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Abstract

Evolutionary algorithms are frequently applied to dynamic optimization problems in which
the objective varies with time. It is desirable to gain an improved understanding of the influence
of different genetic operators and of the parameters of a strategy on its tracking performance. An
approach that has proven useful in the past is to mathematically analyze the strategy’s behavior in
simple, idealized environments. The present paper investigates the performance of a multiparent
evolution strategy that employs cumulative step length adaptation for an optimization task in
which the target moves linearly with uniform speed. Scaling laws that quite accurately describe
the behavior of the strategy and that greatly contribute to its understanding are derived. It is
shown that in contrast to previously obtained results for a randomly moving target, cumulative
step length adaptation fails to achieve optimal step lengths if the target moves in a linear fashion.
Implications for the choice of population size parameters are discussed.

Keywords: genetic and evolutionary computation, step length adaptation, tracking problem, dy-
namic optimization

1 Introduction

Evolutionary algorithms are nature inspired heuristics for search and optimization that model the it-
erated interplay of variation and selection in a population of candidate solutions. Comprehensive
treatments of the subject area can be found in (Bäck, 1996; Goldberg, 1989; Mitchell, 1996; Rechen-
berg, 1994). Reasons for the widespread use of evolutionary algorithms include their often observed
robustness, the ease with which the underlying paradigm is understood and implemented, and their
wide applicability. Areas of application today include management, control, design, scheduling, pat-
tern recognition, and decision making.

In recent years, a fair amount of theoretical investigation has contributed substantially to our
understanding of the dynamics of evolutionary search strategies on a variety of problem classes. For
an overview, see (Beyer et al., 2002). However, most of the problem classes that have been considered
are of a static nature. In contrast, many problems encountered in the computational, engineering, and
biological sciences are dynamic in that the objective is not constant but varies with time. Instances of
dynamic optimization problems arise for example in the context of online job scheduling, where new
jobs arrive in the course of the optimization. In the engineering sciences, many control problems are
of an inherently dynamic nature. An extensive list of references concerned with dynamic optimization
problems in the biological sciences has been reviewed by (Bürger, 2000).
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In contrast to static optimization, where the goal is to rapidly and accurately locate a (near) op-
timal solution, the task in dynamic optimization frequently amounts to tracking a moving target as
closely as possible. Strategies for dynamic optimization need to continually adapt to changes in the
environment. Evolutionary algorithms are strategies that are population based rather than point based,
and that place great emphasis on adaptability. They are thus believed to be good at handling time-
varying objectives. In fact, dynamic optimization is frequently cited as a prime application area for
evolutionary algorithms.

The knowledge available with respect to the capabilities of evolutionary algorithms for dynamic
problems is mostly of an empirical nature. An extensive survey of work concerned with evolutionary
optimization in dynamic environments along with a collection of benchmark functions and a dis-
cussion of methods that have been proposed to improve the performance of evolutionary algorithms
when the objective varies with time has been compiled by (Branke, 2001). (Angeline, 1997) com-
pares empirically the tracking performance of an evolutionary algorithm employing a form of muta-
tive self-adaptation with that of a strategy using a simple heuristic for step length adaptation. The
fitness environment considered is a three-dimensional, spherically symmetric objective function that
is shifted periodically either in a random fashion or on a linear or a spherical path. Angeline observes
that the self-adaptation mechanism is not without problems in the dynamic case. In that same fitness
environment, (Bäck, 1998) compares different variants of mutative self-adaptation and presents evi-
dence that seems to indicate that the lognormal self-adaptation used in evolution strategies performs
better than the variant of self-adaptation commonly used in evolutionary programming. (Salomon
and Eggenberger, 1997) compare empirically the performance of evolution strategies with that of a
breeder genetic algorithm on the sphere, an ellipsoid, and Rastrigin’s function, where the coordinates
are shifted by a constant increment in every time step. The search space dimensionalities they con-
sider for the sphere are N = 10 and N = 30. While they do not quantify the term, they find that the
sensitivity to the particular implementation of the strategy and to its parameter values is much lower
for the tracking task than it is in a static environment. Without providing details, they also report to
have observed that recombination is not beneficial for tracking a moving target. (Weicker and We-
icker, 1999) contrast self-adaptation of a single mutation strength with that of N mutation strengths
and adaptation of the full mutation covariance matrix and find that in more rapidly changing environ-
ments, the adaptation of more than a single mutation strength becomes unreliable. Finally, (Droste,
2002) presents a first rigorous analysis of the performance of a (1+1)-strategy on a discrete, dynamic
objective function. However, focus in that paper is not on the tracking behavior of the strategy but
rather on the expected time required to first reach the optimum.

