
The University of Manchester Research

Latin Hypercube Designs with Branching and Nested
Factors for Initialization of Automatic Algorithm
Configuration
DOI:
10.1162/evco_a_00241

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Wessing, S., & Lopez-Ibanez, M. (2018). Latin Hypercube Designs with Branching and Nested Factors for
Initialization of Automatic Algorithm Configuration. Evolutionary Computation.
https://doi.org/10.1162/evco_a_00241

Published in:
Evolutionary Computation

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:19. Apr. 2024

https://doi.org/10.1162/evco_a_00241
https://research.manchester.ac.uk/en/publications/1385e83a-f6af-42cc-b389-f14518e6854d
https://doi.org/10.1162/evco_a_00241

Latin Hypercube Designs with Branching and
Nested Factors for Initialization of Automatic

Algorithm Configuration

Simon Wessing simon.wessing@tu-dortmund.de
Computer Science Department, Technische Universität Dortmund, Germany

Manuel López-Ibáñez manuel.lopez-ibanez@manchester.ac.uk
Alliance Manchester Business School, University of Manchester, UK

Abstract
The configuration of algorithms is a laborious and difficult process. Thus, it is advis-
able to automate this task by using appropriate automatic configuration methods. The
irace method is among the most widely used in the literature. By default, irace initial-
izes its search process via uniform sampling of algorithm configurations. Although
better initialization methods exist in the literature, the mixed-variable (numerical and
categorical) nature of typical parameter spaces and the presence of conditional param-
eters make most of the methods not applicable in practice. Here, we present an im-
proved initialization method that overcomes these limitations by employing concepts
from the design and analysis of computer experiments with branching and nested fac-
tors. Our results show that this initialization method is not only better, in some sce-
narios, than the uniform sampling used by the current version of irace, but also better
than other initialization methods present in other automatic configuration methods.

Keywords
automatic algorithm configuration, sampling, branching and nested designs, racing

1 Introduction

General automatic configuration methods are becoming an essential tool in the design
and analysis of optimization algorithms (Bartz-Beielstein, 2006; Bezerra et al., 2016; Bi-
rattari, 2009; Hoos, 2012). Iterated racing (Balaprakash et al., 2007; Birattari et al., 2002)
and, in particular, the elitist variant implemented by the irace package (López-Ibáñez
et al., 2016), are among the most successful automatic configuration methods available
in the literature. One key characteristic of irace, and other widely used methods such
as sequential model-based algorithm configuration (SMAC) (Hutter et al., 2011), is its
ability to handle complex parameter spaces containing both numerical (integer- and
real-valued) and categorical (combinatorial) parameters, and also parameters that may
be conditional to particular values of other parameters. For example, setting the value
“Simulated annealing” of a parameter that specifies a local search may conditionally
enable an additional “temperature” parameter. On the other hand, the complexity of
such parameter spaces makes the exploration of the search space particularly challeng-
ing. The use of full factorial designs is impractical (Balaprakash et al., 2007) except for
the most trivial parameter spaces. As a result, irace and most other methods generate
the initial configurations by performing uniform sampling within the domain of each

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

S. Wessing, M. López-Ibáñez

parameter, starting from the unconditional parameters and continuing down the hier-
archy of conditions (Balaprakash et al., 2007). Although this approach is simple and
effective, it has several drawbacks, such as the possibility of under-exploring/over-
exploring some of the conditional parameters. More advanced approaches, such as
Latin hypercube designs (LHD), should in principle lead to more balanced exploration
of the parameter space. However, the most basic approaches available in the literature
are not well suited for such complex parameter spaces. In this paper, we investigate
several LHD strategies on both well-established and newly designed algorithm config-
uration scenarios.

2 The Algorithm Configuration Problem

Modern algorithms in optimization, machine learning and other contexts often present
a large number of parameters, either meant to be set by users according to their partic-
ular application context or encoding design decisions, default behaviors and “magic”
constants fixed by the algorithm designer that could be set differently. The problem of
setting these parameters to their optimal value for a particular application context may
be formalized as follows.

Let us assume a parametrized target algorithm with n parameters conforming a pa-
rameter space X = {Xj , j = 1, . . . , n}, each parameter Xj may be either categorical,
i.e., with a discrete and typically small number of choices and no relative order among
them, or numerical (real-valued or integral), i.e., with a rather large number of possible
values within some range and an implicit order among them. Therefore, the domain
of a categorical parameter would be given as Xc ∈ DXc = {xc,1, . . . , xc,kc}, while the
domain of a numerical parameter would be given as Xn ∈ DXn = [xn, xn]. In prac-
tical algorithms, some parameters are often conditional on particular values of other
parameters. For example, parameter X1 may only have an effect on the target algo-
rithm if parameter X2 has a certain value. A configuration of the target algorithm is
an assignment of a value to each parameter that is not conditionally disabled, that is,
θ = {x1 ∈ DX1 , . . . , xn ∈ DXn}, and Θ denotes the set of all possible configurations of
the algorithm.

Let us also assume that the target algorithm is designed to tackle instances of some
abstract problem, such as the quadratic assignment problem (QAP) (Çela, 1998). Al-
though it may be possible to define in advance the set of problem instances of practical
interest, the actual sequence of instances to be solved when the algorithm is deployed
is unknown, and it can be seen as a random variable I from which instances may be
sampled. When tackling an instance i with a configuration θ of the target algorithm,
we obtain a cost measure c(θ, i) that must be minimized, without loss of generality. Ex-
amples of cost measures are the best assignment cost found for a QAP instance within
a given time limit or the computation time required to find the optimal solution of
a given QAP instance. If the target algorithm is stochastic, as it is often the case for
evolutionary algorithms and other metaheuristics, this cost measure c(θ, i) is a single
realization of a random variable C(θ, i).

