status, the 
friendly unit checks to see if the remaining enemy forces at the defense are in greater 
strength than the bypass criteria associated with the overall friendly COA. If the enemy 
is larger than the bypass criteria the friendly force will stay in place until the enemy is 
reduced in strength to below the bypass threshold. 

action: No change in position or mission status. 

0 The friendly unit will also check to see if its own strength remains above the conservation 
of strength threshold associated with the governing COA. If the friendly unit’s strength 
has dipped below that threshold, then 
action: Change mission status to “disengaged. 

0 If a unit’s mission has changed to “disengaged” and it is still vulnerable to fire from the 
enemy, then it will check the status of reserve forces. If all reserve forces have been 
committed, the disengaged unit will withdraw to safer terrain. 
action: Move friendly unit back one vertex to previous LDT. 

0 Otherwise the disengaged force will stay in place (in case the reserve force, upon com- 
mitment, needs to use the terrain that would otherwise be ceded to the enemy). 
action: No change in position or mission status. 

Termination conditions: fighting stops in an AA when either: the enemy disengages, 
the friendly units disengage, or one side is completely eliminated. However, the war gaming 

3The attacking force needs to be about 3 times as large as the defending force in order to offset the advantages 
that the lines of defensible terrain confer upon the defender. 
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does not stop until the fighting has stopped in evely  AA. This is because active (engaged) forces 
can move laterally between the AAs. Premature termination is prevented because every unit 
starts battle in a mission status other than “disengaged”, and can only consider disengagement 
after incurring combat losses. 

6.5 The Fitness Function: 

Once the wargamer has finished all six battles for a given COA, its fitness can be computed. 
Fitness is a function of the remaining strengths of the friendly units, the remaining strength 
of the enemy units, and the amount of terrain gained or lost during the battle. However, 
depending upon the situation commanders place differing importance on each of these factors. 
FOX-GA allows the commander to use two different fitness functions, enemy oriented or t ewa in  
oriented. This preference mode is specified as a user input, and remains a constant throughout 
the duration of FOX-GA3 evaluations. 

Enemy oriented. The enemy oriented fitness function measures success of the battle 
in terms of the amount by which the enemy forces have been reduced relative to the friendly 
forces. The fitness score is acquired by summing all of the (multiplied) combat strengths at 
the end of combat, and then subtracting the sum of all enemy strengths. 

Terrain oriented. The terrain oriented fitness function places importance on both the 
amount by which the enemy has been weakened and the amount of terrain captured or lost. 
The fitness function for this mode of evaluation modifies the above equation by multiplying 
the combat strength of all forces (both enemy and friendly) by the “depth” of their position. 
Depth of position refers to the distance (number of LDTs) that a unit has moved forward 
from its original starting position during the battle. 

The combat wargamer and fitness function used jointly can realistically assess domain 
times\ to various COAs. For example, the COA illustrated in Figure 3 is properly identified 
by FOX as being of high quality. The COA illustrated in Figure 7 is properly identified by 
FOX as being of very low quality. In domain terms, because the middle AA is not used in 
the attack, friendly forces have no “mutual support” between the battalion attacking along 
&A-1 and the remainder of the brigade in AA-3. Additionally, the prioritization scheme has 
unintelligently assigned all available general resources to support the “Follow and Support” 
(middle) battalion in AA-3, which severely cripples the lead battalions. Finally, this COA has 
allocated two armored companies and no infantry companies to an infantry battalion, while 
simultaneously assigning five infantry companies and no armored companies to an armored 
battalion. This does not take advantage of th! e habitual relationships and ingrained expertise 
that would otherwise be available. The armored battalion is the right most battalion in AA-3, 
whereas the other three battalions are all mechanized infantry. 

7 Performance of FOX-GA 

The performance of FOX-GA was assessed using two experiments. In the first, FOX-GRs 
abi1it)- to produce high-quality (i.e.fit) solutions was compared to two other search techniques, 
monte carlo @AC), and monte carlo combined with hill climbing (MCHC), in order to 
compare the average solution fitness achieved by each. The  results of the first experiment are 
reported in Figure 8. 

