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Abstract

& Primate behavior is flexible: The response to a stimulus often
depends on the task in which it occurs. Here we study how sin-
gle neurons in the posterior parietal cortex (PPC) respond to
stimuli which are associated with different responses in different
tasks. Two rhesus monkeys performed a task-switching para-
digm. Each trial started with a task cue instructing which of two
tasks to perform, followed by a stimulus requiring a left or right
button press. For half the stimuli, the associated responses were
different in the two tasks, meaning that the task context was
necessary to disambiguate the incongruent stimuli. The other
half of stimuli required the same response irrespective of task

context (congruent). Using this paradigm, we previously showed
that behavioral responses to incongruent stimuli are significantly
slower than to congruent stimuli. We now demonstrate a neural
correlate in the PPC of the additional processing time required
for incongruent stimuli. Furthermore, we previously found that
29% of parietal neurons encode the task being performed (task-
selective cells). We now report differences in neuronal timing
related to congruency in task-selective versus task nonselective
cells. These differences in timing suggest that the activity in task
nonselective cells reflects a motor command, whereas activity in
task-selective cells reflects a decision process. &

INTRODUCTION

Human responses to stimuli depend on the task being
performed. When the task changes, a stimulus that was
previously task-relevant may become task-irrelevant. Task-
irrelevant stimuli may, nonetheless, interfere with task
performance. The phenomenon of how changes in task
instructions affect behavior and neural activity, and of how
irrelevant stimuli may interfere with task performance, has
been studied using a variety of experimental paradigms,
including the Stroop task (MacLeod, 1991; Stroop, 1935),
the flanker task (Eriksen & Eriksen, 1974), the saccade/
antisaccade task and variants (Munoz & Everling, 2004;
Fischer & Weber, 1992), the countermanding task (Logan
& Cowan, 1984), spatial-compatibility tasks (Nakamura,
Roesch, & Olson, 2005; Olson & Gettner, 2002), task-
switching paradigms (Stoet & Snyder, 2003a; Jersild, 1927),
and other task designs (Toth & Assad, 2002).

A common feature of these paradigms is that a single
stimulus may be associated with two or more different
responses, depending on the task conditions. For exam-
ple, in a Stroop task, subjects are required to name the
ink color of a word that is printed in an incompatible
color (e.g., ‘‘red’’ printed in green ink). We refer to such
stimuli as ‘‘response incongruent’’ or simply ‘‘incongru-
ent.’’ In contrast, a ‘‘congruent’’ stimulus is associated
with just a single response (e.g., in a Stroop task the
word ‘‘red’’ printed in red). Behavioral responses to

incongruent stimuli are slower and less accurate than
responses to congruent stimuli. This difference in re-
sponse latencies is likely to reflect additional processing
needed to resolve a stimulus–response mapping con-
flict, and has been observed in both humans and mon-
keys (Stoet & Snyder, 2003a). In humans, the posterior
parietal cortex (PPC) appears to be critically involved in
the processing of incongruent stimuli (Adleman et al.,
2002; Peterson et al., 1999; Taylor, Kornblum, Lauber,
Minoshima, & Koeppe, 1997; Carter, Mintun, & Cohen,
1995; Bench et al., 1993). In a Stroop task, for exam-
ple, blood oxygenation level-dependent (BOLD) signals
increase in the PPC in response to an incongruent com-
pared to a congruent stimulus. However, stimulus–
response conflict is more typically associated with fron-
tal activations (Nakamura et al., 2005; Badre & Wagner,
2004; Botvinick, Cohen, & Carter, 2004; Kerns et al.,
2004; Langenecker, Nielson, & Rao, 2004; Munoz &
Everling, 2004; Weissman, Giesbrecht, Song, Mangun, &
Woldorff, 2003; Mead et al., 2002; Olson & Gettner,
2002; van Veen & Carter, 2002; Zysset, Muller, Lohmann,
& von Cramon, 2001; Everling & Munoz, 2000; Leung,
Skudlarski, Gatenby, Peterson, & Gore, 2000; Peterson
et al., 1999; Schlag-Rey, Amador, Sanchez, & Schlag,
1997; Larrue, Celsis, Bes, & Marc-Vergnes, 1994; Bench
et al., 1993; Pardo, Pardo, Janer, & Raichle, 1990).

In the current study, we use monkeys to study the pro-
cessing of incongruent stimuli. Instead of the common-
ly used Stroop paradigm, we employ a task-switching
paradigm. We have extensively reported on the behaviorWashington University School of Medicine
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and the neural correlates of behavior in this paradigm
(Stoet & Snyder, 2003a, 2003b, 2004, 2006). Trials of
two tasks were randomly interleaved (Figure 1A). Each
trial started with the presentation of a task cue, followed
by a delay period. The task cue informed the monkey
whether to perform the color or the orientation task
(see below) on the upcoming imperative stimulus. For
each task, we used two different task cues, such that we
could determine whether neurons responded to the
cue itself, to the information that the cue conveyed re-
garding the task, or to both.

