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2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

It has long been hypothesized that operating close to
the critical state is beneficial for natural and artifi-
cial systems. We test this hypothesis by evolving for-
aging agents controlled by neural networks that can
change the system’s dynamical regime throughout evo-
lution. Surprisingly, we find that all populations, re-
gardless of their initial regime, evolve to be subcritical
in simple tasks and even strongly subcritical popula-
tions can reach comparable performance. We hypoth-
esize that the moderately subcritical regime combines
the benefits of generalizability and adaptability brought
by closeness to criticality with the stability of the dy-
namics characteristic for subcritical systems. By a re-
silience analysis, we find that initially critical agents
maintain their fitness level even under environmental
changes and degrade slowly with increasing perturba-
tion strength. On the other hand, subcritical agents
originally evolved to the same fitness, were often ren-
dered utterly inadequate and degraded faster. We con-
clude that although the subcritical regime is preferable
for a simple task, the optimal deviation from criticality
depends on the task difficulty: for harder tasks, agents
evolve closer to criticality. Furthermore, subcritical
populations cannot find the path to decrease their dis-
tance to criticality. In summary, our study suggests that
initializing models near criticality is important to find
an optimal and flexible solution.

—

Introduction
Operating close to the critical point at a phase transition be-
tween order (subcritical) and disorder (supercitical) has long
been associated with optimal performance of complex sys-
tems. Several biological systems, such as gene regulatory
networks (Balleza et al., 2008; Rämö et al., 2006), neural
networks (Tkacik et al., 2015; Schneidman et al., 2006), col-
lectively behaving cells (Halley et al., 2009; De Palo et al.,

2017) or swarms (Cavagna et al., 2010; Chaté and Muñoz,
2014) have been shown to operate close to a critical point.
Criticality has been associated with an ability to solve com-
plex tasks (Villegas et al., 2016), flexibility towards changes
in the environment and good evolvability (Aldana et al.,
2007) in complex living systems (Kauffman, 1993). All
these properties provide an adaptive advantage in natural en-
vironments, leading to the assumption that evolutionary dy-
namics push living systems close to the critical regime.

On the other hand, it has been suggested that the ubiqui-
tous presence of noise in nature pushes living systems into
a more robust subcritical regime. For example, in an evo-
lutionary model of Random Boolean Networks (RBNs) de-
creasing the system size, making the task less complex, or
introducing noise to the system pushes the optimal regime
further into the subcritical range (Villegas et al., 2016). Sim-
ilarly Rämö et al. (2007) observed, that information propa-
gation is maximized in critical RBNs, however the optimal
regime shifts slightly into the subcritical regime under the
presence of noise. A related phenomenon has been observed
on neuromorphic chips, where simpler tasks lead to optimal
behavior in the subcritical regime, whereas harder tasks re-
quire progressively more critical dynamics (Cramer et al.,
2020). Finally, for some applications, the combination of
systems at different distances to criticality is shown to lead
to optimal results (Zierenberg et al., 2020). The supercit-
ical state has been universally observed to perform poorly
(Villegas et al., 2016; Kauffman, 1993).

The benefits of criticality for the evolvability of living
systems have been associated with the genotype-phenotype
coupling. Specifically, it has been shown (De Jong, 2006)
that a tight genotype-phenotype coupling leads to optimal
evolvability. Due to this coupling, the dynamical regime
has an impact on the properties of the fitness landscape.
In an RBN model, the super- and subcritical regimes were
shown to disturb the genotype-phenotype coupling (Kauff-
man, 1993) and lead to either very rugged or overly flat fit-
ness landscapes. A rugged fitness landscape means that the
evolutionary dynamics are just a random search – inefficient
in high dimensions (Kauffman and Levin, 1987), whereas a
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Figure 1: Snapshot in time of population dynamics and
schematic representation of the control network. A: Envi-
ronment with 50 organisms (red circles with trails) foraging
for food (green dots). B: A network with 12 neurons. Four
sensory, four hidden and four motor neurons. All potentially
allowed edges are displayed. The exact topology and edge
weights are subject to evolution by the EA.

very flat landscape strongly dampens the optimization pro-
cess. Both phenomena lead to a complexity catastrophe,
where an increase of system size leads to a failure to dis-
cover satisfying solutions with evolutionary search. Critical
RBNs result in an intermediately rugged fitness landscape
which allows for efficient hill climbing search and is less
prone to the complexity catastrophe.

