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bat 490 Universite Paris-Sud 91405 Orsay Cedex France

Abstract. It is empirically established that multiobjective evolutionary

algorithms do not scale well with the number of conflicting objectives.

We here show that the convergence rate of all comparison-based multi-

objective algorithms, for the Hausdorff distance, is not much better than

the convergence rate of the random search, unless the number of objec-

tives is very moderate, in a framework in which the stronger assumptions

are (i) that the objectives are conflicting (ii) that lower bounding the

computational cost by the number of comparisons is a good model. Our

conclusions are (i) the relevance of the number of conflicting objectives

(ii) the relevance of criteria based on comparisons with random-search

for multi-objective optimization (iii) the very-hardness of more than 3-

objectives optimization (iv) some hints about cross-over operators.

1 Introduction

Many evolutionary algorithms are comparison-based, in the sense that the only

information coming from the objective function and used by the algorithm is the

results of binary comparisons between fitness-values. [15] has shown that this lim-

itation has non-trivial consequences in continuous mono-objective optimization.

We here apply similar techniques in order to show that comparison-based MOO

has strong limitations in terms of convergence rates, when it is applied to contin-

uous problems in which (i) the computational cost is well approximated by the

number of comparisons (ii) only binary comparisons are used (iii) all objectives

are conflicting (iv) the number of objectives is high. This is not only a general

negative result, as it emphasizes some tricks for avoiding these limitations, such

as removing non-conflicting objectives as in [3] or using non-binary comparisons

as done in [17] through ”informed” cross-over.

Consider fitness = (fitness1, . . . , f itnessd) some real-valued objective func-

tions (to be maximized) on a same domain D. A point y ∈ D dominates (or



Pareto-dominates) a point x ∈ D if for all i ∈ [[1, d]], fitnessi(y) ≥ fitnessi(x),

and for at least one i0, fitnessi0(y) > fitnessi0(x) (i.e. y is at least as good as

x for each objective and y is better than x for at least one objective). This is

denoted by y ≻ x. We denote by y � x the fact that ∀i ∈ [[1, d]], f itnessi(y) ≥

fitnessi(x). We use the same notation for points in the so-called fitness-space:

fitness(x) ≻ fitness(y) (resp. �) if and only if x ≻ y (resp. x � y). Also, we

say that a set A dominates a set B if ∀b ∈ B, ∃a ∈ A; a � b; This is denoted by

A � B. A point in D is said Pareto-optimal if it is not Pareto-dominated by any

other point in D. Multi-objective optimization (MOO,[2, 14, 5]) is the research

of the set of non-dominated points, i.e.

{x ∈ D; ∄y ∈ D, y ≻ x}. (1)

This set is called the Pareto set.

Offline MOO is the research of the whole Pareto set, which is, after the

optimization (offline), studied by the user. On the other hand, on-line MOO

is the interactive research of an interesting point in the Pareto set; typically,

such programs use a weighted average of the various objectives, and the weights

are updated by the user depending on his preferences, during the run of the

MOO. On-line MOO is in some sense easier than offline MOO: the user provides

some information during the run of the MOO and this information simplifies the

problem by restricting the optimization to a part of the Pareto set chosen by

the user. Offline MOO and online MOO are compared in algos 1 and 2.

Algorithm 1 Offline MOO.

Init n = 0.

while stopping criterion not met do

Modify the population (mutation, selection, crossover, . . . ) (if n > 0) or initialize

it (if n = 0).

for Each newly visited point x do

n← n + 1

Pn ← Pn ∪ {x}

end for

end while

Output Pn (or possibly only the non-dominated points in Pn, or any other subset of

Pn).

A main tool for studying families of objective functions is the notion of

conflicting objectives ([16, 3]). Consider F a family of objective functions and



Algorithm 2 Online MOO (interactive MOO). This case is not studied in this

paper; we focus on offline algorithms as in algo. 1.

Init n = 0.

while stopping criterion not met do

Evaluate the population.

Modify the population (mutation, selection, crossover, . . . ) (if n > 0) or initialize

it (if n = 0).

for Each newly visited point x do

n← n + 1

Pn ← Pn ∪ {x}

end for

Possibly: show information about Pn (possibly the full Pn or only the non-

dominated points in Pn) to the user and update some information about the

preferences of the user (possibly a simple weighting of the preferences).

end while

Output Pn (or possibly only the non-dominated points in Pn, or any other subset of

Pn).

δ > 0. We say that x ≻δ
F y if, ∀ f ∈ F, fitness(x) ≥ fitness(y) + δ. Given two

sets F1 and F2 of objective functions, we say that F1 and F2 are δ-non-conflicting

if

∀(x, y) ∈ D, x ≻δ
F1

y ⇒ x≻F2
y

∀(x, y) ∈ D, x ≻δ
F2

y ⇒ x≻F1
y

A set of objectives F is δ-minimal wrt F if

There exists no F ′ ⊂ F, F ′ 6= F such that F ′ is δ-non-conflicting with F . (2)

The case δ = 0 can also be considered; a set of objectives is minimal if it

is 0-minimal. Mainly, minimal sets of objective functions are sets of objective

functions that can not be replaced by smaller sets of functions. We will here

study minimal sets of objective functions.

