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Abstract

Neural measures of working memory storage, such as the contralateral delay activity (CDA), are 

powerful tools in working memory research. CDA amplitude is sensitive to working memory load, 

reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. 

An open question, however, is whether neural measures of load also track trial-bytrial fluctuations 

in performance. Here, we used a whole-report working memory task to test the relationship 

between CDA amplitude and working memory performance. If working memory failures are due 

to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and 

poor performance trials when load is held constant. If failures arise during storage, then CDA 

amplitude should track both working memory load and trial-by-trial performance. As expected, 

CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 

2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) 

for high-performance trials compared with low-performance trials, suggesting that fluctuations in 

performance were related to the successful storage of items. During working memory failures, 

participants oriented their attention to the correct side of the screen (lateralized P1) and maintained 

covert attention to the correct side during the delay period (lateralized alpha power suppression). 

Despite the preservation of attentional orienting, we found impairments consistent with an 

executive attention theory of individual differences in working memory capacity; fluctuations in 

executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.

INTRODUCTION

Our attention fluctuates from moment to moment, both in laboratory tasks and in our daily 

lives (Kane et al., 2017; Reason, 1984). During periods of relative inattention, participants 

have more erratic RTs and are likely to miss targets (e.g., Esterman, Noonan, Rosenberg, & 

DeGutis, 2013). Although fluctuations of attention are most commonly studied with simple 

RT paradigms, recent work has revealed that these fluctuations of attention also impact more 

complex processes, such as memory. For example, participants are less likely to remember 

items when they were encoded during a period of suboptimal attention (Aly & Turk-Browne, 

2016a, 2016b), and causally presenting items during periods of optimal attention increases 
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memory performance (deBettencourt, Norman, & Turk-Browne, 2017). In other words, 

attentional state has a strong influence on the fate of memories. Many synonymous terms 

have been used to describe fluctuations of attentional state in the literature (e.g., attentional 

control, executive attention). Throughout the article, we use the term “executive control” to 

refer to the allocation of central attentional resources to the task at hand.

In this work, we examined how fluctuations of attentional state may influence working 

memory performance. Most individuals are capable of storing around three to four simple 

items in visual working memory (Cowan, 2001; Luck & Vogel, 1997), but they frequently 

underperform this potential capacity (Adam, Mance, Fukuda, & Vogel, 2015). Critically, the 

rate of these working memory “failures” is strongly predictive of working memory capacity 

as a whole. A key question, then, is when and why working memory failures occur. During 

each trial of a working memory task, there are many aspects of task performance that could 

go awry. Participants must attend to the task at hand, encode and individuate items, store 

them, protect them from interference, and decide on a response. To test which aspects of task 

performance are disrupted during working memory failures, we took advantage of 

previously established ERPs and oscillatory markers of processes thought to be critical for 

successful working memory performance. Using these markers, we sought to identify the 

most critical aspects of task performance that are disrupted during working memory failures.

To perform poorly on a working memory test, it seems obvious that participants would fail 

to maintain working memory representations throughout the entire delay period. However, 

this is not necessarily the case. For example, participants could successfully maintain items 

during the retention period, but then experience interference or fail to retrieve this 

information at test (Souza, Rerko, & Oberauer, 2016; Harlow & Donaldson, 2013). To test 

whether items are dropped from working memory during maintenance on failure trials, we 

looked at the amplitude of the contralateral delay activity (CDA). The CDA is a measure of 

working memory storage, and it is measured in lateralized working memory tasks in which 

participants are asked to remember items in one visual hemifield and ignore items in the 

other visual hemifield. During the maintenance period, there is a sustained negativity in 

contralateral electrodes relative to ipsilateral electrodes. This negative difference is the CDA. 

The CDA tracks working memory load, becoming more negative in amplitude until hitting 

an asymptote around typical capacity estimates (Vogel & Machizawa, 2004). The CDA also 

correlates with individual differences in working memory performance (Luria, Balaban, 

Awh, & Vogel, 2016; Vogel, McCollough, & Machizawa, 2005), supporting its role as a 

relevant marker of both between- and within-subject variation in working memory 

maintenance. Thus, the CDA is widely believed to index the amount of information held in 

working memory on each trial. However, previous studies have lacked trial-by-trial 

resolution to see whether CDA is disrupted during momentary failures of working memory 

performance.

Maintenance is one critical aspect of working memory performance, but other stages of 

processing are also important. In addition to using the CDA to track whether working 

memory maintenance failures explain trial-bytrial fluctuations in working memory 

performance, we can also use established ERP markers to assess other aspects of task 

performance. For example, in lateralized working memory task designs, participants must 
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first use a cue to orient their attention to one side of the display. Then, they must select the 

relevant items from the cued side of the display. These two processes are reflected in the 

lateralized P1 component (e.g., Van Voorhis & Hillyard, 1977; for a review, see Mangun, 

1995) and the N2PC (e.g., Luck & Hillyard, 1990, 1994), respectively. Other processes of 

interest can be tracked with oscillatory markers. For example, theta power (4–7 Hz) at 

frontal electrodes is thought to covary with executive control processes (Cavanagh & Frank, 

2014) and is inversely correlated with activity in the default mode network (e.g., Scheeringa 

et al., 2008). In previous work, we found that low frontal theta power predicted poor 

working memory performance (Adam et al., 2015). Here, we sought to replicate this finding. 

