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Inhibition of Pre–Supplementary Motor Area by
Continuous Theta Burst Stimulation Leads to
More Cautious Decision-making and More
Efficient Sensory Evidence Integration

Tuğçe Tosun1, Dilara Berkay2, Alexander T. Sack3,
Yusuf Ö. Çakmak4, and Fuat Balcı1

Abstract

■ Decisions are made based on the integration of available evi-
dence. The noise in evidence accumulation leads to a particular
speed–accuracy tradeoff in decision-making, which can be mod-
ulated and optimized by adaptive decision threshold setting.
Given the effect of pre-SMA activity on striatal excitability, we
hypothesized that the inhibition of pre-SMA would lead to higher
decision thresholds and an increased accuracy bias. We used off-
line continuous theta burst stimulation to assess the effect of
transient inhibition of the right pre-SMA on the decision pro-
cesses in a free-response two-alternative forced-choice task within
the drift diffusion model framework. Participants became more

cautious and set higher decision thresholds following right pre-
SMA inhibition compared with inhibition of the control site (ver-
tex). Increased decision thresholds were accompanied by
an accuracy bias with no effects on post-error choice behavior.
Participants also exhibited higher drift rates as a result of pre-
SMA inhibition compared with the vertex inhibition. These re-
sults, in line with the striatal theory of speed–accuracy tradeoff,
provide evidence for the functional role of pre-SMA activity in
decision threshold modulation. Our results also suggest that
pre-SMA might be a part of the brain network associated with
the sensory evidence integration. ■

INTRODUCTION

We routinely make various simple perceptual and eco-
nomic decisions such as choosing between different meal
options in the cafeteria or deciding to either pass a slower
vehicle in front of us now or rather wait for a safer moment.
The outputs of such simple decisions have been success-
fully accounted for in a unified fashion by sequential sam-
pling models of decision-making (Ratcliff, Smith, Brown, &
McKoon, 2016). For instance, neurophysiological and
psychological data suggest that, during two-alternative
forced-choice (2AFC) perceptual decision-making, the brain
integrates sensory evidence supporting one alternative
over the other over time before making a choice (Shadlen
& Newsome, 2001; Ratcliff, 1978; Laming, 1968). This inte-
gration process is required for accurate decisions due to the
limited reliability of sensory evidence, stemming from the
noise in the sensory input and/or its transduction/processing.
The decision outputs gathered from 2AFC tasks can be

successfully modeled with computational models such as
the drift diffusion model (DDM; e.g., Bogacz, 2007; Gold
& Shadlen, 2007; Smith & Ratcliff, 2004). The DDM im-
plements the optimum decision procedure for the 2AFC

behavior (Laming, 1968) and decomposes it to estimate
various decision parameters, which represent different
latent psychological processes/variables. It assumes that
(a) the difference between the evidence from the noisy
sources of sensory information supporting each of the
two alternatives is integrated over time and (b) when the
accumulated information reaches one of the decision
thresholds representing the two response alternatives,
either above or below the initial belief state (starting
point), the corresponding option is chosen. The RT of
choice behavior is determined by the first threshold cross-
ing time (Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998;
Ratcliff, 1978).

This model explains the dilemma between faster but
more error-prone versus more accurate but slower deci-
sions, namely the speed–accuracy tradeoff (SAT; e.g., Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). Specifically,
when the decision boundary is set narrow, the decision
process takes less time to hit a threshold but with a
heightened risk of hitting the incorrect threshold due to
noise. On the other hand, although the risk of hitting the
incorrect threshold can be reduced by setting a wider de-
cision boundary, this strategy leads to longer delays to first
threshold crossing and thus longer RTs. Therefore, reward
rate maximization requires finding a balance between
how fast and accurately an agent aims to respond, which
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can be accomplished through adaptive decision thresh-
old modulation (Bogacz, Wagenmakers, Forstmann, &
Nieuwenhuis, 2010; Bogacz et al., 2006).

Although the SAT and related latent decision processes
have been successfully studied within a computational
framework, the neural mechanisms of this adaptive func-
tion have not been investigated sufficiently (Bogacz,
Wagenmakers, et al., 2010). Providing theoretical guidance
to empirical undertakings, neurocomputational studies
implicate a role of the cortico-basal ganglia circuitry for
decision threshold modulation (Bogacz & Gurney, 2007;
Frank, 2006; Lo & Wang, 2006; Gurney, Prescott, Wickens,
& Redgrave, 2004). BG is the main constituent of this cir-
cuitry, which comprise a distributed set of brain structures
and primarily involve the control of voluntary actions. At
resting state, the globus pallidus interna (GPi), one of the
output nuclei of the BG, inhibits the thalamus and con-
sequently the cortical areas, so that no premature re-
sponses are executed (e.g., DeLong & Wichmann, 2007).
Striatum, one of the input nuclei of BG, is activated when
it receives consistent information supporting a particular
action from cortical regions. This activation exerts a selec-
tive suppression on the GPi. Through suppression of the
inhibitory effect of GPi on thalamus, associated cortical
regions are released from inhibition leading to action exe-
cution. On the basis of this functional architecture, BG
are proposed to implement an action selection mecha-
nism that disinhibits the desirable actions while inhibit-
ing others (Forstmann et al., 2008).

Within this framework, when speed instructions are
given, cortical neurons (e.g., within pre-SMA) send excit-
atory signals to the striatum. Increased striatal activity re-
duces the inhibitory effect of the BG, which in turn allows
the execution of faster but often premature responses
(Bogacz, Wagenmakers, et al., 2010; Forstmann et al.,
2008). Consistent with this framework, a number of pre-
vious studies have shown that the pre-SMA and striatum
show increased activity under speed-stressed conditions in
perceptual decision-making tasks (Mansfield, Karayanidis,
Jamadar, Heathcote, & Forstmann, 2011; van Maanen
et al., 2011; Wenzlaff, Bauer, Maess, & Heekeren, 2011;
Ding & Gold, 2010; Forstmann et al., 2008, 2010; Ivanoff,
Branning, & Marois, 2008; van Veen, Krug, & Carter, 2008).
Additionally, the increased activity in pre-SMA and striatum
was correlated with the modulation of decision threshold;
as the activity increased, the decision threshold decreased
(Mansfield et al., 2011; Forstmann et al., 2008). Lending
further support for the role of corticostriatal circuitry in
modulating SAT, Forstmann et al. (2010) showed in a struc-
tural MRI study that participants who demonstrated larger
adjustments of the decision boundary (i.e., who changed
their decision thresholds considering the task demands
in a 2AFC task) had stronger connectivity between pre-
SMA and striatum.