We study how the dynamical regime of populations of
evolving organisms influences their ability to solve a task.
Our investigation is conducted in a simple foraging game
of scalable difficulty. This system allows us to analyze the
changes in the dynamical regimes during the evolution. In
addition, we propose a potential answer to the question of
which dynamical regime demonstrates the best performance
and stability with respect to changes in the environment.

Methods
We investigate a 2D environment where organisms con-
trolled by individual neural networks forage for food. Each
organism gains energy by eating food particles and con-
sumes energy by moving. The organisms eat the food par-
ticles as soon as they run over them. We can increase the
difficulty of the task by requiring the organism’s velocity to
be below a certain threshold when running over food in or-
der to be able to consume it. The fitness of an organism
is determined by its average energy throughout its lifetime,
and an evolutionary algorithm (EA) optimizes the network
that controls the organism to maximize its fitness.

Organism
The organisms in our model are controlled by an Ising neu-
ral network (INN) that has been previously used by Aguilera
and Bedia (2017) as well as Khajehabdollahi and Witkowski
(2020). The Ising network consists ofN neurons that can be
in one of two states si ∈ {−1, 1}, i = 1, . . . N . There are
sensory neurons that only receive input from the sensors and
motor neurons that control the agent. All other neurons are
hidden units. The connectivity of the network is described
by the weight matrix J ∈ [−2, 2]N×N and the adjacency
matrix A ∈ {0, 1}N×N , as shown in Figure 1B. The ad-
jacency matrix is such that no direct connections between
sensor and motor neurons exist. Following the Ising model,
each network state has an associated energy

E(s1, . . . , sN ) = −
∑

{i,j|Aij=1}

Ji,jsisj (1)

where {i, j | Aij = 1} is the set of connections. The
network stochastically minimizes the energy by following
Glauber dynamics: At each network iteration, all non-sensor
neurons are updated in a random order and the state of neu-
ron i changes from si to −si with probability:

pi =
1

1 + eβ·∆Ei
, (2)

∆Ei = E(s1, ..., si, ..., sN )− E(s1, ...,−si, ..., sN ),

where β is the inverse temperature of the network (β =
1/(T ·kB), kB is the Boltzmann constant which we set to one
and omit for simplicity) and ∆Ei is the change in the energy
of the network that is caused by the spin-flip of the ith neu-
ron (changing its state si to −si). The energy change ∆Ei
is determined by the connectivity matrix J and the states
of neighboring neurons. A negative energy change leads
to a greater likelihood of a flip. The parameter β controls
the likelihood of energetically unfavorable flips. A larger
β leads to deterministic network behavior dominated by the
connectivity, whereas a smaller β leads to more random be-
havior. In principle, many iterations would be required to
converge to equilibrium. For practical reasons, we perform



Figure 2: The dynamical regime of a network can be calculated by scaling the inverse temperature with a factor cβ to measure
its heat capacity and measuring its distance to the corresponding peak. Heat capacity (Eq. 3) of the Ising networks (Figure 1)
for 50 initially subcritical (βinit = 10, blue), critical (βinit = 1, green), and supercritical (βinit = 0.1, red) organisms as a
function of cβ . For each organism it reaches the maximum (marked by a dot) at individual values cβ = ccrit

β . Dynamical
regime δ = log(ccrit

β ) ≈ − log(βinit). The displayed populations are unevolved and the resulting dynamical regimes closely
correspond to their respective βinit.

a fixed number of iterations (10) to process a new sensor
input and create motor commands.

An organism has four input neurons that receive informa-
tion about the angle θfood and distance dfood from the clos-
est food particle as well as its own velocity v and energy E.
Moreover, each organism has four output neurons that con-
trol linear and rotational acceleration (2 neurons each) and
Nh hidden neurons (Figure 1B). For most simulations we
take Nh = 4, to test scalability of learning we also consider
a network with Nh = 20. At the beginning of each sim-
ulation, an organism is provided with an amount of initial
energy Einit = 2. Movement reduces energy and consum-
ing food particles increases it. We consider two versions
of this environment: In the simple task organisms consume
food when passing over it. In the hard task organisms have
to slow down and almost stop to be able to consume food.
Unless stated differently, a simulation lasts for a lifetime of
t = 2000 time steps after which the evolutionary algorithm
(EA) is applied, and the task is simple. 50 INN-controlled
organisms are placed in a 2D environment with periodic
boundaries and ever-respawning food particles, conserved
to a value of 100 (Figure 1A).

