
Genetic Programming for Evolving
Similarity Functions for Clustering:

Representations and Analysis

Andrew Lensen Andrew.Lensen@ecs.vuw.ac.nz
Evolutionary Computation Research Group, Victoria University of Wellington,
Wellington 6140, New Zealand

Bing Xue Bing.Xue@ecs.vuw.ac.nz
Evolutionary Computation Research Group, Victoria University of Wellington,
Wellington 6140, New Zealand

Mengjie Zhang Mengjie.Zhang@ecs.vuw.ac.nz
Evolutionary Computation Research Group, Victoria University of Wellington,
Wellington 6140, New Zealand

Abstract
Clustering is a difficult and widely-studied data mining task, with many varieties of
clustering algorithms proposed in the literature. Nearly all algorithms use a similarity
measure such as a distance metric (e.g. Euclidean distance) to decide which instances
to assign to the same cluster. These similarity measures are generally pre-defined and
cannot be easily tailored to the properties of a particular dataset, which leads to lim-
itations in the quality and the interpretability of the clusters produced. In this pa-
per, we propose a new approach to automatically evolving similarity functions for a
given clustering algorithm by using genetic programming. We introduce a new ge-
netic programming-based method which automatically selects a small subset of fea-
tures (feature selection) and then combines them using a variety of functions (feature
construction) to produce dynamic and flexible similarity functions that are specifically
designed for a given dataset. We demonstrate how the evolved similarity functions
can be used to perform clustering using a graph-based representation. The results
of a variety of experiments across a range of large, high-dimensional datasets show
that the proposed approach can achieve higher and more consistent performance than
the benchmark methods. We further extend the proposed approach to automatically
produce multiple complementary similarity functions by using a multi-tree approach,
which gives further performance improvements. We also analyse the interpretability
and structure of the automatically evolved similarity functions to provide insight into
how and why they are superior to standard distance metrics.

Keywords
Cluster analysis, automatic clustering, genetic programming, similarity function, fea-
ture selection, feature construction.

1 Introduction

Clustering is a fundamental data mining task (Fayyad et al., 1996), which aims to group
related/similar instances into a number of clusters where the data is unlabelled. It is
one of the key tasks in exploratory data analysis, as it enables data scientists to reveal
the underlying structure of unfamiliar data, which can then be used for further analysis
(Jain, 2010).

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

ar
X

iv
:1

91
0.

10
26

4v
1

 [
cs

.N
E

]
 2

2
O

ct
 2

01
9

A. Lensen, B. Xue, and M. Zhang

Nearly all clustering algorithms utilise a similarity measure, usually a distance
function, to perform clustering as close instances are similar to each other, and expected
to be in the same cluster. The most common distance functions, such as Manhattan or
Euclidean distance, are quite inflexible: they consider all features equally despite fea-
tures often varying significantly in their usefulness. Consider a weather dataset of daily
records which contains the two following features: day of week and rainfall (mm). Clus-
ters generated using the rainfall feature will give insight into what days are likely to
be rainy, which may allow better prediction of whether we should take an umbrella
in the future. Clusters generated with the day of week feature however are likely to
give little insight or be misleading — intuitively, we know that the day of the week has
no effect on long-term weather patterns and so any clusters produced could mislead
us. Ideally, we would like to perform feature selection to select only the most useful fea-
tures in a dataset. These distance functions also have uniform behaviour across a whole
dataset, which makes them struggle with common problems such as clusters of varying
density or separation, and noisy data. Indeed, trialling a range of similarity measures
is commonly a tedious but necessary parameter tuning step when performing clus-
ter analysis. Feature construction is the technique of automatically combining existing
low-level features into more powerful high-level features. Feature construction could
produce similarity measures which are better fitted to a given dataset, by combining
features in a non-uniform and flexible manner. These feature reduction techniques have
been shown to be widely effective in both supervised and unsupervised domains (Xue
et al., 2016; Aggarwal and Reddy, 2014).

A variety of representations have been proposed for modelling clustering solu-
tions. The graph representation models the data in an intuitive way, where instances
(represented as nodes) are connected by an edge if they are similar enough (von Luxburg,
2007). This is a powerful representation that allows modelling a variety of cluster
shapes, sizes, and densities, unlike the more common prototype-based representations
such as k-means. However, algorithms using graph representations are very depen-
dent on the criterion used to select edges (von Luxburg, 2007). One of the most com-
mon criteria is to simply use a fixed threshold (von Luxburg, 2007), which indicates the
distance at which two instances are considered too dissimilar to share an edge. Such
a threshold must be determined independently for every dataset, and this approach
typically does not allow varying thresholds to be used in different clusters. Another
popular criterion is to put an edge between each instance and its N -nearest neighbours
(von Luxburg, 2007), where N is a small integer value such as 2, 3, or 4. N must also
be determined before running the algorithm, with results being very sensitive to the N
value chosen. Again, this method does not allow for varied cluster structure.

Many of the above issues can be tackled by using a similarity function which is able
to be automatically tailored to a specific dataset, and which can treat different clusters
within a dataset differently. Genetic programming (GP) (Koza, 1992) is an evolutionary
computation (EC) (Eiben and Smith, 2015) method that automatically evolves programs.
The most common form of GP is tree-based GP, which models solutions in the form of
a tree which takes input (such as a feature set) and produces an output, based on the
functions performed within the tree. We hypothesise that this approach can be used to
automatically evolve similarity functions that are represented as GP trees, where a tree
takes two instances as input and produces an output that corresponds to how similar
those two instances are. By automatically combining only the most relevant features
(i.e. performing feature selection and construction), more powerful and specific sim-
ilarity functions can be generated to improve clustering performance on a range of

2 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

datasets. GP can also use multiple trees to represent each individual/solution. Multi-
tree GP has the potential to automatically generate multiple complementary similarity
functions, which are able to specialise on different clusters in the dataset. To our best
knowledge, such an approach has not been investigated to date.

1.1 Goals

This work aims to propose the first approach to using GP for automatically evolving
similarity functions with a graph representation for clustering (GPGC). This work is
expected to improve clustering performance while also producing more interpretable
clusters which use only a small subset of the full feature set. We will investigate:

• how the output of an evolved similarity function can be used to create edges in
clustering with a graph representation;

• what fitness function should be used to give high-quality clustering results;

• whether using multiple similarity functions to make a consensus decision can fur-
ther improve clustering results; and

• whether the evolved similarity functions are more interpretable and produce sim-
pler clusters than standard distance functions.

A piece of preliminary work was presented in our previous research (Lensen et al.,
2017a), which proposed evolving a single similarity function with a single-tree ap-
proach for clustering. This work extends the preliminary work significantly by pro-
viding more detailed and systematic description and justification and introducing a
multi-tree approach, as well as much more rigorous comparisons to existing techniques
and more detailed analysis of the proposed method.

2 Background

2.1 Clustering

A huge variety of approaches have been proposed for performing clustering (Xu and
II, 2005; Aggarwal and Reddy, 2014), which can be generally categorised into hard, soft
(fuzzy), or hierarchical clustering methods. In hard and soft clustering, each instance
belongs to exactly one or to at least one cluster respectively. In contrast, hierarchical
clustering methods build a hierarchy of clusters, where a parent cluster contains the
union of its child clusters. The majority of work has focused on hard clustering, as
partitions where each instance is in exactly one cluster tend to be easier to interpret
and analyse. A number of distinct models have been proposed for performing hard
clustering: prototype-based models (including the most famous clustering method k-
means (J. A. Hartigan, 1979), and its successor k-means++ (Arthur and Vassilvitskii,
2007)), density-based models (e.g. DBSCAN (Ester et al., 1996) and OPTICS (Ankerst
et al., 1999)), graph-based models (e.g. the Highly Connected Subgraph (HCS) algo-
rithm (Hartuv and Shamir, 2000)), and statistical approaches such as distribution-based
(e.g. EM clustering) and kernel-based models. Prototype-based models produce a num-
ber of prototypes, each of which corresponds to a unique cluster, and then assigns each
instance to its nearest prototype using a distance function, such as Euclidean distance.
While these models are the most popular, they are inherently limited by their use of
prototypes to define clusters: when there are naturally clusters that are non-hyper-
spherically shaped, prototype-based models will tend to perform poorly as minimising
the distance of instances to the prototype encourages spherical clusters. This problem
is further exemplified when a cluster is non-convex.

Evolutionary Computation Volume x, Number x 3

A. Lensen, B. Xue, and M. Zhang

Graph-based clustering algorithms (von Luxburg, 2007) represent clusters as dis-
tinct graphs, where there is a path between every pair of instances in a cluster graph.
This representation means that graph-based measures are not restricted to clusters with
hyper-spherical or convex shapes. The HCS algorithm (Hartuv and Shamir, 2000) uses
a similarity graph which connects instances sharing a similarity value (e.g. distance)
above a certain threshold, and then iteratively splits graphs which are not highly con-
nected by finding the minimum cut, until all graphs are highly connected. Choosing a
good threshold value in HCS can be difficult when there is no prior knowledge of the
data.

EC techniques have also been applied to clustering successfully (Lorena and Fur-
tado, 2001; Picarougne et al., 2007; Nanda and Panda, 2014; Garcı́a and Gómez-Flores,
2016; Sheng et al., 2016) with many genetic algorithms (GA) and particle swarm opti-
misation (PSO) techniques used to automatically evolve clusters. Again, the majority
of the literature tends to use prototype-based models, and little work uses feature re-
duction techniques to improve the performance of clustering methods and to produce
more interpretable clusters. There is notably a deficit of methods using GP for cluster-
ing, and no current methods, asides from our preliminary work (Lensen et al., 2017a),
that use GP to automatically evolve similarity functions. Relevant EC clustering meth-
ods will be discussed further in the related work section.

2.2 Feature Reduction

Feature reduction is a common strategy used to improve the performance of data mining
algorithms and interpretability of the models or solutions produced (Liu and Motoda,
2012). The most common feature reduction strategy is feature selection, where a sub-
set of the original feature set is selected for use in the data mining algorithm. Using
fewer features can decrease training time, produce more concise and understandable
results, and even improve performance by removing irrelevant/misleading features or
reducing over-fitting (in supervised learning). Feature selection has been extensively
studied, on a range of problems, such as classification (Tang et al., 2014) and clustering
(Alelyani et al., 2013). Feature construction, another feature reduction strategy, focuses
on automatically producing new high-level features, which combine multiple features
from the original feature set in order to produce more powerful constructed features
(CFs). As with feature selection, the use of feature construction can improve perfor-
mance and interpretability by automatically combining useful features.

Research into the use of EC techniques for performing feature reduction has be-
come much more popular during the last decade, due to the ability of EC techniques
to efficiently search a large feature set space. Feature selection has been widely studied
using PSO and GAs (Garcı́a-Pedrajas et al., 2014; Xue et al., 2016), and GP has emerged
as a powerful feature construction technique due to its tree representation allowing fea-
tures to be combined in a hierarchical manner using a variety of functions (Espejo et al.,
2010; Neshatian et al., 2012). Despite this, the use of EC for feature reduction in cluster-
ing tasks has thus far been relatively unexplored. Given that clustering is an unsuper-
vised learning task with a huge search space, especially when there are many instances,
features, or clusters, good feature reduction methods for clustering are needed.

2.3 Subspace Clustering

Another approach for performing feature reduction in clustering tasks is subspace clus-
tering (Liu and Yu, 2005; Müller et al., 2009), where each cluster is located in a subspace
of the data, i.e. it uses only a subset of the features. In this regard, each cluster is able to

4 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

correspond to a specific set of features that are used to characterise that cluster, which
has the potential to produce better-fitted and more interpretable clusters. Several EC
methods have been proposed for performing subspace clustering (Vahdat and Hey-
wood, 2014; Peignier et al., 2015). However, subspace clustering intrinsically has an
even larger search space than normal clustering, as the quantity and choice of features
must be made for every cluster, rather than only once for the dataset (Parsons et al.,
2004). In this paper, we do not strictly perform subspace clustering, but rather we al-
low the proposed approach to use different features in different combinations across
the cluster space.