In the second experiment, the two best performing algorithms identified by the first 
experiment were examined in greater detail in order to compare how method choice and 
population affected the 1) solution diversity, 2 )  solution quality within each niche. The  results 
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for this experiment are summarized in Figures 9, 10 and 1 1. 

7.1 Experiment 1 

FOX-GAwas tested on a Sun Ultra 1 workstation with 192 Megabytes ofRAM. SO COAs (300 
battles) per second, which is equivalent to 3000 COAs per minute. The  speed of execution 
for this prototype produced its best set of solutions in less than 30 minutes. To provide a 
comparison, two additional search engines, FOX-MC and FOX-MCHC, were built that use 
FOX-GAS combat wargamer and fitness function, but use non-GA techniques and search 
strategies. The results and comparisons between the three search engines (GA, MC, and 
MCHC) are shown in Figure 8. 

FOX-MC searches through possible COAs using a “Monte Carlo” scheme. In this 
scheme, one random solution is generated each iteration. At each interaction it saves a 
solution if 1) it is one of the 10 best solutions found thus far, and 2) it is the best in its 
neighborhood. Thus, there is niching, but no hill climbing involved in the search for a 
solution; each new solution is produced independently of the previous ones. The  goal of 
this test is to see how much the various aggregate properties of the GA outside of niching, 
such as hill climbing, help or hinder the search as compared to a search by random statistical 
sampling. The number of random COAs generated and evaluated is equal to the total number 
of COAs evaluated by the other two methods (when multiplying population size times the 
number of generations). 

FOX-MCHC uses a “Monte Carlo with Hill Climbing” scheme. The  MCHC engine 
generates an initial population of 1000 solutions at random, and then conducts simple hill 
climbing on each member of the population. The  simple hill climbing for each member of a 
population occurs by mutating one bit at random. This is different and possibly weaker than 
the traditional “bitwise” mutation operator. The  mutated COA replaces the old COA if and 
only if it demonstrates an improvement in wargaming fitness. 

Comparisons. Figure 8 shows a comparison of all three search strategies: FOX-GA, 
FOX-MC, and FOX-MCHC. The comparative performance between FOX-GA and FOX- 
MCHC is not meant to suggest the relative merit of GA and non-GA evolutionary computing 
techniques. There are advantages and disadvantages to both approaches. The vertical axis 
shows the average fitness of the ten best strings for each generation, and the horizontal axis 
shows the number of generations elapsed (or equivalent number of random tests for the 
Monte Carlo engine). For this comparison, all three engines used the following user specified 
wargaming input parameters of: 

0 Friendly Status = 100 percent, 

0 Enemy Status = 100 percent, 

0 Fitness Evaluation Mode = terrain-oriented, 

0 Population Size = 1000 (for both FOX-GA and FOX-MCHC, population size for FOX- 
hIC was l,OOO,OOO), 

Number of generations = 1000, and 

0 Number of COAs returned = 10. 
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Figure 8: Comparison of FOX-GA, FOX-MC, and FOX-MCHC 

"Risk" was set to zero so that the wargamer would assess each friendly COA in terms of 
its performance against all six enemy COAs. If the risk option were set higher, the wargamer 
would not have included the performance of the more damaging enemy COAs in the fitness 
score. 

Results. We found that both FOX-GA and FOX-MCHC substantially outperformed 
the FOX-MC; the ten best COAs returned by FOX-MC were far lower in quality than those 
returned by the other two. FOX-GA found slightly better quality COAs than FOX-MCHC, 
and in faster time. FOX-GA tends to produce good COAs after as few as 50 generations, with 
best performance occurring after 200-300 generations. 

