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Abstract

We examined whether prefrontal cortex (PFC) neuron activity reflects categorical decisions in

monkeys categorizing ambiguous stimuli. A morphing system was used to systematically vary

stimulus shape and precisely define category boundaries. Ambiguous stimuli were centered on a

category boundary, i.e., they were a mix of 50% of two prototypes and therefore had no category

information, so monkeys guessed at their category membership. We found that the monkey's trial-

by-trial decision about the category membership of an ambiguous image was reflected in PFC

activity. Activity to the same ambiguous image differed significantly depending on which

category the monkey had assigned it to. This effect only occurred when that scheme was

behaviorally relevant. These indicate that PFC activity reflects categorical decisions.
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INTRODUCTION

Categorization is the process of detecting the commonalities that unite different experiences.

This allows us to group items by their function rather than their exact appearance. While

many, if not most, animals categorize to some degree, the primate brain is an especially

prodigious categorizer. Primates learn categories more quickly than other species (Wright &

Katz, 2007) as well as learn very high-level, abstract, multivariate categories like “haute

cuisine” or “peace, love, and understanding.” Thus, when we encounter ambiguous

situations our brains often guess about their category in an attempt to give them meaning. As

a result, however, our brains can “over-categorize”, that is, they make a categorical decision

when there is actually no category at all (e.g., faces in clouds, etc). We sought to exploit this

in monkeys to determine whether neural activity in higher-level cortex reflects categorical

decisions about visual stimuli. The reasoning was that if this neural activity truly reflected

categorization rather than perception per se, neural activity to an ambiguous, category-
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neutral stimulus should reflect whatever category monkeys think the stimulus belongs to at a

given moment.

To this end, we examined activity in the prefrontal cortex (PFC). The PFC is the brain area

most central to higher-order cognition and implicated in neuropsychiatric disorders (for

reviews, see Bonelli & Cummings, 2007; E. K. Miller & Cohen, 2001; Stuss & Knight,

2002). Further, it has been shown to have neural correlates of abstract visual categories

(Cromer, Roy, & Miller, 2010; DeGutis & D'Esposito, 2007; Diester & Nieder, 2008;

Freedman, Riesenhuber, Poggio, & Miller, 2001, 2002, 2003; Roy, Riesenhuber, Poggio, &

Miller, 2010; Wyttenbach, May, & Hoy, 1996). Using a novel behavioral paradigm (Cromer

et al., 2010; Freedman et al., 2001, 2002, 2003; Roy et al., 2010), we parameterized using a

morphing system to blend between different “cat” and “dog” prototypes, which created

images of varying physical similarity (Figure 1). This revealed a hallmark of perceptual

categorization in both behavior and PFC neural activity: a sharp transition across a discrete

category boundary such that stimuli from the same category are treated more similarly than

stimuli directly across the boundary (Cromer et al., 2010; Freedman et al., 2001, 2002, 2003;

E. K. Miller, Freedman, & Wallis, 2002; P. Miller, Brody, Romo, & Wang, 2003; Roy et al.,

2010; Seger & Miller, 2010; Wyttenbach et al., 1996). A modification of this paradigm

allowed us to test for categorical guesses. In the current study, we added morph images that

were on the boundary between categories. That is, they were category ambiguous, belong to

neither category. Because the category ambiguous morphs nonetheless looked like either

category (and because we offered no feedback about category membership – see Methods),

sometimes the monkeys guessed that a given ambiguous image belonged to one category

and other times that it belonged to the other category. We found that the activity of category-

selective PFC neurons reflected the monkey's current category guess. This suggests that PFC

neurons are indeed involved in categorical decisions.

METHODS

Subjects

Two adult rhesus monkeys (Macacca mulatta) weighing 6.0 and 9.5 kg were used in this

study. The animals were handled in accord with National Institutes of Health and the

Massachusetts Institute of Technology Committee on Animal Care guidelines. Using

previously described methods (Roy et al., 2010), they were implanted with recording

hardware. Monitoring of eye movements was done using an infrared eye tracking system

(Iscan, Inc., Woburn, MA) with a sampling rate of 240 Hz.

Stimuli and Behavioral Task

The three dimensional cat and dog images used in this study were the same as those in

previous studies (Cromer et al., 2010; Freedman et al., 2001, 2002, 2003; Roy et al., 2010).