2.4 Related Work

There has been a handful of work proposed that uses a graph-based representation in
conjunction with EC for performing clustering. One notable example is the MOCK
algorithm (Handl and Knowles, 2007), which uses a GA with a locus-based graph ap-
proach to perform multi-objective clustering. Another GA method has also been pro-
posed, which take inspiration from spectral clustering and uses either a label-based or
medoid-based encoding to cluster the similarity graph (Menéndez et al., 2014).

The use of GP for performing clustering is very sparse in the literature, with only
about half a dozen pieces of work proposed. One early work uses a grammar-based
approach (Falco et al., 2005) where a grammar is evolved to assign instances to clusters
based on how well they matched the evolved formulae. Instances that do not match any
formulae are assigned to the closest centroid. This assignment technique, and the fit-
ness function used, means that the proposed method is biased towards hyper-spherical
clustering. Boric et al. (Boric and Estévez, 2007) proposed a multi-tree representation,
where each tree in an individual corresponds to a single cluster. This method required
the number of trees (t) to be set in advance, i.e. the number of clusters must be known a
priori, which may not be available in many cases. A single-tree approach has also been
proposed (Ahn et al., 2011), which uses integer rounding to assign each instance to a
cluster based on the output of the evolved tree. Such an approach is unlikely to work
well on datasets with a relatively high K, and this method produces a difficult search
space due to clusters having an implicit order. Another proposed approach (Coelho
et al., 2011) uses GP to automatically build consensus functions that combine the out-
put of a range of clustering algorithms to produce a fusion partition. This is suggested
to combine the benefits of each of the clustering algorithms, while avoiding their lim-
itations. Each of the clustering algorithms use a fixed distance function to measure
similarity between instances, and several of the algorithms require that K is known in
advance. More recently, a GP approach has been proposed based on the idea of nov-
elty search (Naredo and Trujillo, 2013), where in lieu of an explicit fitness function, the
uniqueness (novelty) of a solution in the behavioural landscape is used to determine
whether it is used in subsequent generations. This approach was only tested on prob-
lems with two clusters, and it is unclear how it would scale as K increases, given that
the behavioural landscape would become exponentially larger.

While there has been very little work utilising feature construction techniques for
improving the performance of clustering, there has been a significant amount of study
into using feature selection for clustering problems (Dy and Brodley, 2004; Alelyani
et al., 2013), with dimensionality reduction approaches such as Principal Component
Analysis (PCA) (Jolliffe, 2011) being used with both EC (Kuo et al., 2012) and non-
EC clustering methods. In addition, there has been some work using EC to perform
simultaneous clustering and feature selection, with the aim of concurrently tailoring

Evolutionary Computation Volume x, Number x 5

A. Lensen, B. Xue, and M. Zhang

Initialise EC process

Evolutionary Loop

Cluster data using GP
individual

For each individual

Evaluate fitness of
clustering result

Update population
(selection, crossover,

mutation)

Done

Output individual with
best fitness

Done

For G generations

Figure 1: The overall flow of the proposed GPGC algorithm. The clustering process is
discussed in detail in Section 3.2, and is shown in Algorithm 1.

the features selected to the clusters produced. PSO, in particular, has been shown to be
effective on this task (Sheng et al., 2008; Lensen et al., 2017b).

The clustering literature has an overwhelming focus on producing novel clustering
algorithms which employ a wide range of techniques for modelling and searching the
clustering problem space. However, there has been very little focus on new techniques
for automatically creating more appropriate and more powerful similarity measures to
accurately model the relationships between instances on a specific dataset. GP, with
its intrinsic function-like solution structure, is a natural candidate for automatically
evolving similarity functions tailored to the data it is trained on. GP, and EC methods
in general, have been shown to be effective on large dataset sizes and dimensionality;
GP has the potential to evolve smaller, more refined, and more interpretable similarity
functions on very big datasets. This paper investigates the capability of GP for auto-
matically constructing power similarity functions.

3 Proposed Approaches

An overview of the proposed GPGC algorithm is shown in Fig. 1. We discuss the dif-
ferent parts of this overall algorithm in the following subsections.

3.1 GP Program Design

To represent a similarity function, a GP tree must take two instances as input and pro-
duce a single floating-point output corresponding to the similarity of the two instances.
Therefore, we define the terminal set as all feature values of both instances, such that
there are 2m possible terminals for m features (I0F0 and I1F0 through to I0Fm−1 and
I1Fm−1), as well as a random floating-point value (for scaling purposes). The function
set comprises of the normal arithmetic functions (+, −,×,÷), two absolute arithmetic
functions (| + | and | − |), and the max, min and if operators. All of these functions
asides from if take two inputs and output a single value which is the result of applying
that function. The if function takes three inputs and outputs the second input if the
first is positive, or the third input if it is not. We include the if , max, and min func-
tions to allow conditional behaviour within a program, in order to allow the creation of
similarity functions which operate differently across the feature space. The ÷ operator
is protected division: if the divisor (the second input) is zero, the operator will return
a value of one. An example of a similarity function using this GP program design is
shown in Fig. 2.

6 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

3.2 Clustering Process

Figure 2: An example of of a
similarity function with the ex-
pression sub

(
max(add(I0F1, I1F1),

|sub|(I1F5, I0F2)), I0F3

)
.

As we are using a graph representation, ev-
ery pair of instances which are deemed close
enough by an evolved GP tree should be con-
nected by an edge. As discussed before, we
would like to refrain from using a fixed simi-
larity threshold as varying thresholds may be
required across a dataset due to varying clus-
ter density. We therefore use the approach
where each instance is connected to a number
of its most similar neighbours (according to the
evolved similarity function).

To find the most similar neighbour of a
given instance for an evolved similarity function requires comparing the instance to
every other instance in the dataset. Normally, when using a distance metric, these
pairwise similarities could be precomputed; however, in the proposed algorithm, these
must be computed separately for every evolved similarity function, giving O(n2) com-
parisons for every GP individual on every generation of the training process, given n
instances. In order to reduce the computational cost, we use a heuristic whereby each
instance is only compared to its l nearest neighbours based on Euclidean distance. The
set of nearest neighbours can be computed at the start of the EC training process, mean-
ing only O(nl) comparisons are required per GP individual. By using this approach,
we balance the flexibility of allowing an instance to be connected to many different
neighbours with the efficiency of using a subset of neighbours to compare to. As we
use Euclidean distance only to give us the order of neighbours, the problems associated
with Euclidean distance at high dimensions should not occur. We found in practice that
setting l as l = d 3

√
ne gave a good neighbourhood size that is proportional to n, while

ensuring l is at least 2 (Lensen et al., 2017b).
Algorithm 1 shows the steps used to produce a cluster for a given GP individual,

X . For each instance I in the dataset, the nearest l neighbours are found using the pre-
computed Euclidean distance mappings. Each of these l neighbours is then fed into
the bottom of the tree (X) along with I . The tree is then evaluated, and produces an
output corresponding to the similarity between I and that neighbour. The neighbour
with the highest similarity is chosen, and an edge is added between it and I . As in
(Lensen et al., 2017a), we tested adding edges to more than one nearest neighbour, but
found that performance tended to drop. Once this process has been completed for
each I ∈ Dataset, the set of edges formed will give a set of graphs, where each graph
represents a single cluster. These graphs can then be converted to a set of clusters by
assigning all instances in each graph to the same cluster.

3.3 Fitness Function

The most common measures of cluster quality are cluster compactness and separabil-
ity (Aggarwal and Reddy, 2014). A good cluster partition should have distinct clusters
which are very dense in terms of the instances they contain, and which are far away
from other clusters. A third, somewhat less common measure, is the instance connect-
edness, which measures how well a given instance lies in the same cluster as its nearby
neighbours (Handl and Knowles, 2007). The majority of the clustering literature mea-
sures performance in a way that implicitly encourages hyper-spherical clusters to be
produced, by minimising each instance’s distance to its cluster mean, and maximis-

Evolutionary Computation Volume x, Number x 7

A. Lensen, B. Xue, and M. Zhang

Algorithm 1: Process to produce a cluster using a given GP individual (X) and
the number of neighbours (l).
1 Edges = {};
2 for I ∈ Dataset do Choose edge
3 Neighbours = nearestNeighbours(I, l);
4 NeighbourBest = ∅;
5 SimilarityBest = −∞;
6 for Y ∈ Neighbours do Test neighbour
7 similarity = evaluate(X, I, Y);
8 if similarity > SimilarityBest then
9 NeighbourBest = Y ;

10 end
11 end
12 add edge from I to NeighbourBest to Edges;
13 end
14 Cluster = graphToCluster(Edges);

ing the distance between different cluster means. Such an approach is problematic, as
it introduces bias in the shape of clusters produced, meaning elliptical or other non-
spherical clusters are unlikely to be found correctly.

As a graph representation is capable of modelling a variety of cluster shapes, we
instead propose using a fitness function which balances these three measures of cluster
quality in a way that gives minimal bias to the shape of clusters produced. We discuss
each of these in turn below:

Compactness To measure the compactness of a cluster, we choose the instance in the
cluster which is the furthest away from its nearest neighbour in the same cluster; that is,
the instance which is the most isolated within the cluster. The distance between that in-
stance and its nearest neighbour, called the sparsity of the cluster, should be minimised.
We define sparsity in Equation (1), where Ci represents the ith cluster of K clusters,
Ia ∈ Ci represents an instance in the ith cluster, and d(Ia, Ib) is the Euclidean distance
between two instances.

Sparsity = max
Ia∈Ci

{
min
Ib∈Ci

d(Ia, Ib)
∣∣Ia 6= Ib

}
(1)

Separability To measure the separation of a cluster, we find the minimum distance
from that cluster to any other cluster. This is equivalent to finding the minimum dis-
tance between the instances in the cluster and all other instances in the dataset which
are not in the same cluster, as shown in Equation (2). The separation of a cluster should
be maximised to ensure that it is distinct from other clusters.

Separation = min
Ia∈Ci

{
min
Ib /∈Ci

d(Ia, Ib)
}

(2)

Connectedness An instance’s connectedness is measured by finding how many of its c
nearest neighbours are assigned to the same cluster as it, with higher weighting given
to neighbours which are closer to the given instance, as shown in Equation (3). To
prevent connectedness from encouraging spherical clusters, c must be chosen to be
adequately small — otherwise, large cluster blobs will form. We found that setting
c = 10 provided a good balance between producing connected instances and allowing
varying cluster shapes. The mean connectedness of a dataset should be maximised.

Connectedness =
1

K

K∑
i=1

1

|Ci|
∑

Ia∈Ci, Ib∈NIa

dinv(Ia, Ib)
∣∣Ib ∩ Ci (3)

8 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

where NIa gives the c nearest neighbours of Ia, Ib ∩ Ci indicates that Ia and Ib are
(correctly) in the same cluster, and

dinv(Ia, Ib) = min
[1

d(Ia, Ib)
, 10
]

(4)

The inverse distance between two instances is capped at 10, to prevent very close in-
stances from overly affecting the fitness measure. Inverse distance is used to weight
closer neighbours more highly.

Our proposed fitness function is a combination of these three measures (Equa-
tions (1)–(3)): we find each cluster’s ratio of sparsity: separation (as they are competing
objectives) as shown in Equation (5), and then measure the partition’s fitness by also
considering the connectedness, as shown in Equation (6). This fitness function should
be maximised.

Mean SpaSep =
1

K

K∑
i=1

Sparsity
Separation

(5) Fitness =
Connectedness
Mean SpaSep

(6)

3.4 Using a Multi-Tree Approach

As previously discussed, using a single fixed similarity function means that every
pair of instances across a dataset must be compared identically, i.e. with all features
weighted equally regardless of the characteristics of the given instances. By using GP
to automatically evolve similarity functions containing conditional nodes (if ,max, and
min), we are able to produce trees which will measure similarity dynamically. How-
ever, a tree is still limited in its flexibility, as there is an inherent trade-off between the
number of conditional nodes used and the complexness of the constructed features in
a tree — more conditionals will tend to mean simpler constructed features with fewer
operators (and vice versa), due to the limitations on tree depth and training time.