Although imaging studies point out that pre-SMA and
striatum play a role in SAT, as these studies provide only
correlational information, they do not enable us to draw

causal links. Recently, some brain stimulation studies were
conducted to causally investigate the neural mechanisms
underlying SAT. However, in addition to being quite lim-
ited in number, these studies did not converge on con-
sistent conclusions; one of them (de Hollander et al.,
2016) reported a null effect for the role of pre-SMA in
threshold modulation in SAT, which could have possibly
been attributed to the stimulation technique used (see
Discussion), whereas the other (Georgiev et al., 2016)
found that decreased activity in pre-SMA led to lower
threshold setting under accuracy-stressed condition, which
runs counter to these earlier findings and approaches.
Because the causal role of pre-SMA in SAT modulation is

understudied and debatable, we investigated this issue by
combining noninvasive brain stimulation withmodel-based
unified analysis of decision outputs. We experimentally
manipulated the activity of the right pre-SMA by applying
continuous theta burst stimulation (cTBS) before having
participants perform a 2AFC task. The RT and accuracywere
modeled within the framework of the DDM to elucidate
the effects of the inhibition of pre-SMA on decision thresh-
old setting. We specifically hypothesized that the cTBS-
induced inhibition of right pre-SMA would lead to more
cautious decisions by leading to wider decision bound-
aries and an accuracy bias with respect to optimality.

METHODS

Participants

Twenty-four right-handed healthy volunteers (13 women),
aged 19–24 years (M = 20.9, SD = 1.7) participated in the
study after giving written consent. Participants were re-
cruited through an announcement on a publicly available
newsletter and received monetary reward based on their
task performance. A preexperimental health form was used
to screen for contraindications of TMS. Any participant who
did not meet the eligibility criteria (Rossi, Hallett, Rossini,
Pascual-Leone, & Safety of TMS Consensus Group, 2009)
was excluded from the experiment. The study was ap-
proved by the institutional review board at Koç University.

Design

All participants were tested in three fixed-duration (approx-
imately 45 min) sessions, all of which were held in different
days. In the first (familiarization) session, participants were
tested without brain stimulation. In the second and the
third sessions, participants completed the same task after
either pre-SMA or vertex inhibition in a counterbalanced
order. Vertex was chosen as the control site as it plays no
active role in the neural processes being investigated.

Stimuli and Apparatus

The stimulus was a circular field of randomly moving
white dots (3 × 3 pixels) that appeared in a 3-in. diameter
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kinematogram in the center of the computer screen with
a black background (see Gold & Shadlen, 2001; Shadlen &
Newsome, 2001). On each trial, a particular portion of
the dots moved either toward left or right (with equal
probability) with a fixed speed, whereas the rest of the
dots were randomly repositioned over time. The stimulus
was generated in MATLAB (The MathWorks Natick, MA)
and presented on a 21.5-in. MAC monitor via Psychophys-
ics Toolbox extension (Brainard, 1997; Pelli, 1997). Partici-
pants were seated approximately 60 cm from the monitor
and responses were collected via computer keyboard.
For brain stimulation, a Magstim Super Rapid2 magnetic

stimulator (70-mm figure-of-eight coil) was used. Intensity
and locations for repetitive TMS (rTMS) application were
determined for each participant before behavioral testing.
The international 10–20 system for EEG electrode place-
ment was utilized for the localization of the target brain
sites. EEG caps with 74 positions designed according
to the 10–20 system (The g.GAMMAcap, G.Tec Medical
Engineering GMBH, Austria) were used to define the 10–
20 positions.

Procedure

Free-response Dot Motion Discrimination

Each session comprised nine 4-min test blocks of free-
response (FR) dot motion discrimination task with 8%
motion coherence and two 2-min signal detection blocks
to determine non-decision times (to be used in optimal-
ity analysis presented below). Participants could take a
break of up to 4 min at the end of the FR part. For FR
trials, participants were instructed to respond as quickly
and accurately as possible by pressing the “M” key (for
rightward motion) with their right index finger or “Z”
key (for leftward motion) with their left index finger.
Each response terminated the stimulus presentation.
The response-to-stimulus interval was sampled from a
truncated exponential distribution (mean = 2 sec). Correct
responses were signaled by a short audio tone whereas no
feedback was provided for incorrect responses. Partici-
pants collected one point, corresponding to 0.04 TRY,
for each correct response. Responses emitted during
response-to-stimulus interval or within the first 100 msec
of stimulus presentation were considered premature re-
sponses and were followed by a 4-sec timeout period,
which started after a buzzing sound. The cumulative scores
were displayed on the screen after every 10 trials. For signal
detection trials, participants were instructed to press the
“M” key and “Z” key in different blocks as soon as they
saw the stimulus on the screen without considering the
coherent motion.

rTMS Protocol

An offline cTBS was applied over the target brain site
(either right pre-SMA or vertex in a counterbalanced

order) at the beginning of the second and the third ses-
sions, before participants performed the task. This
protocol consists of three pulses of stimulation given at
50 Hz, repeated every 200 msec for 40 sec in an uninter-
rupted fashion, resulting in 600 pulses (Huang, Edwards,
Rounis, Bhatia, & Rothwell, 2005). The cTBS protocol
was preferred over the traditional rTMS protocol, as it en-
ables having a longer-lasting inhibitory effect (as long as
60 min) with a considerably shorter stimulation duration
(Huang et al., 2005), which makes the stimulation more
comfortable for the participants. Vertex is defined as the
intersection of the midpoint between nasion and inion
with the midpoint between the left and right intertragal
notches (Cz site in the international 10–20 EEG system).
For the localization of the right pre-SMA, the center of the
magnetic coil was placed over the Fz site and moved 1 cm
lateral to the right from the mid-sagittal line (Cavazzana,
Penolazzi, Begliomini, & Bisiacchi, 2015; Hsu et al., 2011).
To set the specific intensity of stimulation for each par-
ticipant, single-pulse TMS was applied to motor cortex
at increasing intensities, and the active motor threshold
of each individual was determined according to the crite-
rion that a given intensity evokes a muscle twitch in the
contralateral hand (Huang et al., 2005). The stimulation
intensity was determined individually as 80% of the active
motor threshold.

Data Analysis

The units of analysis were the accuracy and RT data ob-
tained from the test sessions. Premature responses (RTs <
100 msec, 0.07% of all trials) were excluded from the
analysis.

Behavioral Analysis

We used paired samples t tests to compare the RT and
accuracy between different stimulation conditions. To
treat RT and accuracy in a unified fashion, we also calcu-
lated three different measures commonly used for integrat-
ing these two variables as an alternative to their isolated
analyses (for a review, see Vandierendonck, 2017). To
calculate inverse efficiency score (IES), we divided the
average correct RT by the proportion of correct responses.
The rate of correct score (RCS) was calculated by divid-
ing the number of correct responses by the sum of all
RTs in a given condition. Lastly, linear integrated speed–
accuracy score (LISAS) was calculated by adding up the
mean RT in a given condition and the proportion of
errors weighted by the ratio of RT and error proportion
standard deviations. To complement the conventional
t tests, Bayesian t tests were conducted where appro-
priate using JASP software (JASP Team, 2016). The default
Cauchy distribution with width 0.707 was used as the
prior distribution (for details, see Rouder, Speckman, Sun,
Morey, & Iverson, 2009).