The analysis of performance of evolutionary algorithms is typically the study

of the computation time required by the algorithm for reaching a given preci-

sion for all problems of a given family of problems. Upper bounds show that

this computation time is smaller than a given quantity for a given algorithm.

Lower bounds show that this computation time is larger than a given quantity

for a given algorithm, or in some cases for all algorithms of a given family of

algorithms.



In the stochastic case (stochastic algorithms), and if we only have to reach

the target within a given precision, then the writing is a bit more tedious. Let’s

consider a family P of problems. An upper bound is therefore of the form:

Upper bound: there is an algorithm A, such that ∀ problem ∈ P , the

computation time required by algorithm A for solving it with precision ǫ and

with probability at least 1 − δ is at most UpperBound(ǫ, δ).

and a lower bound is of the form:

Lower bound: ∀ algorithm ∈ a given family, ∃ a problem in P such that the

computation time required for solving it with precision ǫ and with probability

at least 1 − δ is at least LowerBound(ǫ, δ).

If UpperBound is close to LowerBound, the complexity problem is solved.

Here, we will consider lower bounds for all algorithms that are based on

binary comparisons (see the formalization of this assumption in algo. 4; this non-

negligible assumption is discussed in 4), and upper bounds for a simple naive

algorithm. The problems in this paper are a family of problems with smooth

Pareto sets; mainly, the assumptions underlying the family of problems P (used

in the lower bound, in theorem 2) are that (i) it includes all possible Lipschitzian

Pareto sets with some given bound on the Lipschitz coefficient (ii) there’s no

possible reduction of the number of objectives (the set of objectives is minimal).

Roughly, our results are as follows:

Upper bound: there is an algorithm A, namely random search as in eq. 3,

such that ∀ problem ∈ P , the computation time required by algorithm A for

solving it with precision ǫ and with probability at least 1 − δ is at most

UpperBound(ǫ, δ).

and:

Lower bound: ∀ algorithm which is based on binary comparisons (all

algorithms as in algo. 4), ∃ a problem in P such that the computation time

required for solving it with precision ǫ and with probability at least 1− δ is at

least LowerBound(ǫ, δ).

Both LowerBound and UpperBound depend on the dimension d, and interest-

ingly they are close to each other when d is large. Our conclusion is therefore

that, at least for the family P of problems, and when the dimension d is large,

all algorithms are roughly (at best) equivalent to random search - at least for

the criteria that we have defined (see discussion for more information about the

non-negligible effect of the assumptions in theorems 1 and 2).



The structure of the paper is as follows. Section 2 presents an upper bound

on the number of iterations required for reaching a given precision, for a simple

degenerated evolutionary algorithm (random search). Section 3 shows a lower

bound for all evolutionary algorithms based on binary comparisons only. Section

4 compares both results and discusses the assumptions of this paper.

State of the art

Many papers have been devoted to MOO, some of them with deterministic meth-

ods (see [14]), and some others with evolutionary algorithms (EA) ([5]). Usu-

ally, Evolutionary MOO (EMOO) is studied as an offline tool for approximating

the whole Pareto sets. Hence, the diversity of the population is a main goal

of EMOO ([19]); the goal is a convergence to the whole set (eq. 1). Measuring

this convergence to the whole set is difficult as defining quality-criteria is hard

([23]). Convergence proofs and convergence rates exist in non-population-based

iterative deterministic algorithms (see e.g. [14, chap.3]), or for specific cases in

population-based methods (see e.g. [13]), or very pessimistic-bounds in the case

of the discrete domain {0, 1}n ([9]). Empirical results mainly show that scaling

up with the number of objectives is not easy ([6],[18]).

The goal of off-line population-based methods is the convergence to the whole

Pareto set, whereas on-line methods lead to iterative procedures. In on-line meth-

ods, iteratively, (1) the user provides a weighting of the objectives (2) the MOO-

algorithm provides an optimum of the corresponding weighted average. We will

here investigate conditions under which such a global convergence to the whole

Pareto set is tractable. We will restrict our attention to comparison-based meth-

ods, but we conjecture that the comparison-based-nature of the algorithm is in

fact not crucial in the results.

We here precisely show (i) an upper bound for a simple random search al-

gorithm (section 2) and (ii) a lower bound for all comparison-based algorithms

that is very close to the convergence rate of random search (section 3) when

the number of objectives is large. The main conclusion is that for our criterion

(the Hausdorff distance) EMOO has a strong curse of dimensionality, which is

prohibitory for dimension1 roughly > 3 or 4, except when the problem and the

computational effort are such that random search can handle it. We point out

however that in this result, we consider the approximation of a Pareto-front

1 ”Dimension” refers to the dimension of the fitness space, i.e. the number of objec-

tives.



that can be obtained within a finite number of comparisons, not a parsimonious

approximation; this will be discussed in the conclusion.

An interesting point is that the ”real” number of objectives in a set of d

objectives can be studied more carefully than by just bounding it by d. When

the set of objectives is not minimal (see definition above), then the ”true” di-

mensionality is lower. In particular, in the negative results below (no algorithm

strongly better than random search when d is large), we consider that the set of

objectives is minimal (precisely, we consider the complexity for the worst case in

P , which contains problems with conflicting objectives, i.e. the set of objectives

is minimal as in eq. 2). This is the strongest hypothesis of our work, and our

negative results under this hypothesis therefore supports approaches aimed at

removing redundant objectives ([3, 7]). Deeply, our work uses packing numbers

of Pareto sets; the logarithm of this packing numbers is polynomial, with degree

the number d of conflicting objectives - this relates computational complexity

and the minimal number of objectives.