7.2 Experiment2 

In order to get a closer, more qualitative look at the differences in performance between 
FOX-GA and FOX-MCHC we created 2 histograms showing the fitness of COAs found 
in each of the 60 COA neighborhoods. The first histogram (Figure 9) shows the fitness 
of COAs found in each neighborhood for a population of 200 after 200 generations. The 
horizontal axis represents the index for the 60 formations (neighborhood niches), while the 
vertical axis represents the average fitness for all the strings within each niche at the end of 
the last generation. Figure 10 shows what happens when the population is increased to 600. 

What we found was that FOX-GAls niching strategy allowed it to concentrate on the 
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Figure 9: Niching Comparison of FOX-GA and FOX-MCHC; population of 200 

most promising niches a t  the expense of the less promising niches. For example, in Figure 
9, FOX-GA produced COAs in fewer niches ( 2 3  niches) than FOX-MCHC, which produced 
COAs in 45 niches. However, FOX-GA found better COAs in any given niche than did 
FOX-MCHC. Furthermore, the niches that FOX-GA elected not to preserve produced only 
mediocre COL4s. This leads to the notion of “useful” versus “useless” diversity. 

In general, battlestaff typically prefer to be presented with large sets of diverse COAs so 
that they can consider different trade-offs. However, having a large variety of COAs is not the 
only criteria that is important to battlestaffs. It is better, in general, to select from a smaller 
set of higher quality choices than it is to select from a wider range of mediocre choices. Thus 
we conclude that FOX-GA probably provides a more appropriate set of choices to battlestaffs 
than does FOX-MCHC. The  search must provide the user not only with diverse solutions, 
but also with high qunlig dizlenity. 

Figure 10 illustrates that if the battlestaff wish to increase the diversity number of COAs 
while still maintaining high quality, they can achieve it by adjusting the size of the base 
population. When the population size is increased to 600 (as shown in Figure lo), FOX-GA 
produces 36 excellent solutions, which is thirteen more than it produced with a population 
size of 200. 

Figure 11 summarizes the differences between FOX-GA and FOX-MCHC for pop- 
ulations of 200, 600, and 1200. FOX-MCHC consistently produces more solutions, but 
F O X G 4  consistently produces better solutions a t  all population sizes. 

8 Discussion 

t\7th smaller populations, FOX-GA is capable of producing reasonable COAs in less than 
five minutes, but takes up to 20-30 minutes to deliver the best COAs. Both of these times are 
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similar to typical development times for current battlestaffs. This is important because most 
battlestaffs would be willing to wait 5 minutes, but rarely have the time available to wait 30 
minutes. 

FOX-GA offers four main advantages over the typical manual methods currently used 
by battlestaffs. First, FOX-GA produces large numbers of distinctly different and valid 
COAs. Typical battlestaffs sometimes have trouble identifylng more than a handful of COAs. 
Second, COAs generated by FOX-GA are already stored and represented in the computer, 
which eliminates the need to manually enter developed COAs into the computer. Data entry 
is a time consuming process when performed by humans. Third, FOX-GA provides more 
comprehensive wargaming data than humans can usually produce manually. A battlestaff 
typically requires 10-15 minutes to wargame one friendly COA against one enemy COA 
manually, while FOX evaluates 3000 friendly COAs per minute, with each friendly COA 
warganied against 6 enemy C O h .  FOX-GA allows a much more thorough analysis to be 
performed much more rapidly. Fourth, FOX-GA provides users with a very flexible way 
to explore COA options because of the flexibility inherent in GAS. This enables them to 
tailor FOX-GA to meet needs unanticipated in the original objectives. Thus, by changing the 
parameters of the GA (e.g., population size and the number of generations) they can change 
the behavior of FOX-GA to return solutions more quickly or generate a broader, more useful 
diversity of solutions. 

We feel the research on FOX-GA demonstrates the benefits that can be attained when do- 
main experts (MAJ Schlabach) closely collaborate with methods experts (Hayes and Goldberg) 
for extended periods of time. While such a claim may seem obvious, the close cooperation be- 
tween doinain and methods experts is too often missing in development of intended solutions. 
Our hope is that the contributions of FOX-GA will reinforce the notion that domain experts 
need to be intimately involved in teams for developing real systems for complex domains. 