A computerized three-dimensional morphing system (Shelton, 2000) generated parametric

blends (morphs) of four prototypes (two cats and two dogs; Figure 1A). The morphs were

linear combinations of varying percent compositions of the two constituent prototypes along

corresponding points. The stimulus space was divided into two different category schemes

where the boundary lines were orthogonal. Each boundary line divided the morph space into
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two categories (Figure 1A, scheme A in left panel and scheme B in right panel). Any image

that contained more than a 50% contribution from a prototype of a one category was

considered a member of that category. The monkeys viewed thousands of images generated

from combinations of all four prototypes during training to ensure they learned to categorize

the whole stimulus space. During the neural recording sessions, 34 images from seven levels

of combinations between each pair of prototype (100:0, 80:20, 60:40, 50:50, 40:60, 20:80,

0:100) were used as the sample images. The full set of images and category designations for

both schemes is shown in Figure 1A. For this study, we were most interested in the

behavioral and neural responses to the eight images that were a 50% blend of the pairs of

stimuli, making them ambiguous.

The monkeys were trained to perform a delayed-match-to-category task (Figure 1B). To

start a trial, the monkey held a bar and acquired a fixation target for 1000 ms. For the first

500 ms, the color of the fixation dot indicated which category scheme (blue for scheme A

and red for scheme B) would be in effect for the trial. The fixation dot turned to white for

the remaining 500 ms. A sample image was presented for 600 ms. This manuscript will

focus on the eight ambiguous images. A 1000 ms memory delay followed the sample

presentation. After the memory delay, a test images was presented and if it matched the

category of the sample images the monkey released the bar for a juice reward. If the test

images did not match the sample image category, the monkey continued to hold the bar

through a second 1000 ms delay that was followed by a category match image to which the

monkey responded. The monkeys were rewarded randomly for the category membership

guesses they made when presented with the ambiguous stimuli. Category scheme A/B and

match/nonmatch trials were randomly interleaved and occurred at similar frequency. The

monkeys were required to maintain fixation within a +/−2 degree window centered on the

images at the center of the screen throughout the trial.

When a given category scheme was relevant, we included four category images that were at

the mid-point (50%) along the morph lines that crossed the (currently relevant) category

boundary (Figure 1A), i.e., they were on the category boundary. Thus, unlike the bulk of the

images, the category assignment of these images was ambiguous. Also included were two

intra-category images that were at the midpoint between the two prototypes that were

members of the same category under the current category scheme (Figure 1A). Under the

current category scheme, these latter images were fully within a category and thus their

category assignment was unambiguous. But note that under the other scheme, they fell on

the category boundary and would then be ambiguous. This allowed us to determine how

monkeys (and their neurons) treat the same images when they were ambiguous vs.

unambiguous.

Recording

On each monkey, recording chambers were stereotaxically placed using MRI images and an

anatomical atlas (Paxinos, Huang, & Toga, 1999) over the PFC. The chamber allowed

access to the principal sulcus and anterior arcuate sulcus (areas 45, 46, and 12). For each

recording day, eight to sixteen epoxy-coated tungsten electrodes (FHC, Inc., Bowdoin, ME)

were lowered into the brain using custom made screw-driven microdrives. Each microdrive
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was used to lower 2 electrodes through a plastic grid with 1 mm spacing (Cromer et al.,

2010; Freedman et al., 2001, 2002, 2003; Roy et al., 2010). Activity was recorded from well

isolated neurons without first prescreening for task related activity such as stimulus or

category activity. On average 1–2 neurons were isolated per electrode. In all 536 lateral

prefrontal cortex neurons were recorded over 78 sessions (333 from monkey O in 38

sessions and 203 from monkey L in 40 sessions). Reconstructed recording locations can be

found on Figure 1C of Roy et al., 2010. All waveforms were digitized and then stored for

off-line sorting into individual neurons using principal components analysis (Offline Sorter,

Plexon, Inc., Dallas, TX).

Data Analysis

In order to determine if previous category membership decisions had an influence on the

guessing activity of the monkeys, a one-back analysis was performed. The response of the

previous unambiguous trial was counted only if the trial was of the same category scheme as

the ambiguous trial. The ratio of responses to the constituent categories was calculated. The

previous trials of the other category scheme were excludes as they did not have any bearing

on the current category scheme.

Neuronal activity was averaged over three time epochs of a trial: sample presentation (100–

600 ms after sample onset); the memory delay (300–1100 ms after sample offset), and the

test image presentation (100 ms after the test image onset to 2 SD before each monkey's

daily average reaction time to match trials). This epoch was chosen in order to reduce the

influence of the behavioral response on the neural activity. Monkey O had a mean reaction

time to match trials of 284 ms making the test epoch interval an average of 173 ms. Monkey

L's mean reaction time to match trials was 350 ms with a test epoch interval of 232 ms.