Tosun et al. 1435
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Hierarchical Bayesian DDM

Data were fit by the DDM using the Hierarchical Bayesian
estimation ofDDMparameters (HDDM) in Python (Wiecki,
Sofer, & Frank, 2013). To estimate the within-subject ef-
fects, we used HDDMRegressor class. In the Bayesian
estimation procedure used in HDDM, quantification of
parameter estimates is performed in the form of the pos-
terior distributions, which are approximated by Markov
chain Monte Carlo sampling methods. Prior distributions
for each parameter were informed by a collection of 23
studies reporting best-fitting DDM parameters recovered
on a range of decision-making tasks (Wiecki et al., 2013;
Matzke & Wagenmakers, 2009). To obtain smooth param-
eter estimates, 10,000 samples were drawn from the pos-
terior distribution, and the first 1000 were discarded as
burn-in.

We fit four different models with varying degrees of
complexity. In Model 1, we allowed the decision thresh-
old to vary between conditions to test the most theoret-
ically constrained model. For completeness, we fit three
additional models with increasing number of parameters
allowed to vary between conditions (see Table 1 for model
specifications).

To evaluate the performance of our four alternative
models with varying complexity, we used each model’s
deviance information criterion (DIC). The DIC values
for Models 1, 2, 3, and 4 were 63,484, 63,478, 63,477,
and 58,721, respectively, favoring Model 4 with intertrial
variability parameters as the model that fit the data best
(Burnham & Anderson, 2003). Because the differences
between the DIC values of the reduced models (Models
1–3) were not higher than 10, none of these models per-
forms significantly better than the other. Note that other
models with different intertrial variability parameters
were also fit to the data, but their DIC scores were much
higher than the full model (62,255 for the model with
only drift rate variability, 60,020 for the model with only
st, 63,478 for the model with only starting point variabil-
ity). These models led to identical conclusions regarding
decision threshold and drift rate effects based on the same

results with the four models presented in the study. For
brevity, these other models are not presented in the article.

Reward Rate Maximization

The expected reward rate (RR) in FR 2AFC tasks is calcu-
lated as in Equation 1 (Gold & Shadlen, 2002),

RR ¼ 1−ER
DTþ T0 þ RSI

(1)

where ER denotes error rate, DT represents decision time,
T0 is time required for all non-decision-related processes
such as sensory processing and motor execution, and RSI
is the response-to-stimulus interval. DT is calculated by
subtracting the non-decision-related times from the RTs.
Reward maximizing mean-normalized decision times are
calculated as follows (Bogacz et al., 2006),

DT
Dtot

¼ 1
1

ER log 1−ER
ER

� � þ 1
1−2ER

(2)

where Dtot = T0 + RSI. This optimal performance curve
was derived from the reduced form of the DDM (Bogacz
et al., 2006) with no trial-to-trial variability parameters
(e.g., Models 1–3 in our study).
In previous studies utilizing 2AFC tasks, the majority

of the participants were shown to set their decision
thresholds higher than the reward maximizing thresh-
olds early in training (e.g., Balcı et al., 2011; Bogacz,
Hu, Holmes, & Cohen, 2010; Maddox & Bohil, 1998).
This accuracy bias was formulated by Bogacz et al. (2006)
as below,

RR qð Þ ¼ 1−ERð Þ−qER
DTþ Dtot

(3)

where q is the additional parameter representing a penalty
for errors in the form of the weight assigned to accuracy
relative to reward rate. Considering different error rates,
the related normalized optimal decision times (given that

Table 1. Model Specifications

Parameter

Model Descriptions

Model 1 Model 2 Model 3 Model 4

Threshold Varied Varied Varied Varied

Drift rate Fixed Varied Varied Varied

Non-decision time Fixed Fixed Varied Varied

Starting point No bias No bias No bias No bias

Drift rate variability (sv) 0 0 0 Fixed

Non-decision time variability (st) 0 0 0 Fixed

Starting point variability (sz) 0 0 0 Fixed

1436 Journal of Cognitive Neuroscience Volume 29, Number 8
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q stands for an actual penalty) are calculated using the
formula below (Bogacz et al., 2006):

DT
Dtot

¼ 1þ qð Þ 1
1
ER

− q
1−ER

log 1−ER
ER

� �þ 1−q
1−2ER

(4)

When q is equal to zero, Equation 4 prescribes the
optimal performance curve for a task with no penalty
for errors (as in the case of the current task; Equation
4 reduces to Equation 2), and thus, the best fit q value
indicates the degree of accuracy bias assuming that the
participant optimizes this alternative function with sub-
jective penalty for errors. Thus, to find this subjective
cost for each participant, we obtained their average error
rates and normalized decision times in each condition.
We then used these inputs to estimate individual q
parameters based on the simplex search algorithm that
starts from a predefined starting point and aiming to find
a local minimum for the parameter of interest (Lagarias,
Reeds, Wright, & Wright, 1998).

Post-error Slowing

Post-error slowing (PES) scores were quantified based on
two different methods. In the first method, PES was de-
termined as the difference in the RTs between the post-
error and post-correct trials. We also quantified PES as
described by Dutilh et al. (2012) to avoid the potential
effect of global fluctuations in performance.

RESULTS

RT and Accuracy Comparisons

We first examined whether there was a difference in the
RT and the accuracy between the pre-SMA and vertex
inhibition conditions. Although the change in both RTs
and accuracy levels were in the predicted directions
(Table 2), these were not statistically significant (t(23) =
1.20, p = .24 and t(23) = 1.15, p = .26, respectively). To
further investigate the strength of evidence in favor of
these null findings, we conducted Bayesian t tests (Rouder
et al., 2009). As the results revealed, the odds were 2.47:1
(weak evidence; Raftery, 1995) and 2.57:1 (weak evidence)
in favor of the null hypothesis that there was no signif-
icant difference between conditions for the RTs and the
accuracy levels, respectively.
To further examine the behavioral differences between

the two stimulation conditions, three different methods
of combining decision outputs were utilized as alter-
native to analyzing them in isolation. The comparison
of the obtained scores between pre-SMA and vertex inhi-
bition conditions revealed no significant difference for
any of these measures (IES: t(23) = 1.29, p = .21; RCS:
t(23) = .97, p = .34; LISAS: t(23) = .46, p = .65). Bayesian
paired samples t tests also provided evidence in favor of

the null hypothesis that there is no difference between
conditions in terms of IES (BF01 = 2.24), RCS (BF01 =
3.06), and LISAS (BF01 = 4.24).

Effects on the Latent Decision Process

To examine whether the latent decision processes asso-
ciated with the control of the SAT has been affected by
our experimental manipulation, we fit four different
DDMs to the data. The first three models were reduced
DDMs, whereas the last model was an extended DDM
with intertrial variability parameters (see Table 1 for
model specifications).