To tackle these issues, while still maintaining reasonable tree depth and training
time, we propose evolving a number of similarity functions concurrently. Using this
approach, a pair of instances will be assigned a similarity score by each similarity func-
tion, which are then summed together to give a total measure of how similar the in-
stances are1. In this regard, each similarity function provides a measure of its confidence
that two instances should lie in the same cluster, allowing different similarity func-
tions to specialise on different parts of the dataset. This is implemented using GP with
a multi-tree approach, where each GP individual contains not only one but multiple
trees. An example of this structure is shown in Fig. 3 with the number of trees, t = 3.
As all t similarity functions are evolved concurrently in a single individual, a set of co-
hesive functions will be evolved that work well together, but that are not expected to be
good similarity functions independently. In this way, a GP individual can be thought
of as a meta-function. The core of the clustering process remains the same with this ap-
proach, with the only change being that the most similar neighbour for a given instance
is based on the sum of similarities given by all trees in an individual. This change to
the algorithm is shown in Algorithm 2.

There are several factors that must be considered when extending the proposed
algorithm to use a multi-tree approach: how to perform crossover when there are mul-
tiple trees to crossover between, and how many trees to use. These two factors will
be discussed in the following paragraphs. A third consideration is the maximum tree

1Of course, there are a variety of ways to combine similarity scores in the ensemble learning literature,
such as taking the maximum output. We use the sum here to increase the stability of the joint similarity
function, and to reduce the effect of outliers/edge cases. We hope to investigate this further in future work.

Evolutionary Computation Volume x, Number x 9

A. Lensen, B. Xue, and M. Zhang

(a) (b) (c)

Figure 3: An example of a multi-tree similarity function.

Algorithm 2: Choosing the most similar neighbour to an instance (I) in the
multi-tree approach for individual X .
6 for Y ∈ Neighbours do Test neighbour
7 similaritysum = 0;
8 for T ∈ X do Each tree
9 similaritysum += evaluate(T, I, Y);

10 end
11 if similaritysum > SimilarityBest then
12 NeighbourBest = Y ;
13 end
14 end

depth — we use a smaller tree depth when multiple trees are used, as each tree is able to
be more specialised and so does not require as many nodes to produce a good similarity
function. Mutation is performed as normal, by randomly choosing a tree to mutate.

3.4.1 Crossover Strategy
In standard GP, crossover is performed by selecting two individuals, randomly select-
ing a subtree from each of these two individuals, and swapping the selected subtrees
to produce new offspring. In multi-tree GP, a tree within each individual must also be
selected. There are a number of possible methods for doing so (Haynes and Sen, 1997;
Thomason and Soule, 2007), as discussed below:

Random-index crossover The most obvious method is to randomly select a tree from
each individual, which we term random-index crossover (RIC). This method may be
problematic when applied to our proposed approach, as it reduces the ability of each
tree to specialise, by exchanging information between trees which may have different
“niches”.

Same-index crossover An alternative method to avoid the limitations of RIC is to
always pick two trees at the same index in each individual. For example, selecting the
third tree in both individuals. This method, which we call same-index crossover (SIC),
allows an individual to better develop a number of distinct trees while still encouraging
co-operation between individuals through the crossover of related trees.

All-index crossover The SIC method can be further extended by performing
crossover between every pair of trees simultaneously, i.e. crossover between every ith

tree in both individuals, where i ∈ [1, t] for t trees. This approach, called all-index
crossover (AIC) allows information exchange to occur more aggressively between indi-
viduals, which should increase training efficiency. However, it introduces the require-
ment that the effect of performing all pairs of crossovers gives a net fitness increase

10 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

which may limit the exploitation of individual solutions during the EC process.
We will compare each of these crossover approaches to investigate which type of

crossover is most appropriate.

3.4.2 Number of Trees

The number of trees used in a multi-tree approach must strike a balance between the
performance benefit gained by using a large number of specialised trees and the diffi-
culty in training many trees successfully. When using either the SIC or RIC crossover
methods, increasing the number of trees used will reduce the chance proportionally
that a given tree is chosen for crossover/mutation, thereby decreasing the rate at which
each tree is refined. When the AIC method is used, a larger number of trees increases
the probability that a crossover will not improve fitness, as the majority of the trees
are unlikely to gain a performance boost when crossed over in the later stages of the
training process when small tweaks to trees are required to optimise performance. We
will investigate the effect of the number of trees used on the fitness obtained later in
this paper.

4 Experiment Design

4.1 Benchmark Techniques

We compare our proposed single-tree approach (GPGC) to a variety of baseline clus-
tering methods, which are listed below. We also compare the single- and multi-tree
approaches, to investigate the effectiveness of using additional trees.

• k-means++ (Arthur and Vassilvitskii, 2007), a commonly used partitional algo-
rithm. Standard k-means++ cannot automatically discover the number of clusters,
and so K is pre-fixed for this method. We use this as an example of a relatively
simple and widely used method in the clustering literature.

• OPTICS (Ankerst et al., 1999), a well-known density-based algorithm. OPTICS
requires a contrast parameter, ξ, to be set in order to determine where in the den-
drogram the cluster partition is extracted from; we test OPTICS with a range of
ξ values in [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5] and report the best result in
terms of the Adjusted Rand Index (defined in Section 4.4).

• Two naı̈ve graph-based approaches which connect every instance with an edge to
its n-nearest neighbours (von Luxburg, 2007). We test with both n = 2 (called NG-
2NN) and n = 3 (called NG-3NN) in this work. Note that the case where n = 1
(NG-1NN) is similar to the clustering process used in Algorithm 3.2; we exclude
NG-1NN as it produces naive solutions with a fixed distance function.

• The Markov Clustering (MCL) algorithm (Van Dongen, 2000), another cluster-
ing algorithm using a graph-based representation, which simulates random walks
through the graph and keeps instances in the same cluster when they have a high
number of paths between them.

• The multi-objective clustering with automatic k-determination (MOCK) algorithm
(Handl and Knowles, 2007) introduced earlier, as an example of a well-known
high-quality EC clustering method.

Evolutionary Computation Volume x, Number x 11

A. Lensen, B. Xue, and M. Zhang

Table 1: Datasets generated using a Gaussian distribution (Handl and Knowles, 2007).

Name m n K

10d10cGaussian 10 2730 10
10d20cGaussian 10 1014 20
10d40cGaussian 10 1938 40

Table 2: Datasets generated using an Elliptical distribution (Handl and Knowles, 2007).

Name m n K Name m n K

10d10c 10 2903 10 100d10c 100 2893 10
10d20c 10 1030 20 100d20c 100 1339 20
10d40c 10 2023 40 100d40c 100 2212 40
10d100c 10 5541 100 1000d10c 1000 2753 10
50d10c 50 2699 10 1000d20c 1000 1088 20
50d20c 50 1255 20 1000d40c 1000 2349 40
50d40c 50 2335 40 1000d100c 1000 6165 100

4.2 Datasets

We use a range of synthetic clustering datasets to evaluate the performance of our
proposed approach, with varying cluster shapes, numbers of features (m), instances
(n) and clusters (K). We avoid using real-world datasets with class labels as done in
previous clustering studies, as there is no requirement that classes should correspond
well to homogeneous clusters (von Luxburg et al., 2012) — for example, clustering the
well-known Iris dataset will often produce two clusters, as the versicolor and virginica
classes overlap significantly in the feature space. The datasets were generated with the
popular generators introduced by Handl et al. (Handl and Knowles, 2007). The first
generator uses a Gaussian distribution, which produces a range of clusters of vary-
ing shapes at low dimensions, but produces increasingly hyper-spherical clusters as m
increases. As such, we use this generator only at a small m, to produce the datasets
shown in Table 1. The second generator produces clusters using an elliptical distri-
bution, which produces non-hyper-spherical clusters even at large dimensionality. A
wide variety of datasets were generated with this distribution, with m varying from
10 to 1000, and K varying from 10 to 100, as shown in Table 2. Datasets with K = 10
clusters have between 50 and 500 instances per cluster, whereas datasets with a higher
K have between 10 and 100 to limit the memory required. These datasets allow our
proposed approach to be tested on high-dimensional problems. All datasets are scaled
so that each feature is in [0, 1] to prevent feature range overly affecting the distance cal-
culations used in the clustering process. As a generator is used, the cluster that each
instance is assigned to is known — i.e. the datasets provide a gold standard in the form
of a “cluster label” for each instance. While this label is not used during training, it is
useful for evaluating the clusters produced by the clustering methods.

4.3 Parameter Settings

The non-deterministic methods (k-means++, GPGC, MOCK, MCL) were run 30 times,
and the mean results were computed. k-means++, GPGC and MOCK were run for 100
iterations, by which time k-means++ had achieved convergence. All benchmarks use
Euclidean distance. The GP parameter settings for the single- and multi-tree GPGC

12 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Table 3: Common GP Parameter Settings

Parameter Setting Parameter Setting

Generations 100 Population Size 1024
Mutation 20% Crossover 80%
Elitism top-10 Selection Type Tournament
Min. Tree Depth 2 Max. Tree Depth 5 (MT), 7 (ST)
Tournament Size 7 Pop. Initialisation Half-and-half

methods, are based on standard parameters (Poli et al., 2008), and are shown in Table
3; the multi-tree (MT) approach uses a smaller maximum tree depth than the single-
tree (ST) approach due to having multiple more-specific trees. The MOCK experiments
used the attainment score method to select the best solution from the multi-objective
pareto front.

4.4 Evaluation Metrics

To evaluate the performance of each of the clustering algorithms, we use the three
measures defined previously (connectedness, sparsity, and separation), as well as the
Adjusted Rand Index (ARI), which compares the cluster partition produced by an algo-
rithm to the gold standard provided by the cluster generators in an adjusted-for-chance
manner (Vinh et al., 2010).

Given a cluster partition C produced by an algorithm and a gold standard cluster
partition G, the ARI is calculated by first generating a contingency table where each
entry nij denotes the number of instances in common between Ci and Gj , where Ci is
the i-th cluster in C, and Gj is the j-th cluster in G. In addition, the sum of each row
and column is computed, denoted as ai and bj respectively. As before, n is the total
number of instances. The ARI is then calculated according to Equation (7), which finds
the frequency of occurrence of agreements between the two clusterings, while adjusting
for the chance grouping of instances.

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

) (7)

5 Results and Discussion

We provide and analyse the results of our experiments in this section. We begin by com-
paring each of the proposed multi-tree approaches to the single-tree GPGC approach
in order to decide which version of GPGC is the more effective (Section 5.1). We then
compare the best of these approaches, GPGC-AIC, to the benchmark methods to ex-
amine how well our proposed method performs relative to existing clustering methods
(Section 5.2). The effect of the number of trees on the performance of the multi-tree
approach is analysed in Section 5.3.