Finally, alpha power (8–12 Hz) suppression in contralateral electrodes has previously been 

shown to track the locus of covert attention (e.g., Thut, Nietzel, Brandt, & Pascual-Leone, 

2006; Sauseng et al., 2005; Worden, Foxe, Wang, & Simpson, 2000). By examining alpha 

power suppression, we can test whether sustained covert attention before or during 

maintenance predicts fluctuations in working memory performance.

To preview results, we found that the amplitude of the CDA tracked working memory 

performance. When participants successfully recalled more items at test, the CDA amplitude 

was more negative. We also replicated previous findings that theta power (4–7 Hz) at frontal 

electrodes predicted working memory performance even before the memory array had 

appeared (Adam et al., 2015), implicating suboptimal executive control during working 

memory failures. Interestingly, however, some aspects of task performance were preserved 

during working memory failures. For example, participants still correctly oriented their 

attention to the cued side of the screen (lateralized P1) and strongly maintained covert 

attention to the attended side throughout the entire trial (lateralized alpha power 

suppression). Together, our results suggest a locus for working memory failures after 

encoding has occurred, during working memory maintenance. Our findings also support 

models that propose a tight link between the consistency of executive attention and working 

memory ability (e.g., Souza & Oberauer, 2017; Kane, Conway, Hambrick, & Engle, 2008).

Overview of Experiments

In two experiments, participants completed a lateralized whole-report task (e.g., Adam et al., 

2015; Huang, 2010) while EEG data were collected. In Experiment 1, we measured changes 

in performance and the CDA amplitude with set size. In Experiment 2, we held the memory 

set size constant at six items and measured trial-by-trial fluctuations in performance, 

lateralized ERP components, and oscillatory signals. In both experiments, participants also 

completed a separate behavioral color change detection task (e.g., Luck & Vogel, 1997) at 

the beginning of the experimental session.

These experiments replicate several findings from Adam et al. (2015) but also make novel 

contributions to our understanding of working memory failures. Here, we introduced 

balanced, lateralized displays that allowed us to exploit well-characterized ERP and 

oscillatory signals (lateralized P1, N2PC, CDA, and lateralized alpha). This updated task 

design allowed us to test whether working memory failures disrupted attentional orienting, 

item selection, item maintenance, and sustained spatial attention. We also assessed whether 

individual differences in the CDA correlated with behavior, and we put forth a novel 
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theoretical account of individual differences in CDA amplitude. Finally, we replicated 

analyses of global signals (frontal theta, global alpha, global P1) measured in Adam et al. 

(2015).

METHODS

Participants

Participants were recruited from the University of Oregon and surrounding community. All 

participants were between the ages of 18 and 35 years and had self-reported normal or 

corrected-to-normal visual acuity and normal color vision. All participants gave informed 

consent and completed the 3-hr session for $30 in compensation. A total of 31 participants 

(12 women, M = 22.0 years, SD = 3.7) participated in Experiment 1, and 48 participants (24 

women, M = 21.6 years, SD = 3.97) participated in Experiment 2. Three participants were 

excluded from Experiment 2 before artifact rejection (one had a missing behavior file, two 

left the session after a few blocks), leaving 45 participants with usable EEG data. 

Participants were excluded from Experiment 1 analyses if they had fewer than 75 trials in 

any set size condition after artifact rejection (remaining n = 29). Participants were excluded 

from Experiment 2 analyses if they had fewer than 40 trials per condition after artifact 

rejection (remaining n = 38).1 In Experiment 2, the two conditions of interest were “high 

performance” trials (>3 correct) and “low performance” trials (<3 correct). For combined 

experiment correlation analyses, participants were excluded if they were missing change 

detection data or if they had fewer than 75 trials per set size after artifact rejection (total n = 

72).

Stimuli

Stimuli were rendered using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997) and 

presented on a 17-in. cathode ray tube monitor. Participants were seated 100 cm from the 

screen, though a chin rest was not used so all visual angle calculations are approximate. In 

all experiments, participants remembered colored squares presented on a medium gray 

background (RGB = 127.5 127.5 127.5). Participants maintained fixation on a small black 

dot (0.12°). Colors of the squares were chosen from a pool of nine distinct colors: red (RGB 

= 255 0 0), green (0 255 0), blue (0 0 255), yellow (255 255 0), magenta (255 0 255), cyan 

(0 255 255), orange (255 128 0), white (255 255 255), and black (1 1 1). Each square 

subtended 1.2°, and there was a minimum distance requirement of at least 1.5 squares 

between the centroids of any two squares. Squares could appear anywhere within a portion 

of the display subtending 7.0° to the left or right of fixation and 5.2° above or below 

fixation. For the lateralized whole-report task, participants were cued to attend either the 

left- or right-half of the display before the onset of the memory array with a small pink and 

green diamond (inset of Figure 1). The diamond was approximately 0.2° tall by 0.4° wide 

and was presented 0.4° above the fixation cross.