Since we actually do not know which instances will be solved in practice, the goal
in algorithm configuration is to optimize some statistical parameter cθ of the family of
cost measures C(θ, i), where i is sampled from the random variable I. A typical defini-
tion of this statistical parameter is the expected cost of θ for any training instance i ∈ I,
i.e., cθ = E[C(θ, i) | i ∈ I]. Thus, the optimal solution of the algorithm configuration
problem is given by θ∗ = arg minθ∈Θ cθ.

In practice, the precise value of cθ can only be estimated by sampling first from I

2 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

and then from C(θ, i), that is, by selecting a set of training instances and executing a
configuration of the target algorithm on them. Methods for automatic algorithm con-
figuration differ in how they search for configurations to evaluate, how the training
instances and cost measure are sampled, and how cθ is estimated from the available
samples. In the next section, we describe in detail Iterated Racing (irace), one of such
methods.

3 Iterated Racing

The term racing describes a family of procedures for selecting the best among several
alternatives over a number of stochastic (noisy) evaluations (Maron and Moore, 1997).
Its main application context involves the evaluation of a finite number of alternative
choices (such as candidate solutions, algorithm configurations, machine learning mod-
els, etc.) over a sequence of test points (such as, respectively, noisy function evalua-
tions, problem instances, training datasets, etc.). As soon as there is evidence that some
choices are worse than the best one, the former are eliminated and the race continues
evaluating the surviving ones on additional test points. The goal is to quickly discard
poor performing alternatives, while evaluating the best-performing ones on a higher
number of test points in order to identify the best one overall. The various racing pro-
cedures mainly differ on the particular statistical tests or confidence bounds used for
elimination, with some methods being more statistically conservative than others. Rac-
ing procedures have been applied to model selection in machine learning (Maron and
Moore, 1997), the evaluation of candidate tours in the probabilistic TSP (Birattari et al.,
2006), and the configuration of algorithmic parameters (Birattari et al., 2002; Yuan and
Gallagher, 2004), among other applications. In the context of automatic algorithm con-
figuration, the use of the Friedman test and its associated post-hoc tests or the use of
pairwise t-tests without p-value correction for multiple comparisons have shown good
results in practical scenarios (Birattari, 2009; Birattari et al., 2002). For large parameter
spaces, it is infeasible to include all possible parameter configurations within a single
race, thus iterated racing procedures combine heuristic search and racing to explore the
parameter space and identify high-performing parameter configurations.

The original I/F-Race proposal (Balaprakash et al., 2007) iterates between sam-
pling new candidate configurations from a sampling model and racing these configu-
rations to identify the best ones. These elite configurations are then used to modify the
sampling model in order to bias the generation of new configurations towards the best
ones found so far. This process is repeated until a maximum computational budget is
reached and the best configurations found are returned to the user.

Algorithm 1 gives a high-level description of the I/F-Race algorithm. As a first
step, a population of candidate solutions is initialized by uniform sampling (line 1)
from the parameter space X . The size of this initial population (Θ1) is dynamically
computed, according to the number of decision variables and the computational bud-
get (B). The configurations of this population are then raced (line 3) as described above.
During the race, configurations are evaluated on a number of training instances and the
worst-performing configurations are discarded. The remaining configurations, called
elites (Θelite), are then used to update a sampling model M from which new configu-
rations are probabilistically sampled (line 7). The variance of this sampling model is
successively reduced as the number of iterations increases in order to focus the search
around the best configurations found. The number of new configurations (Θnew) sam-
pled is dynamically decided by irace depending on the remaining budget of evalua-
tions and the number of races performed so far. The new configurations, together with

Evolutionary Computation Volume x, Number x 3

S. Wessing, M. López-Ibáñez

Algorithm 1 Pseudocode of I/F-Race

Require: I = {I1, I2, . . . } ∼ I,
parameter space: X ,
cost measure: C : Θ× I → R, C(θ, i) ∈ R,
tuning budget: B

1: Θ1 ← Initialization()
2: t← 1
3: Θelite ← Race(Θt)
4: while Bused < B do
5: t← t+ 1
6: M← UpdateModel(Θelite)
7: Θnew ← Sample(M)
8: Θt ← Θnew ∪Θelite

9: Θelite ← Race(Θt)
10: end while
11: Output: best configuration found from Θelite

the current elite ones, are raced again (line 9) on new training instances. Sampling
and racing are iterated until reaching a maximum number of target algorithm runs or
another termination criterion evaluations (B).

Starting from version 2.0, the irace package (López-Ibáñez et al., 2016) implements
an elitist variant of the above procedure. In this elitist iterated racing (henceforth simply
called irace), the result of the evaluations is transferred across successive races, which
was not the case in the original I/F-Race proposal. More importantly, elite configura-
tions remain protected from being discarded until all other configurations in the race
have been evaluated on the same number of training instances. This prevents discard-
ing the best-so-far configuration, which may have been evaluated on tens of instances
in previous races, after seeing only a few instances in the new race. On the other hand,
new non-elite configurations are discarded as usual, that is, without evaluating them
on as many instances as the elite ones. To counter-balance this advantage of the elite
configurations, each race starts by evaluating elite and non-elite configurations on at
least one new instances. This prevents the search getting stuck on the same elites al-
ways performing better on a few number of instances.