5.1 GPGC using Multiple Trees

To further improve the performance of the proposed GPGC approach, we proposed
an extension to use a multi-tree GP design in Section 3.4. To analyse the effectiveness
of this extension, and determine which type of multi-tree crossover is most effective,
we evaluated the three crossover methods (RIC, SIC, AIC) against the single-tree GPGC
approach. We used t = 7 trees based on initial tests — the effect of varying t is discussed

Evolutionary Computation Volume x, Number x 13

A. Lensen, B. Xue, and M. Zhang

Table 4: Crossover: Datasets using a Gaussian Distribution
(a) 10d10cGaussian

Method Fitness K Conn. Spar. Sep. ARI

GPGC 19.23 21.5 41.9 0.293 0.140 0.750
AIC 23.75+ 8.8 51.4+ 0.324−0.154+0.880+

RIC 24.47+ 8.1 52.4+ 0.324−0.156+0.859+

SIC 24.66+ 7.6 52.9+ 0.326−0.157+0.833+

(b) 10d20cGaussian

Method Fitness K Conn. Spar. Sep. ARI

GPGC 63.00 19.7 47.3 0.268 0.375 0.991
AIC 63.79 19.5 47.3 0.268 0.377 0.980−

RIC 63.26 19.7 47.3 0.269 0.376 0.988
SIC 63.33 19.7 47.3 0.268 0.376 0.991

(c) 10d40cGaussian

Method Fitness K Conn. Spar. Sep. ARI

GPGC 57.81 34.8 48.6 0.267 0.331 0.958
AIC 60.37+ 33.7 48.9+ 0.265−0.337+0.943−

RIC 60.05+ 34.0 48.9+ 0.266−0.336+0.955
SIC 58.89 34.6 48.8 0.267 0.334 0.958

further in Section 5.3. Tables 4 and 5 show the results of these experiments on the
datasets generated using a Gaussian and elliptical distribution respectively. For each of
the four methods, we provide the (mean) number of clusters (K), as well as four metrics
of cluster quality: fitness achieved, connectedness (Conn), sparsity (Spar), separation
(Sep), and the ARI. Connectedness, sparsity, and separation are defined in the same
way as in the fitness function. We performed a two-tailed Mann Whitney U-Test at a
95% confidence interval comparing each of the multi-tree approaches to the single-tree
approach on each of the metrics. A “+” indicates a method is significantly better than
the single-tree GPGC method, a “−” indicates it is significantly worse, and no symbol
indicates no significant difference was found. For all metrics except for sparsity, a larger
value indicates a better result.

The most noticeable result of using a multi-tree approach is that the fitness
achieved by the GP process is significantly improved across all datasets with the ex-
ception of the 10d20cGaussian, 10d40c and 10d100c datasets, where the multi-tree ap-
proaches were significantly worse or had similar fitness to GPGC. On the datasets gen-
erated using a Gaussian distribution, the multi-tree approaches are able to find the
number of clusters much accurately on 10d10cGaussian, and achieve a significantly
higher ARI result. On the 10d40cGaussian dataset, both AIC and RIC achieved signifi-
cantly better fitness, connectedness, sparsity, and separation than GPGC. While AIC is
significantly worse than GPGC on 10d20cGaussian and 10d40cGaussian, the decrease
of ~1.5% ARI is not very meaningful given it gained 13% ARI on 10d10cGaussian.

The multi-tree approaches also tend to produce clusters that are both better con-
nected and better separated than GPGC on the datasets generated with an elliptical
distribution. It seems that using multiple trees allows the GP evolutionary process to
better separate clusters, while still ensuring that similar instances are placed in the same
cluster. Sparsity is either increased (i.e. made worse) or is similar compared to GPGC
when a multi-tree approach is used — this suggests that the single tree approach was
overly favouring reducing sparsity at the expense of the overall fitness. Another in-
teresting pattern is that the number of clusters (K) found by the multi-tree approaches
was always lower than that found by GPGC; given that GPGC tended to over-estimate
K, this can be seen as further evidence that using multiple trees improves clustering
performance. Furthermore, a smaller K is likely to directly improve connectedness as
more instances will have neighbours in the same cluster, and separation since having
fewer clusters increases the average distance between neighbouring clusters.

In terms of the ARI, the multi-tree approaches were significantly better than GPGC

14 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Table 5: Crossover: Datasets using an Elliptical Distribution.
(a) 10d10c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 19.17 36.4 61.2 0.157 0.061 0.737
AIC 21.35+ 24.0 71.7+ 0.166−0.059 0.814+

RIC 20.68+ 23.1 73.7+ 0.168−0.058−0.799+

SIC 21.13+ 24.7 72.9+ 0.164−0.057 0.806+

(b) 10d20c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 43.69 27.8 73.3 0.150 0.098 0.663
AIC 49.11+ 22.5 77.4+ 0.154 0.106+0.666
RIC 49.51+ 21.9 77.7+ 0.154 0.106+0.656
SIC 50.28+ 21.8 78.3+ 0.155−0.106+0.677

(c) 10d40c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 36.57 55.6 70.9 0.136 0.079 0.579
AIC 33.43− 49.2 76.6+ 0.139 0.072−0.522
RIC 31.92− 53.2 75.1+ 0.138 0.070−0.486−

SIC 31.95− 51.1 75.9+ 0.140 0.071−0.539

(d) 10d100c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 31.80 109.5 74.0 0.131 0.066 0.424
AIC 32.40 106.4 75.6 0.131 0.066 0.421
RIC 30.84 134.9 72.6 0.127 0.064 0.442
SIC 31.78 113.4 74.1 0.130 0.066 0.444

(e) 50d10c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 31.66 12.6 57.8 0.445 0.276 0.962
AIC 42.49+ 10.0 59.5+ 0.472−0.341+0.987+

RIC 41.21+ 10.0 60.1+ 0.465−0.328+0.977+

SIC 40.21+ 10.4 59.9+ 0.459 0.320+0.969

(f) 50d20c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 30.36 25.2 50.6 0.350 0.234 0.807
AIC 36.78+ 21.1 51.8+ 0.359 0.273+0.837
RIC 34.82+ 21.5 51.3 0.362−0.268+0.841
SIC 34.06+ 22.1 51.3 0.358−0.261+0.848

(g) 50d40c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 29.58 49.8 54.6 0.304 0.196 0.726
AIC 34.36+ 45.2 56.1+ 0.308 0.220+0.810+

RIC 32.13+ 46.2 55.8+ 0.306 0.209+0.721
SIC 32.27+ 46.3 55.8+ 0.307 0.208+0.776

(h) 100d10c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 39.40 10.4 47.9 0.611 0.545 0.993
AIC 44.40+ 9.8 48.1 0.621 0.580+0.998
RIC 44.88+ 9.7 48.2 0.622 0.584+0.997
SIC 42.87 10.0 48.1 0.617 0.569 0.996

(i) 100d20c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 28.18 22.2 38.4 0.527 0.449 0.883
AIC 32.00+ 20.6 38.2 0.535 0.494+0.917+

RIC 31.31+ 20.7 38.6 0.530 0.481+0.905
SIC 31.59+ 20.5 38.3 0.538 0.492+0.921+

(j) 100d40c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 21.60 50.2 39.7 0.436 0.282 0.724
AIC 25.02+ 45.9 40.6+ 0.440 0.316+0.771
RIC 24.50+ 47.6 40.7+ 0.438 0.311+0.777+

SIC 23.64+ 49.2 39.9 0.438 0.304+0.792+

(k) 1000d10c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 11.60 10.1 15.0 2.132 1.704 0.980
AIC 12.60+ 9.7 14.9 2.126 1.784+0.987+

RIC 12.55+ 9.7 15.0 2.122 1.776+0.984
SIC 12.48+ 9.6 15.2 2.115 1.754+0.978

(l) 1000d20c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 9.22 23.1 12.0 1.539 1.325 0.834
AIC 11.48+ 19.6 12.4+ 1.575 1.511+0.810
RIC 11.37+ 19.5 12.2 1.581−1.533+0.790
SIC 10.96+ 19.4 12.3 1.589−1.498+0.804

(m) 1000d40c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 8.48 47.5 14.0 1.376 1.006 0.797
AIC 10.14+ 42.5 14.2 1.387 1.130+0.804
RIC 10.01+ 42.6 14.2 1.385 1.126+0.832
SIC 9.66+ 44.1 14.2 1.382 1.086+0.828

(n) 1000d100c

Method Fitness K Conn. Spar. Sep. ARI

GPGC 7.91 132.5 15.8 1.172 0.761 0.839
AIC 9.90+117.2 16.0 1.189−0.901+0.916+

RIC 9.06+119.9 16.0+ 1.186−0.839+0.863
SIC 8.56 124.7 16.0+ 1.172 0.797 0.853

on a number of elliptically-generated datasets, with the RIC, SIC, and AIC methods
being significantly better on 3, 3, and 6 datasets respectively. Both the AIC and RIC
methods have significantly better fitness than GPGC on many of these datasets, while
SIC is not significantly better on 100d10c or 1000d100c.

To better understand which of the three multi-tree methods have the highest per-
formance, we analysed the ARI results further as these give the best overall evaluation
of how the multi-tree methods compare to the gold standard. We performed a Kruskal-

Evolutionary Computation Volume x, Number x 15

A. Lensen, B. Xue, and M. Zhang

Table 6: Summary of ARI post-hoc analysis findings. For each dataset, all results with a
p-value below 0.05 (5% significance level) are shown. “AIC>GPGC” indicates that AIC
had a significantly better ARI than GPGC on the given dataset, with a given p-value.
Dataset Finding p-value Finding p-value Finding p-value Finding p-value

10d10cG AIC >GPGC 0.000 AIC >SIC 0.015 RIC >GPGC 0.002 SIC >GPGC 0.034
10d10c AIC >GPGC 0.002 SIC >GPGC 0.018 RIC >GPGC 0.028
10d40c GPGC >AIC 0.048 GPGC >RIC 0.001 SIC >RIC 0.047
50d10c AIC >GPGC 0.000 AIC >RIC 0.040 AIC >SIC 0.003 RIC >GPGC 0.016
50d40c AIC >GPGC 0.003 AIC >RIC 0.003
100d40c AIC >GPGC 0.013 RIC >GPGC 0.006 SIC >GPGC 0.004
1000d100c AIC >GPGC 0.000 AIC >RIC 0.037 AIC >SIC 0.004

Table 7: Baselines: Datasets using a Gaussian distribution.
(a) 10d10c

Method K Conn Spar Sep ARI

AIC 8.8 51.4 0.324 0.154 0.880
k-means++ 10.0 50.4− 0.341− 0.133− 0.848−

MCL 8.0 52.8+ 0.323 0.137− 0.910
MOCK 13.6 41.4− 0.291− 0.167+ 0.963+

NG-2NN 4.0 45.3− 0.317− 0.193+ 0.368−

NG-3NN 1.0 57.6+ 0.428− 0.000− 0.248−

OPT-0.005 39.0 27.9− 0.227− 0.103− 0.572−

(b) 10d20c

Method K Conn Spar Sep ARI

AIC 19.5 47.3 0.268 0.377 0.980
k-means++ 20.0 43.8− 0.273 0.293− 0.872−

MCL 20.0 47.2− 0.269− 0.373− 0.998+

MOCK 20.7 45.7− 0.265− 0.359− 0.990
NG-2NN 19.0 47.3+ 0.268 0.381+ 0.965−

NG-3NN 19.0 47.3+ 0.268 0.381+ 0.965−

OPT-0.001 26.0 38.2− 0.287− 0.218− 0.895−

(c) 10d40c

Method K Conn Spar Sep ARI

AIC 33.7 48.9 0.265 0.337 0.943
k-means++ 40.0 44.5− 0.270− 0.260− 0.895−

MCL 40.0 47.2− 0.264− 0.335− 0.999+

MOCK 38.0 46.4− 0.261− 0.321− 0.960+

NG-2NN 40.0 46.3− 0.261− 0.332− 0.984+

NG-3NN 37.0 47.6− 0.263− 0.342+ 0.951
OPT-0.001 55.0 36.3− 0.298− 0.175− 0.850−

Wallis rank sum test (at a 5% significance level) followed by post-hoc pair-wise analysis
using Dunn’s test. The summary of this testing is shown in Table 6.

According to the post-hoc analysis, AIC outperformed GPGC 6 times, whereas
RIC and SIC outperformed GPGC 4 and 3 times respectively. AIC outperformed RIC
and SIC in 3 cases each as well. In one case, SIC outperformed SIC. Furthermore, AIC
generally had a smaller p-value when it outperformed GPGC compared to SIC and
RIC. Based on these findings, we conclude that AIC is the most effective of the three
proposed multi-tree approaches. Based on this, we use GPGC-AIC in the next section
to compare to other clustering methods.