1We also checked that the Experiment 2 accuracy effects survived when only participants with at least 75 trials per accuracy condition 
were included (the threshold for Experiment 1 exclusion). Although this resulted in a smaller number of participants (remaining n = 
21), the pattern of results was the same for all reported effects.
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Tasks

Discrete Whole-Report Task—The whole-report task was the primary task of interest 

while EEG data were recorded. Each trial began with a blank intertrial interval (500 msec) 

followed by a small diamond-shaped cue (1100 msec). Participants were instructed to direct 

their attention to the side of the display indicated by the green side of the diamond and to 

remember the items on that side. The cue stayed on the screen for the remainder of the trial. 

After the cue period ended, a memory array was presented (250 msec). The memory array 

contained an equal number of items on the cued side and the uncued side. Colors were 

chosen without replacement within each side (i.e., all cued colors were unique but might be 

repeated on the uncued side of the display). After encoding, participants remembered the 

items across a blank delay (1300 msec). At test, a 3 × 3 matrix of the nine possible colors 

was presented at the location of each item on both the attended and unattended side. 

Participants were instructed to click the color in each matrix corresponding to the color 

presented at the location. The response period ended after participants made a response for 

all items on the attended side. Participants clicked the mouse to initiate the beginning of the 

next trial.

Color Change Detection Task—We used a separate behavioral change detection task to 

measure participants’ working memory capacity. Each trial began with an intertrial interval 

of 1000 msec. Next, the memory array (three, six, or eight colored squares) appeared for 250 

msec; participants remembered the colors and locations of the squares for a blank delay of 

1000 msec. For set sizes 3 and 6, colors were chosen without replacement from the pool of 

nine colors. For set size 8, colors were chosen randomly from a doubled list of the colors 

(i.e., each color could be repeated up to one time in the array). After the blank delay, 

participants were presented with a probe at one of the remembered locations. On 50% of 

trials, the probe was the same color as the remembered item at that location (“no change” 

trials). On the other 50% of trials, the probe was a different color from the remembered item 

(“change” trials). Participants gave an unspeeded response; they were instructed to press the 

“Z” key for no-change trials and the “?” key for change trials. The next trial began 

immediately after participants responded.

Procedures

Session length was ~2.5 hr in Experiment 1 and ~3 hr in Experiment 2. Participants first 

completed 144 trials of the change detection task (48 trials each of set sizes 3, 6, and 8). 

Change detection data were not collected for one participant in Experiment 1. Partial change 

detection data were obtained for one participant in Experiment 2 because of a computer 

crash (108/144 trials). After beginning the EEG recording, participants did the whole-report 

task for the remainder of the session. Trials were self-paced and were collected in blocks of 

30 trials (10 trials each of set sizes 1, 3, and 6 in Experiment 1, 30 trials of set size 6 in 

Experiment 2). After each block, participants received a short break (~30 sec) before 

continuing. Participants completed an average of 21.1 blocks (SD = 5.3) in Experiment 1 

and 16.7 blocks (SD = 3.3) in Experiment 2.
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EEG Acquisition

Before completing the tasks, participants were fitted with an elastic cap with 20 electrodes 

(ElectroCap International, Eaton, OH). We recorded from International 10/20 sites F3, Fz, 

F4, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, O1, and O2 along with five nonstandard sites: OL 

midway between T5 and O1, OR midway between T6 and O2, PO3 midway between P3 and 

OL, PO4 midway between P4 and OR, and POz midway between PO3 and PO4. All sites 

were recorded with a right mastoid reference, and the data were rereferenced offline to the 

algebraic average of the left and right mastoids. Horizontal EOG (HEOG) was recorded 

from electrodes placed about 1 cm from the left and right of the external canthi of each eye 

to measure horizontal eye movements. To detect blinks, vertical EOG was recorded from an 

electrode mounted beneath the right eye. The EEG and EOG signals were amplified with an 

SA Instrumentation amplifier (Fife, Scotland) with a band-pass of 0.01–80 Hz and were 

digitized at 250 Hz in Labview 6.1 (Fife, Scotland) running on a PC. EEG activity was 

collected during the discrete whole-report task only.