Related works include (i) works aimed at removing objectives that are

not conflicting with others ([3]) (ii) criteria relating the efficiency of a MOO-

algorithm to the efficiency of random-search [10] (iii) non-binary comparisons as

implicitly used in some cross-over operators ([17]).

Notations and definitions

MOO problems are formulated as follows. The (multi-valued) fitness (to be max-

imized) is an application from a given domain D to [0, 1]d ; d = 1 is the mono-

objective case, d > 1 is a proper MOO problem. A distribution P is given, that

leads to a distribution of probability P in the fitness-space (namely [0, 1]d), i.e.

P(fitness−1(E)) = P (E). d(x, y) is the euclidean distance between elements

x, y ∈ [0, 1]d. d(A, B) is also the Hausdorff-distance between subsets of Rd, i.e.

d(A, B) = max(sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b))

. We will use the Hausdorff distance in the fitness-space.

If E ⊂ [0, 1]d, we denote by X (E) the set of elements dominated by E,

i.e. X (E) = {f ∈ [0, 1]d s.t. ∃e ∈ E, e � f}. If P is a distribution in the

fitness space, we denote by X = X (support(P )) (we omit the index P for

short). If a multivalued fitness function fitness : D 7→ [0, 1]d is given, then

X = X ({fitness(x); x ∈ D}). Being given e > 0 and m(., .) a metric, a e-

separated set for m(., .) is a set S such that ∀(x, y) ∈ S, x 6= y ⇒ m(x, y) ≥ e.

In the rest of the paper if G is included in a metric space with distance m(., .)



we denote by N(G, e, m(., .)) the packing number of the set G for e > 0 and for

metric m(., .), i.e. the maximal size of a e-separated (for m(., .)) set included in

G:

N(G, e, m) = sup{n ∈ N; ∃(x1, . . . , xn) ∈ Gm; ∀(i, j), i 6= j → m(xi, xj) ≥ e}

If ||.|| is a norm, then we define N(G, e, ||.||) = N(G, e, (x, y) 7→ ||x − y||).

We consider a comparison-based EMOO, in the sense that the only use of

computed fitness-values is a comparison for the relation � (see formalization in

algo. 4). An important point is that EMOO algorithms do not all fit in that

framework. For example, algorithms as in [17] use a crossover which uses more

than only a binary comparisons. Typically, if an algorithm uses the full Boolean

vector of comparisons

(fitness1(x) ≤ fitness1(y),

f itness2(x) ≤ fitness2(y),

. . . ,

f itnessd(x) ≤ fitnessd(y)),

then it uses d bits of information per comparison instead of only one bit - such

an algorithm can therefore be faster.The important point in the mathematical

analysis below is that the behavior of the algorithm is therefore only dependent

on (i) binary answers to dominance-requests (ii) random choices.

All the probability distributions for randomly generated elements, all the

information flow depend on the result of comparisons only. This is an usual (yet

not exclusive) framework for EA, detailed in algo. 4.

We will study in the following the convergence rate of EMOO. This conver-

gence rate is with respect to time. Time is at least linear in the number of tests

and in the number of calls to the fitness function. Therefore, we will count as one

time step a step which contains either a comparison or a fitness-evaluation. We

will show an upper bound (for a naive algorithm) and a (general) lower bound,

that are very close to each other when the number of objectives is large. The

upper bound is shown on the most simple possible algorithm : the pure random

search (algo. 3). We let Xn = X (fitness(Pn)) be the set dominated by the points

visited by the algorithm before the nth step of the algorithm (see algo. 1, 3, 4):

Xn = {x ∈ [0, 1]d; ∃y ∈ Pn, y � x}.

We consider P a family of possible problems on domain D with d objectives.

For each problem p ∈ P , there is:



– a fitness fitnessp : D → [0, 1]d ;

– X = X (p) = {x ∈ [0, 1]d; ∃y ∈ D, fitness(y) � x} (the index p is sometimes

omitted for short).

We say that the algorithm has precision ǫ on the family P of problems after n

comparisons and with probability 1 − δ if

∀p ∈ P , P (d(X (p),Xn) > ǫ) ≤ δ (Hausdorff criterion)

2 Upper bounds for the random-search

In this section we (i) define a simple random-search algorithm (algo. 3) (ii)

evaluate its convergence rate.

Algorithm 3 A simple random search MOO-algorithm (the same Xn = X (Pn)

would result from a pruning, i.e. if at the second line we only add xn if it is not

dominated by any point in Pn−1 and if we remove points dominated by xn). Pn

is here the set of points visited during the n random steps; the computational

cost is linear in n. On the other hand, in algo. 4, Pn is the set of points visited

before the nth comparison operator - see discussion therein.

P0 is initialized to the empty set.

for n = 1, . . .∞ do

generate one random point xn (independently and identically distributed, with

distribution P) in the domain;

set Pn = {xn} ∪ Pn−1.

end for

An example of run is provided on figure 1 with D = [0, 1]2, P the uniform

distribution on D, and fitness(x) = x when x(1)+x(2) < 5
4 and fitness(x) = 0

otherwise.