5.2 GPGC-AIC compared to the Benchmarks

Tables 7 and 8 show how the proposed GPGC-AIC method compares to the six bench-
marks across the datasets tested. For each of the seven methods, we provide the (mean)
number of clusters (K), as well as the same four metrics of cluster quality as before.
Note that k-means++ requiresK to be pre-defined, and so always obtains the correctK
value. We use the same two-tailed Mann Whitney U-Test as in Section 5.1: a “+” indi-
cates that a baseline method is significantly better than the AIC method, a “−” indicates
it is significantly worse, and no symbol indicates no significant difference is found.

Table 7 shows the results on the datasets that were generated using a Gaussian
distribution. In terms of the ARI, the AIC method is significantly worse than either

16 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Table 8: Baselines: Datasets using an Elliptical Distribution (Part 1).
(a) 10d10cE

Method K Conn Spar Sep ARI

AIC 24.0 71.7 0.166 0.059 0.814
k-means++ 10.0 85.5+ 0.212− 0.038− 0.552−

MCL 15.0 83.3+ 0.205− 0.050− 0.703−

MOCK 17.8 86.1+ 0.180− 0.065 0.793
NG-2NN 9.0 75.0 0.176− 0.071+ 0.510−

NG-3NN 5.0 82.3+ 0.187− 0.085+ 0.323−

OPT-0.05 32.0 84.4+ 0.063− 0.025− 0.239−

(b) 10d20cE

Method K Conn Spar Sep ARI

AIC 22.5 77.4 0.154 0.106 0.666
k-means++ 20.0 73.3− 0.190− 0.087− 0.459−

MCL 28.0 69.4− 0.173− 0.095− 0.451−

MOCK 27.5 79.3+ 0.152 0.113+ 0.752+

NG-2NN 36.0 69.5− 0.131− 0.094− 0.584−

NG-3NN 16.0 83.1+ 0.145− 0.110+ 0.355−

OPT-0.001 69.0 45.9− 0.210− 0.053− 0.344−

(c) 10d40cE

Method K Conn Spar Sep ARI

AIC 49.2 76.6 0.139 0.072 0.522
k-means++ 40.0 77.2 0.169− 0.070 0.417−

MCL 54.0 69.2− 0.149− 0.094+ 0.288−

MOCK 28.8 84.2+ 0.146− 0.087+ 0.232−

NG-2NN 43.0 68.4− 0.110− 0.085+ 0.256−

NG-3NN 13.0 73.6− 0.131− 0.107+ 0.082−

OPT-0.005 93.0 61.4− 0.153− 0.048− 0.299−

(d) 10d100cE

Method K Conn Spar Sep ARI

AIC 106.4 75.6 0.131 0.066 0.421
k-means++ 100.0 80.4+ 0.153− 0.056− 0.398
MCL 98.0 77.3+ 0.136− 0.070+ 0.125−

MOCK 62.0 86.2+ 0.137− 0.074+ 0.087−

NG-2NN 91.0 70.6− 0.108− 0.080+ 0.049−

NG-3NN 26.0 73.4 0.096− 0.084+ 0.030−

OPT-0.01 197.0 69.5− 0.091− 0.042− 0.054−

(e) 50d10c

Method K Conn Spar Sep ARI

AIC 10.0 59.5 0.472 0.341 0.987
k-means++ 10.0 52.2− 0.555− 0.102− 0.485−

MCL 12.0 54.1− 0.519− 0.102− 0.604−

MOCK 14.4 56.7− 0.494− 0.217− 0.811−

NG-2NN 18.0 53.6− 0.372− 0.168− 0.967−

NG-3NN 11.0 58.8− 0.456− 0.302− 0.999+

OPT-0.05 28.0 67.7+ 0.196− 0.081− 0.369−

(f) 50d20c

Method K Conn Spar Sep ARI

AIC 21.1 51.8 0.359 0.273 0.837
k-means++ 20.0 44.3− 0.429− 0.168− 0.353−

MCL 26.0 42.0− 0.415− 0.175− 0.482−

MOCK 24.3 50.3− 0.375− 0.273 0.884
NG-2NN 44.0 41.0− 0.304− 0.213− 0.831
NG-3NN 23.0 49.0− 0.369− 0.286 0.808−

OPT-0.005 73.0 32.2− 0.455− 0.129− 0.386−

(g) 50d40c

Method K Conn Spar Sep ARI

AIC 45.2 56.1 0.308 0.220 0.810
k-means++ 40.0 50.7− 0.352− 0.140− 0.254−

MCL 48.0 48.6− 0.329− 0.161− 0.351−

MOCK 42.7 56.6+ 0.315− 0.253+ 0.867
NG-2NN 86.0 50.1− 0.249− 0.170− 0.762−

NG-3NN 46.0 56.3 0.279− 0.217 0.738−

OPT-0.05 73.0 53.5− 0.239− 0.098− 0.163−

(h) 100d10c

Method K Conn Spar Sep ARI

AIC 9.8 48.1 0.621 0.580 0.998
k-means++ 10.0 45.5− 0.695− 0.131− 0.562−

MCL 16.0 40.5− 0.677− 0.207− 0.877−

MOCK 28.8 45.7− 0.590− 0.170− 0.548−

NG-2NN 16.0 44.6− 0.552− 0.287− 0.934−

NG-3NN 11.0 45.8− 0.647− 0.513− 0.989−

OPT-0.001 92.0 37.6− 0.372− 0.113− 0.455−

(i) 100d20c

Method K Conn Spar Sep ARI

AIC 20.6 38.2 0.535 0.494 0.917
k-means++ 20.0 34.1− 0.595− 0.232− 0.374−

MCL 27.0 29.5− 0.594− 0.283− 0.587−

MOCK 24.6 35.7− 0.573− 0.487 0.897
NG-2NN 41.0 32.1− 0.450− 0.291− 0.819−

NG-3NN 25.0 34.7− 0.529 0.520+ 0.965+

OPT-0.01 76.0 28.1− 0.505− 0.168− 0.368−

(j) 100d40c

Method K Conn Spar Sep ARI

AIC 45.9 40.6 0.440 0.316 0.771
k-means++ 40.0 35.3− 0.492− 0.226− 0.268−

MCL 57.0 32.9− 0.473− 0.265− 0.467−

MOCK 41.8 39.4− 0.476− 0.371+ 0.784
NG-2NN 91.0 34.6− 0.375− 0.299− 0.791
NG-3NN 49.0 36.1− 0.431 0.393+ 0.711−

OPT-0.001 140.0 25.6− 0.593− 0.150− 0.430−

the MCL or MOCK method across the three datasets, but generally outperforms all
the other baselines. As these datasets were generated with a Gaussian distribution,
they tend to contain very well-formed hyper-spherical clusters, and so methods such
as MCL are very effective at clustering these correctly.

On the results for the datasets generated using an elliptical distribution, shown
in Table 8, GPGC is significantly better than all baselines excluding MOCK across all
datasets containing 10 features (10d*c). While the MOCK method is competitive (or

Evolutionary Computation Volume x, Number x 17

A. Lensen, B. Xue, and M. Zhang

Table 8: Baselines: Datasets using an Elliptical Distribution (Part 2).
(k) 1000d10c

Method K Conn Spar Sep ARI

AIC 9.7 14.9 2.126 1.784 0.987
k-means++ 10.0 13.8− 2.347− 0.385− 0.488−

MCL 10.0 12.2− 2.407− 0.445− 0.474−

MOCK 16.0 14.5− 2.079− 0.995− 0.800−

NG-2NN 21.0 14.9+ 1.681− 0.610− 0.932−

NG-3NN 10.0 15.5+ 2.078− 1.541− 0.947−

OPT-0.005 86.0 13.1− 1.138− 0.455− 0.343−

(l) 1000d20c

Method K Conn Spar Sep ARI

AIC 19.6 12.4 1.575 1.511 0.810
k-means++ 20.0 9.7− 1.885− 0.832− 0.376−

MCL 24.0 9.3− 1.828− 0.748− 0.339−

MOCK 25.5 10.8− 1.706− 1.423− 0.896
NG-2NN 47.0 9.8− 1.409− 1.014− 0.736−

NG-3NN 26.0 10.5− 1.531− 1.379− 0.945+

OPT-0.001 67.0 7.0− 2.142− 0.589− 0.453−

(m) 1000d40c

Method K Conn Spar Sep ARI

AIC 42.5 14.2 1.387 1.130 0.804
k-means++ 40.0 11.7− 1.556− 0.632− 0.219−

MCL 47.0 10.8− 1.500− 0.676− 0.157−

MOCK 41.7 13.6− 1.488− 1.231+ 0.887+

NG-2NN 94.0 12.1− 1.209− 0.846− 0.740−

NG-3NN 52.0 13.7− 1.346− 1.130 0.898+

OPT-0.001 132.0 9.3− 1.841− 0.482− 0.422−

(n) 1000d100c

Method K Conn Spar Sep ARI

AIC 117.2 16.0 1.189 0.901 0.916
k-means++ 100.0 14.5− 1.270− 0.523− 0.103−

MCL 204.0 11.5− 1.242− 0.482− 0.189−

MOCK 64.3 16.7+ 1.265− 1.146+ 0.434−

NG-2NN 229.0 14.7− 1.014− 0.693− 0.761−

NG-3NN 132.0 16.0− 1.107− 0.933 0.863−

OPT-0.05 182.0 16.0 0.917− 0.414− 0.106−

better) on the datasets with 10 and 20 clusters, it achieves a very poor ARI on the more
difficult datasets with 40 and 100 clusters, where the AIC method is clearly superior.
The remaining baseline methods are nearly always significantly worse than AIC on
these datasets. The NG baselines are particularly inconsistent, with the number of clus-
ters and ARI values varying by up to three times depending on the number of nearest
neighbours chosen. AIC can also automatically find the number of clusters much more
accurately than OPTICS, and produces less sparse and more separated clusters than
k-means++ across these datasets. In contrast to the previous datasets, the MCL method
struggles significantly with these non-hyper-spherical datasets — a pattern that is also
true for the remaining datasets and which highlights a key weakness with the MCL
method. Similar patterns are seen across the 50d*c datasets, with the exception being
on 50d10c where NG-3NN achieves a near perfect result. On the high-dimensionality
datasets (100d*c, 1000d*c), the MOCK method has a high variance in accuracy, with
ARI values ranging from 0.434 to 0.897. In contrast, the AIC method achieves consis-
tently good performance, with the lowest ARI achieved being 0.771 and the highest
being 0.998. While the MOCK method is superior on 1000d40c, its inconsistency on the
other datasets makes it harder to use confidently in practice. On this set of datasets, the
NG baselines achieve better results than previously in terms of the ARI, but GPGC is
only ever significantly worse than one of NG-2NN and NG-3NN at most. GPGC also
often has significantly better connectedness and separation than one or both of the NG
baselines, suggesting it is a more consistent choice given that it is difficult to determine
the number of nearest neighbours in advance (as the NG methods assume). All of the
graph-based approaches are superior to k-means++ (due to the non-hyper-spherical
cluster shape), and OPTICS across these datasets. The AIC method also appears to be
the method which predicts K most accurately overall across these datasets, especially
where K = 100.

5.2.1 Summary

Table 9 shows the number of datasets for which each clustering method was the winner
(i.e. highest mean ARI). The AIC method was the most successful, with six wins com-
pared to four for the closest methods (NG-3NN and MOCK). This is consistent with
our previous analysis, which showed AIC was the most consistent and best-performing

18 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Table 9: Number of wins of each algorithm across the 17 datasets.

AIC k-means++ MCL MOCK NG-2NN NG-3NN OPTICS

6 0 2 4 1 4 0

method across datasets with high dimensionality, and was competitive with MOCK on
the remaining datasets. The remaining baselines, with the exception of MCL, were al-
most always outperformed by at least one of AIC and MOCK. Given that MOCK is a
multi-objective approach, we are hopeful that a future multi-objective variation of AIC
would be able to improve the GPGC method even further and allow it to achieve a
higher number of wins.