3.1 Initialization by Random Uniform Sampling

As mentioned above, the initialization method in irace (line 1) is based on random uni-
form sampling of the parameter space. First, parameters are ranked according to the
hierarchy of conditionals that enable them. That is, all parameters that are not condi-
tional on any other parameter are ranked first, parameters that are only conditional on
unconditional parameters are ranked second, and so on and so forth. Next, starting
from the first ranked parameters, each parameter Xj is considered iteratively by sam-
pling a value uniformly from its domain DXj . In the case of conditional parameters, if
the condition for enabling it is not satisfied by the already sampled parameters, the pa-
rameter requires no value and no sampling is done. The final result is a configuration
where all parameters whose conditions are satisfied have a value within their domain.

The above procedure has the advantages of being simple and always producing
valid configurations. On the other hand, although unconditional parameters are uni-
formly sampled, the conditional parameters are often not. Instead, the number of val-

4 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

ues sampled per conditional parameter depends on the particular conditions and the
chance that those conditions are precisely satisfied by the uniform sampling.1 More-
over, even in the case of unconditional parameters, a finite number of samples drawn
randomly uniform is naturally quite nonuniform, due to the independence of the indi-
vidual draws. Therefore, in this work we investigate alternative initialization methods
based on Latin hypercube designs.

3.2 Related Work

Various algorithms exist for automatic algorithm configuration. Some of them use frac-
tional factorial designs to initialize the search for good parameters (Adenso-Díaz and
Laguna, 2006; Coy et al., 2001), others recommend LHDs (Bartz-Beielstein et al., 2010).
However, only a few approaches besides irace, such as SMAC (Hutter and Ramage,
2015), are capable of handling conditional parameters.

The R package ParamHelpers (Bischl et al., 2017) provides some sampling capa-
bilities for designs with nested factors, i.e., conditional parameters. It delegates the
sampling in each nested subspace to a latin hypercube sampling (LHS) function from
the lhs package (Carnell, 2016). Thus, the properties of the combined design cannot be
optimized, as we will do in the following. Instead, the approach taken in ParamHelpers
has some similarity to partially stratified sampling (Shields and Zhang, 2016). The lat-
ter also partitions the space into lower-dimensional subspaces and the full-dimensional
sample is obtained by binding the lower-dimensional samples together, but without
any notion of a hierarchical structure of the space. ParamHelpers also uses the LHS
functions to sample integer parameters, and only afterwards maps the real values to
the final discrete ones. This is another disadvantage, because potential optimizations
of the LHS distribution will be broken by this procedure.

4 Design and Analysis of Computer Experiments with Branching and
Nested Factors

Latin hypercube designs (Audze and Eglãjs, 1977; McKay et al., 1979) are a classical
approach for generating space-filling designs for computer experiments. An LHD is
defined as a set of points D = {~z1, . . . , ~zN}, where each set {z1,j , . . . , zN,j}, j = 1, . . . , n,
is a random permutation of the numbers 1, . . . , N . D can then be scaled to the region
of interest to obtain a set P = {~x1, . . . , ~xN} for the sampling.

LHDs can be interpreted as an extreme case of partially stratified sampling (Shields
and Zhang, 2016), in which n one-dimensional subspaces are stratified independently,
and then bound together. LHDs possess very uniform one-dimensional projections of
the points, which reduce variance associated with main effects (i.e., the effect of an in-
dependent variable on a dependent variable averaging across the levels of any other
independent variables) of Monte Carlo estimators (i.e., an aggregated value obtained
from a discrete sample of points). In other words, LHDs can reduce variance in cases
where the interaction between variables is low, or where some variable has no or only
weak influence on the response f . In our application, f represents the performance of
a configured algorithm on a test set of problem instances, the variables are the algorith-
mic parameters to be configured, and Monte Carlo estimators are obtained by running
algorithm configurations on problem instances.

1In principle, other random sampling strategies are possible, for example, by considering “no value” as
a possible value of the domain and sampling uniformly all parameters at once. Although such strategy
may lead to a more uniform sampling of conditional parameters, ensuring that conditions are satisfied after
sampling may prove very difficult and require a costly rejection or repair procedure, which will necessarily

Evolutionary Computation Volume x, Number x 5

S. Wessing, M. López-Ibáñez

2

3

4

0 500 1000 1500
Number of points

E
ne

rg
y

va
lu

e
Sampling algorithm Optimized LHS Random LHS Random Uniform

Figure 1: Mean energy values and their 95% confidence intervals against the number
of points for different sampling methods (lower is better). The samples were drawn in
[0, 1]5.

Unfortunately, the uniformity of random LHDs in the n-dimensional space is gen-
erally not better than random. To also reduce variance associated with interaction ef-
fects, we have to increase the uniformity of this distribution. A conceivable approach to
do this would be to maximize the minimal distance between points in the LHD (“max-
imin” approach), but if the points are not perturbed, this criterion yields many ties.
To further discriminate among them, one could also regard the second-smallest, third-
smallest, . . . distance, as proposed by Morris and Mitchell (1995). These lexicographic
comparisons are often avoided as well, because they are not amenable to treatment
by gradient methods. Instead, potential energy criteria Eλ(P), from the related area
of molecular conformation problems (Müller and Sbalzarini, 2012), are common sub-
stitutes. These energy functions are useful regularizations for the continuous search
spaces of molecular conformation or sphere packing problems (Addis et al., 2008). They
can also be used instead of discrepancy in numerical integration theory (Damelin et al.,
2010). Their basic formulation reads as

Eλ(P) =

N∑
h=1

∑
i 6=h

1

d(~xh, ~xi)λ
, (1)

where the d(~xh, ~xi) are pairwise distances. Such a criterion was used by Morris and
Mitchell (1995) with various values of λ. Audze and Eglãjs (1977) are widely credited
as the first ones to use such an energy criterion for LHDs, but only with the special case
λ = 2. Figure 1 compares (normalized) energy values of random uniform sampling,
random LHS, and optimized LHS in the five-dimensional unit hypercube. It is obvious
that the energy value of random LHS is not significantly different from random uniform
sampling, except for very small sample sizes.

bias the sampling.