Altogether, the above references provide a host of empirical knowledge with respect to evolu-
tionary optimization in dynamic environments. In an attempt to establish some theoretical results to
complement and explain that empirical knowledge, in (Arnold and Beyer, 2002b) the performance of
a multiparent evolution strategy with cumulative step length adaptation has been analyzed for a dy-
namic optimization problem in which the target moves in a random fashion. The tools employed in the
work had previously been used in an analysis of the behavior of that strategy on a static optimization
problem disturbed by noise (Arnold, 2002; Arnold and Beyer, 2002a). It was found that for the case
of the randomly moving target, cumulative step length adaptation is able to achieve asymptotically
optimal step lengths. It was noted that the case of a target that moves linearly rather than randomly
is an interesting one to consider as the linear motion introduces positive correlations in the sequence
of steps to be taken. As cumulative step length adaptation relies on the conjecture that consecutive
steps should be uncorrelated, it appears reasonable to expect suboptimal performance of cumulative
step length adaptation for the case of the linearly moving target.

The present article presents the analysis of the tracking performance of the (�=�; �)-ES with
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cumulative step length adaptation for the case of a linearly moving target. The analysis is more
difficult than that of the tracking problem with random motion of the target as the linear motion of
the target introduces an additional degree of freedom in the calculations. The fitness environment
closely resembles that considered in (Angeline, 1997; Bäck, 1998; Salomon and Eggenberger, 1997).
However, in contrast to those references, no particular values need to be assumed for the size of the
population, the speed of the target, or the search space dimensionality. Instead, scaling laws that
describe the dependence of the performance of the strategy on those parameters are obtained. Such
scaling laws provide a quantitative understanding of the dynamics of the evolutionary processes that
makes it possible to predict optimal parameter settings for the problem class considered. Moreover,
we share the belief of (van Nimwegen and Crutchfield, 2001) that a general, predictive theory of
the dynamics of evolutionary search can be built incrementally, starting with a quantitative analytical
understanding of specific problems and then generalizing to more complex situations. In this view,
the present article can be considered as a step neither at the beginning nor at the end of the chain of
problems to be considered.

2 The (�=�; �)-ES

In contrast to genetic algorithms that are most often used in discrete search spaces, evolution strategies
are a class of evolutionary algorithms that are used mostly for the optimization of real-valued functions
f : IRN ! IR. The (�=�; �)-ES is a variant that is popular both due to its proven good performance
in static settings and its relative mathematical tractability. For a thorough introduction to evolution
strategies, see (Bäck, 1996; Rechenberg, 1994; Schwefel, 1995). An explanation of the (�=�; �)-
symbolism can be found in (Beyer, 2001).

Like other evolutionary algorithms, the (�=�; �)-ES strives to drive a population of candidate
solutions towards increasingly better regions of the search space. It operates with a population P of �
candidate solutions. In every time step t, a set Q(t) of � candidate solutions is generated from P(t) by
means of variation. Subsequently, selection ensures that the � best of the � candidate solutions inQ(t)
form P(t+1) . Figure 1 illustrates the basic procedure. Note that while generally, initialization schemes
and termination criteria are important components of the algorithm, they are frequently application
dependent and are irrelevant in the present context. Rather than considering them here, we refer
to (Bäck, 1996) for a discussion.