5.3 Number of Trees: Effect on Fitness

The number of trees to use in a multi-tree approach can be considered to be a form of
parameter tuning. To investigate the effect of different numbers of trees on the train-
ing performance of the proposed multi-tree approach, we tested a range of trees for
t ∈ [1, 10], using the AIC crossover method. We limit t to a maximum of 10, as we
found that multi-tree GP did not have improved performance, and trained more slowly
at higher t values. Note that the t = 1 case is not equivalent to the single-tree GPGC
method, due to the smaller maximum program depth of 5. For each dataset, we calcu-
lated the mean fitness of 30 runs for each value of t. The results are plotted in Fig. 4.
Each plot corresponds to a single dataset, with a red dotted line indicating the baseline
performance where t = 1, and each point corresponds to the relative fitness for a given
value of t. The error bars show the standard deviation of each point, for the 30 runs
performed for that t value. The blue solid line is a trend-line fitted to the 10 points.

On the majority of the plots (14 out of 17), increasing the number of trees causes
an increase in the fitness obtained; the 10d20cGaussian plot has no noticeable improve-
ment as t is increased, while on the 10d40c and 10d100c plots, the fitness is actually
reduced by using more trees. This is consistent with the results presented in Table
5, where the AIC method had significantly worse fitness on the 10d40c dataset, and
was not significantly different on the 10d100c dataset — on the 10d100c plot, the fit-
ness value for t = 7 is very close to the baseline (i.e. a relative fitness of 1). For the
10d20cGaussian plot, we hypothesise that there is little room for fitness improvement
as t is increased, as shown by the small changes in fitness and ARI performance com-
pared to GPGC in Table 4. On the 14 plots where there was a positive association, the fit-
ness improvement is between 10% (on 1000d10c), and slightly over 50% (on 1000d100c),
with improvements of around 25% on the majority of the datasets.

The optimal value of t varies depending on the dataset that is used — however,
fitness tends to peak at a certain value of t for each dataset, before remaining relatively
constant or dipping slightly (with the exception of those where t does not improve per-
formance). The best value of t for each dataset is hence the lowest value of t for which
performance is significantly better than all lower values of t, as this provides the best
balance of maximising fitness while maintaining the interpretability and computational
benefits of a lower t value. For most datasets, this value is between t = 5 and t = 8,
with the exception of 50d20c and 1000d10c, where a t value of 9 and 4 seem to be best,
respectively. Hence, we suggest a value of t = 7 or t = 8 may be best for an unknown
dataset in order to ensure good fitness is obtained.

Evolutionary Computation Volume x, Number x 19

A. Lensen, B. Xue, and M. Zhang

x
x x

x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(a) 10d10cGaussian

x x x x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(b) 10d20cGaussian

x
x x x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(c) 10d40cGaussian

x x
x x x x

x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(d) 10d10c

x
x x x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(e) 10d20c

x
x x x

x x x
x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(f) 10d40c

x x x x x x x x
x

x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(g) 10d100c

x

x
x

x
x x x

x
x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(h) 50d10c

x
x

x x x
x x x

x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(i) 50d20c

x x
x

x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(j) 50d40c

x

x x x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(k) 100d10c

x
x

x x
x x

x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(l) 100d20c

x x
x x x x x

x
x

x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(m) 100d40c

x x x x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(n) 1000d10c

x
x x

x x x x x x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(o) 1000d20c

x
x x

x x
x

x x
x x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(p) 1000d40c

x

x
x

x x
x

x

x

x

x

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10
Number of trees

F
itn

es
s

(q) 1000d100c

Figure 4: Effect on training performance as the number of trees is increased.

20 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Figure 5: An evolved individual on the 10d10c dataset using the single-tree approach.
Individual has a fitness of 21.37 and ARI of 0.9144 and produces K = 22 clusters.

6 Further Analysis

6.1 Evolved GP Trees

In addition to achieving good clustering performance, our proposed methods are also
expected to automatically select a subset of features and construct new, more powerful
high-level features due to the tree-based GP structure used. To evaluate the feature
manipulation performance of our proposed methods, we analyse an example evolved
individual for both the single- and multi-tree approaches in this subsection.

Fig. 5 shows a single-tree individual evolved by GPGC on the 10d10c dataset,
which has a very good ARI result of 0.9144. We can see that the tree produced is able
to combine a number of different sub-trees to effectively construct a custom similarity
function which can vary its behaviour across the dataset through the use of conditional
max and min operators. A range of building blocks are used to find the similarity of two
instances, from simple feature weighting operations (e.g. 0.572 ÷ I1F5, I1F9 + 0.659)
to more advanced feature comparisons (e.g. min(I0F2, I1F8)), with high-level features
formed by combining these building blocks in a variety of ways. By evolving a similar-
ity function tailored to this dataset, GPGC is able to outperform the benchmark meth-
ods, which use the inflexible Euclidean distance function. This evolved function gives
a different nearest neighbour to that of Euclidean distance for 97.04% of the instances,
and on average chooses the 5.4th nearest neighbour according to Euclidean distance
ordering. Clearly, GPGC has produced a significantly different ordering which is more
appropriate for this dataset than normal Euclidean distance ordering.

Fig. 6 shows an example of a multi-tree individual evolved on the 1000d20c
dataset, which has a very good ARI result of 0.9616. We have simplified the trees
where appropriate to aid interpretability by computing constants and removing dead
branches. The seven evolved trees are generally quite simple, with only one tree (c)
being the maximum depth of five, and one, two, two, and one trees having depths of
four, three, two, and one, respectively. While it is difficult to understand why these
trees perform well across each instance in the dataset, it is possible to gain insight by
examining the general behaviour of each tree ((a)–(g)), as shown below:

(a) simple feature selection of I1F312.

(b) computing a weighted sum of two selected features.

Evolutionary Computation Volume x, Number x 21

A. Lensen, B. Xue, and M. Zhang

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: An evolved individual on the 1000d20c dataset using AIC crossover and t = 7.
Individual has a fitness of 10.43 and ARI of 0.9616 and produces K = 22 clusters.

(c) constructing a more powerful high-level feature by weighting and constructing
non-linear combinations of five original features.

(d) thresholding I1F458 so that it has a minor impact on the total similarity.

(e) finding the maximum of: a feature, a constant value, and the difference between
two features. This gives varied behaviour based on the instances being considered.

(f) finding the absolute difference between two features, with one feature scaled.

(g) finds the maximum of two features, and then takes the result as a negative. In this
way, the bigger the result, the less similar the two instances are said to be.

Each of the seven trees evaluated above had distinctive and interesting behaviour,
which gives insight into which features are useful in the dataset, and into what rela-
tionships between features can be used to gauge instances’ similarities accurately. In
contrast, a standard distance function cannot provide such insight, as it uses the full
feature set and performs only linear comparisons between instances’ features. Of the
1000 features in the 1000d20c dataset, the example individual in Fig. 6 uses only 15
features to build its seven similarity functions. This means the clustering partition pro-
duced is much more interpretable than one produced by a standard nearest-neighbour
graph-based clustering algorithm. This evolved meta-similarity function chooses the
same nearest neighbour as that of Euclidean distance on only 2.67% of the instances
in the dataset. On average, the 6.2th nearest neighbour is chosen as the first nearest
neighbour: this is a similar trend to that of the previous example in that the neighbours
have been significantly re-ordered to be tailored for this dataset.

22 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

● ●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ●●● ●
●

●● ● ●●

●●

●●

●●

●
●

●

●●

●
●

●● ●●●
●

●

● ●●

●

●
●

●
●

●● ●
● ●

●
●

●●

●

●
●

● ●●●● ●●

● ●

●
●●● ●● ●●●●

●

●
●

●
●

●● ●● ●●●● ●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●●

●

●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

●●

●

●● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●● ●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ● ●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●
● ●

●
●

●

●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●●●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●●● ●

●

●

● ●

●●
●

●

● ●

●●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

−40 −20 0 20 40

−
40

−
20

0
20

40

Dimension 1

D
im

en
si

on
 2

(a) GPGC (F-M: 0.9144)

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

● ●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ●●● ●
●

●● ● ●●

●●

●●

●●

●
●

●

●●

●
●

●● ●●●
●

●

● ●●

●

●
●

●
●

●● ●
● ●

●
●

●●

●

●
●

● ●●●● ●●

● ●

●
●●● ●● ●●●●

●

●
●

●
●

●● ●● ●●●● ●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●●

●

●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

●●

●

●● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●● ●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ● ●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●
● ●

●
●

●

●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●●●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●●● ●

●

●

● ●

●●
●

●

● ●

●●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

−40 −20 0 20 40

−
40

−
20

0
20

40

Dimension 1

D
im

en
si

on
 2

(b) Ground Truth

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

● ●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ●●● ●
●

●● ● ●●

●●

●●

●●

●
●

●

●●

●
●

●● ●●●
●

●

● ●●

●

●
●

●
●

●● ●
● ●

●
●

●●

●

●
●

● ●●●● ●●

● ●

●
●●● ●● ●●●●

●

●
●

●
●

●● ●● ●●●● ●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●●

●

●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

●●

●

●● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●● ●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ● ●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●
● ●

●
●

●

●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●●●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●●● ●

●

●

● ●

●●
●

●

● ●

●●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

−40 −20 0 20 40

−
40

−
20

0
20

40

Dimension 1

D
im

en
si

on
 2

(c) k-means++ (F-M: 0.6134)

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

● ●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ●●● ●
●

●● ● ●●

●●

●●

●●

●
●

●

●●

●
●

●● ●●●
●

●

● ●●

●

●
●

●
●

●● ●
● ●

●
●

●●

●

●
●

● ●●●● ●●

● ●

●
●●● ●● ●●●●

●

●
●

●
●

●● ●● ●●●● ●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●●

●

●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

●●

●

●● ●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●● ●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ● ●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●
● ●

●
●

●

●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●●●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●●● ●

●

●

● ●

●●
●

●

● ●

●●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

−40 −20 0 20 40

−
40

−
20

0
20

40

Dimension 1

D
im

en
si

on
 2

(d) NG-2NN (F-M: 0.5103)

Figure 7: Visualising the partitions chosen by a GP individual compared to a sample
of the baseline methods on the 10d10c dataset. t-SNE (van der Maaten and Hinton,
2008) is used to reduce dimensionality to two dimensions. Each colour corresponds to
a single cluster.

6.2 Visualising the Clusters Found

To further analyse the examples discussed in Section 6.1, we visualise the clusters pro-
duced compared to the ground truth clustering in this subsection using the commonly
used t-SNE visualisation method (van der Maaten and Hinton, 2008), which minimises
the probability distribution divergence between the two-dimensional visualisation and
the original feature space.

Fig. 7 shows the clusters produced by GPGC, k-means++ and the NG-2NN meth-
ods on the 10d10c dataset. For GPGC, we use the same evolved individual as in Section
6.1. For k-means++, we chose the result with the highest ARI of the 30 runs. NG-2NN is
deterministic, and so the single result is shown. In addition, the ground truth is shown
in Fig. 7 for reference. It is clear that GPGC is able to most accurately reproduce the
ground truth, with the majority of the clusters mapping to the ground truth well, asides
from a few instances in each cluster. The exception is on the horseshoe-shaped cluster
on the left of the visualisation, where GPGC has over-clustered the data by splitting
this cluster in two. The k-means++ method clearly performs very poorly, with only
the horseshoe-shaped cluster being clustered nearly correctly; all other clusters have
significant overlap. The NG-2NN method also produces clearly incorrect clusters, with
many clusters being combined, including four distinct clusters combined into one sin-
gle blue cluster. GPGC is clearly able to better find the natural clusters compared to
these baseline methods.