EEG Analysis

Artifact Rejection—Participants were instructed not to move their eyes or blink during 

the trial until the test array appeared on the screen. Trials including horizontal eye 

movements, blinks, blocking (amplifier saturation after drift), or excessive noise were 

rejected. For horizontal eye movement rejection, we used a split-half sliding window 

approach (window size = 200 msec, step size = 10 msec, threshold = 20 µV) on the HEOG 

signal. We slid a 200-msec time window in steps of 10 msec from the beginning to the end 

of the trial. If the change in voltage from the first half to the second half of the window was 

greater than 20 µV, it was marked as an eye movement and rejected. We also used a sliding 

window step function to check for blinks in the vertical EOG (window size = 200 msec, step 

size = 10 msec, threshold = 50 µV). For blocking rejection, we slid a 200-msec time window 

in steps of 50 msec and excluded trials for blocking if any EEG electrode had at least 15 

consecutive time points (i.e., 60 msec) that were within 1 µV of each other. We excluded 

trials for excessive noise if any electrode had peak-to-peak amplitude greater than 200 µV 

within a 15-msec time window. Finally, we visually inspected the data to confirm automatic 

rejection criteria.

ERPs—For ERP analyses, we baselined the signal over the 200 msec before the time-

locking event (onset of the memory array). Lateralized waveforms were built by subtracting 

the average of the ipsilateral electrodes from the average of the contralateral electrodes. 

Lateral-occipital and posterior-parietal electrodes used for lateralized waveforms were O1, 

O2, OL, OR, P3, P4, PO3, PO4, T5, and T6. Statistics were performed on the baselined, 

unfiltered data. For visualization purposes, trials were low-pass filtered with a two-way least 

squares finite impulse response filter (eegfilt.m; Delorme & Makeig, 2004) with a cutoff of 

30 Hz.

Time–Frequency Analyses—For time–frequency analyses, we bandpass-filtered the raw 

EEG using a two-way, least squares finite impulse response filter using the eegfilt.m 
function from the EEGLAB Toolbox (Delorme & Makeig, 2004) and applied the MATLAB 

Hilbert transform (hilbert.m) to extract the instantaneous power values for the theta band (4–
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7 Hz) and the alpha band (8–12 Hz). Percent change in power was calculated relative to a 

baseline period before the onset of the cue (−1500 to −1100 msec relative to memory array 

onset). Electrodes for frontal theta and posterior alpha were chosen a priori from the 

literature (Adam et al., 2015; Fukuda, Mance, & Vogel, 2015). Frontal theta was calculated 

as the average of theta power in the electrodes F3, F4, and Fz. Lateralized alpha power was 

calculated by subtracting the percent change waveform for ipsilateral electrodes from the 

percent change waveform for contralateral electrodes. Lateral occipital and posterior parietal 

electrodes used for lateralized alpha power were the same as for the CDA: O1, O2, OL, OR, 

P3, P4, PO3, PO4, T5, and T6.

Change Detection Performance

Change detection performance was converted into a capacity estimate (“K”) for each set size 

in the change detection task, following the formula K = N × (H − FA), where N represents 

the set size, H is the hit rate (proportion of correct change trials), and FA is the false alarm 

rate (proportion of incorrect no-change trials). This formula (Cowan, 2001) is most 

appropriate for single-probe displays like the ones used here (Rouder, Morey, Morey, & 

Cowan, 2011). Average change detection performance (mean K) was calculated as the 

average of performance for all set sizes (three, six, and eight items).

RESULTS

Behavioral Results

Mean performance on the change detection and discrete whole-report tasks was similar to 

prior studies (e.g., Adam et al., 2015; Luck & Vogel, 1997) and is shown in Figure 2. 

Average change detection capacity (K ) was 2.62 (SD = 1.00, range = 0.83–4.54]) in 

Experiment 1 and 2.64 (SD = .70, range = 1.13–4.40) in Experiment 2. In Experiment 1, 

participants reported 0.95 (SD = 0.04) items correct for set size 1, 2.41 (SD = 0.33) items 

correct for set size 3, and 2.53 (SD = 0.53) items correct for set size 6. In Experiment 2, 

participants correctly reported on average 2.64 items (SD = 0.35, range = 1.95–3.55) out of 

6. In both experiments, average whole-report performance was positively correlated with 

average change detection K (r = .59, p = .001 in Experiment 1; r = .34, p = .04 in 

Experiment 2).

Electrophysiological Results

Experiment 1: Replication of Neural Correlates of Set Size—First, we examined 

typical neural correlates of set size in our whole-report working memory task. We found that 

markers of working memory storage as well as covert attention tracked set size in the whole-

report task (Figure 3). We examined CDA amplitude as a marker of storage and N2PC 

amplitude as a measure of selection. The N2PC (200–300 msec) became more negative with 

set size, F(2, 56) = 18.89, p < .001, ηp
2 = .40, and reached an asymptote between three and six 

items (p = .23). Likewise, CDA amplitude (400–1500 msec) became more negative with set 

size,2 F(1.67, 46.51) = 25.10, p < .001, ηp
2 = .47, and reached an asymptote between three 

2Greenhouse–Geisser corrected values are reported wherever the assumption of sphericity is violated.

Adam et al. Page 7

J Cogn Neurosci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and six items (difference between set size 3 and 6, p = .79). Thus, our novel whole-report 

demands did not alter the typical pattern of results observed in change detection studies.