6 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

We would like to point out that in the discrete search space of LHDs, the regular-
ization is not strictly necessary, and also direct search methods in continuous spaces
can deal with lexicographic comparisons. Furthermore, setting the parameter λ is not
completely trivial. It is well known that for λ→∞, minimizing (1) becomes equivalent
to maximizing the minimal distance between all pairs of design points (Santner et al.,
2003, p. 139). Hardin and Saff (2004) also showed that for n-dimensional manifolds,
asymptotically uniformly distributed point sets minimize this energy if λ ≥ n. But if λ
is chosen smaller, the optimal point density increases towards the outer regions of the
manifold, which is often undesired. While the works of Audze and Eglãjs (1977) and
Morris and Mitchell (1995) predate the result of Hardin and Saff (2004) by many years,
it seems that even today, this fact about λ has not been fully recognized by the LHD
community (Hung et al., 2009; Pronzato and Müller, 2012). However, we will use an
energy criterion in the following, and not the lexicographic comparison, especially as
it is much easier to visualize.

4.1 Branching and Nested Designs

An experimental design where some factors exist only for certain levels of other factors
is called a branching and nested design. The dependent factor is called nested and
the factor it depends on is called a branching factor. In the algorithm configuration
context, a nested factor is a conditional parameter, whereas the branching factor is the
parameter that appears in the condition that enables the conditional parameter. Hung
et al. (2009) present two conflicting optimality criteria for such LHDs with branching
and nested factors (BLHDs). The first one is a generalization of the energy criterion (1).
They explicitly assume there are q qualitative branching factors z1, . . . , zq , with each zu
having ku levels and mu nested factors under each of these different levels. Let t be
the number of shared factors (i.e., unconditional parameters), then their generalized
energy criterion is

φ′λ =

∑
~g 6=~h

[
t

dx(~g,~h)

]λ
+

q∑
u=1

ku∑
i=1

∑
gδu=hδu=zu,i

[
mu + t

dvu(~g,~h) + dx(~g,~h)

]λ1/λ

, (2)

with ~g and ~h being n-dimensional vectors and dx, dv projected Manhattan distances
between them, regarding the shared and nested subspaces, respectively. δu denotes the
index of the u-th branching factor in the sequence of all factors. We have to modify this
scenario slightly, because we want to admit arbitrary conditions for the nested factors in
irace, not just dependencies on certain levels of qualitative branching factors. Actually,
this even simplifies the formula slightly to

φλ =

 1(
N
2

) ∑
~g 6=~h

[
t

dx(~g,~h)

]λ
+

q∑
u=1

1(|Pcu |
2

) ∑
~g 6=~h

~g,~h∈Pcu

[
mu + t

dvu(~g,~h) + dx(~g,~h)

]λ
1/λ

, (3)

when we now say that we have q distinct conditions c1, . . . , cq , each cu having mu

nested factors, and Pcu denotes the subset of points for which condition cu is fulfilled.
We also divide the measure by the number of used distances, to remove its influence
in the spirit of Santner et al. (2003, p. 139). We choose λ = n + 1 here to achieve
uniformity (Hardin and Saff, 2004). The total dimension is n = t+s, with s =

∑q
u=1mu.

Evolutionary Computation Volume x, Number x 7

S. Wessing, M. López-Ibáñez

A second sensible criterion, according to Hung et al. (2009), is to minimize the
pairwise correlation among factors (generalized correlation criterion for BLHDs). Sur-
prisingly, the original description is not completely clear with regard to which corre-
lations are actually calculated. However, it is certain that at least t(t − 1)/2 pairwise
correlations ρij between the t shared factors and st correlations between shared and
conditional factors should be calculated. There may also be pairs of conditional factors
with non-empty intersection, which we also take into account. As we are only inter-
ested in absolute correlation, the values are squared. Our adapted correlation criterion
thus reads

ρ2 =

∑st
i=2

∑i−1
j=1 ρ

2
ij

st(st− 1)/2
. (4)

5 Multilevel Optimization of irace Configurations

Energy and correlation represent two objectives for the quality of experimental designs.
Hung et al. (2009) derive lower and upper bounds to normalize (2), and then aggre-
gate (4) and the normalized (2) into a weighted sum. They optimize the resulting scalar
function with simulated annealing. We will study different approaches here instead,
because Hung et al.’s normalization is cumbersome and contains the previously men-
tioned explicit assumption of branching factors. Besides the two individual criteria,
we will consider a Pareto dominance criterion and φλ + log10(ρ2) as a much simpler
aggregated function.

The conditional parameters in irace do not necessarily depend on categorical pa-
rameters as assumed in Hung et al. (2009), but can also depend on numerical parame-
ters Xn ∈ DXn , which are part of the BLHD. Thus, by varying one part of the solution,
one might invalidate another part. In other words, the number of points sampled for
some conditional parameters of the BLHD may depend on the chosen location of co-
ordinates in other shared or conditional parameters of the BLHD. A possible approach
to tackle this problem is to use multilevel optimization, thanks to the acyclic nature
of these dependencies (Deb and Sinha, 2009). We begin with optimizing the uncondi-
tional parameters at the lowest level. The optimized design in this subspace is then
fixed for the subsequent iterations with conditional parameters. The number of levels
is conceptually unlimited and follows in practice from the dependency structure of the
parameters.