For all analysis, the neural activity was normalized by first subtracting the minimum activity

during the epoch of interest and then dividing by the difference of the maximum and

minimum firing rates (Cromer et al., 2010; Freedman et al., 2001, 2002, 2003; Roy et al.,

2010). Normalizing maximized the dynamic range of each neuron in each time epoch.

Average firing rate traces were filtered using a least-squares smoothing filter (Savizky-

Golay filter) with a weighting value of 51 ms. Standard statistical methods such as t-tests

were used with the appropriate corrections for repeated measures.

The latency at which there was a significant difference in neural information was reached

between the constituent categories of the preferred category for the neural population was

calculated. This time point was defined as the point of maximum rise in the difference

function around the time that the information difference reached significance (Buschman,

Siegel, Roy, & Miller, 2011). The maximum rise statistic is more resilient to the number of

neurons than using the first time point of significance as changing the number of neurons

changes the threshold of significance but not necessarily the shape of the function or the

point of maximum slope. Once the first point of significance was determined, the search for

the maximum rise was restricted to a 50 ms window. To assess the uncertainty about the

time to significance, a distribution of maximum rise times was generated by randomly

resampling with replacement from the neural population (bootstrapped) and recalculating
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the maximum rise time 1000 times. From this distribution confidence intervals were

determined.

In this experiment, the monkeys completed many more trials with unambiguous stimuli as

compared to trials with ambiguous stimuli. Before the neural analysis of latency was

initiated, the number of trials involving unambiguous stimuli was stratified (balanced) to

match the number of trials with ambiguous stimuli. From the larger pool of unambiguous

trials, the same number of trials as with ambiguous stimuli were randomly chosen and

averaged. This process was repeated for the total number of ambiguous trials. For example if

there were 15 ambiguous trials, 15 trials were randomly drawn from the unambiguous pool

and averaged for a total of 25 times.

To assess the category selectivity strength of the neurons that remained selective during the

ambiguous trials, a category index was generated as previously described (Cromer et al.,

2010; Freedman et al., 2001, 2002, 2003; Roy et al., 2010). Briefly, for the unambiguous

trials we calculated each neuron's difference in average activity in response to pairs of

images along the morph lines that crossed the category boundary. The within-category

difference (WCD) was calculated by taking the average absolute difference between the

100% and 80% morphs and the 80% and 60% morphs for both categories. The between-

category difference (BCD) was calculated by averaging the across-boundary differences

between the 60% of one category and 60% of the other category. The category index (range:

−1 to 1) was the ratio of the difference of the WCD and BCD and their sum. A more positive

category index means a larger difference in the responses to morphs between categories than

within categories. The category index was calculated for the sample presentation and

memory delay epochs separately.

RESULTS

Behavior

Our analysis focused on behavior and neural activity related to the category-ambiguous vs.

category-unambiguous sample images seen at the start of the trial. The decision about the

category of the category-ambiguous sample was reflected in the monkeys' comparison

between it and the (clearly) category-unambiguous test image at the end of the trial (Figure

1B). Both monkeys correctly categorized all the unambiguous sample images at a high rate

(>80%). Monkey O's overall performance was 87+/−19% (mean+/−SD) and monkey L's

was 87+/−19%. This included the images that were at a midpoint between the same-category

prototypes and thus were unambiguously within the same category under the current

scheme. By contrast, under the other scheme, when the same midpoint images were on the

category boundary (and thus ambiguous), the monkeys guessed at their category assignment.

This is illustrated in Figure 2. For the midpoint unambiguous images (squares not on

boundary), the color reflects the percentage of trials the monkeys' categorized the image

correctly (as belonging to the category of which it was actually a member). These images

were categorized nearly flawlessly (<90%). However when category scheme switched and

the same midpoint images (along with two others) were on the boundary of the current

category scheme and thus category ambiguous, the monkeys' performance was at chance.