Using the hierarchical DDM, the posterior distribution
for the difference between the pre-SMA and vertex inhi-
bition conditions was generated. The degree of overlap
between the posterior distribution of this difference
and the value of 0 was used as the comparison metric
for the two stimulation conditions, where at least 95%
of nonoverlap indicates a significant difference between
the conditions. To assess whether the Markov Chain
Monte Carlo chains successfully converged from the
starting point to the posterior distribution, we calculated
the (Gelman-Rubin) statistic from five separate runs
(each containing 10,000 samples) for each model. All of
the values for all model parameters were lower than 1.1,
indicating successful convergence. To assess whether
our models reproduced the key features in our data,
we conducted posterior predictive checks as described
in the HDDM tutorial (ski.clps.brown.edu/hddm_docs/
tutorial_post_pred.html). For each model, we simulated
data sets from the posterior samples of the correspond-
ing fitted model and obtained summary statistics from
these simulations to compare them to the summary sta-
tistics describing our actual data. For all models, the ob-
served RTs were within 95% credible interval of the
predicted data (see Figure 1 for observed and predicted
RTs for different quantiles for both correct and error
trials).

Model 1 is the most theoretically compliant model with
our hypothesis since only the decision threshold param-
eter was allowed to vary between the conditions. The
posterior distribution of the threshold parameter did not
overlap with zero, indicating a significant effect of the
condition on this parameter estimate (100% of posterior >
0). Because the within-subjects effect of the pre-SMA inhi-
bition condition on decision threshold parameter with

Table 2. Means and SDs of RTs and Accuracy Levels in Pre-SMA
and Vertex Inhibition Conditions

Condition

RT (msec) Accuracy Levels

M SD M SD

Pre-SMA inhibition 998.85 248.89 0.78 0.13

Vertex inhibition 957.96 267.42 0.76 0.11
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respect to the control condition is higher than 0 (see
Figure 2A), decision threshold estimated for the pre-SMA
condition is significantly higher than threshold in the
control condition. This result indicates that when the ex-
citability of the right pre-SMA was reduced, participants
set higher decision thresholds, exhibiting a more cautious
decision strategy.

In Model 2, both decision threshold and drift rate
parameters were allowed to vary between the conditions.
The results of fits of this model (see Figure 2B) showed
that threshold in the pre-SMA inhibition condition were
higher than the threshold in the vertex inhibition condi-
tion (100% of the posterior > 0). Thus, consistent with

the findings gathered based on the simpler model, inhi-
bition of right pre-SMA has a significant effect on the
response cautiousness levels of the participants, making
them to set higher decision thresholds. The within-
subject effect of the pre-SMA inhibition on the drift rate
parameter was also significant (99% of posterior > 0). This
result indicated that participants had higher evidence
accumulation rates when their right pre-SMA was inhib-
ited compared with the condition in which their vertex
was inhibited.
In Model 3, along with the threshold and drift rate

parameters, non-decision time parameter was also allowed
to vary between the conditions. Consistent with the results

Figure 2. Mean difference in
the threshold (a, green), drift
rate (v, blue), and non-decision
time (t, red) parameters
between pre-SMA and
vertex inhibition conditions
with 95% credible intervals
separately for Models 1 (A),
2 (B), 3 (C), and 4 (D). Note
that positive differences
indicate higher values in the
pre-SMA inhibition compared
with vertex inhibition condition.
Also note that only the
parameters allowed to vary
between these two conditions
are displayed for each model.

Figure 1. Observed (red crosses) and predicted (black open squares) RTs for 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles separately for correct responses
(top row) and incorrect RTs (bottom row) and four different models (columns).

1438 Journal of Cognitive Neuroscience Volume 29, Number 8
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of the first and the second model fits, threshold (100% of
posterior > 0) and drift rate (99% of posterior > 0) were
significantly higher in the pre-SMA inhibition condition
compared with the vertex inhibition condition, whereas
the effect of right pre-SMA inhibition on the non-decision
time parameter was not significant (94% of posterior < 0;
see Figure 2C).
In Model 4, the intertrial variability parameters for

drift rate, non-decision time, and starting point were
also included in the model. Consistent with the other
models, threshold (99% of posterior > 0) and drift rate
estimates (100% of posterior > 0) were significantly
higher in the pre-SMA inhibition condition compared
with the vertex inhibition condition (see Figure 2D).
Additionally, non-decision time estimates for the pre-
SMA inhibition condition were also higher than those
for the vertex inhibition condition (98% of posterior higher
than 0).
Figure 2A–D show the means and 95% credible inter-

vals of the difference between the pre-SMA and vertex
inhibition conditions for the parameters relevant for their
comparison in Models 1, 2, 3, and 4, respectively. This
difference reflects the within-subject effect of pre-SMA
inhibition condition with respect to the control condi-
tion. In all models (Figure 2A–D), mean difference be-
tween the conditions and 95% credible intervals for
threshold and drift rate parameters were above 0, indicat-
ing a significant increase in these parameters in pre-SMA
inhibition condition. In Model 3 (Figure 2C), 95% credible
intervals for the difference in non-decision time param-
eter between the conditions included 0, indicating that
this parameter was not affected by the stimulation, whereas
in Model 4 (Figure 2D) mean difference in this parameter
between the conditions and 95% credible intervals was
above 0.

Speed–Accuracy Tradeoff and Reward
Rate Maximization

Because in free response fixed session duration tasks, re-
ward rate maximization requires participants to optimize
the balance between the speed and accuracy of their deci-
sions, we also assessed whether inhibition of pre-SMA had
an effect on this reward rate maximization process. As the
previous 2AFC studies where the majority of the partici-
pants were shown to set higher decision thresholds than
the reward maximizing thresholds predicted by the DDM
(e.g., Balcı et al., 2011; Bogacz, Hu, et al., 2010; Maddox
& Bohil, 1998), we calculated the subjective cost partici-
pants attributed to errors (i.e., accuracy bias) in different
conditions. To assess whether the performance of the
participants differed based on their accuracy bias in differ-
ent conditions, we compared the values of the parameter q
corresponding to the error rates of each participant in
both experimental and control sessions (see Equation 4).
The q values calculated for both the experimental (M =
.47, SD = .40) and the control conditions (M = .35, SD =

.26) were significantly greater than 0, t(23)= 4.13, p< .001,
and t(23) = 4.26, p < .001, respectively. This result indi-
cates that, regardless of the condition, participants had
an accuracy bias. Comparison of the accuracy bias in differ-
ent conditions showed that, in line with our predictions,
the weight assigned to accuracy relative to reward rate
was significantly higher in the pre-SMA compared with
the vertex inhibition condition, t(23) = 2.35, p< .05. Thus,
consistent with our findings regarding decision threshold
differences, participants displayed a more cautious perfor-
mance under the pre-SMA inhibition condition.