Each imperative stimulus had two critical features,
color and shape, but only one was relevant in each task.
In the color task, monkeys categorized the color of the
stimuli as red or green, whereas in the orientation task,
the animals categorized the line orientation as vertical

or horizontal. Each stimulus required either a left or
right button press. Monkeys reached from a paw rest-
ing position to one of the two continuously displayed
squares on the screen to indicate the response (see
Methods for details). It is important to note in this study
that imperative stimuli were either congruent or incon-
gruent. Congruent stimuli would require the same re-
sponse in both tasks. For example, a red vertical line
would require the monkey to press the left button in
both tasks because ‘‘red’’ requires a left response in the
color task and ‘‘vertical’’ requires a left response in the
orientation task (see Figure 1A for stimulus–response
associations). Incongruent stimuli would require oppo-
site responses in the two tasks. For example, a red
horizontal line would require the monkey to press the
left button in the color task (red = left), but the right
button in the orientation task (horizontal = right).

We previously reported that nearly one third of the
cells in the PPC encode which of the two tasks the
monkey is preparing to perform (Stoet & Snyder, 2004).
In the current study, we reanalyzed the same data from
that study in order to address a completely different
issue. We ask whether individual parietal neurons reflect
differences in stimulus congruence, either in the mag-
nitude or in the timing of their activity. In contrast to the
human BOLD results previously cited, we find essentially
no difference in the magnitude of responses to congru-
ent versus incongruent stimuli. We do, however, find a
difference in neuronal latency. Although behavioral re-
sponses to congruent and incongruent stimuli in the
monkey differ by 10–16 msec, neuronal responses differ
by nearly twice as much.

We hypothesized that task-selective (TASK+) cells, as
identified by Stoet and Snyder (2004), would more likely
be involved in selecting a particular motor response
than task nonselective (TASK�) cells, as performing
the correct sensory to motor transformation requires
not just stimulus information but also a representation
of the current task. We therefore split the data into
TASK+ and TASK� cells. We find that the effect of con-
gruence on TASK� cell latency is similar to the be-
havioral effect, consistent with a representation of the
motor command. The effect of congruence on TASK+

cell latency is much larger, however. This unexpected
result indicates that monkeys do not always respond
as soon as the sensory–motor transformation has been
computed, and implicates TASK+ parietal neurons in
this transformation process.

METHODS

Two adult rhesus monkeys (Macaca mulatta) performed
a task-switching paradigm. Animals were seated in a
sound-attenuating dark room facing a touch sensitive
screen (30 � 20 cm) at a distance of 25 cm. Animals
performed between 1500 and 3000 trials per experi-
mental session.

Figure 1. Illustration of the paradigm. (A) Trials of two tasks were

interleaved. In the color task, monkeys were trained to respond to
the color of the imperative stimulus. In the orientation task, they

were trained to respond to the orientation of the stimulus. Two

small white squares on the left and right of the screen were

continuously displayed over a black background to indicate the two
alternative reach end points (response buttons). Each trial started

with a task cue (display time 250 msec). In the color task, the task

cue was a regular white triangle (or a yellow screen) on the black
background. In the orientation task, the task cue was a 1808 rotated

triangle (or a blue screen). The task cue was followed by a delay

period (190–485 msec), which was then followed by presentation

of the imperative stimulus. Imperative stimuli were either red or
green horizontally or vertically oriented lines. From trial to trial,

there was a slight random variation in color shading and orientation

(see Methods for rationale). Incongruent imperative stimuli (e.g.,

a green vertical line) required different responses in the two tasks
(e.g., a right response in the color task, but a left response in the

orientation task, as illustrated with the dashed circles around the

right or left response buttons). Congruent stimuli required identical
responses in the two tasks. (B) Overview of the timing of events.
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A capacitive home key (Efector, Exton, Pennsylvania)
was positioned 2 cm below the screen, and animals used
this as a resting position for their left paw. Trials would
not start unless their paw touched this key. Each trial
began with a visual task cue that prompted one of the
two tasks, which were performed in randomly inter-
leaved order (Figure 1). Task cues were presented by
setting the screen color to yellow or blue, or by display-
ing an upright or inverted white equilateral triangle
(14.78) at screen center for 250 msec (Figure 1). A yel-
low screen had the same meaning as an upright triangle
and a blue screen had the same meaning as an inverted
triangle. The advantage of using two distinct types of
task cues is discussed elsewhere (Stoet & Snyder, 2004)
and is irrelevant for the purposes of the current study.