These are the images on the boundary in Figure 2. Their color reflects the percentage of
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trials the monkeys categorized the images as belonging to just one of the categories,

arbitrarily chosen. As can be seen in the bar graph to the right of each figure, across all

sessions the monkeys' divided their categorization of the ambiguous images between the two

currently relevant categories (that is, they guessed). The monkeys' recent history of

categorical decisions had little or no influence on the current guess for an ambiguous image

(Figure 3). For three of the four categories, a guess that an ambiguous image belonged to

that category was preceded by an equal number of trials with a (correct) decision for each

category of that category scheme (mean +/− std; t-test, Figure 3A p=0.98, B p=0.63, C

p=0.53). For the fourth category, guessing showed a slight (mean = 46+/−18% vs. 53+/

−18%), but significant bias towards guessing an image as category 4 after a trial with an

unambiguous category 3 (t-test, p=0.007). In short, monkeys did not simply base their

category guesses for an ambiguous image on the categorical decisions of the immediately

preceding trials (e.g., they did not guess “cat” because the last trial had a “cat”). Across all

sessions, their guesses about ambiguous images seemed random. Our goal was to determine

whether neural activity in the PFC reflected these guesses.

Effects of category decisions on neural activity

The category-related properties of this PFC neuron population have been previously

described (Roy et al., 2010). Briefly, a neuron was deemed “category sensitive” if there was

a significant difference in average firing rate to all the unambiguous images from one

category vs. the other under either or both category schemes (t-test, p<0.05, Bonferroni

corrected, during the sample presentation and/or the memory delay, see Methods and Roy et

al., 2010). Many randomly-selected lateral PFC neurons (206/536) were category-sensitive.

The neuron's “preferred category” was determined by which category elicited the greater

average activity. Here, we focus on the comparison of neural activity to ambiguous vs.

unambiguous sample images.

Figure 4A shows an example of a category-sensitive PFC neuron. When the monkey was

performing one of the category schemes (scheme A), it showed greater average activity to

all the unambiguous sample images from one category (the “preferred category”) than the

other (“non-preferred”) category. It is during these intervals that the monkey has to

categorize the sample image and hold that category decision in short-term memory. To

determine if this activity truly reflected the monkey's trial-by-trial decision of the sample

image's category, we examined the trials with ambiguous images. We sorted these trials by

whether the monkey decided that the ambiguous image was the neuron's preferred vs. non-

preferred category. We did so by using the monkey's decision about whether the sample

matched the category of the clearly unambiguous test stimulus. Figure 4B shows the result.

When we sorted this neuron's activity based on the monkey's trial-by-trial decision about the

category membership of the ambiguous sample images, the neuron showed a significant

increase in activity when the monkey guessed that the image was the preferred vs. non-

preferred category, even though the images were exactly the same in both cases. Thus, the

level of activity of this neuron reflects the monkey's decision about the sample's category

membership.
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Of the 206 PFC neurons that showed category sensitivity to unambiguous stimuli, 68.4% or

141/206 was also significantly category sensitive to the ambiguous stimuli when we sorted

trials by the monkey's decision, as above. As seen for unambiguous images (Roy et al.,

2010), some PFC neurons showed this category decision effect for only one category

scheme (n=38 for category scheme A and n=63 for category scheme B; t-test, p<0.05,

Bonferroni corrected) and some for both schemes (n=40; t-test, p<0.05, Bonferroni

corrected). The modal group of neurons (70 of 141 neurons or 50%) showed the guessing

effect during the memory delay only, after the monkeys had seen the ambiguous sample

image but before they had to register their guesses by responding to the category match/non-

match status of the forthcoming (unambiguous) test stimulus. The remainder of neurons

showed an effect of guessing during the sample presentation only (38 of 141 neurons or

27%) or during both the sample and delay intervals (23 of 141 neurons or 16.3%). Only a

few neurons (10 of 141 neurons or 7.1%) showed significant category sensitivity to

unambiguous images in one category scheme but a guessing effect under the other category

scheme. Most of neurons (98 of 141 or 70%) that were sensitive to the guessed category of

the ambiguous images showed the same category preference that they did to unambiguous

images. The remainder of the analyses will focus on these neurons.

Categorization of ambiguous stimuli takes longer

We next compared the neural latency for category information about the ambiguous vs.

unambiguous images. This time point was defined as the point of maximum rise (slope) in

the difference of the responses to the preferred vs. non-preferred categories (see Methods).

The search for the maximum rise time was confined to a 50 ms window around the first

point that the difference reached significance. The population of neurons was bootstrapped

and the maximum rise time was re-determined 1000 times to generate a population from

which confidence intervals could be evaluated.

This analysis revealed that the category sensitivity during guessing (ambiguous image) trials

appeared at a significantly longer latency than that to unambiguous images. Figure 5 shows

the normalized average firing rate activity of the population of 98 PFC neurons (see above).