Post-error Slowing

To explore whether the increased cautiousness levels in
the pre-SMA inhibition condition was related to any change
in the tendency to slow down after erroneous responses,
we evaluated the PES scores. According to the results of
the standard method, PES score was significantly higher
than 0 in both experimental (M = 114.96, SD = 180.55;
t(23) = 3.05, p < .01) and control conditions (M =
98.62, SD = 223.67; t(23) = 2.11, p < .05), pointing at a
tendency to slow down after erroneous responses in
both conditions. However, the comparison of these two
conditions indicated no significant effect of stimulation site
on the level of PES, t(23) = .78, p = .44. An estimated
Bayes factor revealed that the odds were 3.53:1 in favor
of the null hypothesis, providing substantial evidence for
that there was no difference between groups in terms of
PES. Similar results were obtained from the set of analyses
conducted based on the method described in Dutilh et al.
(2012), indicating that the difference between the post-
error RTs and the pre-error RTs were significantly higher
than the value of 0 both in the pre-SMA (M = 124.23,
SD = 214.62; t(23) = 2.54, p = .02) and the vertex inhibi-
tion conditions (M= 83.26, SD= 134.57; t(23) = 3.16, p=
.004). There was no significant difference between the two
conditions, t(23) = 1.30, p = .21. We also conducted a
Bayesian t test, which showed that the odds were 1.64:1
in favor of the null hypothesis (weak evidence), indicating
that there was no difference between pre-SMA and vertex
inhibition conditions in terms of PES.

We also investigated whether the accuracy of decisions
increased after errors by comparing post-correct and
post-error accuracy rates. The results indicated that the
difference between the post-correct and post-error accu-
racy rates were not significantly higher than the value of
0 in either pre-SMA (M = 0.01, SD = 0.04; t(23) = 0.93,
p = .36) or the control (M = 0.01, SD = 0.05; t(23) =
1.35, p = .19) condition. Also, the stimulation condition
did not have a differential effect on the difference in the
accuracy rates between post-error and post-correct trials,
t(23) = −0.36, p = .72. Bayesian t tests revealed that the
odds were 3.15:1 and 2.09:1 in favor of the null hypothesis
that the difference between post-correct and post-error
accuracy rates was not different from the value of 0 in
pre-SMA and control conditions, respectively. Additionally,
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the odds were 4.39:1 in favor of the null hypothesis that the
stimulation site did not have a differential effect on
the difference between the post-correct and post-error ac-
curacy rates.

To examine whether there was any difference in thresh-
old setting between post-correct and post-error trials, and
if so, whether this difference varied between the pre-SMA
and vertex stimulation conditions, we fit a DDM to the
data allowing only the decision threshold parameter to
vary. The results of this analysis revealed a higher thresh-
old setting for the post-error trials compared with the
post-correct trials regardless of the stimulation site (100%
of posterior > 0). However, the stimulation site did not
have a differential effect on the difference between post-
error and post-correct trials in terms of threshold setting
(64% of posterior > 0). We repeated this set of modeling
analyses also using the alternative PES coding method
(Dutilh et al., 2012). These results, too, revealed that
threshold settings for the post-error trials were higher
than the threshold settings for post-correct (pre-error) tri-
als (100% of posterior > 0), whereas the experimental ma-
nipulation did not have a differential effect on the
difference in threshold settings between the post-error
and post-correct trials (85% of posterior > 0).

DISCUSSION

In the current study, we investigated the functional rela-
tionship between the activity within the right pre-SMA
and the SAT in human perceptual decision-making by
combining noninvasive brain stimulation with model-
based approaches to choice behavior. Our results revealed
that humans indeed exhibit a more cautious choice be-
havior by setting higher decision thresholds as a result
of right pre-SMA inhibition compared with the inhibition
of a control region, vertex.

Importantly, this difference was present despite the
null effects revealed when accuracy levels and RTs were
compared in isolation or even in a unified fashion (i.e.,
IES, RCS, LISAS), reflecting the importance of model-
based approaches in cognitive neuroscience research
(Ly et al., in press; Erhan & Balcı, 2017; Georgiev et al.,
2016; Forstmann & Wagenmakers, 2015; Voss, Nagler, &
Lerche, 2013; Voss, Rothermund, & Voss 2004). Along
with the increase in the decision thresholds, we also
found that the weight assigned to accuracy relative to re-
ward rate (i.e., accuracy bias; Balcı et al., 2011; Bogacz
et al., 2006; Maddox & Bohil, 1998) was significantly higher
in the right pre-SMA as compared with the vertex inhibi-
tion condition. This result reflects the effect of right pre-
SMA inhibition at the level of behavioral output when it is
evaluated with respect to the optimality benchmark.

On the basis of the neurocomputational models of
decision-making (Bogacz & Gurney, 2007; Frank, 2006),
we propose that the inhibition of right pre-SMA exerts its
downstream effect on the related cortico-BG pathways.
To this end, there are four major neurocomputational

theories that have been proposed in relation to the con-
trol of speed–accuracy tradeoff (for a review, see Bogacz,
Hu, et al., 2010). The cortical theory asserts that the base-
line activity of cortical integrators would be increased by
additional excitatory input, which would be effectively
equivalent to decreased threshold (e.g., Ivanoff et al.,
2008; van Veen et al., 2008). To this end, van Veen et al.
(2008) showed that dorsolateral pFC is the source of these
excitatory signals that modulate SAT. The striatal theory, on
the other hand, asserts that the excitability of striatum
modulated by cortical inputs (specifically pre-SMA) effec-
tively results in changing decision boundaries by modulat-
ing the inhibitory effect of BG over its efferents (Forstmann
et al., 2008, 2010).
More specifically, according to the striatal theory, as a

result of increased right pre-SMA activity, humans exe-
cute faster but often premature responses because an in-
crease in the activity of cortical nonintegrator neurons
excites striatum, which in turn decreases the inhibitory
effect of the output nuclei of BG (GPi) over the cortical
areas related to motor execution via thalamus (Bogacz,
Wagenmakers, et al., 2010; Forstmann et al., 2008). In
the same line of reasoning, inhibition of right pre-SMA
decreases the activity of the striatum, which causes the
activity of GPi to increase. This in turn leads to a de-
creased activity in thalamus, resulting in a more cautious
decision strategy (i.e., effectively corresponding to in-
creased threshold setting).
Subthalamic nucleus (STN) theory of SAT asserts that

cortical areas can effectively modulate decision thresh-
olds through their projections to STN (e.g., pre-SMA, in-
ferior frontal gyrus, ACC). Under this view, lower activity
of the cortical afferents of STN would decrease the
thresholds (Aron, Behrens, Smith, Frank, & Poldrack,
2007; Aron & Poldrack, 2006). Finally, the synaptic theory
of SAT asserts that SAT can be modulated by changing
the weights of the corticostriatal synapses through pro-
cesses such as long-term potentiation induced by rein-
forcement learning (Lo & Wang, 2006). According to this
view, strengthening of these synapses would effectively
decrease whereas weakening (e.g., through long-term
depression) of these synapses would effectively increase
the decision thresholds.
Under these approaches to the neural basis of SAT