Fig. 8 (a) and (b) show the clusters produced by the GPGC-MT method (using the
evolved tree discussed in Section 6.1) and the ground truth respectively on the 1000d20c
dataset. GPGC-MT reproduces the ground truth accurately, with only a small amount

Evolutionary Computation Volume x, Number x 23

A. Lensen, B. Xue, and M. Zhang

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●●
●●●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

●
●●

●
●

● ●

●
●

●

●

●

●
●

●

● ●

●

● ●●●
●

●●●

●●
●

●
●

●
● ●● ●●

●

●● ●●●● ●
●●

● ●
● ●

●

●●●
●●● ●

●
●

●●

●●
●●● ● ●

●
●

●

●● ●● ●●●
● ●●

●
●

●
●

●●
●

●●
●● ●

●

●

●

●●

●●

●

●

●●
●

●
●

●
●●

●
●

●
●

●●●

●
●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●●

●
●●● ●●

●●●
●

●●●●●● ●●●●

●●

●

●●

●
●
●●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●●

●
●

●

● ●

●
●

●
●●

●

●
●

●

●
●

●
●

●
●
●●●
●

●
●
●

●
●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

● ●
●●

●●
●●

●
●●●

●
●

●

●

●

●● ●●
●

●●
●

●●

●

●●

●

●
●

●

● ●●

●
●

●

● ●●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●

●●
●

●

●●● ●●●

●

●
●

●●●

●

●●●
●

●●
●

●

●●
●●

●
●

●

●
●●

●

●

●

●●

●

●●

●●
●

●
●

●

●

●●

●

●

●
●

●
●

● ●●●
●

●●● ●●●●●
●

●●●●● ● ●
● ●

● ●● ●●
●

●
●● ●●

●●●
●●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●●

●
●●

●

●
●●

●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●
●●

●
●●

●

●

● ●
●

●
●● ●●

●

●
●

●●

●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●●

●

●● ●
●

● ●

●
●●●● ●

●
●

●●

● ●

●● ● ●●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●●

● ●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●●

●
●

●

●●

−40 −20 0 20

−
40

−
20

0
20

Dimension 1

D
im

en
si

on
 2

(a) All features: GPGC-MT

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●●
●●●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

●
●●

●
●

● ●

●
●

●

●

●

●
●

●

● ●

●

● ●●●
●

●●●

●●
●

●
●

●
● ●● ●●

●

●● ●●●● ●
●●

● ●
● ●

●

●●●
●●● ●

●
●

●●

●●
●●● ● ●

●
●

●

●● ●● ●●●
● ● ●

●
●

●
●

●●
●

●●
●● ●

●

●

●

●●

●●

●

●

●●
●

●
●

●
●●

●
●

●
●

●●●

●
●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●●

●
●●● ●●

●●●
●

●●●●●● ●● ●●

●●

●

●●

●
●
●●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●●

●
●

●

● ●

●
●

●
●●

●

●
●

●

●
●

●
●

●
●
●●●
●

●
●
●

●
●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

● ●● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

● ●
●●

●●
●●

●
●●●

●
●

●

●

●

●● ●●
●

●●
●

●●

●

●●

●

●
●

●

● ●●

●
●

●

● ● ●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●

●●
●

●

●●● ●●●

●

●
●

●●●

●

●●●
●

●●
●

●

●●
●●

●
●

●

●
●●

●

●

●

●●

●

●●

● ●
●

●
●

●

●

●●

●

●

●
●

●
●

● ●●●
●

●●● ●●● ●●
●

●●●●● ● ●
● ●

● ●● ●●
●

●
●● ●●

●●●
●●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●●

●
●●

●

●
●●

●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●
●●

●
●●

●

●

● ●
●

●
●● ●●

●

●
●

●●

●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●●

●

●● ●
●

● ●

●
●●●● ●

●
●

●●

● ●

●● ● ●● ●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●●

● ●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●●

●
●

●

●●

−40 −20 0 20

−
40

−
20

0
20

Dimension 1

D
im

en
si

on
 2

(b) All features: Ground Truth

●
● ●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●●

●

● ●●

●

● ●

●

●

●●

●

●

● ●
● ●

●

●
●

●

●

●●
●

●

●●
●●

●
●●

● ●
●●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●
●

●

●

●

●● ●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●●

●●● ●
●

● ●
● ●

●
●

●●

●

● ●

●

●

●

●
●●

●●● ●

●

●

●

●

●

● ●●
●●

● ●
●●

●

●
●

●

●

●

●

●

●

●
●

●● ●●●●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●●
●

●

●

●●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●
● ●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●

●

●●● ●●
●

●●

●

●● ●●●● ● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●
●

●

●●

●

●●

●●●

●

●
●

●
●
●

●

●

●
●

●

●● ●●●
● ●●●● ●●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
● ●

●

●

●

●

●●
●

●

●
●

●●●
●

●
●

●
●

●●
●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●

●
●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●●

●
●

●

● ●●

●●●●

●
●

●
●

●
●

●

●

●
●

● ●
●

●
●●

●

● ●

●

●
●

●

●

●

●
● ●●

●
● ●

●
●●

●

●
●

●

●

●
●

●
●●

●
●●

●
●

●
●

●

●
●●

●

●●● ●●

●

●●●● ●
●● ●●● ●●

●
●

●
● ●●

●

●●● ●●

●

●●

●
●

●

●

●
● ● ●●

●

● ●
● ●● ●

●

●

●
●

●
●

●

●
●

●

●●●●
●

●

●
●●● ●●

●
●

●

●

● ●●

●

●

●

● ●●● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●
●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●
● ●

●●

●

●

●
●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●
●●

●

●

●

●
●●

●
●

●

●●

−30 −20 −10 0 10 20

−
30

−
20

−
10

0
10

20
30

Dimension 1

D
im

en
si

on
 2

(c) Selected features: GPGC-MT

●
● ●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●●

●

● ●●

●

● ●

●

●

●●

●

●

● ●
● ●

●

●
●

●

●

●●
●

●

●●
●●

●
●●

● ●
●●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●
●

●

●

●

●● ●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●●

●●● ●
●

● ●
● ●

●
●

●●

●

● ●

●

●

●

●
●●

●●● ●

●

●

●

●

●

● ●●
●●

● ●
●●

●

●
●

●

●

●

●

●

●

●
●

●● ●●●●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●●
●

●

●

●●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●
● ●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●

●

●●● ●●
●

●●

●

●● ●●●● ● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●
●

●

●●

●

●●

●●●

●

●
●

●
●
●

●

●

●
●

●

●● ●●●
● ●●●● ●●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
● ●

●

●

●

●

●●
●

●

●
●

●●●
●

●
●

●
●

●●
●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●

●
●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●●

●
●

●

● ●●

●●●●

●
●

●
●

●
●

●

●

●
●

● ●
●

●
●●

●

● ●

●

●
●

●

●

●

●
● ●●

●
● ●

●
●●

●

●
●

●

●

●
●

●
●●

●
●●

●
●

●
●

●

●
●●

●

●●● ●●

●

●●●● ●
●● ●●● ●●

●
●

●
● ●●

●

●●● ●●

●

●●

●
●

●

●

●
● ● ●●

●

● ●
● ●● ●

●

●

●
●

●
●

●

●
●

●

●●●●
●

●

●
●●● ●●

●
●

●

●

● ●●

●

●

●

● ●●● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●
●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●
● ●

●●

●

●

●
●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●
●●

●

●

●

●
●●

●
●

●

●●

−30 −20 −10 0 10 20

−
30

−
20

−
10

0
10

20
30

Dimension 1

D
im

en
si

on
 2

(d) Selected features: Ground Truth

Figure 8: Visualising the partitions chosen by a GP individual on the 1000d20c dataset.
t-SNE (van der Maaten and Hinton, 2008) is used to reduce dimensionality to two di-
mensions. Figures (a) and (b) show the visualisations formed when all features are used
by t-SNE, whereas (c) and (d) show the visualisations using only the features used in
the GP tree. Each colour corresponds to a single cluster.

of over-clustering. The GPGC-MT method uses only a subset of features in the evolved
trees; in this case, only 15 of the 1000 features are used. To analyse whether using so
few features would reduce the interpretability of the clusters produced, we performed
another set of visualisations which used only the 15 selected features as input, as shown
in Fig. 8 (c) and (d). The clusters shown in these visualisations are still very distinct and
well-separated, which suggests that the GPGC-MT method was able to successfully
perform feature selection implicitly in the evolved similarity functions. While t-SNE
is able to reliably project the feature space into two dimensions, it does so at the cost
of interpretability – the two dimensions produced cannot be easily mapped back to
the original feature set, and so it is very difficult to analyse why a cluster contains
certain instances. In contrast, GPGC-MT uses only a small subset of the feature set, and
explicitly combines features in an interpretable manner in the evolved trees.

6.3 Evolutionary Process

To further analyse the learning effectiveness of the proposed methods (GPGC and the
three multi-tree crossover approaches), we plot the fitness over the evolutionary pro-
cess for the 10d10cGaussian and 1000d100c datasets, as shown in Fig 9 (a) and (b) re-
spectively. For each dataset, we plot the mean fitness of the best individual at each
generation, taken across the 30 independent runs. These datasets were selected as they
represent the datasets with the lowest and highestm andK values, and are from each of
the two different generators used. Both datasets show the same pattern for the single-
tree compared with the multi-tree approaches: while all methods begin at similar fit-

24 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

●

●

●

●
●

●
●

●
●

●
●●

●
●●

●●

15.0

17.5

20.0

22.5

0 25 50 75 100
Generation

M
ea

n
F

itn
es

s

(a) 10d10cGaussian

●

●

●

●
●

●
●

●
●

●●
●

●
●●

●●●
●●●●

●●●●
●●●●

●●●●●●●●●
●●

6

7

8

9

10

0 25 50 75 100
Generation

M
ea

n
F

itn
es

s

(b) 1000d100c

Figure 9: Fitness of the two proposed methods over the evolutionary process. The
red dots correspond to GPGC, the blue triangles to GPGC-AIC, the green squares to
GPGC-SIC, and the orange diamonds to GPGC-RIC respectively.

nesses, the multi-tree methods increase in mean fitness at a significantly faster rate,
and reaches a much higher mean fitness overall. Indeed, the final fitness of GPGC at
the 100th generation is achieved by each of the multi-tree approaches by generation 25
in both datasets. It is clear that the multi-tree approaches can train more efficiently (i.e.
with a steeper initial slope), and effectively, by reaching a higher final fitness over the
same number of generations. While the GPGC-AIC method is slightly outperformed by
the other two crossover approaches on the 10d10cGaussian dataset, it is clearly the best
method on the more difficult 1000d100c dataset, which reinforces our view that this
is the best of the proposed approaches. While fitness appears to have levelled off by
generation 100 on the 10d10cGaussian dataset, it appears that additional generations
could improve the performance on the 1000d100c dataset even further.

7 Conclusions and Future Work

In this work, we proposed a novel approach to performing clustering, whereby GP was
used to automatically evolve similarity functions in place of the commonly used inflex-
ible distance metrics. The results of our experiments showed that the automatically
generated similarity functions could improve the performance and consistency of clus-
tering algorithms using a graph representation, while producing more interpretable
similarity metrics, which have the potential to be understood by a domain expert as
they select only the most important features in a dataset. We also showed that a multi-
tree GP approach could be utilised to further improve the performance by automati-
cally evolving several highly-specific similarity functions, which are able to specialise
on different components of the overall clustering problem.

While the investigation in this paper was focused on graph-based clustering, due
to its ability to model a range of cluster shapes, we also hope our proposed approaches
can be applied to nearly any clustering method which uses a similarity function to per-
form clustering. By replacing the graph-based clustering approach with another given
clustering algorithm, the evolved similarity functions will need to be optimised to work
with that algorithm instead. We would also like to test our proposed approaches on
real-world data which has “gold-standard” labels, but all real-world datasets we have
found provide class labels only, which are not suitable for measuring cluster quality.
This paper focused on using a scalar fitness function so as to constrain the scope of this
work, allowing us to directly evaluate the quality of the proposed GP representation.