The task cue was followed by a delay (190–485 msec,
Figure 1B). The delay was held constant within a ses-
sion, and for the majority of sessions this delay was over
400 msec. The task cue was followed by a centrally posi-
tioned imperative stimulus. This stimulus instructed a
paw movement from the home key to one of two white
squares, positioned 168 to the left or right of the screen
center. The two white squares in the bottom left and
right corners of a touch-sensitive screen functioned
as response buttons and were visible throughout the
entire trial.

The imperative stimulus disappeared at response ini-
tiation (paw lift-off from the home key). This disappear-
ance encouraged the monkey to evaluate the stimulus
and make a choice to press the left or right button be-
fore lifting its paw from the home key. In the color task,
monkeys based their decision to move to the left or
right on the color of the upcoming stimulus. In the
orientation task, monkeys based their decision on the
vertical or horizontal orientation of the upcoming stim-
ulus. Each stimulus was both colored and oriented hori-
zontally or vertically, but only one stimulus dimension
was relevant in each trial. Half of the stimuli were in-
congruent, that is, associated with different response
buttons in the two tasks, and the other half were con-
gruent, that is, associated with the same response but-
ton in the two tasks.

Imperative stimuli were colored bars (6.98 � 0.78)
oriented within 108 of either horizontal or vertical, lo-
cated at a random location within 58 of screen center.
Bar color was randomly chosen from many shades of
red and green. The many combinations of colors and
orientations were intended to encourage the use of
general rules rather than a ‘‘lookup table’’ strategy for
solving the tasks (see Stoet & Snyder, 2003a, 2004 for
further details), including slight differences in the stimuli
and tasks for the two animals (see Stoet & Snyder, 2003b
for behavioral evidence that the animals in our studies
prepared tasks on cue presentation, in advance of the
appearance of the imperative stimulus).

Before data collection started, animals were well
trained and behavioral performance was similar in the

two animals. During task performance, we measured
behavior and the spike rate of single neurons in the
PPC. Behavioral measures included reaction time (RT;
the time between stimulus onset and home key re-
lease), movement time (MT; the duration of the arm
movement), saccade reaction time (SRT; the time be-
tween stimulus onset and the start of the saccade to-
ward the correct response button, measured using a
scleral search coil in about 2/3 of sessions; eye move-
ments were not restricted), and the percentage of re-
sponse errors (PE).

We recorded the activity of single neurons from
the two animals using tungsten microelectrodes (FHC,
Bowdoinham, ME) inserted through a grid with 1-mm
spacing (Crist Instrument, Hagerstown, MD). Recording
chambers were attached flush to the skull at 8 mm P,
12 mm L (Horsley-Clarke coordinates). Datasets, consist-
ing of an average of 250 trials, were recorded from all
isolated neurons. Off-line analyses matching recording
depth and grid position with data from a brain image
indicated that we recorded in and around the intrapa-
rietal sulcus (IPS), including areas LIPd, LIPv, 7a, LOP,
and DP, IPS fundus, medial wall, and area 5 (see Stoet &
Snyder, 2004 for a complete reconstruction of recording
site locations).

Only data from correct trials were analyzed. Because
monkeys made relatively few errors and because we
could not reliably distinguish between errors that were
due to motivational or cognitive difficulties, we did not
analyze error trials in detail.

We assayed for task selectivity by testing the differ-
ence in mean spike rate between the two task condi-
tions (Stoet & Snyder, 2004). For data collected using
one cue type (yellow or blue screen, upright or inverted
triangle), neurons showing a significant difference in
firing rate in the 150 or 250 msec (depending on the
delay interval used during recording) before stimulus on-
set were classified as task-selective (TASK+) cells (Stu-
dent’s t test, alpha level of 5%). For neural data collected
with both cue types, TASK+ cells were defined as having
a significant main effect of task in a two-way analysis of
variance with factors task rule (color and orientation
task) and cue type (yellow or blue screen, upright or
inverted triangle) in the 250-msec delay before stimulus
onset. All cells not classified as TASK+ cells were defined
as TASK� cells. Most of the TASK+ neurons were found
in the lateral bank of the IPS and on the adjacent gyral
surface, including areas LIPd, LIPv, 7a, LOP, and DP.
Taking into account the fact that these areas were more
densely sampled than more medial areas (i.e., the IPS
fundus, medial wall, and area 5), the frequency of TASK+

was more than twice as high in the lateral areas (35%,
n = 95 out of 274) compared to the medial areas (15%,
n = 16 out of 104, x2 test, p < .001).