Thanks to the fixed data for previous levels, also the dimension and the number
of points for the current level are fixed, and we only have to optimize a conventional
LHD. To do the optimization, we use a simple (1+1) evolutionary algorithm. The geno-
type can be represented by an integer-valued matrix, containing the LHD in row-major
order. This matrix is scaled to the parameter space and mapped to the appropriate
places in the set of configurations Θ. The columns of the matrix hold the permutations
mentioned in Sec. 4. As a mutation operator, we choose max{1,B(n, 1/n)} columns ran-
domly for modification, where B(n, 1/n) is the binomial distribution, and then apply
the swap mutation to each chosen column, to retain the permutation property (Eiben
and Smith, 2003, p. 45). In consequence, the identity is not permitted as a mutation.

6 Configuration scenarios

We evaluate experiments on three different configuration scenarios, the ACOQAP sce-
nario (López-Ibáñez et al., 2018), which is a larger version of the the well-known
ACOTSP scenario (Hutter et al., 2014; López-Ibáñez et al., 2016; Stützle, 2002), and two

8 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

scenarios based on optimization algorithms from R’s optim function and optimx pack-
age (Nash and Varadhan, 2011).

ACOQAP. This scenario applies a component-wise framework of various ant colony
optimization (ACO) algorithms (López-Ibáñez et al., 2018) to instances of the quadratic
assignment problem (QAP). The parameter space consists of 17 parameters, five of
which are categorical and the rest are numerical. There are 10 nested parameters and
four branching parameters. For all nested parameters, their condition contains only
one branching parameter. There are five nested parameters that depend on the same
parameter with different conditions, and another group of three nested parameters that
depend on a different parameter with different conditions. We use a set of 50 random-
structured QAP instances of size 100. This scenario is computationally expensive, be-
cause the algorithm configurations are run for 60 CPU-seconds on each instance. More
details about this scenario can be found in the original publication (López-Ibáñez et al.,
2018).

Optim and optimx. We have also designed two cheaper scenarios modeling restarted
local search approaches in continuous optimization. This way, we could use general
stopping criteria related to tolerance, number of iterations, and number of function
evaluations as shared parameters. Conditional parameters are the individual param-
eters of the local searches. The parameter space of these two scenarios is described
in Fig. 2. The first, smaller scenario (optim) uses the Nelder-Mead and simulated an-
nealing algorithms available in R’s standard library. Both are derivative-free methods.
They are applied to 50 randomly weighted sums of Ackley’s and Rosenbrock’s func-
tions in the search space [−5, 5]4. This approach is chosen as a simple way to generate a
large diverse set of problem instances. An optimization run is stopped after 1600 func-
tion evaluations, which is the same stopping criterion as in the regular single-objective
optimization tracks of the black-box optimization competition (BBComp) (Loshchilov
and Glasmachers, 2017). The other scenario (optimx) uses the SPG, UCMINF, and L-
BFGS-B algorithms, which are gradient and quasi-Newton methods available through
R’s optimx package (Nash and Varadhan, 2011). They are applied to the same problem
instances used in the optim scenario, but here we stop each optimization run after 400
function evaluations, because they employ gradient information. This stopping crite-
rion is the upper bound of the expensive single-objective tracks of BBComp.

7 Experiments

Research question. Does an optimized initial sampling lead to a measurable im-
provement in the performance of the best found configuration in this sample?

Setup. As described above, we evaluate six different sampling methods. These in-
clude four variants of the evolutionary multilevel optimization proposed in Section 5,
which differ in the quality criteria used for optimizing the LHD: the energy criterion
(φλ), the correlation criterion (ρ2), the weighted sum of the two (φλ + log10(ρ2)), and a se-
lection employing a Pareto-dominance relation based on the two criteria, where every im-
provement in terms of this dominance relation is accepted. As a reference method, the
fifth initialization method is the improved LHS algorithm by Beachkofski and Grandhi
(2002) available in the ParamHelpers package, and identified as PH-ILHS in the follow-
ing. Finally, the sixth method is the random uniform sampling available in irace.

Pre-experimental planning. Using each sampling method, we generate a set of pa-
rameter configurations in the parameter space of each scenario. Before we run the con-

Evolutionary Computation Volume x, Number x 9

S. Wessing, M. López-Ibáñez

method c (Nelder-Mead, SANN)
reltol r (−12,−3)*
maxit r (1, 3.204)* alpha r (0.5, 1.5)

beta r (0.1, 0.9)
gamma r (1.1, 3.0)

method == "Nelder-Mead"

tmax i (1, 5000)
temp r (0, 100)method == "SANN"

(a) optim

method c (L-BFGS-B, spg, ucminf)
tol r (−16,−3)*
itnmax r (1, 3)*
maxfeval r (2, 3)*

lmm i (1, 10)
factr r (4, 10)*

method == "L-BFGS-B"

M i (5, 20)
ftol r (−12,−4)*
eps r (−12,−4)*

method == "spg"

stepmax r (0, 30)
grad c (forward, central)
gradstep1 r (−14,−4)*
gradstep2 r (−14,−4)*
xtol r (−14,−4)*

metho
d == "ucmi

nf"

(b) optimx

Figure 2: Parameter spaces for the two newly defined algorithm configuration scenar-
ios. On the left hand side, we see the shared parameters. Edges annotated with the
conditions lead to the nested factors. The three columns in each node show the param-
eter name, type (real, integer, categorical), and domain, as they appear in the parameter
files for irace. Rows with a * indicate that a log10-transformation is applied.

figurations sampled on the actual problem instances, which is computationally costly,
we do a sanity check on the sampling methods by evaluating their resulting samples
in terms of correlation and energy criteria. For this comparison, 100 configurations are
sampled with each of the six sampling method for the three configuration scenarios.
The budget for the four optimized variants is 500 evaluations of the quality criteria per
condition. The whole process is replicated 50 times.