Next, we examined changes in alpha power suppression as a function of set size. Lateralized 

alpha power suppression (contralateral–ipsilateral) has been shown to index the deployment 

of covert spatial attention to one side of the display (e.g., Worden et al., 2000). Independent 

of this signal, global alpha power suppression (across all posterior electrodes) has been 

shown to covary with working memory load (Fukuda, Kang, & Woodman, 2016). We tested 

whether one or both of these signals would covary with set size in Experiment 1. To do so, 

we ran a repeated-measures ANOVA with the factors Hemifield (contralateral vs. ipsilateral) 

and Set size (1, 3, or 6) for both pretrial lateralization of alpha power (−1100 to 0 msec) and 

delay period lateralization of alpha power (400–1500 msec). During the pretrial cue period, 

alpha power was significantly lateralized as shown by a significant effect of Hemifield, F(1, 

28) = 26.94, p < .001, ηp
2 = .49. As expected, there was no pretrial effect of Set size on alpha 

power (p = .73) or an interaction between Set size and Hemifield (p = .48). During the delay 

period, there was a main effect of Hemifield, indicating systematic lateralization of alpha 

power, F(1, 28) = 9.68, p = .004, ηp
2 = .26. We also found a main effect of Set size on alpha 

power across all electrodes, F(1.4, 39.2) = 7.36, p = .005, ηp
2 = .21, consistent with previous 

work demonstrating that global alpha power is more suppressed for higher set sizes during 

visual working memory tasks (Fukuda et al., 2015). Finally, we also observed an interaction 

between Set size and Hemisphere, F(1.34, 37.48) = 5.87, p = .013, ηp
2 = .17, indicating that 

alpha power was more lateralized for higher set sizes. Post hoc comparisons revealed that 

the difference between contralateral and ipsilateral alpha power was significantly smaller for 

set size 1 compared with set size 3 (p = .01), but not for set size 3 to set size 6 (p = .51). In 

summary, we replicated the finding that global alpha power suppression tracks memory load 

(Fukuda et al., 2015, 2016). In addition, we found that participants sustained their covert 

attention (lateralized alpha power suppression) throughout the memory delay, but did so less 

strongly for subcapacity set size 1 arrays. This finding is consistent with Sauseng et al. 

(2009) but inconsistent with Fukuda et al. (2016), who found no effect of memory load on 

lateralization of alpha power.

Experiment 2: Neural Correlates of Trial-by-trial Fluctuations in Performance—
In Experiment 2, we examined predictors of performance rather than of set size. Critically, if 

poor performance effectively modulates working memory load (e.g., fewer items were 

stored), then we would predict that correlates of performance fluctuations should be similar 

to correlates of set size. If instead working memory failures are primarily caused by errors at 

the retrieval or decision stage, then poor performance should not covary with markers of 

storage. To examine predictors of trial-by-trial performance, we analyzed the difference 

between “good” trials (four or more items correct) and “poor” trials (two or fewer items 

correct). This specific behavioral threshold was chosen for a couple of reasons. First, 

because participants are required to report all of the items, they will sometimes get 

additional items correct by chance; eliminating the middle category (three correct) 

minimizes the overlap between the “good” and “poor” categories. Second, we wanted the 

current results to be directly comparable to earlier work on this topic (Adam et al., 2015).
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First, we examined whether participants successfully stored items throughout the working 

memory delay period, using CDA amplitude as a proxy for successful storage. The CDA 

(400–1500 msec) discriminated between good and poor performance trials, t(37) = 2.81, p 
= .008, 95% CI [.08, .48], indicating that participants successfully maintained fewer items 

when working memory performance was poor (Figure 4A). The change in CDA amplitude 

across good and poor trials could not be explained by a decrease in eye movement artifacts. 

There was no main effect of behavioral performance on HEOG amplitude during the delay 

period (p = .42). In addition, there was no difference in artifact rejection rates for good 

performance trials relative to poor performance trials (p = .84). Consistent with previous 

work (Adam et al., 2015), this suggests that participants were no more likely to be task-

noncompliant (e.g., blinking during the memory array) during poor performance trials.

One potential explanation for smaller CDA amplitude during poor performance trials is that 

participants were completely disengaged from the task at hand. If disengaged from the task, 

participants may have failed to use the spatial cue altogether or mistakenly attended the 

wrong side of the display. To test whether participants were wholly disengaged, we looked at 

markers of early attentional selection and individuation, the lateralized P1 component and 

the N2PC component. If participants did not selectively attend to the cued side during 

working memory failures, we would expect to see a diminished lateralized P1 component 

(70–120 msec). If participants also selected fewer items on the correct side, we should also 

see a diminished N2PC response (200–300 msec). Somewhat surprisingly, we found that 

attentional orienting and selection were preserved during poor performance trials (Figure 5). 