Evolutionary algorithm
The evolutionary algorithm applied to the INNs consists of
a combination of elitism, mutation, and mating. At the end
of the 2D simulation described above, the fitness of each
organism is defined as their mean energy throughout their
lifetime. Subsequently, the 20 fittest organisms are selected
for reproduction.

The next generation of organisms is produced by applying
a combination of copying, mutation, and mating procedures
to the selected individuals. The copying algorithm transfers
some of the fittest individuals into the next generation un-
changed. The mutation algorithm adds or deletes edges in

Algorithm
1: Evolutionary Algorithm . Evolves J , A, and β
2: for generation = 1 to Generations do
3: Foraging Game in 2D environment
4: for t = 1 to Time Steps do
5: Update Sensor Neurons(organism)
6: Update INN
7: for iter = 1 to Network Iterations do
8: for non-sensor neuron in INN do
9: Potential spin-flip(neuron)

10: end for
11: end for
12: Read Motor Neurons(organism)
13: Move in 2D environment(organism)
14: end for
15: Evolve(population of organisms)
16: Reset 2D environment
17: end for

A (connections not present in Figure 1B cannot be added),
re-samples a random edge weight in J from a uniform distri-
bution U(−2, 2), and perturbs the inverse temperature with
multiplicative noise β′ = β ·∆β where ∆β ∼ N (1, 0.02).
Finally, the mating algorithm takes a weighted average of
the connectivity J and inverse temperature β from two par-
ents to produce an offspring. In most of our simulations, the
EA iterates for 4000 generations.

Defining the dynamical regime of an organism
We use the heat capacity from statistical physics to derive
a measure of an organism’s dynamical regime (sub-, super-,
critical). In our finite system, we estimate the putative di-
vergence point by changing the inverse temperature β mul-
tiplying it with a scaling constant cβ . This change of tem-



A. Simple Task B. Simple Task C. Hard Task
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Figure 3: Critically initialized populations can be successfully evolved in different circumstances, whereas for subcritically
initiated populations, a harder task or an increased system size can lead to the breakdown of evolutionary dynamics. For each
panel 10 initially critical (β = 1, green, top row) or initially subcritical (β = 0.1, blue, bottom row) populations evolve for
4000 generations. The dashed horizontal line at fitness = 2 in the subcritical panels correspond to the organisms’ initial energy.
It can be seen in the 12 neuron, hard task panel (bottom right) that the network is unable to achieve a fitness above its starting
value.

perature influences how likely the state of the neurons will
flip (Eq. 2), and thus change the equilibrium distribution of
energies E (Eq. 1). Now we search for a cβ that delivers the
maximal value of the heat capacity CH(cβ), defined as:

CH(cβ) =
1

T 2
Var(E) = c2ββ

2Var(E). (3)

We define the ccrit
β = argmax

cβ

CH(cβ). An analogous pro-

cedure was used in (Tkacik et al., 2015).
We define the distance of the network from the critical

point by the logarithm of the scaling factor required to bring
the network to criticality, δ = log(ccrit

β ). For unevolved
organisms (first generation, Figure 2), the relationship be-
tween βinit and δ can be approximated by:

δ ≈ − log βinit, βinit ∈ [−0.1, 10]. (4)

On a technical side, for the stability of the numerical pro-
cedure for finding the equilibrium distribution to estimate
CH(cβ) we initiate the motor and hidden neurons in the state
(s1, . . . , sN ) delivering minimum of E(s1, . . . , sN ), while
keeping sensory inputs fixed to the observed values. During
the evolution, the distance from the critical point can (and
will) change.

Results
Convergence of evolution

Populations of different initial states follow distinct evolu-
tionary strategies but are all able to solve the standard forag-
ing task. We observe evolution for 4000 generations, con-
centrating on the populations initiated at the supercritical
(β = 10, δ ≈ 1), critical (β = 1, δ ≈ 0) and subcritical
(β = 0.1, δ ≈ −1) regimes. Critical populations begin to
rapidly gain fitness from the first generation in all EA real-
izations (Figure 3A). The gradual and stable increase of fit-
ness of the initially critical population suggests that success-
ful hill climbing of the fitness landscape is taking place. In
contrast, for subcritical populations, fitness mainly evolves
via random jumps, and only half of the simulations reach
the same fitness as the critical populations after 4000 gen-
erations (Figure 3A). Such fitness dynamics indicate a ran-
dom search strategy, which often leads to a population get-
ting trapped in local maxima for extended periods of time.
Confirming the previous observations by (Khajehabdollahi
and Witkowski, 2020), we see that supercritical populations,
after an initial random period, follow the same path as the
critical ones.