Variation is accomplished by means of recombination and mutation. For the (�=�; �)-ES, recom-
bination simply computes the centroid, i.e. the arithmetic mean, of the parental population. Mutation
consists of adding a random vector �z, where z consists of independent, standard normally distributed
components, to that centroid.1 The standard deviation � of the components of vector �z is referred to
as the mutation strength, vector z as a mutation vector. Notice that the mutation strength determines
the step length of the strategy. The average of those mutation vectors that correspond to offspring can-
didate solutions that are selected to form the population of the next time step is the progress vector hzi.
Letting x denote the population centroid, selection thus ensures that

x
(t+1)

= x
(t)

+ �hzi(t) (1)

holds.
1The restriction to isotropic mutations has been made here in order to keep the analysis of the strategy’s behavior

tractable. Practical implementations usually rely on correlated mutations that can vary in magnitude in different dimensions.
The step length adaptation scheme outlined below has a generalization for that case that is described in (Hansen, 1998;
Hansen and Ostermeier, 2001).
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selection variation

population P

offspring Q

Figure 1: The basic evolution loop. Operators that introduce variation are applied to a population P of
� candidate solutions to generate a set Q of � > � new candidate solutions. The � best of the newly
generated candidate solutions are then selected to form the population of the next time step.

In real-valued search spaces, it is generally necessary for the mutation strength to be adapted
continuously to the local characteristics of the objective function. Information from the present and
possibly from past time steps needs to be used in order to learn appropriate step sizes. A mechanism
that is commonly employed for the adaptation of the mutation strength is the cumulative step length
adaptation algorithm of (Hansen, 1998; Hansen and Ostermeier, 2001). It relies on the conjecture that
if the mutation strength is below its optimal value, consecutive steps of the strategy tend to be parallel,
and if the mutation strength is too high, consecutive steps tend to be antiparallel. For optimally
adapted mutation strength, the steps taken by the evolution strategy are uncorrelated. This is plausible
intuitively as several steps in the same direction in search space are ideally replaced by a single longer
step in that direction. Conversely, consecutive steps that nullify each other are a sign that the step
length is too high. So as to be able to reliably detect parallel or antiparallel correlations between
successive steps, information from a number of time steps needs to be accumulated. For the (�=�; �)-
ES, the accumulated progress vector s is defined by s(0) = 0 and the recursive relationship

s
(t+1)

= (1� c)s(t) +
p
�c(2 � c)hzi(t); (2)

where c is a constant determining how far back the “memory” of the accumulation process reaches.
The mutation strength is updated according to

�(t+1) = �(t) exp

 
ks(t+1)k2 �N

2DN

!
; (3)

where D denotes a damping constant. Note that the term N in the numerator of the argument to the
exponential function is the mean squared length of the accumulated progress vector if consecutive
progress vectors are stochastically independent. If the squared length of the accumulated progress
vector is less than N then the mutation strength is decreased. If it is greater than N then the mutation
strength is increased. Also note that the prescription Eq. (3) for adapting the mutation strength has
been changed slightly from the prescription in the original algorithm given by (Hansen, 1998) in that
here, adaptation is performed on the basis of the squared length of the accumulated progress vector
rather than on its length. The difference in performance appears to be insignificant while elegance in
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the formulation is gained by the change. The constants c and D are set to 1=
p
N and

p
N , respectively,

according to recommendations made by (Hansen, 1998).
It should be mentioned that cumulative step length adaptation is not the only mechanism conceiv-

able for the adaptation of mutation strengths. Possible alternatives include:

Nested evolution strategies (Herdy, 1992; Rechenberg, 1994). Nested evolution strategies adjust
strategy parameters such as mutation strengths by means of evolutionary optimization on a meta
level. Several populations, each one with their own parameter settings, compete with each other
for survival. After a number of time steps, the respective progress of the different strategies is
examined. The mutation strengths of those populations that have achieved the largest progress
are used as a basis for generating mutation strengths for the next round of competition by means
of recombination and mutation.

Mutative self adaptation (Rechenberg, 1994; Schwefel, 1995). Mutative self-adaptation includes
the mutation strengths into the optimization process at the same hierarchical level as the object
parameters of the problem. Different candidate solutions have differing mutation strengths.
Assuming that favorable mutation strengths are more likely to generate successful offspring than
unfavorable ones, selection of favorable mutation strengths is then a by-product of evolution.