A repeated-measures ANOVA with the factors Hemifield (contralateral vs. ipsilateral) and 

Memory performance (good vs. poor) revealed that the P1 component was significantly 

lateralized overall, as indicated by a main effect of Hemifield, F(1, 37) = 15.8, p < .001, 

ηp
2 = .30. However, there was no interaction between Hemifield and Performance, indicating 

no difference in lateralized P1 amplitude for good versus poor performance trials, F(1, 37) = 

1.04, p = .32, ηp
2 = .027. In addition, there was no main effect of performance on global PI 

amplitude, F(1, 37) = .014, p = .91, ηp
2 < .001. Likewise, the N2PC time window was 

significantly lateralized overall, F(1, 37) = 9.07, p = .005, ηp
2 = .20, but there was no 

interaction between Lateralization and Performance, F(1, 37) = 2.03, p = .16, ηp
2 = .05. In 

summary, early attentional selection did not predict fluctuations in working memory 

performance.

Next, we checked whether a sustained measure of covert attention might be more sensitive 

to fluctuations in spatial attention. The P1 component is relatively transient; it only briefly 

measures the allocation of attention at the moment a stimulus is presented. To look at 

sustained spatial attention, we used lateralized alpha power. Lateralized alpha power 

suppression tracks the location of covert attention in a sustained, fine-grained fashion (e.g., 

Foster, Sutterer, Serences, Vogel, & Awh, 2017). Using lateralized alpha power suppression, 

we found that sustained spatial attention did not track trial-by-trial fluctuations in working 

memory performance (Figure 4B). Although participants successfully maintained spatial 

attention to the cued side, as indicated by significant overall lateralization of alpha power, 

Adam et al. Page 9

J Cogn Neurosci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this lateralization was not different for poor and good performance trials in either the pretrial 

period or the delay period. To determine this, we again ran a repeated-measures ANOVA 

with the factors Hemifield (contralateral vs. ipsilateral) and Performance (high or low) for 

both pretrial lateralization of alpha power (−1100 to 0 msec) and delay period lateralization 

of alpha power (400–1500 msec). We found a significant main effect of Hemifield in both 

the pretrial period, F(1, 37) = 20.2, p < .001, ηp
2 = .35, and the delay period, F(1, 37) = 13.8, 

p = .001, ηp
2 = .27. However, there was no interaction between Hemifield and Performance, 

indicating a similar degree of lateralization for both good and poor performance trials during 

both the cue period, F(1, 37) = 1.73, p = .20, ηp
2 = .05, and the delay period, F(1, 37) = .64, p 

= .43, ηp
2 = .02.

We next examined whether global alpha suppression, another proposed marker of working 

memory storage, tracked working memory performance. We looked at both pretrial cue 

period activity and retention interval activity, all baselined to before the cue (−1500 msec to 

−1100 msec). There was no main effect of Performance on global alpha power during the 

pretrial cue period, F(1, 37) ≤ .001, p = .99, ηp
2 ≤ .001, but a trending effect during the delay 

period, F(1, 37) = 3.71, p = .06, ηp
2 = .09, in the predicted direction (greater global alpha 

suppression for greater number of items remembered). Because there were no significant 

pretrial effects, we rebaselined to eliminate noise during the long cue period; by baselining 

far in advance of the memory array, we may have introduced more noise to estimates of 

memory array-related activity. With a clean baseline closer to the memory period (−1500 to 

−100 msec), we found a significant effect of performance on global alpha power during the 

retention interval, F(1, 37) = 9.22, p = .004, ηp
2 = .84, but no interaction between 

lateralization and performance, p = .85. These results are consistent with prior work 

emphasizing the dissociation between global and lateralized measures of working memory 

performance (Fukuda et al., 2016). Global alpha power during the delay period is thought to 

track working memory load, with lower alpha power corresponding to higher memory load. 

Consistent with our CDA measure of decreased storage during poor performance trials, 

global alpha power was higher for poor performance trials. On the other hand, lateralized 

alpha power suppression is thought to track the allocation of sustained spatial attention, and 

this separate aspect of alpha power did not track fluctuations in working memory success.

Finally, we examined whether fluctuations in executive control may underlie fluctuations in 

working memory storage. Previous work (Adam et al., 2015) found that pretrial frontal theta 

power predicted trial-by-trial working memory performance. Here, we replicated the finding 

that frontal theta power 500 to 100 msec before stimulus onset predicted working memory 

performance, t(37) = −2.94, p = .006, 95% CI [−14.28, −2.63], and this difference persisted 

during the memory delay period (400–1500 msec), t(37) = −3.07, p = .004, 95% CI [−12.88, 

−2.64] (Figure 6). Thus, even before the memoranda had been presented for encoding, this 

frontal theta power differentiated poor trials from good trials.

Across Experiments: CDA Predicts Individual Differences in Working Memory 
Performance—In addition to between-subject effects, we replicated the finding that 
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overall CDA amplitude for set size 6 predicted individual differences in working memory 

performance (Figure 7). CDA amplitude predicted whole-report performance during EEG 

acquisition (r = −.26, p = .028) as well as performance on a separate color change detection 

task (r = −.27, p = .023). The magnitude of these effects is relatively small, but consistent 

with previously observed effects in the literature (Unsworth, Fukuda, Awh, & Vogel, 2015). 