A neuron was defined as directionally selective if it had
a significant difference in firing rate in the 300-msec pe-
riod starting 200 msec before response onset (Student’s
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t test, alpha level of 5%). We determined the time of
onset of directional selectivity relative to stimulus onset
by first separating trials into rightward and leftward
responses, and then calculating mean firing rates as a
function of time in 1-msec bins. Data were then low-
pass-filtered (�3 dB point of 9 Hz, the equivalent of
convolving with a Gaussian of SD �14 msec). The on-
set of directional selectivity was defined as the start of
the first 100-msec interval in which firing rate for the
two response directions differed by at least two standard
errors in each consecutive 1-msec bin.

In order to compare neural data in congruent and in-
congruent conditions, we used two different alignments.
First, we aligned individual trials on the onset of the
imperative stimulus, emphasizing differences in the per-
ceptual and cognitive components of processing. Next,
we aligned on the onset of the button release, empha-
sizing differences in cognitive and motor components
of processing.

We used two different measures for expressing the
neural latency of directional selectivity. The first mea-
surement, described above, is very susceptible to noise.
This is because the rate of change is very low at the start
of the movement, so a small amount of noise results in
a large difference in latency. The second measurement
is the time to half the maximum difference in activity.
In contrast to the first measure, the half-maximum mea-
sure is made at a time when the rate of change is quite
high, and therefore, the actual value is much less influ-
enced by noise.

We performed Monte Carlo analyses to establish the
significance of neural spatial-response latencies and half-
maximum times. In each Monte Carlo analysis, we re-
peated our analysis for determining spatial-response
latency and half-maximum time 3000 times after ran-
domly assigning each trial as congruent or incongruent
(as for the data shown in Figures 3 and 4), or randomly
assigning a cell to the TASK+ or the TASK� population
(Figure 4). We then used the distribution of results from
the shuffled data to determine the probability of obtain-
ing our actual response (unshuffled data) by chance.

Data analyses were performed with custom software
and the statistical package R (R Development Core
Team, 2005).

RESULTS

Behavior

Data were recorded in 87 sessions, for 52,111 trials in
Monkey 1 (M1) and 44,310 trials in Monkey 2 (M2). No
data were discarded. Behavioral performance was similar
in the two monkeys. RT was 284 ± 37 msec (M1) and
284 ± 49 msec (M2), respectively. Success rates were
95.3% (M1) and 91.5% (M2). Mean MT was 96 ± 52 msec
in M1 and 98 ± 31 msec in M2. The average time needed
to complete the response (RT + MT) was 380 (M1) and

382 (M2) msec. Monkeys typically made a saccade from
the imperative stimulus to the response button of
choice; the mean SRT was 192 ± 32 (M1) and 223 ±
54 (M2) msec.

In order to study how stimulus congruence affects
sensory–motor processing, we first tested whether con-
gruency affects the speed and accuracy of behavioral
performance. For each animal, we compared RT, MT,
and SRT in congruent and incongruent conditions across
all sessions with Student’s t tests, and compared error
rates with x

2 tests (Table 1). Incongruity slowed RT by
10 msec in M1 and by 16 msec in M2; MT was slowed by
18 and 19 msec, respectively; SRT was slowed by 11 and
10 msec, respectively. For each measurement (RT, MT,
and SRT) and in each of the two animals, the pooled
standard error was less than 1 msec. PE was increased
by 7.4 and 12.6 percentage points. All tests reached
statistical significance ( p < .001) for both animals. In
summary, behavioral performance was slower and less
accurate in incongruent than in congruent trials.

Neural Response

Next, we tested the effects of congruency on neural ac-
tivity. We recorded from 378 isolated neurons in the right
PPC of the two animals (see Stoet & Snyder, 2004). For
each neuron, we determined whether the spike rate re-
flected the presence of incongruity in the period from
25 to 225 msec following stimulus onset. We calculated
the fraction of cells that were significantly more active
following an incongruent stimulus. This fraction was not
significantly different from chance (3.7%), and was similar
to the fraction of significantly less active cells (3.9%). The
mean activity at the population level (±standard error)
was exactly the same for incongruent and congruent
stimuli (15.7 ± 0.7 sp/s). Similar results were obtained
when we considered different time intervals (e.g., 50–
250 msec, 100–300 msec, and 50–350 msec after stimulus

Table 1. Mean Reaction Time (msec), Movement Time
(msec), Saccade Reaction Time (msec), and Percentage
of Errors in Congruent and Incongruent Conditions for
Two Monkeys

RT MT SRT Errors

Animal M1 M2 M1 M2 M1 M2 M1 M2

Congruent 279 276 87 88 186 217 1% 2%

Incongruent 289 292 106 107 197 227 8% 14%

Difference 10 16 18 19 11 10 7% 12%

All comparisons between congruent and incongruent conditions were
tested for significance using Student’s t tests for RT, MT, and SRT,
and x

2 tests for the error rates. All comparisons reached significance
( p < .05).