For successfully evolvable populations, moderate changes
in the complexity of the control network should not destroy
the ability of the EA to reach a good fitness.
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Figure 4: Changes in the distance to criticality over the course of evolution. Populations initiated at various distances to
criticality (δ between -1.5 and 1) and evolved on a A: simple task and B: hard task. The color indicates their fitness at
generation 4000. Populations with δ < −1 remain at fitness 2 for the hard task, signifying no evolutionary progress.
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Figure 5: The dynamical regime of the initially critical
population in the harder task remains closer to the critical
regime, than in the simple task throughout evolution. Main
plot: For each condition 10 populations are initiated in the
critical regime end evolve for 4000 generations (dark - hard
task, light - simple task). Inset: histograms of dynamical
regimes at generation 4000 of 75 populations per task, ver-
tical lines denote means, p < 10−13. Difference between
means in inset and main panel are due to the small sample
size for the main panel.

We test the differences in evolvability for initially criti-
cal and subcritical populations by changing the size of the
network from 12 to 28 neurons. Same as for smaller net-
works, the initially critical populations rapidly evolve in all
realizations. By generation 4000 they even reach a slightly
larger fitness than populations of smaller networks that had
evolved for the same amount of time (Figure 3B). At the
same time, subcritially-initialized populations do not reach
even half of their normal fitness. We observe the same dif-
ference between the dynamical regimes when we increase
the task’s complexity requiring organisms to slow down al-
most to zero velocity in order to consume food particles
(Figure 3C). In this harder task, the evolved populations’

maximal fitness is expected to be lower than for the simple
task. For the initially critical populations, we still observe
the same hill climbing dynamics. However, the initially sub-
critical populations stay at an energy level of exactly two.
This signifies that they do not use the originally supplied en-
ergy for moving and remain static throughout all 4000 gen-
erations, trapped in a local optima.

Overall, we see that although in simple tasks all popula-
tions can converge to approximately the same fitness, there
exists a significant difference between the initially subcriti-
cal and initially critical populations. Namely, a convergence
of the EA for critical populations resembles hill climbing. It
is stable (all populations follow very similar fitness growth)
and behaves similarly for larger networks or more complex
tasks. At the same time, for subcritical populations, the EA
resembles random search, which is stochastic and fails to
find solutions in high-dimensional cases or for more com-
plex tasks.

Evolution of the dynamical regime
Next, we investigate how evolution changes the state of the
populations. To do so, we select a wide range of initial dy-
namical regimes (δ ∈ [−1.5, 1]) and examine how the dy-
namics of populations initialized in each of these regimes
change throughout evolution.

Regardless of their initial dynamical regime, all popula-
tions converge to the subcritical regime, however, with dif-
ferent distances from the critical point (Figure 4). We also
observe that strongly subcritical populations (δ < −1) gen-
erally achieve lower fitness levels in the simple task and are
unable to solve the hard task.

Both near-critical and supercritical populations rapidly
change their dynamical regimes and by generation 4000
reach an intermediately subcritical regime δ∗. Strongly
subcritical populations with δ � δ∗ remain at their ini-
tial regimes, demonstrating a lack of evolutionary mobil-
ity, whereas subcritical populations initialized at different



Figure 6: Populations initialized at criticality are always able
to find solutions whose behaviors generalize in time beyond
their training condition, whereas subcritical populations of-
ten overfit to the same conditions. A: 54 populations of each
type (triangles - initially critical, circles - initially subcriti-
cal). After 4000 generations of evolution all critical popu-
lations reach a high fitness (indicated by color) and nearly
perfect (with one exception) generalizability γt (Eq. 5). The
initially subcritical organisms split into badly generalizing
cluster 2 (19 populations), generalizable cluster 3 (28 pop-
ulations), and 7 populations that we did not assign to any
cluster. This split is independent of their attained fitness.
B: Energy and velocity as a function of time for representa-
tive examples of the organisms from cluster 2 and clusters
1,3 (marked in panel A). Organisms in cluster 2 reach their
maximal fitness (sometimes higher than in clusters 1 and 3)
at the end of their lives. The dashed orange line denotes the
training lifetime of 2000 time steps.