Figure 5A shows their average population activity on trials with unambiguous images and

Figure 5B shows the trials in which the monkeys guessed at the category of the ambiguous

images. In both cases, average neural activity begins to distinguish between the two

categories during presentation of the sample image. By necessity (see Methods), the number

of trials with ambiguous stimuli (mean = 20.5+/−1.7 trials per category per day) was much

fewer than that of unambiguous (163+/−5 trials per category per day). Therefore, to

determine the neural latency of the category effect, we stratified the number of trials used in

the analysis of unambiguous trials to match the number of ambiguous trials (see Methods).

Figure 5C shows plots of the average difference in activity to the two categories for the

stratified unambiguous trials vs. ambiguous trials. The latency in average PFC activity when

categorizing unambiguous images was 124 ms (95th percentiles = 101, 171; Figure 5C green

trace), compared to 291 ms when guessing at the category of the ambiguous image (95th

percentiles = 240, 334; Figure 5C orange trace; t-test, p<0.05, Bonferroni corrected). A

fairly trivial explanation for the latency difference would be that the PFC neurons were not
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as strongly activated by ambiguous vs. unambiguous images. Figure 5D shows that this was

not the case, which shows the normalized mean firing rate to unambiguous and ambiguous

stimuli. Both the subset of neurons that were category sensitive during sample presentation

(Figure 5D, left panel) and the memory delay (Figure 5D, right panel) had almost identical

activity levels to unambiguous vs. ambiguous images (slope = 0.97, not different from unity

p = 0.50, r = 0.93 and slope = 0.95, not different from unity p = 0.79, r = 0.93, respectively).

It was possible that the PFC neurons that showed effects of category guesses were more

category sensitive in general than those neurons that did not show a guessing effect. To

determine this, we calculated a category index (see methods; Cromer et al., 2010; Freedman

et al., 2001, 2002, 2003; Roy et al., 2010). Each neuron's difference in mean activity in

response to pairs of images from the same category (WCD) and between categories (BCD)

was determined. The index was the ratio of the difference between WCD and BCD and their

sum. Neurons that showed stronger category sensitivity would have great positive index

values. The category index for the 206 category sensitive neurons is shown in Figure 6A for

both the sample presentation (left panel) and memory delay epochs (right panel). The

category indices for PFC neurons with a guessing effect (n=98) are shown in Figure 6B. The

spread of the index values was similar for both subsets of PFC neurons suggesting that PFC

neurons that remained sensitive during ambiguous trials were not systematically more

sensitive to categories.

DISCUSSION

We report that neural activity in the PFC reflected monkeys' categorical decisions about

ambiguous category-neutral images that had no actual category information. Neural

correlates of visual categories and category learning are well-established higher cortical

areas including the PFC (Cromer et al., 2010; Freedman et al., 2001, 2002, 2003; E. K.

Miller et al., 2002; Roy et al., 2010), posterior parietal (Fitzgerald, Swaminathan, &

Freedman, 2012; Freedman & Assad, 2006, 2011; Swaminathan & Freedman, 2012) and

inferior temporal cortices (De Baene, Ons, Wagemans, & Vogels, 2008; Freedman et al.,

2003; Gross, 2008; Kriegeskorte et al., 2008; Sigala & Logothetis, 2002; Vogels, 1999).

Those studies have shown that neurons, like behavior, sharply parse a continuous set of

often very similar looking stimuli into learned categories. Here, we show that PFC neurons

can also parse their activity to the exact same stimuli depending on which category the

monkeys think the stimulus belongs to at one moment vs. another. This is similar to effects

seen when monkeys guess at the motion category of moving dots that actually have no

aggregate direction and thus no category (Shadlen & Newsome, 1996, 2001). In those

studies, each category was linked to a unique motor response. Our study extends such results

by demonstrating category effects in the absence of any possible effect of a motor response.

In our experimental design, the motor response indicated a match to the sample category;

different motor responses were not linked to different categories. This means that our

category guessing effect reflected a purely top-down, cognitive decision independent of any

specific motor response.