An immediate property is that Pn dominates the n randomly drawn elements:

∀i ∈ [[1, n]], {x1, . . . , xn} � xi (3)

We now study, thanks to this simple remark, the convergence of the Hausdorff

distance between X = X (p) and Xn.

Theorem 1. Consider some fixed c > 0. Consider P the distribution of

probability of fitness(xt) (this does not depend on t by definition of algo. 3),

i.e. ∀E ⊂ [0, 1]d, P (E) = P(fitness−1(E). Assume that ∀x, 0 ≤ fitness(x) ≤
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Fig. 1. 50 points are randomly drawn, i.e. Pn is a set of 50 points uniformly drawn

in D. Only the ones with fitness(xi) 6= 0 are presented. X is the part dominated

by the target Pareto-front; Xn is the part dominated by the empirical Pareto-front

(Xn = X (Pn) in the notations of algorithms 1, 2, 3, 4 and 5).

1 − c < 1. Then, for all d, there exists a universal constant K such that with

probability at least 1 − δ, if P has density lower bounded by q > 0 in X ,

d(Xn,X ) ≤ K d

√

en/q, where en = O (d log(n) − log(δ)) /n.

This is a very poor random search, with a distribution uniform in the fitness

space. Of course, many algorithms will focus close to the boundary, and have

better results than this algorithm (however, see in 4 a discussion of the quality

of this random search depending on the problem). As the main result of this

paper is the convergence between this upper bound and the lower bound in

theorem 2, this strenghtens the results: in spite of the fact that this algorithm is

seemingly very poor, it is in fact asymptotically roughly equivalent (discussion

in the conclusion) to the best comparison-based MOO algorithms (when the

number of objectives is large, and under assumptions discussed in section 4).

Proof :

We define x1, . . . , xn the n randomly drawn points in the fitness-space. We

denote by µ the Lebesgue’s measure.



First step, Xn ⊂ X . Therefore,

d(Xn,X ) = sup
x∈X

inf
y∈Xn

d(x, y) (4)

(figure 1 illustrates the previously defined Xn and X )

Second step. We now consider ǫ < c and x such that x ∈ X and

∀i, xi ≥ c (5)

Consider x+ = {y ∈ [0, 1]d; x � y}. Eq. 5 and eq. 5 implies that

µ
(
x+ ∩ B(x, ǫ)

)
= Ω(ǫd) (6)

where B(x, ǫ) is {z ∈ [0, 1]d; d(z, x) < ǫ}. x ∈ X implies that x+ ∩ B(x, ǫ) is

included in X ; therefore eq. 6 can also be written

a(x) = µ(x+ ∩ X ) = Ω(ǫd). (7)

This concludes the second step.

Third step. We will now use the notion of VC-dimension. Readers unfamiliar

with this notion are referred to [8, chap. 12, 13] for an introduction. We will only

use VC-dimension to justify equation 8. It is a known fact (see [8, chap. 12,13]

that the set {a+ = [a1, 1] × [a2, 1] × · · · × [ad, 1]; a ∈ [0, 1]d} has VC-dimension

≤ d (see e.g. [8, chap. 13]). This implies that with probability at least 1 − δ,

sup
a∈[0,1]d;∀i∈[[1,n]]xi 6∈a+

P (a+) ≤ e (8)

where e = O (d log(n) − log(δ)) /n.

Fourth step. We now combine previous steps to conclude. Consider ǫ =

d(Xn,X ). By the first step (eq. 4),

ǫ = sup
x∈X

inf
y∈Xn

d(x, y).

Consider some xh ∈ X realizing this supremum within precision h > 0, i.e.

inf
y∈Xn

d(xh, y) ≥ ǫ − h. (9)

Eqs 3 and 9 imply that

∀i, xi 6∈ x+
h (10)

Eq. 8 (third step) applied with a = xh and eq. 10 imply that with probability

at least 1− δ, P (x+
h ) ≤ e. We can therefore claim that with probability ≥ 1− δ,

P (x+
h ) ≤ e = O (d log(n) − log(δ)) /n, and therefore

µ(x+
h ∩ X ) = O (d log(n) − log(δ)) /qn (11)



By the second step (eq. 7),

µ(x+
h ∩ X ) = Ω

(
(ǫ − h)d

)
(12)

and therefore at the limit of h → 0, combining equations 11 and 12 leads to

ǫd = O (d log(n) − log(δ)) /qn, hence the expected result. �

3 Lower bounds for all comparison-based MOO-EA

We will now prove lower bounds on the efficiency of comparison-based MOO

algorithms and show that these lower bounds are not far from the performance

of random search when the number of objectives increase. This lower bound will

be proved on a family of problems as small as possible, in order to strenghten

the result.

Consider d ≥ 2 and let F be the set of applications f : [0, 1]d−1 → [0, 1
4d2 ]

which are 1/(4d2)-Lipschitzian, i.e.

|f(x) − f(y)| ≤
1

4d2
||x − y|| (13)

For any fixed f ∈ F , consider pf = {(x, y) ∈ [0, 1]d−1 × [0, 1]; y ≤ gf(x)},

where gf (x) = 1
2 + f(x)− 1

2d2

∑

i xi. We see that gf(x) ∈ [ 14 , 1] and that (thanks

to eq. 13)

gf is non-increasing with respect to each coordinate

therefore the subgraph pf of gf is a consistent Pareto set in D = [0, 1]d (precisely,

X (pf ) ∩ D = pf ).