0 ≥ δ ≥ δ∗ can still approach δ∗ (Figure 4).

Task complexity changes the dynamical regime found in
the evolutionary limit. The hard task requires a smaller dis-
tance from criticality. We check the evolution of the dy-
namical regime in both simple and hard tasks (Figure 5).
We utilize the observation that all populations with an initial
regime δ > δ∗ converge to similar values. Thus, we consider
only initially critical populations. We obtain the distribution
of dynamical states by considering 75 independent runs of

evolution in both tasks after 4000 generations. The harder
task results in a smaller distance from the critical regime
(large δ), and the difference is significant (p < 10−13). The
difference is observed throughout the evolution (Figure 5,
the main panel based on ten populations).

Initiating the evolution close to the critical regime is im-
portant for unknown task complexity. We observe that the
dynamical regime never changes towards larger values, but
the subcritical convergence point can be at different dis-
tances from criticality. Thus, only starting at the critical
point guarantees that the optimal dynamical state can be
reached by evolution.

Generalizability
For successful biological systems robustness towards en-
vironmental change is the paramount feature, therefore, it
should be used to distinguish the successfully evolved artifi-
cial organisms. We propose a simple measure to investigate
how the model behaves outside of its explicit training con-
ditions. Specifically, for a population trained for the organ-
ism’s lifetime ttrain we define generalizability as the speed
of growth of the average fitness if the organism’s lifetime is
extended to textend . Formally:

γt =
〈Ettrain〉/ttrain

〈Etextend〉/textend
. (5)

The stable generalizability, γt = 1 corresponds to linear
growth whereas sublinear behavior γt � 1 indicates possi-
ble overfitting to the particular organism’s lifetime ttrain.

We consider initially critical (δ ≈ 0) and initially sub-
critical (δ ≈ −1) populations evolved for 4000 generations
and then test their performance for an extended lifetime of
50 000 time steps (instead of the 2000 in training). As re-
ported in previous sections, the critical populations converge
to δ ≈ −0.55, and they all have a similar fitness after train-
ing. Interestingly, when increasing the organisms’ lifetime,
the fitness of the critical population continues to grow lin-
early, signifying almost perfect generalizability. About half
of the subcritical populations reach the same fitness level.
However, the subcritical populations split up into two clus-
ters: one with generalizability close to 0 and another with
generalizability close to 1 (Figure 6A). Surprisingly, there is
no difference in fitness between these two clusters. When we
look more precisely at the individual organisms from the two
clusters, we discover that the strategy of the organisms in the
non-generalizable cluster is to increase the velocity perma-
nently until the end of their training lifetime (Figure 6B).
However, moving with such a high velocity is not compati-
ble with the energy influx from feeding, and they break down
shortly after the end of their training lifetime, this demon-
strates that these organisms overfit the training conditions.
For all generalizable populations (clusters 1 and 3), the ve-
locity fluctuates around a stable level, and the energy of the
organisms grows linearly.



Overall, the initialization in the critical regime results
in almost perfect generalizability of evolved populations,
whereas initially strongly subcritical popuations risk over-
fit their training conditions.

Effect of genetic perturbations on the fitness
Next, we examine the stability of the evolved organisms to
genetic perturbations. We apply genetic perturbations of dif-
ferent magnitudes to the evolved organisms of initially crit-
ical βinit = 1 and subcritical βinit populations. We perturb
all weights of the connectivity matrix by randomly adding
or subtracting a number fpert and then evaluate the fitness of
the resulting organism. We find that fitness rapidly declines
with perturbation magnitude for both populations, however
the subcritical ones decline faster (Figure 7A). We evaluate
the fitness decline by the slope of an exponential function
fitted to the fitness. For the hard task it is α = −2.26 and
for the simple task it is α = −5.03, which is more than dou-
ble the decline rate, indicating a much higher sensitivity of
subcritical systems to perturbations.