Also note that the correlation between behavior and a CDA amplitude for a single set size 

appears to be smaller than the difference in CDA amplitude between set sizes (Luria et al., 

2016). On the basis of previous findings by Unsworth and colleagues (2015), the expected 

correlation strength between color change detection performance and set size 6 CDA 

amplitude is −.33. With 72 participants, we should have had been able to detect this expected 

effect with power (1 − β) of .90 (calculated using G*Power 3.1; Faul, Erdfelder, Buchner, & 

Lang, 2009).

DISCUSSION

Failures of attention are ubiquitous and can have profound consequences on nearly every 

aspect of cognition (Unsworth & Robison, 2016; Esterman, Rosenberg, & Noonan, 2014; 

Unsworth & McMillan, 2014a, 2014b; Reason, 1984). Although it is clear that attentional 

fluctuations impact many behavioral outcomes, we still have relatively poor understanding 

of the specific cognitive processes they disrupt. Here, we examined which subprocesses of 

working memory performance were disrupted during performance failures (i.e., trials where 

the participant performs poorly on the working memory task).

First, we found that the CDA, a neural measure of ongoing working memory maintenance, 

was sensitive to fluctuations in performance. In addition to tracking within-subject 

fluctuations in performance, the CDA also significantly predicted individual differences in 

working memory capacity. This is consistent with previous work (Unsworth et al., 2015) and 

also hints at an underlying explanation for the correlation between raw CDA amplitude and 

working memory capacity. Namely, individual differences in CDA amplitude may be related 

to individual differences in the consistency of storage. In this view, individuals with larger 

CDA amplitude more consistently fill their capacity, whereas individuals with smaller CDA 

amplitude more frequently have storage failures.

Similar to our CDA results, McCollough, Machizawa, and Vogel (2007) found that change 

detection error trials had smaller amplitude CDA than correct change detection trials, though 

they lacked a fine-grained behavioral measure of precisely how much information the 

participant could recall on incorrect trials. For example, because change detection probes 

only one location, an “incorrect” trial could represent many different levels of task 

performance: from trials where participants stored nothing at all to trials where participants 

performed well (e.g., four items correct) but were probed on an item they did not store. By 

instead having participants report all items in the array, we had better resolution to 

distinguish between these very different cognitive states.

Together, our key CDA results suggest that participants experience storage failures during 

poor performance trials and that failures cannot be fully explained by retrieval failures or 

interference at test. Because we did not examine a proposed neural measure of retrieval 
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failures, we cannot dismiss the possibility that retrieval failures and misbinding (Bays, 

Catalao, & Husain, 2009) may explain an additional portion of working memory failures. 

Future work will be needed to determine the relative contribution of each of these processes.

We found that some aspects of task performance were impaired (e.g., executive control), but 

others were preserved (e.g., covert spatial attention). Before the onset of the memoranda, 

decreased frontal theta power predicted poor performance. In the context of our whole-report 

task, elevated frontal theta power before stimulus onset suggests that participants proactively 

increased executive control to better deal with the challenging task demands of individuating 

and storing items. This finding replicated our own previous work (Adam et al., 2015) and is 

also in line with other areas of the literature suggesting that frontal theta power is a marker 

of executive control (Cavanagh & Frank, 2014; Scheeringa et al., 2008) and is implicated in 

the success of both working and episodic memory (Hsieh & Ranganath, 2014; Itthipuripat, 

Wessel, & Aron, 2013). However, other key aspects of task performance did not differentiate 

between poor and good performance trials. Participants continued to correctly orient to the 

cued side of the display (lateralized P1), and they sustained covert attention to the 

remembered side throughout the entire memory delay period (lateralized alpha power 

suppression). Similarly, previous work has found that separable aspects of attentional control 

predict working memory performance. For example, Unsworth and Robison (2016) found 

that mind-wandering frequency and filtering ability both predicted individual differences in 

working memory capacity, yet mind-wandering and filtering were dissociable predictors.

Lateralized alpha power produced seemingly inconsistent results across the two experiments, 

and we would like to briefly discuss this particular result. In Experiment 1, we found less 

lateralization of alpha power for set size 1 relative to the other set sizes (3 and 6), suggesting 

that this signal might covary with working memory load. However in Experiment 2, there 

was no difference in alpha power lateralization for high versus low working memory 

performance trials, despite differences in two separate markers of working memory load 

(CDA and global alpha power). Thus, the effects of working memory load on alpha power 

lateralization were ambiguous. Indeed, load-dependent effects on lateralization of alpha 

power have only been inconsistently observed in the literature (Sauseng et al., 2009, vs. 

Fukuda et al., 2016). Furthermore, in this study we cannot rule out a confounding factor. In 

the only condition where we observed decreased alpha power lateralization (set size 1), there 

was no need to bind the color information to the space information. As such, a decrease in 

alpha power lateralization may be limited to this particular case rather than representing a 

true load-dependent signal. Future work is needed to establish the consistency and reliability 

of load-dependent alpha lateralization effects.