Machine learning approaches (Ravisé and Sebag, 1996; Sebag et al., 1997). The problem of mu-
tation strength adaptation can be understood as a learning task. An explicit memory of the
evolutionary process can be created in the form of a set of rules by discriminating between
successful trials and unsuccessful ones. Mutation strengths can then be adapted by means of
inductive learning. (Michalski, 2000) suggests a different approach in which a machine learn-
ing system seeks reasons why certain individuals in a population are superior to others. These
reasons, formulated as inductive hypotheses, are then used to generate new populations directly
rather than by recombination and mutation.

In the present article, we choose to consider cumulative step length adaptation due to its relative
mathematical tractability and as it is known to generate asymptotically optimal step lengths for the
random tracking problem studied in (Arnold and Beyer, 2002b).

3 The Tracking Problem

The purpose of this section is to introduce the tracking problem studied in the remainder of this article.
In order to study the tracking performance of the (�=�; �)-ES, we consider a dynamic version of the
sphere model. The sphere model is the set of all functions f : IRN ! IR with

f(x) = g(kx̂ � xk);

where g : IR! IR is a strictly monotonic function of the distance R = kRk = kx̂�xk of a candidate
solution x from the target x̂. It has frequently served as a model for fitness landscapes at a stage where
the population of candidate solutions is in relatively close proximity to the target and is most often
studied in the limit of very high search space dimensionality. So as to study the tracking behavior
of evolutionary algorithms, several authors (Angeline, 1997; Arnold and Beyer, 2002b; Bäck, 1998;
Salomon and Eggenberger, 1997) have added a dynamic component to the sphere model by stipulating
that the target x̂ vary with time. Several modes of motion of the target are conceivable and have been
explored. Examples include random motion, linear motion, and circular motion in search space. The
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Figure 2: Mutation strength �=Æ and stationary distance from the target R=(NÆ) as functions of the
time t. The strategy is a (3=3; 10)-ES with cumulative step length adaptation. The population is
initialized to be centered at the location of the target at time step 0. The initial mutation strength is
� = Æ. The dashed and solid lines have been measured in typical runs of the strategy with search
space dimensionalities N = 40 and N = 400, respectively.

case of random motion has been studied from a theoretical perspective in (Arnold and Beyer, 2002b).
If the target shifts such that

x̂
(t+1)

= x̂
(t)

+ Æẑ;

where vector ẑ consists of N independent, standard normally distributed components, then it was seen
that the mutation strength that minimizes the distance at which the target is tracked is � =

p
�Æ, and

that in the limit N ! 1, that mutation strength is realized by cumulative step length adaptation. In
the present paper, we consider linear motion and assume that the target at time step t+ 1 is

x̂
(t+1)

= x̂
(t)

+ Æv; (4)

where vector v is constant and has unit length. As in the case of random motion, the factor Æ is a
measure for the speed of change of the objective.

Figure 2 illustrates the time behavior of a (�=�; �)-ES with � = 3 and � = 10 that uses cumu-
lative step length adaptation for the tracking problem with linear dynamics of the target. Shown are
measurements of typical runs of the strategy for search space dimensionalities N = 40 and N = 400.
The results that are obtained for other values of � and � qualitatively agree. It can be seen that after
a transient period, a state that is characterized by the mutation strength and the distance from the
target fluctuating around stationary mean values is reached. Additional measurements not included
here seem to indicate that the length of the transient period is of order N . The stationary state that
is reached is independent of the initialization of the strategy. Furthermore, it can be seen that the
magnitude of the fluctuations decreases with increasing search space dimensionality. It is the goal in
the remainder of this paper to characterize the dependence of the stationary state on the population
size parameters � and �, the speed of the target Æ, and the search space dimensionality N .