The results of this preliminary investigation are shown in Fig. 3. In every scenario,
we see roughly the same effects, with the exception of a bimodal energy distribution
for approaches including correlation as criterion in Fig. 3a. The method using Pareto
dominance usually obtains slightly worse correlation values than using weighted sum,
but slightly better energy values. The energy criterion naturally provides the lowest
energy values, and also slightly improved correlation values compared to random uni-
form sampling. PH-ILHS achieves values similar to random uniform sampling.

Task. For each scenario, we again sample new configurations using each of the sam-
pling methods, and we run each configuration on all the benchmark instances of the
scenario. In particular, we sample 50 and 200 configurations (number of points in the
LHD) for the optim scenario, however, we can only afford to sample 50 configurations
for the optimx and ACOQAP scenarios, due to their much larger computational cost.
We test two values for the budget assigned to the four optimized sampling variants,
500 and 2000 evaluations of the quality criteria per condition. We only focus here on
the quality of the initial sample and not the quality after running irace, thus, we have
no feedback loop and a separate training set of instances is not necessary for this ex-

10 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●●
● ●

●●

5e−06 5e−05 5e−04 5e−03 5e−02

10
20

50
10

0
20

0

Correlation

E
ne

rg
y

●

●

Correlation
Energy
Pareto Dominance
Weighted Sum
Random Uniform
PH−ILHS

(a) optim

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
●●

●

●● ● ●●●●

●
●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

5e−05 5e−04 5e−03 5e−02

5
10

20
50

Correlation

E
ne

rg
y

●

●

Correlation
Energy
Pareto Dominance
Weighted Sum
Random Uniform
PH−ILHS

(b) optimx

5e−05 5e−04 5e−03 5e−02

5
10

20
50

Correlation

E
ne

rg
y

Correlation
Energy
Pareto Dominance
Weighted Sum
Random Uniform
PH−ILHS

(c) ACOQAP

Figure 3: Correlation and energy measures of 100 samples (configurations) generated
by each sampling method. Non-dominated solutions are marked with “+”. Both axes
are on a log scale. Lower is better.

periment, as it would only introduce additional noise. The objective values returned
by each configuration on all instances are averaged. The performance of the sampling
method is then determined as the best mean objective value from all the configura-
tions it sampled. By replicating this procedure a number of times, we obtain a mean
estimator for this performance measure. In particular, we evaluate 500, 1000 and 50
replications for optim, optimx and ACOQAP, respectively. We consider a difference in
means statistically significant when 95% confidence intervals shown in the figures do
not overlap.

Evolutionary Computation Volume x, Number x 11

S. Wessing, M. López-Ibáñez

num_points: 50 num_points: 200

budget: 500
budget: 2000

budget: N
A

0.97 0.98 0.99 1.00 0.9175 0.9200 0.9225 0.9250

Energy

Pareto Dominance

Weighted Sum

Correlation

Energy

Pareto Dominance

Weighted Sum

Correlation

Random Uniform

PH−ILHS

Best objective value

S
am

pl
in

g

Figure 4: Mean values and bootstrapped 95% confidence intervals over 500 replications
for sampling methods on the optim scenario (lower is better).

Results and observations. Figure 4 shows the mean values of the sampling meth-
ods on the optim scenario. The values for PH-ILHS and random uniform sampling
are independent of the budget and thus listed under “budget: NA”. We can see that
optimization by energy always yields the best designs in this scenario. The effect is
clearer for smaller numbers of points (configurations) and larger budget given to the
optimized sampling. The performance of PH-ILHS is not significantly different from
that of random uniform sampling. The optimx scenario is shown in Fig. 5, where we
can also observe a positive effect of the optimized LHDs on performance. However, the
variance is considerably higher and the ranking within the optimized variants is quite
variable. Only few effects are statistically significant.

For the ACOQAP scenario, the high computational requirements prevented a sim-
ilarly high number of replications as in the previous scenarios, hence only 50 replica-
tions were taken in this case. Figure 6 shows violin plots of the results, which uses ker-
nel density estimation to compare the whole distributions of the sampled data (shown
in white). Additionally, mean values and their confidence intervals are marked as be-
fore. Finally, Fig. 7 shows the runtime of the sampling methods on the ACOQAP sce-
nario, which is the most computationally demanding. PH-ILHS is generally the fastest
method, thanks to its C implementation. Random uniform sampling needs slightly
more time, and the optimized variants need orders of magnitude more time.

Discussion. Based on the first impressions in Fig. 3, correlation alone apparently
should not be used as a criterion, as its designs are usually dominated by the weighted
sum approach. However, in the other figures it does seem to also produce a slight
performance improvement. It is also not always the same variant that obtains the best
performance. The experiments generally show that the optimized sampling is not al-
ways significantly better than random uniform sampling, but it is never significantly
worse. In Fig. 6, this may partly be explained with the low number of replications to-

12 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

num_points: 50

budget: 500
budget: 2000

budget: N
A

1.255 1.260 1.265 1.270 1.275

Energy

Pareto Dominance

Weighted Sum

Correlation

Energy

Pareto Dominance

Weighted Sum

Correlation

Random Uniform

PH−ILHS

Best objective value

S
am

pl
in

g

Figure 5: Mean values and bootstrapped 95% confidence intervals over 1000 replica-
tions for sampling methods on the optimx scenario (lower is better).