Evolutionary Computation Volume x, Number x 25

A. Lensen, B. Xue, and M. Zhang

In future work, we would like to extend our proposed fitness function by using an evo-
lutionary multi-objective optimisation (EMO) approach — the three key measures of
cluster quality (compactness, separability, connectedness) partially conflict with each
other, and so using an EMO approach may allow better and more varied solutions to
be generated. Initial experiments (see Appendix A) showed that GPGC had promise
for subspace clustering, but that better performance could likely be achieved in the fu-
ture by developing a new fitness function and designing new genetic operators to be
specific to subspace clustering tasks. There is also scope for refining the GP program
design used: the terminals and functions could be further tailored to the clustering
domain through the use of other feature comparison operators.

References

Aggarwal, C. C. and Reddy, C. K., editors (2014). Data Clustering: Algorithms and Applications.
CRC Press.

Ahn, C. W., Oh, S., and Oh, M. (2011). A genetic programming approach to data clustering.
In Proceedings of the International Conference on Multimedia, Computer Graphics and Broadcasting
(MulGraB), Part II, pages 123–132.

Alelyani, S., Tang, J., and Liu, H. (2013). Feature selection for clustering: A review. In Data
Clustering: Algorithms and Applications, pages 29–60. CRC Press.

Ankerst, M., Breunig, M. M., Kriegel, H., and Sander, J. (1999). OPTICS: ordering points to
identify the clustering structure. In Proceedings of the International Conference on Management of
Data, pages 49–60.

Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. In Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1027–1035.

Boric, N. and Estévez, P. A. (2007). Genetic programming-based clustering using an information
theoretic fitness measure. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
pages 31–38.

Coelho, A. L. V., Fernandes, E., and Faceli, K. (2011). Multi-objective design of hierarchical con-
sensus functions for clustering ensembles via genetic programming. Decision Support Systems,
51(4):794–809.

Dy, J. G. and Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal of Machine
Learning Research, 5:845–889.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing. Natural Computing
Series. Springer.

Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the application of genetic program-
ming to classification. IEEE Trans. Systems, Man, and Cybernetics, Part C, 40(2):121–144.

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA, pages 226–231.

Falco, I. D., Tarantino, E., Cioppa, A. D., and Gagliardi, F. (2005). A novel grammar-based ge-
netic programming approach to clustering. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 928–932.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge discov-
ery in databases. AI Magazine, 17(3):37–54.

Garcı́a, A. J. and Gómez-Flores, W. (2016). Automatic clustering using nature-inspired meta-
heuristics: A survey. Appl. Soft Comput., 41:192–213.

Garcı́a-Pedrajas, N., de Haro-Garcı́a, A., and Pérez-Rodrı́guez, J. (2014). A scalable memetic
algorithm for simultaneous instance and feature selection. Evolutionary Computation, 22(1):1–
45.

Handl, J. and Knowles, J. D. (2007). An evolutionary approach to multiobjective clustering. IEEE
Trans. Evolutionary Computation, 11(1):56–76.

26 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

Hartuv, E. and Shamir, R. (2000). A clustering algorithm based on graph connectivity. Inf. Process.
Lett., 76(4-6):175–181.

Haynes, T. and Sen, S. (1997). Crossover operators for evolving a team. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 162–167, CA, USA. Morgan Kaufmann.

J. A. Hartigan, M. A. W. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651–
666.

Jolliffe, I. T. (2011). Principal component analysis. In International Encyclopedia of Statistical Science,
pages 1094–1096. Springer.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selec-
tion, volume 1. MIT press.

Kuo, R. J., Syu, Y. J., Chen, Z., and Tien, F. (2012). Integration of particle swarm optimization and
genetic algorithm for dynamic clustering. Inf. Sci., 195:124–140.

Lensen, A., Xue, B., and Zhang, M. (2017a). GPGC: genetic programming for automatic clustering
using a flexible non-hyper-spherical graph-based approach. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO., pages 449–456. ACM.

Lensen, A., Xue, B., and Zhang, M. (2017b). Using particle swarm optimisation and the silhouette
metric to estimate the number of clusters, select features, and perform clustering. In Proceed-
ings of the 20th European Conference on the Applications of Evolutionary Computation (EvoApplica-
tions), Part I, volume 10199 of Lecture Notes in Computer Science, pages 538–554. Springer.

Liu, H. and Motoda, H. (2012). Feature selection for knowledge discovery and data mining, volume
454. Springer Science & Business Media.

Liu, H. and Yu, L. (2005). Toward integrating feature selection algorithms for classification and
clustering. IEEE Trans. Knowl. Data Eng., 17(4):491–502.

Lorena, L. A. N. and Furtado, J. C. (2001). Constructive genetic algorithm for clustering problems.
Evolutionary Computation, 9(3):309–328.

Menéndez, H. D., Barrero, D. F., and Camacho, D. (2014). A genetic graph-based approach for
partitional clustering. International Journal of Neural Systems, 24(3).

Müller, E., Günnemann, S., Assent, I., and Seidl, T. (2009). Evaluating clustering in subspace
projections of high dimensional data. In Proceedings of the 35th International Conference on Very
Large Data Bases (VLDB), pages 1270–1281.

Nanda, S. J. and Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for
partitional clustering. Swarm and Evolutionary Computation, 16:1–18.

Naredo, E. and Trujillo, L. (2013). Searching for novel clustering programs. In Genetic and Evolu-
tionary Computation Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013, pages
1093–1100.

Neshatian, K., Zhang, M., and Andreae, P. (2012). A filter approach to multiple feature construc-
tion for symbolic learning classifiers using genetic programming. IEEE Trans. Evolutionary
Computation, 16(5):645–661.

Parsons, L., Haque, E., and Liu, H. (2004). Subspace clustering for high dimensional data: a
review. SIGKDD Explorations, 6(1):90–105.

Peignier, S., Rigotti, C., and Beslon, G. (2015). Subspace clustering using evolvable genome struc-
ture. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pages 575–
582.

Picarougne, F., Azzag, H., Venturini, G., and Guinot, C. (2007). A new approach of data clustering
using a flock of agents. Evolutionary Computation, 15(3):345–367.

Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field Guide to Genetic Programming. lulu.com.
Sheng, W., Chen, S., Sheng, M., Xiao, G., Mao, J., and Zheng, Y. (2016). Adaptive multisubpop-

ulation competition and multiniche crowding-based memetic algorithm for automatic data
clustering. IEEE Trans. Evolutionary Computation, 20(6):838–858.

Sheng, W., Liu, X., and Fairhurst, M. C. (2008). A niching memetic algorithm for simultaneous

Evolutionary Computation Volume x, Number x 27

A. Lensen, B. Xue, and M. Zhang

clustering and feature selection. IEEE Trans. Knowl. Data Eng., 20(7):868–879.
Tang, J., Alelyani, S., and Liu, H. (2014). Feature selection for classification: A review. In Data

Classification: Algorithms and Applications, pages 37–64. CRC Press.
Thomason, R. and Soule, T. (2007). Novel ways of improving cooperation and performance

in ensemble classifiers. In Proceedings of the Genetic and Evolutionary Computation Conference,
(GECCO), pages 1708–1715.

Vahdat, A. and Heywood, M. I. (2014). On evolutionary subspace clustering with symbiosis.
Evolutionary Intelligence, 6(4):229–256.

van der Maaten, L. and Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research, 9:2579–2605.

Van Dongen, S. M. (2000). Graph clustering by flow simulation. PhD thesis, University of Utrecht.
Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings compar-

ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11:2837–2854.

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.
von Luxburg, U., Williamson, R. C., and Guyon, I. (2012). Clustering: Science or art? In Proceed-

ings of the Unsupervised and Transfer Learning Workshop held at ICML 2011, pages 65–80.
Xu, R. and II, D. C. W. (2005). Survey of clustering algorithms. IEEE Trans. Neural Networks,

16(3):645–678.
Xue, B., Zhang, M., Browne, W. N., and Yao, X. (2016). A survey on evolutionary computation

approaches to feature selection. IEEE Trans. Evolutionary Computation, 20(4):606–626.

28 Evolutionary Computation Volume x, Number x

GP for Evolving Cluster Similarity Functions

●
●

●

●

●
●

0.4

0.6

0.8

1.0

10 15 20 25 50 75
Number of dimensions

A
R

I

(a) Varying the number of dimensions

●

●

● ●
●

0.2

0.4

0.6

0.8

1.0

1500 2500 3500 4500 5500
Number of instances

A
R

I

(b) Varying the number of instances

Figure 10: ARI achieved by each clustering method on the OpenSubspace clustering
datasets, where either the number of dimensions, or number of instances are varied.The
red dots correspond to GPGC, the blue triangles to GPGC-AIC, the green squares to
PROCLUS, and the orange diamonds to DOC respectively.

Appendix
A Subspace Clustering Results

The fitness function proposed in this paper is designed to use all features in the fea-
ture space when calculating distances, as our primary goal is to reduce dimensionality
and produce interpretable similarity functions, while maintaining good cluster qual-
ity. However, a natural extension of our proposed approach is to apply it to subspace
clustering problems, as our GP representation has the potential to use different fea-
ture subsets in different clusters. To investigate the plausibility of this extension, we
applied GPGC and GPGC-AIC to datasets from OpenSubspace (Müller et al., 2009), a
collection of popular subspace benchmarking datasets. We chose to use the PROCLUS
and DOC algorithms for comparison as examples of commonly used cell-based and
clustering-oriented subspace clustering algorithms respectively. We chose PROCLUS
and DOC as they have been shown to have superior (or similar) performance to other
subspace algorithms in their paradigm (Müller et al., 2009). We do not compare to a
clustering algorithm from the third paradigm – density-based subspace clustering – as
these methods all produced overlapping (i.e. non-crisp) clusters, which is not the focus
of this study.

Fig. 10 shows the performance of each of the four methods (GPGC, GPGC-AIC,
PROCLUS, and DOC) as the number of dimensions is varied (Fig. 10a) and the num-
ber of instances (Fig. 10b) is varied respectively. For each dataset, we plot the ARI
achieved by each method, as well as the standard deviation across 30 runs (the vertical
bars). The two proposed methods are competitive with PROCLUS as the dimension-
ality is increased, but PROCLUS clearly outperforms GPGC and is slightly better than
GPGC-AIC as the number of instances is increased. The DOC method is clearly the best
of all the methods on both categories of datasets. However, GPGC-AIC in particular
shows some promise given it has not been optimised for this task, but can still achieve
competitive results often with one common subspace clustering method. Furthermore,
GPGC-AIC is clearly superior to vanilla GPGC, which further reinforces the findings
throughout this paper. We hope to further improve GPGC-AIC and make it a compet-
itive subspace clustering algorithm in the future by developing a new fitness function
and designing new genetic operators.

Evolutionary Computation Volume x, Number x 29

	1 Introduction
	1.1 Goals

	2 Background
	2.1 Clustering
	2.2 Feature Reduction
	2.3 Subspace Clustering
	2.4 Related Work

	3 Proposed Approaches
	3.1 GP Program Design
	3.2 Clustering Process
	3.3 Fitness Function
	3.4 Using a Multi-Tree Approach
	3.4.1 Crossover Strategy
	3.4.2 Number of Trees

	4 Experiment Design
	4.1 Benchmark Techniques
	4.2 Datasets
	4.3 Parameter Settings
	4.4 Evaluation Metrics

	5 Results and Discussion
	5.1 GPGC using Multiple Trees
	5.2 GPGC-AIC compared to the Benchmarks
	5.2.1 Summary

	5.3 Number of Trees: Effect on Fitness

	6 Further Analysis
	6.1 Evolved GP Trees
	6.2 Visualising the Clusters Found
	6.3 Evolutionary Process

	7 Conclusions and Future Work
	A Subspace Clustering Results