RT = reaction time; MT = movement time; SRT = saccade reaction
time; PE = percentage of errors.
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onset). Thus, we could not establish a general effect of
stimulus congruence on neuronal activity at either the
single neuron level or at the population level in the PPC.

Although we found no significant effects of congru-
ence on the amplitude of the neuronal activity, there
might be specific effects of congruence on spatially
tuned responses. Spatially tuned neurons are common
in the PPC (Snyder, Batista, & Andersen, 2000; Colby &
Goldberg, 1999; Andersen, Essick, & Siegel, 1985), but
the interpretation of spatial tuning is still a matter of
considerable investigation and debate (see below). The
interaction of incongruity with spatial tuning may help
to shed light on this issue.

Tuned spatial responses occurring around the time of
a motor response may reflect a motor command for
execution (Mountcastle, Lynch, Georgopoulos, Sakata,
& Acuna, 1975), or they may reflect an efference copy of
a command that has been generated elsewhere (von
Holst & Mittelstaedt, 1950). If the spatially tuned activity
substantially precedes the motor output, then it may re-
flect a sustained sensory response (Duhamel, Colby, &
Goldberg, 1992), a neural correlate of covert attentional
processes (Bushnell, Goldberg, & Robinson, 1981), a
neural correlate of motor intention (Snyder, Batista, &
Andersen, 1997, 2000), or a decision variable related to
the value of either a particular stimulus or a particular
response (Sugrue, Corrado, & Newsome, 2004; Platt &
Glimcher, 1999).

The effect of congruence on neuronal latency can illu-
minate the nature of the neural response. The latencies
of spatially tuned neural responses (henceforth ‘‘spatial-
response latencies’’) may be unaffected by whether a

stimulus is congruent or incongruent. This would suggest
that spatially tuned neural responses reflect low-level
sensory properties that are extracted prior to any task-
specific processing. An effect of stimulus congruence on
spatial-response latency that is equal to the effect of con-
gruency on behavioral response latency (i.e., a response
delay of 10–16 msec on congruent compared to in-
congruent trials) would be consistent with a motor com-
mand or an efference copy of a motor command. An
intermediate effect of stimulus congruence would be con-
sistent with a cognitive intermediate such as a valuation
of a particular stimulus or response, or with a mixture
of sensory, motor, and cognitive signals, as might occur
at an intermediate stage of processing.

In order to investigate this, we first identified cells that
were directionally tuned, that is, cells whose activity was
correlated with reaches toward either the right or the
left response button. For each of the 378 cells, we com-
pared spike rates in the interval starting 200 msec before
response onset until 100 msec after response onset. We
found that the firing rates of 62% of cells (233 out of
378) were significantly different for left and right re-
sponses (Student’s t test, alpha level of 5%). This per-
centage may underestimate the prevalence of directional
tuning in the PPC because we did not adjust the position
of the response button on a cell-by-cell basis.

Next, we determined the effect of stimulus congru-
ence on the timing of neuronal responses. In Figure 2,
we show a cell that shows higher firing for reaches to the
left compared to the right (solid vs. dotted traces). In
this cell, the divergence in firing rate occurred sooner
for congruent trials than for incongruent trials (dark gray

Figure 2. Neuron showing
delayed spatial response

latency due to stimulus

incongruity. Data aligned on
the onset of the imperative

stimulus (S) on left and on the

onset of the reaching response

(R) on the right. The cell was
spatially responsive and fired

more vigorously when the

monkey reached for the left

response button than for the
right (average spike rate and

standard error are displayed).

Hence, the preferred direction
was to the left. The latency

of this directional specificity

occurs when the curves for

the preferred (solid lines)
and nonpreferred directions

(dotted lines) diverge. Note

that the divergence and the

half-maximum amplitude
occur earlier in the congruent

condition (dark gray) than

in the incongruent condition
(light gray).
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vs. light gray traces). We quantified neuronal response
timing in two ways. First, we computed spatial-response
latencies, which we defined as the time at which firing
on preferred and null direction trials first differed signifi-
cantly from one another (see Methods). Because activity
changes slowly at the time of response onset, small dif-
ferences in activity can lead to large differences in ap-
parent response latency. We therefore used a second,
more reliable method to quantify differences in neuronal
timing: We compared the times at which the population-
averaged activity (preferred vs. nonpreferred response)
achieved half of its maximum difference in firing rate.
In the case of the example cell (Figure 2), we found
a difference in latency between congruent and incon-
gruent conditions of 41 msec and a difference in half-
maximum values of 55 msec.