|

|

|

|

|

|

|

|

|

|

num_points: 50

budget: 500
budget: 2000

budget: N
A

43787000 43787500

Energy

Pareto Dominance

Weighted Sum

Correlation

Energy

Pareto Dominance

Weighted Sum

Correlation

Random Uniform

PH−ILHS

Best objective value

S
am

pl
in

g

Figure 6: Distributions of the best objective value over 50 replications for sampling
methods on the ACOQAP scenario (lower is better). The crosses indicate mean values
and bootstrapped 95% confidence intervals.

gether with the high variance of the results. It also depends on the parameter space of
a scenario if the performance can be improved. The optimized sampling is interesting
when the configured algorithms are so expensive that the runtime of the sampling can
be neglected. Then, also the budget assigned to irace will be small and the optimized

Evolutionary Computation Volume x, Number x 13

S. Wessing, M. López-Ibáñez

num_points: 50 num_points: 200

budget: 500
budget: 2000

budget: N
A

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03

Energy

Pareto Dominance

Weighted Sum

Correlation

Energy

Pareto Dominance

Weighted Sum

Correlation

Random Uniform

PH−ILHS

Time (seconds)

S
am

pl
in

g

Figure 7: Computation time of the sampling methods (before evaluating the configura-
tions) over 50 replications on the ACOQAP scenario.

initialization relatively cheap in comparison. Nevertheless, as shown by the small run-
time of PH-ILHS, implementing our proposed optimized sampling in C instead of R
may yield a significant runtime reduction and allow their use in the configuration of
computationally cheap algorithms. Also note that the runtime of the optimized sam-
pling could still be greatly improved by caching the correlations and distances pertain-
ing to the already fixed subspaces.

8 Conclusion

In this paper we have studied several alternatives for the initialization step of irace,
although the results presented here can be used by most automatic configuration meth-
ods. In particular, we have compared the default initialization method used in irace,
based on random uniform sampling, with several Latin hypercube sampling methods
that are able to handle categorical and numerical parameters that may be conditional
(nested) on the value of other (branching) parameters. The Latin hypercube designs
(LHD) are produced by optimizing generalizations of classical optimality criteria for
designs of computational experiments (Morris and Mitchell, 1995) with an evolution-
ary algorithm. Results show that the optimized sampling variants can produce better
configurations in terms of performance averaged over a test set of problem instances
than the default uniform sampling. In the worst case, with large parameter spaces and
low number of configurations sampled, our results show that the optimized sampling
may not be significantly better than random uniform sampling, however, it should
never be worse, on average.

Configuration scenarios without nested factors should benefit from the variance
reduction of the improved sampling as well, as they are a special case of the more gen-
eral approach proposed here. When there are no conditional parameters, the methods
produce conventional optimized LHD, which are state-of-the-art (Pronzato and Müller,

14 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

2012).
The current implementation in R of the proposed optimized sampling methods is

much slower than the default random sampling of irace, thus, they should only replace
the default initialization method in irace, and possibly other automatic configuration
tools, in the case of a high runtime of the configured algorithm for which the additional
computational time required by the sampling can be relatively long. Nevertheless, in
terms of computational complexity, while the optimized LHDs are expensive, a non-
optimized LHD has the same linear complexity as random uniform sampling and thus
should be always preferred to it. Moreover, a more efficient implementation, e.g., in C,
of the methods proposed here is likely to make any differences in computational time
negligible in practice, as shown by the fact that PH-ILHS, implemented in C, is much
faster than the random sampling implemented in R.

The best criterion to optimize the LHDs is also an open question that may well
depend on the features of the parameter space, the number of points and the budget
available for optimization. Our results show that in some scenarios, the energy crite-
rion performs exceptionally well, whereas in other scenarios a weighted sum is more
effective. A proper analysis of this question require the careful design of artificial con-
figuration scenarios, which we leave for future research.

A possible direction for future research could be to focus on the sequential part,
i.e. after the initial sampling, of algorithm configuration methods. The optimality crite-
ria presented here are independent of LHDs and could also be used to determine infill
points for a sequential sampling, if uniformity is sought. A further step would then
be to employ a model-based approach for branching and nested designs as algorithm
configuration method. The foundation for this approach is already laid, as Hung et al.
(2009) have not only defined criteria for the initial branching and nested designs, but
also developed a corresponding kernel for Kriging metamodels (also called Gaussian
Processes) (Rasmussen and Williams, 2006). Consequently, this kernel could be applied
to do sequential model-based optimization on the nested parameter space. A modified
version of irace that includes all the sampling methods evaluated here is publicly avail-
able for further analysis.2

References
Addis, B., Locatelli, M., and Schoen, F. (2008). Disk packing in a square: A new global optimiza-

tion approach. INFORMS Journal on Computing, 20(4):516–524.

Adenso-Díaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental
design and local search. Operations Research, 54(1):99–114.

Audze, P. and Eglãjs, V. (1977). New approach to the design of multifactor experiments. Problems
of Dynamics and Strengths, 35:104–107. (in Russian).

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the F-race algo-
rithm: Sampling design and iterative refinement. In Bartz-Beielstein, T., Blesa, M. J., Blum,
C., Naujoks, B., Roli, A., Rudolph, G., and Sampels, M., editors, Hybrid Metaheuristics, volume
4771 of LNCS, pages 108–122. Springer.

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary Computation: The New Experimen-
talism. Springer, Berlin, Germany.

Bartz-Beielstein, T., Flasch, O., Koch, P., and Konen, W. (2010). SPOT: A toolbox for interactive
and automatic tuning in the R environment. In Proceedings 20. Workshop Computational Intelli-
gence, Karlsruhe. KIT Scientific Publishing.