The EA is a source of constant genetic perturbations that
are necessary in the beginning of evolution but can become
detrimental later. We consider the individual effect of the
evolutionary operators (copy, mutate, and mate) on the re-
sulting fitness of the organisms. The variability of fitness
for copying simply reflects the natural variability in com-
munity fitness rankings and organism behaviour. However,
both mating and mutation in fully evolved subcritical pop-
ulations typically results in a fitness close to 2 – signify-
ing totally unfit organisms (Figure 7B). At the same time,
initially critical organisms retain diverse fitness values af-
ter mutation and mating, some being close to the optimum.
This indicates that the originally critical populations retain
their evolvability as opposed to the rigid search performed
by strongly subcritical populations.

Discussion
We demonstrate that in various scenarios evolving popula-
tions of agents converge to a moderately subcritical state
with the resulting deviation from criticality depending on
the tasks difficulty. This might appear to be a contradiction
to the previous studies, suggesting that operating close to
criticality is optimal for natural systems (Mora and Bialek,
2011; Munoz, 2018; Roli et al., 2018). However, a recent
body of research showed that for simple tasks, operating at
some distance to criticality might be an optimal solution for
the sensitivity/stability tradeoff (Hidalgo et al., 2014; Tomen
et al., 2014; Villegas et al., 2016; Cramer et al., 2020).

We observe that the distance from criticality affects an
agent’s ability to solve complex tasks and to robustly evolve
generalizable behavior. Specifically, we observe that slightly
subcritical populations are evolvable for different complex-
ities of the control network and task, whereas strongly sub-
critical populations fail in both cases. Given that these prop-

A

B

Figure 7: Initially critical populations show larger genotypic
stability than initially subcritical ones. A: The phenotype
(fitness) as a function of the genotypic perturbation (changes
in connectivity) for two initial conditions: βinit = 1 and
βinit = 10. Dashed black lines indicate exponential fit with
exponent -2.26 (critical) and -5.03 (subcritical). B: The his-
tograms of the fitness values for nearly fully evolve agents
(born between generation 3500 and 4000), categorized ac-
cording to the last evolutionary operator (copy, mutate, or
mate) that was applied to them. The βinit = 10 agents
are much less likely to remain fit when their genotype is
changed by either mutation or mating.

erties are crucial for adaption in natural environments, we
propose that living systems operate in the subcritical regime
in close proximity to the critical point. Moreover, we show
that the optimal regime moves closer to criticality as we in-
crease the task difficulty, which suggests that the optimal
distance from criticality varies. Those findings are con-
firmed by Cramer et al. (2020) as well as Villegas et al.
(2016), who showed that the optimal distance from critical-
ity in the sub-critical regime decreases for higher task com-
plexity or larger system size. We further observe that pop-
ulations can only become more subcritical during evolution
and fail to decrease their distance to criticality even when
this would have eventually led to superior behavior. As it
is a priori unknown which distance from criticality will be
optimal when evolving for a new task, starting at the criti-
cal point could be the only way for the evolutionary process
to descend to the optimal regime. However, in the long run
this would require some sub-populations to always maintain
closeness to criticality. How this can be achieved for neu-
ronal networks is a subject of vivid research (for a review,
see (Zeraati et al., 2020; Buendı́a et al., 2020; Kinouchi
et al., 2020)) and for the embodied Ising agents it remains



open for further investigation. Maintaining evolvability in
simpler systems was, for instance, observed by switching
between different rough energy landscapes (Wang and Dai,
2019). The inhomogeneity of the environment and coevo-
lution can also contribute to the preservation of the critical
regime (Hidalgo et al., 2014). Overall, the maintenance of
evolvability throughout evolution is an important question
beyond the embodied Ising agents studied here.

Our results extend and partly revise the earlier findings
of Khajehabdollahi and Witkowski (2020), that reported a
superior evolvability of critical populations and an approx-
imate convergence to criticality during evolution. We con-
firm that the critical regime allows reliable evolvability, ad-
ditionally, we extend our understanding by considering a set
of tasks and architectures in the model. However, our more
precise procedure to infer the dynamical regime and the fine
sampling of initial conditions uncover additional intricate
dynamics. Namely, that critical populations of Ising-agents
converge to the subcritical regime, and the distance to crit-
icality depends on the task complexity. We also propose a
new way to investigate capabilities of the resulting organ-
isms by defining generalizability and genetic stability mea-
sures. Both measures reveal the benefits of staying close to
the critical state beyond a simple fitness comparison.
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