The data from individual cells were often noisy. There-
fore, we chose the following method of analysis. We
performed a millisecond by millisecond subtraction of
firing rate when the response was made in the preferred
minus the nonpreferred direction. In other words, in
Figure 2, we would subtract the dashed lines from the
corresponding solid lines. The resulting data isolate the
directional component of the response. We then aver-
aged across cells and smoothed the data (low-pass filter,
�3 dB point of 9 Hz). This analysis (Figure 3A) showed
that modulation resulting from directional preference
appeared sooner in congruent trials (dark gray) than in
incongruent trials (light gray). There was also a slight
(19%; p > .1) reduction in the maximum amplitude of
direction-related activity, which occurred �350 msec
after stimulus onset.

The spatial-response latencies were 90 msec on trials
with congruent stimuli and 113 msec on trials with in-
congruent stimuli. Because the neuronal activity pre-
cedes the corresponding mean saccadic latencies (202
and 217 msec, respectively) by over 100 msec, the ac-
tivity is unlikely to reflect an efference copy of the sac-
cade command or a visual reafference response. The
difference between congruent versus incongruent neu-
ral response latencies approached but did not reach
significance ( p < .08, Monte Carlo test; see Methods).
However, this same difference was highly statistically sig-
nificant when a more robust measure of timing was used:
Half-maximum activity was achieved 196 and 224 msec
after stimulus onset for congruent and incongruent
stimuli, respectively ( p < .0003, Monte Carlo test).
The latency difference identified by the two methods
was similar (23 and 28 msec), although variability was
substantially less for the latter measurement.

We asked the same question while aligning on re-
sponse onset instead of imperative stimulus onset (Fig-
ure 3B). Again, we found that the divergence occurred
sooner in time (by 19 msec, p < .08) and that the
half-maximum value also occurred sooner in time (by
18 msec, p < .001) in the congruent compared to the
incongruent condition.

In order to explore this result further and to explore
the possibility that cells that maintain task information
may play a different role in stimulus–response mapping
than cells that do not maintain task information, we de-
cided to separately analyze cells with and without task
information (TASK+ and TASK� cells; see Methods for
definition).

We began by asking whether there is an interaction
between the encoding of information related to task and
the encoding of information related to response direc-
tion. We compared the timing of directional responses
for congruent and incongruent trials in cells that encode
task information (TASK+) with the timing of directional
responses in those cells that do not encode task infor-
mation (TASK�). For each cell, we performed a milli-
second by millisecond subtraction of firing rate in the
preferred and nonpreferred response conditions, and
then averaged the result across neurons. Effects in cells

Figure 3. The timing of the directional response of the population

of directionally selective neurons from both animals. For each

cell the trials were sorted by the direction of the reach. Responses
on null direction reaches were subtracted from responses on

preferred direction reaches. The data were then averaged across

cells and plotted as a function of time. The vertical lines indicate
the onset of directional tuning and the time to half-maximum

activity (see Methods). (A) Data aligned on the onset of the

imperative stimulus. The population response to congruent stimuli

starts earlier (90 msec after stimulus onset, left solid line) than the
response to incongruent stimuli (113 msec after stimulus onset,

left dashed line). The difference in timing is similarly ref lected

in the time to half-maximum activity (196 msec for congruent

stimuli, right solid line, and 224 msec for incongruent stimuli, right
dashed line). (B) Data aligned on the onset of the arm response.

The population response to congruent stimuli starts earlier

(197 msec before response onset, left solid line) than the response
to incongruent stimuli (178 msec before response onset, left

dashed line; henceforth, onset before the alignment point will

be indicated by a minus sign). The difference in timing is similarly

ref lected in the time to half-maximum activity (�101 msec for
congruent stimuli, right solid line, and �83 msec for incongruent

stimuli, right dashed line).
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preferring the color task (n = 37) and the orientation
task (n = 40) were similar, and therefore, these two
subpopulations of cells were pooled.

We expected that a population of cells representing a
motor variable (including an efference copy signal)
would show a neuronal effect of congruency that was
matched to the behavioral effect. Using the same meth-
ods as described previously, we found a 15 msec slowing
of the time to half maximum (215 vs. 230 msec) in
TASK� cells (Figure 4A). A Monte Carlo test showed that
the difference in neuronal timing for congruent versus
incongruent stimuli was highly significant ( p < .007).
The close match between the cost of incongruity in
behavior (10–16 msec) and in the neuronal measure
(15 msec) strongly suggests that TASK� cells encode a
variable closely related to the motor response. The same
analysis, but applied to data aligned on response onset
instead of imperative stimulus onset, revealed a similar
time to half-maximum activity of 5 msec (Figure 4B;
p < .01).