9 Future Work 

Future work includes projects to generalize FOX to allow for any combination of terrain, 
enemy forces, and friendly forces; and to construct an intelligent human-computer interface 
to allow users to view trade-offs offered by selected COAs. Such a display would be presented 
on a three dimensional graph which would simultaneously show the COAIs ability to 1) capture 
terrain, 2 )  inflict enemy losses, and 3) to preserve the lives of enemy troops. This would allow 
the battlestaff to quickly visualize trade-offs. We also plan to enhance FOX-GA3 performance 
by investigating the use of other GA methods. We will conduct a comparative analysis of 
FOX-GA and various non-GA search methods such as non-GA evolutionary computing, 
simulated annealing, and linear programming. We have already done a number of usability 
studies in which feedback from users was used to identify missing functions and awkward 
interfaces in FOX-GA. Finally, a user evaluation of the effectiveness of FOX-GA for users of 
a variety of experience levels is currently underway. Early results indicate that users explore a 
wider variety of COAs, and in more detail, than they do by hand. 

10 Summary and Conclusions 

FOX-GA demonstrates the effective application of a genetic-algorithm for rapidly generating 
large numbers of offensive COAs (plans), evaluating their fitness, and identifylng a diverse 
set of distinctly different high quality options which can be presented to users. In  designing 
this system, it was important adapt the GA methods and simulators used by the system so 
as to produce solutions that made sense in the context of the domain, and to meet users’ 
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domain-based needs for speed, solution diversity and quality, control, and flexibility. Many 
of these challenges are common to decision support tasks in other domains such as medical 
decision making, manufacturing planning, mechanical design, and architectural design. 

A major difficulty in addressing the challenges of this problem was in satisfymg all of the 
needs simultaneously: diversity, quality and efficiency. The niching strategy used by the GA 
proved important in producing solutions that were both diverse and high quality within each 
niche. An important issue in enabling efficient evaluation of solutions was the development of 
an efficient wargamer to evaluate COAs rapidly. This gain in efficiency was achieved by first 
developing the BRS Architecture, a set of course-grained representations of domain concepts 
that allow appropriate yet intelligent trade-offs to be made between computational efficiency 
and accuracy of evaluation of fitness. 

A comparative evaluation of three search techniques (FOX-GA, FOX-MC, and FOX- 
MCHC) showed that FOX-GA’s genetic algorithm and niching strategy substantially outper- 
formed a more traditional monte carlo search (FOX-MC). The reason for FOX-GA’s superior 
performance was that its genetic algorithm allows the search to take advantage of the structure 
inherent in the solution space, while the monte carlo search can not take advantage of this 
structure. A second finding from the comparative evaluation was that although FOX-GA’s 
average “fitness” performance was similar to that of the third search strategy which used a 
mixed monte carlo and hill climbing (FOX-MCHC), FOX-GAls individual solutions tended 
to be superior and its solution set more appropriate for the application. Although the hill 
climbing strategy produced a broader variety of solutions, FOX-GA produced a reasonably 
diverse set of COAs that were higher in quality, and therefore more useful overall for our 
application which requires both solution diversity and quality. Finally, we found that the 
diversity of the solutions produced by FOX-GA could be increased by simply increasing the 
population size. This flexibility inherent in genetic algorithms provides users with flexibility 
in the way they can choose to explore the problem space. They can adjust the amount of 
solution diversity produced to suit their preferences. 

FOX-GAls impact will be to assist battlestaffs, who are both time constrained and cog- 
nitively overloaded, to rapidly explore options, plan, and better cope with the information 
demands of modern warfare. Additionally, since the challenges in this problem are common 
to a wide range of complex decision support problems, we believe FOX-GAls approach will 
be useful in a wide range of domains. 
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