Note F = {pf ; f ∈ F}. F contains smooth sets, with Lipschitz-coefficients

(a same bound for all sets in F).

We consider the family of problems P = {fitnessE; E ∈ F} with fitnessE

defined as follows:

– D = [0, 1]d (the fitness space and the domain are equal);

– fitness(x) = x if x ∈ X (E) ⊂ [0, 1]d; fitness(x) = 0 (0 in [0, 1]d) otherwise.

Note that with this particular fitness functions, the Pareto set (in the space

of individuals) and the Pareto-front (in the fitness-space) are equal. We point

out that by considering such simple fitness functions (either fitness(x) = x,

or fitness(x) = 0, and smooth Pareto sets), we strenghten the result, as our

theorem 2 below will hold for all families of fitness functions including the family

P of problems.



The restriction on the EMOO is that it is comparison-based as defined in

section 1 (see conclusion for a discussion of this assumption). We will consider

the number of fitness-comparisons or fitness-evaluations necessary for ensuring

with probability at least 1 − δ a precision ǫ for the Hausdorff-distance between

the output of the algorithm and the target Pareto-front.

In order to simplify notations (in the case n = 0 of the algorithm below), we

let x−1 = 0 ∈ Rd. Consider a EMOO, fitting in algorithm 4:

This covers all multi-objective algorithms based on comparisons only, with

various functions pn(.) and gn(.). The case of the random search is handled by

some distribution pn(s) constant (independent of s and n). We can include in

this framework niching mechanisms or diversity criterion in the domain; but we

need that fitness functions are only used through Pareto-dominance tests (see

algorithm 4). We have considered comparisons of the form a ≻ b, but we could

consider any request such that the number of possible outcomes is finite; this is

just a constant value in the theorem below instead of the 2 in log(2).

We say that the algorithm has precision ǫ within time n with probability

1 − δ on a given set of problems, if for all of these problem, with probability

1 − δ, d(Xn,X ) ≤ ǫ.

Theorem 2: entropy-theorem for EMOO. For any algorithm as in algo.

4, the number of comparisons required for ensuring a precision ǫ with probability

1 − δ for all problems in P is at least Ω(1/ǫd−1) + log(1 − δ)/ log(2).

Formally, this means that, any algorithm as in algo. 4 has the following

property:

∀p ∈ P , inf{n ∈ N;with probability at least 1 − δ, d(Xn,Xp) < ǫ}

= Ω(1/ǫd−1) + log(1 − δ)/ log(2).

Remark: we could consider a three-outputs-comparison also (one for a ≻ b,

one for b ≻ a, and one if a 6≻ b and b 6≻ a), leading to a factor log(2)/ log(3)

on the bound. On the other hand, a comparison-operator using comparisons on

all fitness-functions, i.e. with values in {0, 1}d, is very different as the number

of bits increases with the dimension. This is in particular the case in algorithms

using a detailed analysis of comparisons between fitness functions to adapt the

cross-over; see e.g. [17]. However, the full analysis of such cases (not developed

in this paper) show that the improvement is moderate.

Note that the result also holds in the mono-objective case. However, it is

only interesting for d large; the more careful analysis of the mono-objective case

has been performed in [15].



Algorithm 4 Specification of a comparison-based MOO-EA. (pn)n∈N, (gn)n∈N,

(g′n)n∈N are the free parameters specifying the algorithm; theorem 2 works for all

choices of these parameters. Of course, rewriting an algorithm under this form is

tedious and unclear, but it is helpful for the mathematical analysis. For problems

in P , it is equivalent to algo. 5. We point out that this generic algorithm generates

one individual at each step of the loop, but (i) we can generate several times

the same individual - by this trick, algorithms which use plenty of comparisons

for each generated individual can be modeled and (ii) we can perform several

times the same comparisons when many individuals are generated without any

new visited individual - therefore, we can write all algorithms which are only

based on comparisons in the framework below. The complexity is measured by

n, which is the number of comparison-operators applied during the run.

Initialize s to the empty vector and let P−1 = ∅.

for n = 0 to ∞ do

Generate one individual xn according to some law pn(s).

Update the internal state s by s ← (s, ‘generate′, xn) (the algorithm keeps in

memory the fact that we have generated xn).

Compare the fitness of xn to fitness(xgn(s)) with modality g′

n(s), i.e.:

– Test if fitness(xn) ≻ fitness(xgn(s)) (case g′

n(s) = 0);

– Or test if fitness(xgn(s)) ≻ fitness(xn) (case g′

n(s) = 1)

where gn(s) < n and g′

n(s) ∈ {0, 1} and let r2n be the result.

Compare the fitness of xn to 0, i.e. check if fitness(xn) ≻ 0 and let r2n+1 be the

result.

Update the internal state s by s← (s, ‘compare′, xn, rn) (we keep in memory the

fact that we have compared xn to xgn(s) with modality g′

n(s) and that the result

was rn).

Update Pn by Pn = Pn−1 ∪ {xn} if xn has been compared to x−1 and if

fitness(xn) � 0.