For TASK+ cells, the effect of congruence on neu-
ronal timing was very different (Figure 4C). The time to
half-maximum activity was slowed by 49 msec in the
incongruent condition (164 vs. 213 msec; difference
significant at p < .0004 by a Monte Carlo analysis). This
�50-msec difference in response time is apparent in the
onset time as well (Figure 4C and D). Thus, the TASK+

cells, unlike the TASK� cells, show a much larger effect

of congruence (�50 msec) than the earliest motor re-
sponses (15 msec difference in saccade latency). We
found similar results when aligning on response onset
instead of on imperative stimulus onset: The time to
half-maximum activity was slowed by 32 msec in the
incongruent compared to the congruent condition ( p <
.01). In other words, parietal task neurons ‘‘solve’’ the
stimulus–response mapping sooner on congruent com-
pared to incongruent trials, even when the neuronal
data are aligned on the motor response. These results
disassociate the activity of TASK+ cells from sensory
variables (which would be expected to show no differ-
ence in timing relative to imperative stimulus onset)
as well as from motor variables (which would be ex-
pected to show no difference in timing relative to re-
sponse onset).

The large effect of congruence on the timing of the
population TASK+ cell response was not driven by a
small number of outliers, but instead reflects the be-
havior of most cells. Figure 5 shows the half-maximum
times for individual TASK+ and TASK� cells under con-
gruent (x-axis) and incongruent ( y-axis) conditions.
Like the population-averaged response, most individual
TASK+ cells reached half-maximum time faster in the
congruent than in the incongruent condition [x2(1) =
5.0, p < .02]. For the TASK� cells, we found no sig-
nificant difference [x2(1) = 0.8, p > .3]. These results
show that the �50 msec lead in the population-averaged

Figure 4. Onset of neural directional response (preferred minus nonpreferred direction) as a function of task selectivity and imperative

stimulus congruency. (A) The difference in the time to half-maximum activity for congruent trials (215 msec, solid vertical line) and incongruent
trials (230 msec, dashed vertical line) is similar to the behavioral response latency difference. Average saccade response times are indicated

by black (congruent) and gray (incongruent) arrows. (B) Same data as in panel A, but now aligned on arm response onset. Latency difference

between congruent trials (�80 msec) and incongruent trials (�75 msec) is very small (5 msec). (C) Similar to panel A, but for the TASK+

cells. In contrast to the TASK� cells, there is a large latency difference in the time to half-maximum activity between congruent (164 msec)
and incongruent trials (213 msec). (D) Similar to panel B, but for the TASK+ cells. Latency difference between congruent trials (�123 msec)

and incongruent trials (�91 msec) is 32 msec.
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response of TASK+ cells to congruent compared to in-
congruent stimuli is a property exhibited by many indi-
vidual posterior parietal cells.

DISCUSSION

We investigated the responses of neurons in the PPC in
a task-switching paradigm in order to gain insight into
how the brain uses contextual information to process
sensory stimuli in a task-appropriate manner, and to
determine whether spatially tuned responses in the PPC
reflect sensory, cognitive, or motor processes. We com-
pared trials using congruent stimuli (those stimuli which
require the same response in the two tasks) with trials
using incongruent stimuli (those stimuli which require
different responses in the two tasks). In this and in a
previous study (Stoet & Snyder, 2003a), we found that
monkeys, like humans, respond more slowly and less
accurately to incongruent stimuli.

Brain imaging studies of the human PPC reveal an
increased BOLD signal following incongruent stimuli
(Adleman et al., 2002; Peterson et al., 1999; Taylor
et al., 1997; Carter et al., 1995; Bench et al., 1993). We
did not observe increased neural activity in our popula-
tion of recorded neurons. There are many reasons why
the results from functional magnetic resonance imaging
(fMRI) and neurophysiology experiments might differ.

First, the human studies used a linguistic task (Stroop),
whereas our study used a nonverbal task. It is possible,
for example, that the involvement of the human parietal
cortex in conflict depends on the type of task this con-
flict occurs in (e.g., verbal vs. nonverbal tasks). Second,
the PPC may be used differently in humans and mon-
keys. Given that the human PPC is larger and more
developed in humans, it is likely that the human PPC
fulfills many functions not available to monkeys. Finally,
unit recording and fMRI measure different quantities,
and the results of the two methods may not be directly
comparable. BOLD signals are imperfectly correlated
with measures of neuronal electrical activity (Logothetis,
Pauls, Augath, Trinath, & Oeltermann, 2001).