Analyses of the behavior of evolution strategies on the sphere model rely on a decomposition of
vectors that is illustrated in Figure 3. A vector z originating at search space location x can be written
as the sum of two vectors zA and zB , where zA is parallel to R = x̂� x and zB is in the hyperplane
perpendicular to that. In the present context, z can be either a mutation vector or a progress vector.
The vectors zA and zB are referred to as the central and lateral components of vector z, respectively.
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Figure 3: Decomposition of a vector z into central component zA and lateral component zB . Vector zA
is parallel to x̂ � x, vector zB is in the hyperplane perpendicular to that. The trailing angle � is the
angle formed by vector R = x̂� x and the direction v of the motion of the target.

The signed length zA of the central component of vector z is defined to equal kzAk if zA points
towards the target and to equal �kzAk if it points away from it.

Due to the stochastic nature of the search process and in particular to the presence of the lateral
component of mutation vectors, the population follows the target not on the straight line defined by
vector v but at an angle that is nonzero on average. As illustrated in Figure 3, the trailing angle � is
defined as the angle formed by the vector R = x̂ � x, where x is the population centroid, and the
direction v of the motion of the target. The analyses in Sections 4 and 5 will reveal that the average
magnitude of that angle can be substantial.

Clearly, from Eqs. (1) and (4),

R
(t+1)

= R
(t)

+ Æv � �hzi(t) (5)

holds as a result of the motion of the target and the step that the strategy takes. Moreover, it is well
known from (Beyer, 2001; Rechenberg, 1994) that in the limit N !1, the expectation of the signed
length of the central component of the progress vector is

E [hzAi] = c�=�;�; (6)

where c�=�;� is the expectation of the average of the � last order statistics of a sample of � independent,
standard normally distributed random variables. An explicit prescription for computing c�=�;� has
been provided in (Beyer, 2001). The lateral component of the progress vector is of random direction
in the hyperplane defined by normal vector R = x̂�x. Moreover, in the limit of infinite search space
dimensionality, the expected overall squared length of the progress vector is

E

�
khzik2

�
=

N

�
: (7)

The standard deviation of that squared length is of order
p
N , diminishing the relative influence of

fluctuations as N tends to infinity. Notice that this effect is responsible for the decrease in fluctuations
that had been observed in Figure 2. From Eq. (6) and Figure 3 it is easily seen that

E[R � hzi] = Rc�=�;� (8)
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holds. Moreover, due to the randomness of the direction of the lateral component of the progress
vector,

E[hzi � v] = E[hzAi � v] + E[hzBi � v]| {z }
=0

= c�=�;� cos� (9)

holds as a consequence of Eq. (6).

4 Analysis for Constant Mutation Strength

Before proceeding to the analysis of the behavior of the (�=�; �)-ES with cumulative step length
adaptation, in this section we first consider the case that the mutation strength is fixed. The strategy
in combination with the dynamic objective function outlined in Section 3 forms a stochastic dynamic
system. Due to the symmetries inherent in both the environment and the strategy, for fixed mutation
strength, the state of that system can described by just two variables. A possible choice for those
variables are the distance R of the population centroid from the target and the cosine of the trailing
angle �. Provided that the mutation strength is large enough for the strategy to be able to keep pace
with the target, the system tends toward a limit state in which the state variables have time-invariant
distributions.

The approach to determining the scaling behavior of the (�=�; �)-ES on the tracking problem
with linear dynamics of the target is the same as that employed in (Arnold and Beyer, 2002b) for the
tracking problem with random dynamics of the target. It consists in using stationarity conditions while
neglecting all fluctuations. In particular, it is assumed that the progress vector has a central component
of length c�=�;�, that its lateral component is of random direction, and that its overall squared length
is N=�. As a consequence, quantities involving the progress vector can be replaced by their expec-
tations given in Eqs. (6), (7), (8), and (9). The state variables tend to stationary limit values that can
be obtained by relatively simple considerations. As fluctuations of the progress vector decrease with
increasing search space dimensionality, the approach that neglects them becomes increasingly accu-
rate with increasing N . We will see that good predictions are obtained already for relatively moderate
values of N .