Suggest Xn = X ({fitness(x); x ∈ Pn}), where Pn =

{fitness(x0), . . . , fitness(xn)}) as an approximation of the set domi-

nated by the Pareto front.

end for



Proof: An important point for the following of the paper is that, if the

problem is such that x ∈ X ⇒ fitness(x) = x ∧ x 6∈ X ⇒ fitness(x) = 0 with

D = [0, 1]d (the fitness space is identical to the domain), then algorithm 4 is

equivalent to algorithm 5.

Algorithm 5 Algorithm equivalent to algorithm 4 for fitness functions such that

D = [0, 1]d and fitness(x) = x if x ∈ X and fitness(x) = 0 if x 6∈ PF . Bold

lines emphasize differences with algorithm 4. Of course, algo. 5 is not interesting

in the sense that it does not provide individuals but only their fitnesses; but, for

problems in P , algos. 4 and 5 are equivalent and algo. 5 is easier to analyze.

Initialize s to the empty vector and let P−1 = ∅.

for n = 0 to ∞ do

Generate one individual xn according to some law pn(s).

Update the internal state s by s← (s, ‘generate′, xn).

Compare the fitness of xn to fitness(xgn(s)) with modality g′

n(s), i.e.:

– Test if fitness(xn) ≻ fitness(xgn(s)) (case g′

n(s) = 0);

– Or test if fitness(xgn(s)) ≻ fitness(xn) (case g′

n(s) = 1)

where gn(s) < n and g′

n(s) ∈ {0, 1} and let r be the result.

Update the internal state s by s← (s, ‘compare′, x, r).

Update Pn by Pn = Pn−1 ∪ {xn} if xn has been compared to x−1 and if

fitness(xn) � 0.

Suggest Xn = X (Pn) as an approximation of the set dominated by the

Pareto front.

end for

This preliminary point shows that Xn only depends on (i) random seeds (ii)

comparisons, at least when the problem is in P .

Before the proof itself, let’s see a sketch of the proof. Xn only depends on

(i) random seeds, (ii) n binary comparisons. For this sketch of the proof (and

only in the sketch of the proof), let’s consider a deterministic algorithm - then

Xn only depends on the n binary comparisons. Therefore, Xn can take at most

2n different values v1, . . . , v2n . Therefore, ensuring d (Xn,X (p)) ≤ ǫ for all p,

implies that for each p, there is i ∈ {1, . . . , 2n} such that d (vi,X (p)) ≤ ǫ - this

precisely implies that the 2n balls centered at the vi cover the X (p):

{X (p); p ∈ P} ⊂ ∪i∈{1,...,2n}B(vi, ǫ)



and this is only possible if 2n is ”not too small” in front of the packing number

of {X (p); p ∈ P}.

Let’s now see the detailed mathematical proof, including randomized algo-

rithms.

Thanks to the lemma below, consider a ǫ-separated set s1, . . . , sN in F

equipped with the Hausdorff-metric, of size N = exp(Ω(1/ǫd−1)).

Consider r the sequence of the n first answers of the algorithm to requests of

the form ”does a ≻ b hold ?”. r is a sequence in {0, 1}n (r of course depends on

the problem and can be random2). We denote by X r
n the set dominated by the

approximation of the Pareto-front provided by the algorithm if the answers are

r; as pointed out above (preliminary point at the beginning of this proof), X r
n

is a random variable that does not depend on the fitness - as we have restricted

our attention to a fixed r. X r
n is a random variable as the algorithm might be

randomized.

First, let’s consider a fixed r, in the set R of all possible sequences of answers.

Consider s a random uniform variable in {s1, . . . , sN}. Consider the proba-

bility that X r
n is at distance < ǫ of s. This is a probability both on X r

n and on

s. Then,

P (d(X r
n , s) < ǫ) ≤ 1/N

Now, we will sum on all possible r ∈ R.

P (∃r ∈ R; d(X r
n , s) < ǫ) ≤ 2n

︸︷︷︸

=|{0,1}n|

/N

Therefore, this probability can only be ≥ 1 − δ if 2n/N ≥ 1 − δ, therefore

n log(2) ≥ log(N) + log(1 − δ). �

Lemma 1: The packing number N(F , ǫ, d(., .)) of the set F with respect to

the Hausdorff distance for Lebesgue measure verifies

log(N(ǫ)) = Ω(1/ǫd−1). (14)

Proof:

Before the proof itself, let’s see a sketch of the proof. The packing numbers

of Lipschitzian spaces of functions are known for the ||.||∞ norm since [12]. The

packing numbers of their subgraph are nearly the same thanks to a lemma below.

The proof will then be complete. Now, let’s go to the details.

2 As previously pointed out, we could consider a richer comparison-operator with

outputs in {a ≻ b, b ≻ a, a � b, b � a, a = b, a not comparable to b}; this only

changes the constant in the theorem.



We recall that F is the set of applications f : [0, 1]d−1 → [0, 1
4d2 ] with Lip-

schitz coefficient ≤ 1/(4d2). We recall that for any fixed f ∈ F , pf = {(x, y) ∈

[0, 1]d−1 × [0, 1]; y ≤ gf(x)}, where gf(x) = 1
2 + f(x) − 1

2d2

∑

i xi.