We found a surprising result when comparing the
neuronal response during congruent and incongruent
trials. Because incongruent stimuli are associated with
longer behavioral reaction times, it was not surprising to
find that the neuronal latencies to encode response-
related information were faster on congruent compared
to incongruent trials. In TASK� cells, the consequence
of incongruity on neuronal latency was very similar to
the effect on behavior (15 msec vs. 10–16 msec, respec-
tively). This is also reflected in the observation that
TASK� cell responses under congruent compared to
incongruent conditions overlap one another when
aligned on response onset (Figure 4B). In contrast,
TASK+ cells showed a neuronal effect of incongruity
that was much larger than the behavioral effect (49 msec
vs. 10–16 msec, respectively). This can be seen by the
fact that TASK+ cell responses under congruent and
incongruent conditions do not overlap one another
when aligned either on the time of stimulus appearance
or on the time of the motor response (Figure 4C and
D, respectively). Furthermore, by comparing the upper
and lower halves of Figure 4, it can be appreciated that
TASK+ cells encode the animal’s upcoming choice re-
garding where to move sooner than TASK� cells, espe-
cially on congruent trials.

These results have important implications. The fact
that TASK+ neurons encode the animal’s choice of
where to move substantially sooner than TASK� neu-
rons supports the idea that TASK+ neurons play an im-
portant role in the task-switching paradigm, and that
this role is distinct from that played by TASK� neurons
(Stoet & Snyder, 2004). TASK+ cells are likely to help
map sensory stimuli onto motor responses, given a par-
ticular task context, whereas TASK� cells represent the
outcome of the mapping. Our results dissociate TASK+

cell responses from both sensory inputs and motor out-
puts. This suggests that TASK+ cells play an interme-
diate role, helping to map sensory stimuli onto motor
responses. In contrast, TASK� cell responses are well
correlated with the motor response. This suggests that
TASK� cells represent the outcome of the sensory to
motor mapping. This interpretation is consistent with
TASK� cells carrying either a motor command signal

Figure 5. Time to half-maximum activity from individual cells.

Significantly more TASK+ cells showed longer times to half-maximum

activity under incongruent compared to congruent conditions, but
this was not the case for TASK� cells. Three cells had identical

half-maximum times for congruent and incongruent conditions and

are not included in the cell counts shown on the figure.
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(Mountcastle et al., 1975) or an efference copy signal
(von Holst & Mittelstaedt, 1950).

Furthermore, by isolating the responses of TASK+ and
TASK� cell populations, we are able to see that monkeys
do not respond as soon as parietal neurons encode a
decision. Instead, button presses on difficult (incongru-
ent) trials are delayed relative to button presses on easy
(congruent) trials. What could explain the fact that
TASK+ cells encode the correct response on congruent
trials nearly 50 msec sooner than on incongruent trials,
and yet the behavioral cost of stimulus incongruity is
only 10–16 msec? Or, put differently, why don’t mon-
keys respond still faster to congruent stimuli, given that
their parietal cortices encode the correct response so
quickly? One possibility is that, in the presence of
conflict, animals use a more stringent criteria before
responding. Another possibility is that the parietal cor-
tex is only one of several brain areas performing this
sensory to motor computation, and that the other areas
arrive at the correct response much more slowly than
the parietal cortex.

We have been referring to TASK+ and TASK� cells as
members of two discrete populations. It is quite possible
that they instead reflect two ends of a continuum. The
fact that TASK+ and TASK� cells are intermixed within
the same set of anatomical regions supports the idea of a
continuum (Stoet & Snyder, 2004). However, whether
TASK+ and TASK� cells represent two distinct popula-
tions or the ends of a continuum does not substantially
alter the conclusion that cells that encode task informa-
tion also play a different role in sensory to motor
processing than cells that do not encode task informa-
tion, and furthermore, that the role played by a subset of
PPC neurons cannot be described as simply representing
sensory impressions or motor commands.

The implications of this study go beyond understanding
task-specific processing in simple cognitive tasks. Context-
dependent stimulus processing is a hallmark of human
cognition, and characterizing the neural underpinnings
of a nonverbal task-switching paradigm may help us to
approach the more complex context-dependent process-
ing that occurs in human cognition.

Like the incongruent stimuli of the current study, par-
ticular words and phrases have multiple possible mean-
ings that are disambiguated by context. For example, the
meaning of a linguistic expression depends on the
meaning of the words which immediately precede or
immediately follow it (Strohner & Stoet, 1999; Gerrig &
Murphy, 1992). It is intriguing to try to identify the ori-
gins of human language skills in the abilities of present-
day nonhuman primates (Ujhelyi, 1996; Premack, 1971;
Gardner & Gardner, 1969), and to determine whether
these origins might involve the PPC and its role in
context-specific processing (Gurd et al., 2002).

In summary, the current article provides additional
support for the idea that single neurons in the PPC
represent abstract task information and play a central

role in using contextual information to help map sen-
sory stimuli onto motor outputs. More generally, this
article adds to the growing body of evidence that sin-
gle neurons in the PPC function as task-specific process-
ing agents (Stoet & Snyder, 2004; Assad, 2003; Calton,
Dickinson, & Snyder, 2002; Toth & Assad, 2002; Snyder
et al., 1997, 2000).
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