It can be seen from Figure 3 that R � v = R cos�. Therefore, at time step t+ 1,

R(t+1)
cos�(t+1) = R

(t+1) � v

=

�
R

(t)
+ Æv � �hzi(t)

�
� v

' R(t)
cos�(t) + Æ � �c�=�;� cos�

(t);

where Eqs. (5) and (9) have been used. As stationarity of the state variables implies the stationarity of
their product, it follows

cos� ' Æ

�c�=�;�
(10)

for the stationary cosine of the trailing angle.
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Figure 4: Cosine of the trailing angle and distance from the target as functions of the mutation
strength �. The target moves linearly with, from bottom to top, speeds Æ = 0:5, 1:0, 2:0, and 4:0. The
strategy is a (3=3; 10)-ES. The solid lines are predictions from Eqs. (10) and (11), the points mark
empirical measurements for search space dimensionalities N = 40 (+) and N = 400 (�).

Similarly, the square of the distance from the population centroid to the target at time step t+1 is

R(t+1)2
= R

(t+1) �R(t+1)

=

�
R

(t)
+ Æv � �hzi(t)

�
�
�
R

(t)
+ Æv � �hzi(t)

�
' R(t)2

+ Æ2 +
N�2

�
+ 2ÆR(t)

cos�(t) � 2�R(t)c�=�;� � 2Æ�c�=�;� cos�
(t);

where Eqs. (5), (7), (8), (9), and the fact that R � v = R cos� have been used. From the stationarity
of R it follows that R2 is stationary. Using Eq. (10), and taking into account that the influence of the
second and sixth terms in the last line vanishes in the limit N !1 yields2

R '
N�3c�=�;�

2�(�2c2
�=�;�

� Æ2)
(11)

for the stationary distance from the population centroid to the target.
The quality of the approximation to the stationary state thus derived is illustrated in Figure 4.

Predictions from Eqs. (10) and (11) are compared with empirical measurements of runs of evolution
strategies. For those measurements, it is irrelevant whether results from one run are used or several
runs are averaged, provided that the length of the runs is sufficient. For the experiments reported here,
the length of the runs was chosen to ensure that the standard deviation of the measurements is below
the size of the crosses in Figure 4. It can be seen from the figure that for search space dimensionality
N = 40, the qualitative dependence of the performance of the strategy on the mutation strength
and the target speed is reflected properly. The deviations that can be observed are attributable to

2In the previous equation, assuming invariance, i.e.R(t+1)
= R(t)

= R, using Eq. (10) to replace cos�, and rearranging
terms yields

2R

�
�c�=�;� �

Æ2

�c�=�;�

�
'

N�2

�

�
1�

�Æ2

N�2

�
:

In order for the strategy to be able to track the target, the mutation strength must be large enough to satisfy Æ=� = O(1).
Therefore, the last term on the right hand side vanishes as N !1 and Eq. (11) immediately follows by solving for R.
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the fluctuations inherent in the runs that have been neglected in the calculations. For search space
dimensionality N = 400, very good quantitative agreement of the predictions with the empirical
measurements can be observed.

Some important conclusions with regard to the scaling behavior of the strategy can be drawn from
Eqs. (10) and (11). First of all, from Eq. (11) it can be seen that a stationary state is reached only if
� > Æ=c�=�;�. For smaller mutation strengths, the strategy is not able to keep pace with the target
and the distance from the population centroid to the target increases indefinitely. Second, Eq. (11) can
be used to obtain the optimal mutation strength, i.e. the mutation strength that minimizes the distance
to the target. Computing the derivative with respect to � and determining the root yields optimal
mutation strength

� '
p
3Æ

c�=�;�
: (12)

Using Eq. (11), the resulting distance from the target is

R ' 3

p
3NÆ

4�c2
�=�;�

: (13)

Therefore, combining Eqs. (12) and (13), we have

�
N

R
' 4

3
�c�=�;� (14)

for the optimal mutation strength. Comparison with the corresponding result from (Arnold and Beyer,
2002b) reveals that this differs by a factor of 4=3 from the optimal mutation strength for a randomly
moving target. As in the case of a linearly moving target the cosine of the trailing angle is consistently
greater than zero, the strategy should ideally operate with a larger mutation strength.