The present results replicate key features of previous work (Adam et al., 2015) but also 

provide novel insights into the mechanisms underlying failures of working memory 

performance. We replicated the findings that pretrial theta power was significantly lower 

during failures trials, that early visual processing (global P1) did not predict working 

memory failures, and that stimulus-locked global alpha power was less suppressed during 

failures. In addition to directly replicating past work, the current work sheds new light on 

cognitive processes contributing to working memory failures. By employing a balanced, 

lateralized design, we were able to take advantage of well-characterized ERP and oscillatory 
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signals. With this design, we found that participants maintained fewer items during failure 

trials (indexed by a smaller CDA) despite successfully orienting attention to the cued side 

(lateralized P1), individuating items (N2PC), and sustaining attention to the cued side 

(lateralized alpha power). The finding that some cognitive processes are preserved whereas 

others are impaired suggests potential avenues for behavioral interventions and real-time 

neural feedback.

Recently, the importance of fluctuations in executive control for working memory 

performance has also been corroborated by work using pupillometry. It has long been known 

that pupil dilation tracks working memory load, but recent work has additionally shown that 

pretrial pupil dilation predicts fluctuations in working memory success (Unsworth & 

Robison, 2015). Unsworth and Robison found that error trials were preceded by smaller 

pupil dilation relative to accurate trials. Individual differences also covaried with pupil 

dilation; individuals with lower working memory capacity had more variable pupil dilation 

during the pretrial period, indicating that they less consistently maintained high levels of 

executive control throughout the task. In summary, these pupillometry results corroborate an 

account whereby shifts in attentional state (and perhaps general arousal) impact working 

memory success. Our findings are consistent with these pupillometry results but offer better 

temporal resolution and insight into specific processes that are disrupted during working 

memory failures.

Individual differences in working memory capacity are reliable (Xu, Adam, Fang, & Vogel, 

2017; Beckmann, Holling, & Kuhn, 2007; Klein & Fiss, 1999) and predict important higher-

order cognitive abilities like fluid intelligence. As such, better understanding individual 

differences in capacity has been a long-standing goal of working memory research. Our 

work makes a key advance toward this goal. Individual differences in working memory 

capacity are typically conceptualized as individual differences in the ceiling of working 

memory performance (i.e., the largest array that may be perfectly stored), but our work 

suggests that the consistency of working memory performance is the key defining feature of 

individual differences. This view is corroborated by previous work and models of individual 

differences in working memory capacity. First, participants with low working memory 

capacity have particular deficits in excluding irrelevant information from working memory 

(Awh & Vogel, 2008; Vogel et al., 2005). Second, there is a strong relationship between 

working memory and attentional control (e.g., Unsworth, Fukuda, Awh, & Vogel, 2014). 

Indeed, previous models of working memory have proposed that variation in working 

memory performance is largely due to variation in executive control (e.g., Kane et al., 2008; 

Engle & Kane, 2004; Kane & Engle, 2002). Our findings support these models of individual 

differences and suggest that the consistency of executive control is key for working memory 

success.
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Figure 1. 
Trial events in Experiment 1 and Experiment 2. Trial events are depicted from left to right. 

In Experiment 1, the memory array could contain one, three, or six items. In Experiment 2, 

the memory array always contained six items.
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Figure 2. 
Behavioral performance in Experiment 1 (A) and Experiment 2 (B). Error bars represent 1 

SEM.
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Figure 3. 
CDA (A) and lateralized alpha power (B) as a function of set size in Experiment 1. Shaded 

error bars represent 1 SEM. During the delay period (400–1500 msec), CDA and lateralized 

alpha power both tracked memory load.
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Figure 4. 
CDA (A) and lateralized alpha power (B) as a function of accuracy in Experiment 2. Shaded 

error bars represent 1 SEM. During the delay period (400–1500 msec), CDA tracked 

variability in memory performance but lateralized alpha power did not.
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Figure 5. 
Bar graph of the lateralized ERP components in Experiment 2. The lateralized P1 (A) and 

N2PC (B) components were significantly larger than 0 but did not differ as a function of trial 

accuracy, indicating that participants attended the correct side of the memory array even 

during poor performance trials. On the other hand, CDA amplitude (C) was smaller for poor 

performance trials, indicating that participants successfully maintained fewer items. Error 

bars represent 1 SEM.
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Figure 6. 
Frontal theta power as a function of trial accuracy in Experiment 2. Frontal theta power 

tracked trial-by-trial fluctuations in working memory performance, both during the pretrial 

period (−500 to 0 msec) and during the retention interval (400–1500 msec). Shaded error 

bars represent 1 SEM.
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Figure 7. 
Individual differences in set size 6 CDA amplitude indexed behavior. Set size 6 CDA 

amplitude correlated both with performance on set size 6 trials during the EEG recording 

(left) as well as for a separate change detection estimate of capacity (right). The correlation 

includes all participants from Experiments 1 and 2 with at least 100 set size 6 trials (n = 72).
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