The proof is now the consequence of (i) the lemma below relating the

packing numbers of the functions in F for ||.||∞ and the packing numbers

of their subgraphs {pf ; f ∈ F} ⊂ F for the Hausdorff-metric (ii) the bound

log N(F, ǫ, ||.||∞) = Ω(1/ǫd−1) provided in [12] (see also [8, 20] for more recent

references). �

Lemma 2: Consider a fixed d.

Then, N({pf ; f ∈ F}, ǫ, d(., .)) ≥ N(F, O(ǫ), ||.||∞).

Proof: All we need is d(pf1
, pf2

) = Ω(||f1 − f2||∞) for functions in F . The

rest of the proof is devoted to proving this inequality. The proof is as follows :

1. let δ = ||f1 − f2||∞.

2. by compactness, δ is realized by some x : |f1(x) − f2(x)| = δ. Without loss

of generality, we can assume f1(x) = f2(x) + δ.

3. consider gi : t 7→ 1
2 + fi(t) −

1
2d2

∑

i∈{1,d} ti. As pointed out in the proof of

lemma 1, the subgraph of gi is pfi
(by definition).

4. then g1(x) − g2(x) = δ.

5. consider the euclidean distance δ2 between (x, g1(x)) (which is in pf1
) and

pf2
.

6. this distance is realized (thanks to compactness) by some z:

δ2 = d ((z, g2(z)), (x, g1(x)))

7. by step 2 and with K ≥ supf∈F ||∇gf ||, g1(x) − g2(z) ≥ δ − K(d(z, x)).

8. then, δ2
2 = d(z, x)2 +(g1(x)−g2(z))2 ≥ max(d(z, x)2, max(0, δ−Kd(z, x))2).

9. there are now two cases:

– d(z, x) < δ/(2K), and then δ − Kd(z, x) ≥ δ/2 and δ2
2 ≥ δ2/4 (by step

7).

– d(z, x) ≥ δ/(2K), and then δ2
2 ≥ d(z, x)2 ≥ δ2/(4K2) by step 8.

and this implies in both cases that δ2 ≥ min(δ/2, δ/(2K)) = Ω(δ).

The proof is complete. �

4 Discussion and conclusion

The main result is that the lower-bound on the computation time for all

comparison-based MOO-algorithms and the upper bound on the computation



time of the random search are very close to each other when the dimension is

large; this shows that no comparison-based algorithm is much better than the

baseline random search, at least when the dimension is large. To strenghten

the results, the upper bound is proved for a very poor random search (see the

poor distribution used in the random search of theorem 1) and the lower bound

is proved for a very small family of fitness functions (see theorem 2; the up-

per bound holds a fortiori for larger families of problems). The lower bound is

proved for comparison-based algorithms; we conjecture that the same holds for

all offline MOO algorithms, under some slightly stronger assumptions.

Let’s look at the result in a more concrete manner, emphasizing the assump-

tions.

The criterion is a convergence to the whole Pareto-front. We consider

a ”off-line” algorithm (see introduction), which approximates the full Pareto-

front. For iterative multi-objective optimization (on-line algorithms, with inter-

actions with the user), the result does not hold.

The results are asymptotic in the number of objectives and hold

in the continuous case. We have shown a lower bound on the complexity

of finding a Pareto set within precision ǫ for the Hausdorff-distance, that holds

for all comparison-based algorithms with binary comparisons, and that almost

matches the complexity of a naive random search when d is large. Let’s examine

precisely the results depending on the dimension. Assume that all required as-

sumptions hold (the detailed list of assumptions is recalled and discussed below).

Consider NR the number of evaluations required for the random search, and NE

the number of comparisons required for a comparison-based MOO algorithm for

ensuring the same precision ǫ. Compare these two numbers for a given precision

ǫ going to 0. Then, NE = Ω(N
d−1

d

R ). For d = 1, this is in accordance with the

known fact that in mono-objective optimization EA are much better than ran-

dom search. For d = 2, this is still satisfactory: NE = Ω(N
1
2

R ) - an algorithm can

be much faster than the random search. For d = 10, this leads to NE = Ω(N
9
10

R ).

This is related to [10], which relates the efficiency of evolutionary algorithms to

the efficiency of random-search.

Smoothness assumptions. We have considered entropy (packing numbers)

of smooth Pareto-fronts and it was sufficient to derive strong lower bounds. What

happens if we have more assumptions on the fitness functions ? Here, we assume

a Lipschitz-inequality on the Pareto-front. However, what is important is the

packing numbers. How are packing numbers if we change the assumptions and

what is the final result then ?



If we reduce the set of assumptions, the packing numbers increase - the

lower bound remains essentially the same, and the proximity between the upper

and the lower bound is preserved. On the other hand, if we assume differen-

tiable Pareto-fronts with Lipschitzian derivative (i.e., ”almost” twice differen-

tiable functions), then eq. 14 becomes

log(N(ǫ)) = Ω(1/ǫ
d−1

2 ),

and therefore, as d → ∞, the lower bound becomes the square root of the

upper bound - there is now a non-negligible gap between the upper and the

lower bound. Therefore, for easier spaces of functions, the picture might be very

different, at least if the algorithm can benefit from stronger differentiability.