5 Analysis for Adaptive Mutation Strength

For a stationary or a randomly moving target, cumulative step length adaptation has been seen to be
able to generate asymptotically optimal mutation strengths (Arnold, 2002; Arnold and Beyer, 2002a;
Arnold and Beyer, 2002b). In the present section, we study the performance of cumulative step length
adaptation for the case of the linearly moving target.

For fixed mutation strength, we have seen in the previous section that a system state is fully
characterized by two state variables. When using cumulative step length adaptation, a total of three
state variables beyond those introduced in Section 4 are required to describe the state of the system.
While again several choices are conceivable, one possibility is to consider the mutation strength �

along with the signed length sA of the central component of the accumulated progress vector and that
vector’s overall squared length ksk2. Note that the same choice has been made in (Arnold, 2002;
Arnold and Beyer, 2002a; Arnold and Beyer, 2002b). In analogy to Eq.(9),

E[s � hzi] = E[sAhzAi] + E[sB � hzBi]| {z }
=0

= sAc�=�;� (15)

holds due to Eq. (6) and the randomness of the direction of the lateral component of progress vectors.
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As in Section 4, we neglect fluctuations of the progress vector and make use of the stationarity of
the limit values of the state variables. The inner product s � v at time step t+ 1 is

s
(t+1) � v =

�
(1� c)s(t) +

p
�c(2� c)hzi(t)

�
� v

' (1� c)s(t) � v +

p
�c(2� c)c�=�;� cos�

(t);

where Eqs. (2) and (9) have been used. From the stationarity of the state variables follows the station-
arity of s � v and therefore with Eq. (10)

s � v '
r

�(2� c)

c

Æ

�
(16)

for the stationary value of the inner product of vectors s and v.
Clearly, due to the definition of the central component of vectors, R � s = RsA holds. Therefore,

at time step t+ 1,

R(t+1)s
(t+1)
A = R

(t+1) � s(t+1)

=

�
R

(t)
+ Æv � �(t)hzi(t)

�
�
�
(1� c)s(t) +

p
�c(2� c)hzi(t)

�

' (1� c)R(t)s
(t)
A + (1� c)

r
�(2� c)

c

Æ2

�(t)
� (1� c)�(t)c�=�;�s

(t)
A

+

p
�c(2 � c)R(t)c�=�;� +

p
�c(2� c)

Æ2

�(t)
�
p
�c(2� c)

N�(t)

�
;

where Eqs. (2), (5), (7), (8), (9), (10), (15), and (16) have been used. Of the six terms in the last line,
the influence of the second, third, and fifth vanishes in the limit of infinite search space dimensional-
ity.3 Therefore, from the remaining terms, demanding stationarity and using Eq. (11) yields

sA '
r

�(2� c)

c

�
c�=�;� �

N�

R�

�

'
r

�(2� c)

c

�
2Æ2

c�=�;��
2
� c�=�;�

�
(17)

for the stationary value of the signed length of the central component of the accumulated progress
vector.

Similarly, the squared length of the accumulated progress vector at time step t+ 1 is

ks(t+1)k2 =

�
(1� c)s(t) +

p
�c(2� c)hzi(t)

�
�
�
(1� c)s(t) +

p
�c(2� c)hzi(t)

�
= (1� c)2ks(t)k2 + 2(1� c)

p
�c(2� c)s(t) � hzi(t) + �c(2 � c)khzi(t)k2

' (1� c)2ks(t)k2 + 2(1� c)
p
�c(2� c)c�=�;�s

(t)
A + c(2� c)N;

3Assuming stationarity, i.e. R(t+1)s
(t+1)
A = R(t)s

(t)
A = RsA, and rearranging terms yields

sA

�
c+ (1� c)

�c�=�;�

R

�
'

p
�c(2� c)

�
Æ2

cR�
+ c�=�;� �

N�

R�

�
:

As seen in Section 4, in order for the strategy to be able to track the target, Æ=� = O(1) and �N=R = O(1) must hold.
Therefore, the second term in the parentheses on the left hand side and the first term in the parentheses on the right hand
side vanish as N !1. Rearranging the remaining terms immediately yields Eq. (17)
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Figure 5: Mutation strength �=Æ and stationary distance from the target R=(NÆ) as functions of
the population size �. The strategy is a (�=�; 10)-ES. The solid lines are obtained from Eqs. (20)
and (21). The points mark empirical measurements for search space dimensionalities N = 40 (+)

and N = 400 (�).