In fact, the PFC seems to even discard bottom-up information in favor of top-down (Cromer

et al., 2010; Roy et al., 2010). The same PFC neurons can participate in representing
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different categories (i.e., they are category generalists) when there is little chance the

categories will be confused because the categories look different (Cromer et al., 2010). By

contrast, when the same stimuli are characterized two different ways, different PFC neurons

specialize for each category (Roy et al., 2010). If the physical appearance of the stimuli

alone (bottom-up information) were determining how information is distributed among PFC

neurons, then we would expect the opposite pattern of results. There should be the most

overlap in representation when the categories are competing (as in Roy et al., 2010) because

the exact same images are being categorized. Thus, consistent with its position at the top of

the cortical hierarchy, top-down information seems to dominate in the PFC. Indeed, the PFC

seems to be a major source of top-down signals to other cortical areas. Frontal cortical

neurons reflect shifts of top-down attention with a shorter latency than more posterior cortex

(Buschman & Miller, 2007; Li, Gratton, Yao, & Knight, 2010) and their activity goes into

rhythmic synchrony with visual cortex with a phase offset that suggests the former is driving

the latter (Gregoriou, Gotts, Zhou, & Desimone, 2009). Microstimulation of PFC produces

top-down attention-like modulation of visual cortex (Moore & Armstrong, 2003).

This is not meant to imply that the PFC is the one area that makes categorical decisions.

There is no single “categorization area” or a single “decision area” in the brain. Categories

are represented in a distributed fashion across the brain and there are multiple neural

systems involved (Seger & Miller, 2010). Likewise, many areas contribute to decision

making (Gold & Shadlen, 2007; Heekeren, Marrett, & Ungerleider, 2008). Which areas

contribute to categorical decisions likely depends on the nature of the task at hand. For

example, during motion-categorization, LIP neurons showed stronger category effects at an

earlier latency than PFC neurons suggesting that LIP is strongly involved in the decision

making (Swaminathan & Freedman, 2012). It remains to be seen if this result will hold

during non-spatial tasks with complex images as stimuli or during more dynamic tasks (e.g.

multiple category boundaries or changing decision criteria). Our results nonetheless indicate

that PFC activity can reflect “pure” cognitive factors independent of bottom-up sensory

inputs or motor output.
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Figure 1.
Stimuli and behavioral task. (A) Images were generated by morphing prototypes along six

morph lines. Monkeys learned to categorize the same images under two different schemes.

Some images were of equal proportion of two prototypes that is they were ambiguous and

sat on the boundary lines. (B) Monkeys performed a delayed match-to-category task (see

Methods). For the ambiguous stimuli, the category match/nonmatch was randomly assigned.
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Figure 2.
Behavioral performance of both monkeys. Monkey O (A) and monkey L (B) categorized the

ambiguous stimuli as members of the appropriate category when they were not on the

boundary lines (darker squares) and guessed the membership with equal probability (50%)

when they sat on the boundary lines (green squares). On average across all sessions, both

monkeys guessed a similar number of trials in each category (horizontal plots, mean +/−

SEM). (C) Combined behavioral performance of the two animals.
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Figure 3.
Influence of previous trial. The subset of trials where the previous trial was of the same

category scheme and the sample image was unambiguous were investigated for each

category across all sessions (mean =/− std). For three of the categories (A, B, C), the

previous trial behavioral decision did not impact the guessing. There was a slight, but

significant, bias away from guessing category 4 when the previous trial was a category 3

image (D).

Roy et al. Page 14

J Cogn Neurosci. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Category and guessing sensitivity of an example PFC neuron. (A) This neuron preferred

category scheme A with its average activity (mean+/−SEM) in response to images of

category 1 (purple line) was greater than its response for category 2 (gray line) in the sample

presentation interval and throughout the memory delay. (B) The neuron showed the same

category sensitivity for ambiguous stimuli, with an increased activity when the monkey

guessed the image to be category 1 (purple line) as opposed to category 2 (gray line).
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Figure 5.
Latency of category sensitivity.The average (mean+/−SEM) neural response for the

preferred category of PFC neurons that maintained the same preference during trials with

unambiguous (A) and ambiguous (B) stimuli. (C) The maximum rise time was calculated in

a 50 ms window centered on the first time point of significance in the difference in neural

activity. It took significantly longer during the guessing trials than the unambiguous trials

(124ms versus 290ms). (D) Comparison of normalized neural responses averaged over the

sample presentation (left panel) and the memory delay (right panel) for unambiguous and

ambiguous stimuli. The activity level of the population of PFC neurons were similar with

both types of stimuli with slopes not different from unity. Note the number of trials in the

unambiguous averages was stratified to match the lower number of ambiguous trials.
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Figure 6.
Category selectivity index values. (A) Index values of PFC neurons (n=206) that showed

category sensitivity for one of the category schemes with unambiguous stimuli. (B) Index

values for the sub-population of neurons (n=98) that maintained the same category

sensitivity during trials with ambiguous stimuli.
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