modulation, our findings are more in favor of the striatal
theory of SAT compared with the cortical theory given
the site of stimulation (assuming that pre-SMA does not
contain integrator units) and its functional connectivity to
striatum (Bogacz, Wagenmakers, et al., 2010). If, on the
other hand, pre-SMA is contained within the integrator
network, our findings cannot distinguish between the
striatal and cortical theories of SAT. Our findings do
not support the STN theory given the fact that, under this
view, pre-SMA inhibition should have led to a decrease,
not an increase, in decision thresholds. Although the
directionality of the predictions is similar for striatal and
synaptic theories (but also cortical theory), the synaptic
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theory is a less plausible account of our findings given
the speed with which such synaptic changes would take
place in the brain (see also Furman & Wang, 2008).
The primary assertion of the striatal theory of SAT is

further supported by the findings of a recent rTMS-fMRI
study in the context of stop-signal response inhibition task
(Watanabe et al., 2015). Watanabe et al. (2015) showed that
rTMS of pre-SMA modulated the connectivity between
pre-SMA and striatum as well as the connectivity be-
tween striatum and globus pallidus during a response in-
hibition task. Watanabe et al. (2015) also observed that
the changes in response inhibition performance were as-
sociated with the degree of change in the resting state
functional connectivity between these areas. These find-
ings point to a causal relationship between pre-SMA and
globus pallidus through striatum during response inhibi-
tion, which further suggests a functional interaction be-
tween these regions in the context of decision-making.
In addition to these functional connectivity findings,

the study of Forstmann et al. (2010) provided evidence
on the relationship between the individual differences
in behavior and in the structural features of particular
brain regions. Their results revealed that the participants
who demonstrated larger adjustments of the decision
boundary based on task demands had stronger connec-
tivity between the pre-SMA and the striatum. Despite these
consistent findings regarding the role of pre-SMA in deci-
sion threshold setting, a recent study by de Hollander
et al. (2016) did not observe an effect of transcranial direct
current stimulation (tDCS) of pre-SMA on this parameter.
However, lack of effects in that study can be attributed to
multiple factors such as the inefficacy of tDCS in decision-
making domain (e.g., Horvath, Forte, & Carter, 2015;
Tremblay et al., 2014) and/or the localization of the stimu-
lation site.
Our results regarding decision thresholds differ from

the findings of Georgiev et al. (2016). This study had
two task conditions; in one condition (SAT condition)
speed and accuracy was differentially emphasized be-
tween trials in a pseudorandom fashion (50% coherence
was used), whereas in the other condition (Coherence
condition) participants were asked to be as accurate and
fast as possible (identical instructions to the current study)
and a range of different coherence levels was used (5–
50%). Georgiev et al. (2016) found a reduction in decision
thresholds with inhibition of right pre-SMA when accuracy
was emphasized whereas no difference was observed when
speed was emphasized or in the Coherence condition. In
contrast to Georgiev et al. (2016), we found an increase in
decision thresholds as a result of inhibition of right pre-
SMA. There are a number of factors that might have con-
tributed to the results revealed in our study as compared
with the findings reported by Georgiev et al. (2016).
One of the main differences is that our task was more

difficult (8% coherence) compared with the SAT condi-
tion in Georgiev et al.’s (2016) study (50%). This differ-
ence in signal quality was also clearly reflected in

the observed accuracy (77% vs. 95%) and RT levels
(∼980 msec vs. ∼400 msec). The same also applies to the
speed condition, where no effect on decision threshold
was found. Different difficulty levels are known to be differ-
entially sensitive to factors of interest. For instance, Banca
et al. (2015) found medium level of coherence to be most
sensitive to differences between obsessive compulsive
disorder and control groups in terms of decision thresh-
olds and drift rates, with low level of coherence being spe-
cifically sensitive to differences in decision thresholds and
high level of coherence being specifically sensitive to differ-
ence in drift rates. However, please note that no effect of
pre-SMA inhibition was observed in the coherence condi-
tion in which a range of difficulty levels was used. Further-
more, Georgiev et al. (2016) fit their data using fast-dm
(Voss & Voss, 2007), which has lower statistical power
compared with HDDM (Wiecki et al., 2013). Overall, results
of the current study are more in line with the results of
neuroimaging studies conducted in this field (Bogacz,
Wagenmakers, et al., 2010).

In addition to the increase in threshold setting, our
findings also indicated an increase in drift rate, which rep-
resents the amount of evidence processed in unit time,
under pre-SMA inhibition condition. Although there has
been a selective emphasis on the decision threshold mod-
ulation to explain the SAT (Bogacz, Wagenmakers, et al.,
2010; Forstmann et al., 2008, 2010; Bogacz et al., 2006),
some studies have indicated that SAT is better captured
with changes in both threshold setting and drift rate param-
eters (Rae, Heathcote, Donkin, Averell, & Brown, 2014;
Heathcote & Love, 2012; Vandekerckhove & Tuerlinckx,
2007). For instance, in a study by Rae et al. (2014), it has
been shown in three different tasks that, under accuracy
instructions, which, in terms of expected effects, corre-
spond to the pre-SMA inhibition condition in our study,
there was an increase not only in the amount of evidence
required to commit to a decision, but also in the quality of
the evidence accumulated during this process. However,
to our knowledge, there is no study indicating a difference
in drift rates along with the activity change in pre-SMA. Be-
sides, drift rates have been typically associated with dorso-
lateral pFC function (e.g., Bogacz, Wagenmakers, et al.,
2010; Domenech & Dreher, 2010; Heekeren, Marrett,
Bandettini, & Ungerleider, 2004), and the recent cTBS
and tDCS studies did not report any effect of pre-SMA
inhibition on drift rates in either speed or in accuracy
conditions or in conditions where differential speed–
accuracy instructions were not provided (de Hollander
et al., 2016; Georgiev et al., 2016). Thus, this finding might
be investigated in future imaging studies. In addition to
consistent effect of pre-SMA inhibition on decision thresh-
old and drift rates, we found that inhibition of pre-SMA also
led to longer non-decision times in Model 4 but not in
Model 3. Because this was not a consistent finding as in
the case of decision thresholds and drift rates and we
did not expect this finding based on any theoretical ap-
proach, future studies are needed to provide further
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insight regarding the credibility of the effect of pre-SMA
inhibition on non-decision times.

In our further exploratory analyses, we also investi-
gated the possible relationship between PES and SAT,
because the underlying neural mechanisms of PES also
include similar cortical and subcortical structures of the
right hemisphere (Danielmeier & Ullsperger, 2011). In
the review by Danielmeier and Ullsperger (2011), a net-
work consisting of pre-SMA, lateral inferior frontal areas
and the STN are suggested to be crucial for PES. In the
hyperdirect pathway, STN receives direct cortical input and
projects directly to the GPi to act as a global brake on the
striatal output (Cavanagh, Sanguinetti, Allen, Sherman, &
Frank, 2014). Thus, increased STN activity following erro-
neous responses enables acting more cautious in the next
trial by increasing the response threshold (Cavanagh et al.,
2014). In our study, participants in both conditions re-
sponded slower by setting higher thresholds after they
made an error; however, this increase in the RTs or thresh-
olds did not differ between pre-SMA and vertex inhibition
conditions. Thus, participants did not exhibit differential
post-error behavior in the pre-SMA inhibition condition
compared with the control condition. In light of the find-
ings of Watanabe et al. (2015), which indicated no effect of
pre-SMA rTMS on the activity of STN, one can speculate
that pre-SMA inhibition in our study did not modulate
the activity of STN and therefore did not specifically lead
to the modulation of PES. Thus, overall condition-based
threshold setting (for which the signal-to-noise ratio and
average reward rate are relevant) and error-based threshold
modulation (for which the instantaneous consequences/
outcomes of previous decisions are relevant) might rely
on partially dissociable networks. Future studies may also
investigate these relationships using functional imaging.