where Eqs. (2), (7), and (15) have been used. Demanding stationarity and using Eq. (17) yields

ksk2 ' 2
1� c

c
c�=�;�

�
�c�=�;� �

�N

R

�
+N (18)

for the stationary squared length of the accumulated progress vector.
Finally, demanding stationarity of the mutation strength and using Eqs. (3) and (18) yields

�
N

R
' �c�=�;� (19)

for the mutation strength that cumulative mutation strength adaptation realizes on the tracking problem
with linear dynamics of the target. Inserting Eq. (11) shows that for that mutation strength,

� '
p
2Æ

c�=�;�
; (20)

holds, and that the resulting distance between the population centroid and the target is

R '
p
2NÆ

�c2
�=�;�

: (21)

Figure 5 illustrates the quality of the approximation. While again for N = 40 some deviations
can be observed, the agreement is excellent for N = 400. Comparison with the results Eqs. (12)
and (13) for the optimal mutation strength derived in Section 4 shows that the mutation strength
that cumulative step length adaptation realizes is by a factor of

p
2=3 � 0:82 smaller than what it

would ideally be, and that the distance between the population centroid and the target is by a factor
of 4

p
2=(3

p
3) � 1:09 larger than it would be if the optimal mutation strength were achieved.

6 Discussion and Conclusions

In this paper, the performance of the (�=�; �)-ES with cumulative step length adaptation has been an-
alyzed on the tracking problem with linear dynamics of the target. It has been seen that the adaptation
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of the step length works in the sense that a mutation strength that ensures that the target can be tracked
is realized. The mutation strength in Eq. (20) exceeds the minimum mutation strength � = Æ=c�=�;�
required to keep pace with the target that was obtained in Section 4. However, it has also been seen
that the mutation strength that is realized is below the mutation strength given in Eq. (12) that was
found to be optimal. An explanation for that behavior can be found from Eq. (20). The mutation
strength that cumulative step length adaptation realizes on the tracking problem with linear dynamics
of the target is the same as that realized on the static sphere. While the linearly dynamic target ideally
calls for a larger step size, the strategy cannot anticipate changes of the objective and realizes the
mutation strength that is statically optimal. The step length that is realized is thus probably the best
that one can hope for. Our concern voiced in (Arnold and Beyer, 2002b) that the correlations in the
sequence of steps taken that result from the linear motion of the target could lead to a degradation of
the performance of cumulative step length adaptation has proven groundless at least in the limit of
infinite search space dimensionality.

It has furthermore been seen that the distance at which the target is tracked depends on the search
space dimensionality, the speed of the target, and the population size parameters that the strategy em-
ploys. In order to minimize that distance, the population size parameters must be chosen such that
the denominator of the fraction in Eq. (21) is maximized. Interestingly, that denominator equals the
progress rate of the (�=�; �)-ES on the static sphere derived in (Beyer, 2001; Rechenberg, 1994). Rec-
ommendations with respect to the choice of population sizes that have been made for the static sphere
thus also hold for the dynamic tracking problem. As already noted in (Arnold and Beyer, 2002b), the
distance to the target is reduced substantially by the presence of the factor � in the denominator of the
fraction in Eq. (21) that stems from the presence of genetic repair. We therefore cannot confirm the
observation by (Salomon and Eggenberger, 1997) that recombination is not beneficial for tracking a
moving target.

To conclude, our findings suggest that evolution strategies with cumulative step length adaptation
are well capable of handling dynamic optimization problems that amount to the task of tracking a
moving target. While the use of populations and recombination does not improve the behavior of the
strategy qualitatively, it does have the effect of the target being tracked more closely as the (1; �)-ES
would. Cumulative step length adaptation has turned out to generate optimal step lengths in the case
of a randomly moving target and mutation strengths that are near optimal if the motion of the target
is linear. Altogether, cumulative step length adaptation seems to hold promise far beyond the static
situations that it was designed for.
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