2https://github.com/MLopez-Ibanez/iracelhs

Evolutionary Computation Volume x, Number x 15

https://github.com/MLopez-Ibanez/iracelhs

S. Wessing, M. López-Ibáñez

Beachkofski, B. and Grandhi, R. (2002). Improved distributed hypercube sampling. In Proceedings
of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence. AIAA paper 2002-1274, American Institute of Aeronautics and Astronautics.

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2016). Automatic component-wise design of
multi-objective evolutionary algorithms. IEEE Trans. Evol. Comput., 20(3):403–417.

Birattari, M. (2009). Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of Studies
in Computational Intelligence. Springer, Berlin/Heidelberg, Germany.

Birattari, M., Balaprakash, P., and Dorigo, M. (2006). The ACO/F-RACE algorithm for combina-
torial optimization under uncertainty. In Doerner, K. F., Gendreau, M., Greistorfer, P., Gutjahr,
W. J., Hartl, R. F., and Reimann, M., editors, Metaheuristics – Progress in Complex Systems Op-
timization, volume 39 of Operations Research/Computer Science Interfaces Series, pages 189–203.
Springer, New York, NY.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configur-
ing metaheuristics. In Langdon, W. B. et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2002, pages 11–18. Morgan Kaufmann Publishers, San Fran-
cisco, CA.

Bischl, B., Lang, M., Bossek, J., Horn, D., Schork, K., Richter, J., and Kerschke, P. (2017).
ParamHelpers : Helpers for Parameters in Black-Box Optimization, Tuning and Machine Learning.
R package version 1.10.

Carnell, R. (2016). lhs: Latin Hypercube Samples. R package version 0.14.

Çela, E. (1998). The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic
Publishers, Dordrecht, The Netherlands.

Coy, S. P., Golden, B. L., Runger, G. C., and Wasil, E. A. (2001). Using experimental design to find
effective parameter settings for heuristics. J. Heuristics, 7(1):77–97.

Damelin, S. B., Hickernell, F. J., Ragozin, D. L., and Zeng, X. (2010). On energy, discrepancy and
group invariant measures on measurable subsets of Euclidean space. Journal of Fourier Analysis
and Applications, 16(6):813–839.

Deb, K. and Sinha, A. (2009). Solving bilevel multi-objective optimization problems using evolu-
tionary algorithms. In Ehrgott, M., Fonseca, C. M., Gandibleux, X., Hao, J.-K., and Sevaux, M.,
editors, EMO, volume 5467 of LNCS, pages 110–124. Springer.

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer.

Hardin, D. P. and Saff, E. B. (2004). Discretizing manifolds via minimum energy points. Notices
of the American Mathematical Society, 51(10):1186–1194.

Hoos, H. H. (2012). Programming by optimization. Commun. ACM, 55(2):70–80.

Hung, Y., Joseph, V. R., and Melkote, S. N. (2009). Design and analysis of computer experiments
with branching and nested factors. Technometrics, 51(4):354–365.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization for
general algorithm configuration. In Coello Coello, C. A., editor, Learning and Intelligent Opti-
mization, 5th International Conference, LION 5, volume 6683 of LNCS, pages 507–523. Springer.

Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M. T., Hoos, H. H., Leyton-Brown, K., and
Stützle, T. (2014). AClib: a benchmark library for algorithm configuration. In Pardalos, P. M.,
Resende, M. G. C., Vogiatzis, C., and Walteros, J. L., editors, LION, volume 8426 of LNCS,
pages 36–40. Springer.

Hutter, F. and Ramage, S. (2015). Manual for SMAC. University of British Columbia. SMAC
version 2.10.03.

16 Evolutionary Computation Volume x, Number x

LHDs for Initialization of Automatic Algorithm Configuration

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research Per-
spectives, 3:43–58.

López-Ibáñez, M., Stützle, T., and Dorigo, M. (2018). Ant colony optimization: A component-
wise overview. In Martí, R., Pardalos, P. M., and Resende, M. G. C., editors, Handbook of
Heuristics, pages 1–37. Springer International Publishing.

Loshchilov, I. and Glasmachers, T. (2017). Black box optimization competition.

Maron, O. and Moore, A. W. (1997). The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Research, 11(1–5):193–225.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference, 43(3):381–402.

Müller, C. L. and Sbalzarini, I. F. (2012). Energy landscapes of atomic clusters as black box opti-
mization benchmarks. Evolutionary Computation, 20(4):543–573.

Nash, J. and Varadhan, R. (2011). Unifying optimization algorithms to aid software system users:
optimx for R. Journal of Statistical Software, 43(9):1–14.

Pronzato, L. and Müller, W. G. (2012). Design of computer experiments: space filling and beyond.
Statistics and Computing, 22(3):681–701.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer Experi-
ments. Springer.

Shields, M. D. and Zhang, J. (2016). The generalization of latin hypercube sampling. Reliability
Engineering & System Safety, 148:96–108.

Stützle, T. (2002). ACOTSP: A software package of various ant colony optimization algorithms
applied to the symmetric traveling salesman problem.

Yuan, B. and Gallagher, M. (2004). Statistical racing techniques for improved empirical evaluation
of evolutionary algorithms. In Yao, X. et al., editors, PPSN, volume 3242 of LNCS, pages 172–
181. Springer.

Evolutionary Computation Volume x, Number x 17

	Introduction
	The Algorithm Configuration Problem
	Iterated Racing
	Initialization by Random Uniform Sampling
	Related Work

	Design and Analysis of Computer Experiments with Branching and Nested Factors
	Branching and Nested Designs

	Multilevel Optimization of irace Configurations
	Configuration scenarios
	Experiments
	Conclusion