Acknowledgments

This study was supported by TÜBA (Turkish Academy of
Sciences)-GEBİP 2015 award to F. B.

Reprint requests should be sent to Fuat Balcı, Koç University,
Rumelifeneri Yolu, Sarıyer, 34450, Istanbul, Turkey, or via e-mail:
fbalci@ku.edu.tr, web: mysite.ku.edu.tr/fbalci/.

REFERENCES

Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack,
R. A. (2007). Triangulating a cognitive control network
using diffusion-weighted magnetic resonance imaging
(MRI) and functional MRI. Journal of Neuroscience, 27,
3743–3752.

Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical
contributions to stop signal response inhibition: Role of
the subthalamic nucleus. Journal of Neuroscience, 26,
2424–2433.

Balcı, F., Freestone, D., Simen, P., deSouza, L., Cohen, J. D.,
& Holmes, P. (2011). Optimal temporal risk assessment.
Frontiers in Integrative Neuroscience, 5, 1–15.

Banca, P., Vestergaard, M. D., Rankov, V., Baek, K., Mitchell, S.,
Lapa, T., et al. (2015). Evidence accumulation in obsessive-

compulsive disorder: The role of uncertainty and monetary
reward on perceptual decision-making thresholds.
Neuropsychopharmacology, 40, 1192–1202.

Bogacz, R. (2007). Optimal decision-making theories: Linking
neurobiology with behaviour. Trends in Cognitive Sciences,
11, 118–125.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D.
(2006). The physics of optimal decision making: A formal
analysis of models of performance in two-alternative forced-
choice tasks. Psychological Review, 113, 700–765.

Bogacz, R., & Gurney, K. (2007). The basal ganglia and cortex
implement optimal decision making between alternative
actions. Neural Computation, 19, 442–477.

Bogacz, R., Hu, P. T., Holmes, P. J., & Cohen, J. D. (2010).
Do humans produce the speed–accuracy trade-off that
maximizes reward rate? Quarterly Journal of Experimental
Psychology, 63, 863–891.

Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., & Nieuwenhuis,
S. (2010). The neural basis of the speed–accuracy tradeoff.
Trends in Neuroscience, 33, 10–16.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial
Vision, 10, 433–436.

Burnham, K. P., & Anderson, D. R. (2003). Model selection and
multimodel inference: A practical information-theoretic
approach. New York: Springer.

Cavanagh, J. F., Sanguinetti, J. L., Allen, J. J., Sherman, S. J., &
Frank, M. J. (2014). The subthalamic nucleus contributes to
post-error slowing. Journal of Cognitive Neuroscience, 26,
2637–2644.

Cavazzana, A., Penolazzi, B., Begliomini, C., & Bisiacchi, P. S.
(2015). Neural underpinnings of the “agent brain”: New
evidence from transcranial direct current stimulation.
European Journal of Neuroscience, 42, 1889–1894.

Danielmeier, C., & Ullsperger, M. (2011). Post-error
adjustments. Frontiers in Psychology, 2, 233.

de Hollander, G., Labruna, L., Sellaro, R., Trutti, A., Colzato,
L., Ratcliff, R., et al. (2016). Transcranial direct current
stimulation does not influence the speed–accuracy tradeoff
in perceptual decision making: Evidence from three
independent replication studies. Journal of Cognitive
Neuroscience, 28, 1283–1294.

DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit
disorders of the basal ganglia. Archives of Neurology, 64,
20–24.

Ding, L., & Gold, J. I. (2010). Caudate encodes multiple
computations for perceptual decisions. Journal of
Neuroscience, 30, 15747–15759.

Domenech, P., & Dreher, J. C. (2010). Decision threshold
modulation in the human brain. Journal of Neuroscience,
30, 14305–14317.

Dutilh, G., van Ravenzwaaij, D., Nieuwenhuis, S., van der Maas,
H. L., Forstmann, B. U., & Wagenmakers, E. J. (2012).
How to measure post-error slowing: A confound and a
simple solution. Journal of Mathematical Psychology, 56,
208–216.

Erhan, C., & Balcı, F. (2017). Obsessive compulsive features
predict cautious decision strategies. Quarterly Journal of
Experimental Psychology, 70, 179–190.

Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J.,
Brown, S., Wagenmakers, E. J., et al. (2010). Cortico-striatal
connections predict control over speed and accuracy in
perceptual decision making. Proceedings of the National
Academy of Sciences, U.S.A., 107, 15916–15920.

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., VonCramon,
D. Y., Ridderinkhof, K. R., et al. (2008). Striatum and
pre-SMA facilitate decision-making under time pressure.
Proceedings of the National Academy of Sciences, U.S.A.,
105, 17538–17542.

1442 Journal of Cognitive Neuroscience Volume 29, Number 8

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
9
/
8
/
1
4
3
3
/
1
7
8
6
4
9
6
/
j
o
c
n
_
a
_
0
1
1
3
4
.
p
d
f
 
b
y
 
M
I
T
 
L
i
b
r
a
r
i
e
s
 
u
s
e
r
 
o
n
 
1
7
 
M
a
y
 
2
0
2
1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/29/8/1433/1953171/jocn_a_01134.pdf by M
AASTR

IC
H

T U
N

IVER
SITY user on 10 N

ovem
ber 2021



Forstmann, B. U., & Wagenmakers, E. J. (2015). Model-based
cognitive neuroscience: A conceptual introduction. In B. U.
Forstman & E. J. Wagenmakers (Eds.), An introduction
to model-based cognitive neuroscience (pp. 139–156).
New York: Springer.

Frank, M. J. (2006). Hold your horses: A dynamic computational
role for the subthalamic nucleus in decision making. Neural
Networks, 19, 1120–1136.

Furman, M., & Wang, X. J. (2008). Similarity effect and optimal
control of multiple-choice decision making. Neuron, 60,
1153–1168.

Georgiev, D., Rocchi, L., Tocco, P., Speekenbrink, M., Rothwell,
J. C., & Jahanshahi, M. (2016). Continuous theta burst
stimulation over the dorsolateral prefrontal cortex and the
pre-SMA alter drift rate and response thresholds respectively
during perceptual decision-making. Brain Stimulation, 4,
601–608.

Gold, J. I., & Shadlen, M. N. (2001). Neural computations
that underlie decisions about sensory stimuli. Trends in
Cognitive Sciences, 5, 10–16.

Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the
brain: Decoding the relationship between sensory stimuli,
decisions, and reward. Neuron, 36, 299–308.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision
making. Annual Review of Neuroscience, 30, 535–574.