Comparison with NFL results. This result looks like NFL-results. NFL-

theorems (see [4] in the MOO case) exhibit a distribution of problems on which

all algorithms have the same average performance. We here have classes of prob-

lems indexed by the number of objectives, and the upper and lower bounds

get close to each other as the number of objectives increases. Therefore, we

can see two differences. First, NFL theorems use a very specific distribution of

problems, which leads to highly unstructured spaces (typically, the domain can

be permuted without modifying the distribution of problems), whereas here we

strenghten the result by considering (i) for the lower bound, any space of MOO

problem, provided that all sufficiently smooth (in the Lipschitz-sense) Pareto sets

are possible solutions of the family of problems (ii) for the upper bound, possibly

hard problems. Second, it is asymptotic in the sense that it only concludes to

a no-free-lunch type result only for a large number of conflicting objectives (see

conclusions).

The complexity of the fitness-function. Our random-search (algo. 3) is

very simple and samples points in the fitness domain with a density which is

absolutely continuous with respect to Lebesgue’s measure. This is a very poor

random search as soon as the fitness (i.e. the multi-valued fitness, with values

in Rd) has e.g. a bounded Jacobian, or also for problems in P . If the fitness

function is very hard, e.g. when the probability of randomly generating a point

which has a positive fitness value is null, the results does not apply (however,

we point out that in that case, almost all evolution strategies, which generate

offsprings thanks to absolutely continuous distributions, will never solve them).

We here need the fact that it is possible to generate points with a lower bounded

density in the fitness-space, all over the set of fitnesses of realizable individuals.

For most problems, especially in the asymptotic case, this random search is very

poor - this strenghtens the result, as the target of this work is the proximity



between the upper bound (by a poor random search) and the lower bound (for

all comparison-based algorithms as discussed in this section).

We only consider the quality of the approximated Pareto-front,

and not its parsimony. The random-search algorithm as defined in algo. 3,

provides a good solution in terms of the Hausdorff distance at least if the number

of generations is sufficient, but this solution is far from parsimonious. It contains

many elements, only a small part of them being non-dominated by others3. So,

we compare only solutions provided by random-search and comparison-based

algorithms in a framework in which parsimony is not required. We compare

the computation time before the algorithms provide a description of a not-too-

bad Pareto-front for the Hausdorff distance, without considering the size of the

description of the Pareto-front. The random search provides a non-parsimonious

description. This implies that the main result of this work is that in dimension d

large, the rule used for selecting new candidates is not much better than the pure

random search in the fitness space - under, however, all assumptions discussed

in this section. This does not imply, of course, that various techniques are not

helpful (also when all assumptions are verified!), but mainly these techniques

will prune the solution efficiently (see e.g. [22]), and not significantly improve

the convergence rate in terms of Hausdorf distance with respect to the number

of comparisons.

The nature of the comparison-operator. Another important point con-

cerns the comparison operator. Our work deals with binary comparisons, but in

the multi-objective case more subtle comparison operators, comparing each fit-

ness separately, could be considered. Instead of one bit (a ≻ b versus a 6≻ b), one

could consider d bits of information (the ith bit is the comparison ai ≻ bi). Such

improvements can be defined by the use of cross-over operators that use this ad-

ditional information (e.g., objective per objective comparison instead of a global

comparison for the Pareto-dominance), as well as some constraint-handling tech-

niques use the full constraint-violation information and not only one bit for the

satisfaction of all constraints. Such an operator in MOO has been proposed in

[17].

Expensive MOO. The computation-time is lower bounded by the number

of comparisons; this element is used in our lower bound, and of course this holds,

but when almost all the computation time is in the computation of the fitness

functions, then this might be a bad model. Therefore, for expensive optimiza-

3 Asymptotically, we claim that only a small part of them are non-dominated. Non-

asymptotically, the picture is very different as all points are often non-dominated if

d is large [1].



tion (when a long time is required for computing the fitness functions of an

individual), our results might be misleading ([11]).

The domain. Our results consider continuous domains; whereas we consider

that the comparison-based nature of algorithms is only technical (see discussion

below), the case of discrete domains cannot be handled by entropy theorems (as

for mono-objective optimization), in particular for D = {0, 1}n.

Conflicting objectives. Also, our results are based on the fact that the

objectives are conflicting - see e.g. [3] for the removal of moderately conflicting

objectives. Precisely, we consider the worst case on all problems, including those

with conflicting objectives - if we restrict our attention to a fixed number of

conflicting objectives, then the result is very different (d is roughly replaced by

the maximum number of conflicting objectives).

Some elements can be provided with regard to algorithms which use more

than comparisons. If we consider the finiteness of the number of bits of the rep-

resentation of real numbers, then our method is no more specific of comparison-

based algorithms. The result is in fact not based on the use of comparisons,

but on the more general assumption that we get one bit of information about

the fitness at each time step. If we have a real-valued information, on 64 bits,

then we can be at most 64 times faster. This is not an artificial way of dealing

with non-comparison-based methods; for example, in the mono-objective case,

limits on the convergence rate of comparison-based algorithms derived through

entropy theorems ([15]) do also hold in practice for gradient-based techniques,

as the gradient is computed with a finite precision; as well as comparison-based

EA, Newton’s method is only linear when dimensionality is sufficient to see the

effects of the finite precision; this is an already known fact (see e.g. [21]).
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