Gurney, K., Prescott, T. J., Wickens, J. R., & Redgrave, P. (2004).
Computational models of the basal ganglia: From robots
to membranes. Trends in Neurosciences, 27, 453–459.

Heathcote, A., & Love, J. (2012). Linear deterministic
accumulator models of simple choice. Frontiers in
Psychology, 3, 292.

Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider,
L. G. (2004). A general mechanism for perceptual decision-
making in the human brain. Nature, 431, 859–862.

Horvath, J. C., Forte, J. D., & Carter, O. (2015). Evidence that
transcranial direct current stimulation (tDCS) generates
little-to-no reliable neurophysiologic effect beyond MEP
amplitude modulation in healthy human subjects: A systematic
review. Neuropsychologia, 66, 213–236.

Hsu, T. U., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng,
O. J. L., et al. (2011). Modulating inhibitory control with
direct current stimulation of the superior medial frontal
cortex. Neuroimage, 56, 2249–2257.

Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., &
Rothwell, J. C. (2005). Theta burst stimulation of the human
motor cortex. Neuron, 45, 201–206.

Ivanoff, J., Branning, P., & Marois, R. (2008). fMRI evidence for
a dual process account of the speed–accuracy tradeoff in
decision-making. PLoS One, 3, e2635.

JASP Team. (2016). JASP (Version 0.8. 0.0). [Computer software].
Retrieved from https://jasp.stats.org/.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998).
Convergence properties of the Nelder–Mead simplex
method in low dimensions. SIAM Journal on Optimization,
9, 112–147.

Laming, D. R. J. (1968). Information theory of choice-reaction
times. Oxford: Acamedic Press.

Lo, C. C., & Wang, X. J. (2006). Cortico-basal ganglia circuit
mechanism for a decision threshold in reaction time tasks.
Nature Neuroscience, 9, 956–963.

Ly, A., Boehm, U., Heathcote, A., Turner, B. M., Forstmann,
B., Marsman, M., et al. (in press). A flexible and efficient
hierarchical Bayesian approach to the exploration of
individual differences in cognitive-model-based neuroscience.
In Computational models of brain and behavior. Wiley.

Maddox, W. T., & Bohil, C. J. (1998). Overestimation of base-
rate differences in complex perceptual categories. Attention
Perception & Psychophysics, 60, 575–592.

Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., &
Forstmann, B. U. (2011). Adjustments of response threshold
during task switching: A model-based functional magnetic
resonance imaging study. Journal of Neuroscience, 31,
14688–14692.

Matzke, D., & Wagenmakers, E. J. (2009). Psychological
interpretation of ex–Gaussian and shifted Wald parameters:
A diffusion model analysis. Psychonomic Bulletin & Review,
16, 798–817.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies. Spatial
Vision, 10, 437–442.

Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S.
(2014). The hare and the tortoise: Emphasizing speed can
change the evidence used to make decisions. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
40, 1226–1243.

Raftery, A. E. (1995). Bayesian model selection in social
research. Sociological Methodology, 25, 111–164.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59–108.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model:
Theory and data for two-choice decision tasks. Neural
Computation, 20, 873–922.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response
times for two-choice decisions. Psychological Science, 9,
347–356.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016).
Diffusion decision model: Current issues and history. Trends
in Cognitive Science, 20, 260–281.

Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., &
Safety of TMS Consensus Group. (2009). Safety,
ethical considerations, and application guidelines for
the use of transcranial magnetic stimulation in clinical
practice and research. Clinical Neurophysiology, 120,
2008–2039.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson,
G. (2009). Bayesian t tests for accepting and rejecting the
null hypothesis. Psychonomic Bulletin & Review, 16,
225–237.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a
perceptual decision in the parietal cortex (area LIP) of
the rhesus monkey. Journal of Neurophysiology, 86,
1916–1936.

Smith, P. L., & Ratcliff, R. (2004). Psychology and
neurobiology of simple decisions. Trends in Neurosciences,
27, 161–168.

Tremblay, S., Lepage, J. F., Latulipe-Loiselle, A., Fregni, F.,
Pascual-Leone, A., & Théoret, H. (2014). The uncertain
outcome of prefrontal tDCS. Brain Stimulation, 7, 773–783.

van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E. J., Ho,
T., Serences, J., et al. (2011). Neural correlates of trial-to-trial
fluctuations in response caution. Journal of Neuroscience,
31, 17488–17495.

van Veen, V., Krug, M. K., & Carter, C. S. (2008). The neural and
computational basis of controlled speed–accuracy tradeoff
during task performance. Journal of Cognitive Neuroscience,
20, 1952–1965.

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff
diffusion model to experimental data. Psychonomic Bulletin
& Review, 14, 1011–1026.

Vandierendonck, A. (2017). A comparison of methods to
combine speed and accuracy measures of performance: A
rejoinder on the binning procedure. Behavior Research
Methods, 49, 653–673.

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in
experimental psychology. Experimental Psychology, 60,
385–402.

Tosun et al. 1443

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
9
/
8
/
1
4
3
3
/
1
7
8
6
4
9
6
/
j
o
c
n
_
a
_
0
1
1
3
4
.
p
d
f
 
b
y
 
M
I
T
 
L
i
b
r
a
r
i
e
s
 
u
s
e
r
 
o
n
 
1
7
 
M
a
y
 
2
0
2
1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/29/8/1433/1953171/jocn_a_01134.pdf by M
AASTR

IC
H

T U
N

IVER
SITY user on 10 N

ovem
ber 2021



Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the
parameters of the diffusion model: An empirical validation.
Memory & Cognition, 32, 1206–1220.

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient
diffusion model analysis. Behavior Research Methods, 39,
767–775.

Watanabe, T., Hanajima, R., Shirota, Y., Tsutsumi, R., Shimizu,
T., Hayashi, T., et al. (2015). Effects of rTMS over pre-
supplementary motor area on fronto-basal-ganglia network

activity during stop-signal task. Journal of Neuroscience,
35, 4813–4823.

Wenzlaff, H., Bauer, M., Maess, B., & Heekeren, H. R. (2011).
Neural characterization of the speed–accuracy tradeoff in a
perceptual decision-making task. Journal of Neuroscience,
31, 1254–1266.

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM:
Hierarchical Bayesian estimation of the drift-diffusion model
in Python. Frontiers in Neuroinformatics, 7, 14.

1444 Journal of Cognitive Neuroscience Volume 29, Number 8

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
9
/
8
/
1
4
3
3
/
1
7
8
6
4
9
6
/
j
o
c
n
_
a
_
0
1
1
3
4
.
p
d
f
 
b
y
 
M
I
T
 
L
i
b
r
a
r
i
e
s
 
u
s
e
r
 
o
n
 
1
7
 
M
a
y
 
2
0
2
1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/29/8/1433/1953171/jocn_a_01134.pdf by M
AASTR

IC
H

T U
N

IVER
SITY user on 10 N

ovem
ber 2021


