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Abstract	
 
Understanding	the	nature	and	form	of	prefrontal	cortex	representations	that	support	flexible	
behavior	 is	an	 important	open	problem	in	cognitive	neuroscience.	 In	humans,	multi-voxel	
pattern	 analysis	 (MVPA)	 of	 fMRI	 BOLD	 measurements	 has	 emerged	 as	 an	 important	
approach	for	studying	neural	representations.	An	implicit,	untested	assumption	underlying	
many	PFC	MVPA	studies	is	that	the	base	rate	of	decoding	information	from	PFC	BOLD	activity	
patterns	is	similar	to	that	of	other	brain	regions.	Here	we	estimate	these	base	rates	from	a	
meta-analysis	of	published	MVPA	studies	and	show	that	 the	PFC	has	a	significantly	 lower	
base	 rate	 for	 decoding	 than	 visual	 sensory	 cortex.	 Our	 results	 have	 implications	 for	 the	
design	 and	 interpretation	 of	 MVPA	 studies	 of	 prefrontal	 cortex,	 and	 raise	 important	
questions	about	its	functional	organization.	
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Introduction	
	
The	 prefrontal	 cortex	 supports	 flexible,	 goal-directed	 behavior.	 Patients	 with	 frontal	 lobe	
lesions	 struggle	 to	 coherently	 organize	 their	 behavior	 around	 a	 goal	 and	 show	 reduced	
flexibility	in	changing	circumstances	1-3.	Theories	of	prefrontal	cortex	function	emphasize	its	
role	in	representing	task-relevant	variables	like	rules,	goals,	rewards,	action	choices,	etc.	during	
task	performance	4-10.	These	task	representations	are	hypothesized	to	serve	as	a	source	of	top-
down,	contextual	signals	that	bias	processing	in	other	brain	regions,	thus	achieving	cognitive	
control.	Understanding	the	nature	and	form	of	prefrontal	representations	remains	a	key	open	
problem	in	the	study	of	cognitive	control,	learning,	generalization,	multi-tasking	and	decision	
making	11-16.		
	
Much	 of	 our	 knowledge	 of	 prefrontal	 representations	 derives	 from	 single-neuron	
electrophysiology	 conducted	 in	 highly	 trained	 non-human	 primates.	 Such	 studies	 have	
consistently	revealed	rich	coding	of	a	variety	of	task-relevant	information	in	the	firing	rate	of	
individual	prefrontal	neurons	17-21,	the	activity	patterns	of	ensembles	of	neurons	22-26	and	in	
oscillatory	synchronization	of	local	field	potentials	27.	
	
In	humans,	blood-oxygenation-level	dependent	 (BOLD)	measures	 from	 functional	MRI	were	
traditionally	 seen	 as	 lacking	 the	 sensitivity	 and	 spatial	 resolution	 for	 the	 study	 of	 neural	
information	 coding	 28.	 In	 the	 past	 decade,	 however,	 this	 view	 has	 been	 challenged	 by	 the	
development	of	sensitive	multivariate	pattern	analysis	(MVPA)	methods	that	employ	powerful	
machine	learning	pattern	classifiers	to	decode	the	information	content	of	spatially	distributed	
BOLD	activity	patterns	29-35.	MVPA	has	been	applied	to	fMRI	data	from	all	over	the	brain,	and	
the	 prefrontal	 cortex	 is	 no	 exception.	 Several	 studies	 have	 reported	 statistically	 reliable	
classification	 of	 task	 rule	 and	 other	 task-relevant	 variables	 from	 regions	 within	 prefrontal	
cortex	36-41.		
	
An	 implicit	 assumption	 in	many	MVPA	 studies	 is	 that	 the	 function	 relating	 the	 information	
content	 of	 BOLD	 patterns	 with	 the	 information	 content	 of	 underlying	 neuronal	 activity	 is	
invariant	across	different	parts	of	the	brain.	In	other	words,	all	regions	have	similar	base	rates	
for	decoding	information	from	BOLD	patterns,	to	the	degree	that	it	is	encoded	in	the	underlying	
neuronal	 activity.	 For	 example,	 this	 assumption	 underlies	 analyses	 comparing	 decoding	
accuracies	 obtained	 from	different	 brain	 regions,	 or	 those	 that	 employ	 roving,	whole	 brain	
‘searchlights’	to	discover	local	regions	that	may	carry	such	information.	However,	this	remains	
an	 untested	 assumption.	 Indeed,	 the	 base	 rate	 for	 any	 brain	 region	 likely	 depends	 on	
interactions	 between	 the	 underlying	 micro-anatomy,	 neuro-vascular	 coupling	 and	 the	 raw	
signal-to-noise	ratio,	all	of	which	may	vary	across	regions.	
	
For	 the	 prefrontal	 cortex,	 in	 particular,	 there	 is	 an	 impression	 among	 researchers	 with	
experience	using	MVPA	that	decoding	information	from	BOLD	patterns	is	particularly	difficult.	
Despite	the	sensitivity	of	MVPA,	typical	group-mean	classification	accuracies	reported	in	fMRI	
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studies	of	PFC	decoding	often	hover	just	above	chance	levels	(e.g.	values	of	53%,	55%	and	55%	
reported	 in	 Nelissen,	 et	 al.	 42,	 Woolgar,	 et	 al.	 37,	 and	 Bode	 and	 Haynes	 38	 for	 two-way	
classifications),	even	for	task	features	like	rules	that	are	known	to	be	robustly	represented	by	
the	 activity	 of	 prefrontal	 neurons	 in	 non-human	 primates	 20,22,23,43-46.	 Consistently	 low	
classification	accuracies	hint	at	a	low	base	rate	for	decoding	information	from	prefrontal	BOLD	
patterns.	A	low	base	rate	may	result,	in	part,	from	methodological	factors,	and	in	that	case,	it	
would	be	useful	to	know	what	these	factors	are.	Alternatively,	a	low	base	rate	may	raise	the	
possibility	that	the	prefrontal	BOLD	signal	itself	may	not	adequately	capture	the	information	
encoded	 in	 the	 spiking	 activity	 of	 prefrontal	 neurons.	 Such	 an	 observation	 would	 raise	
interesting	 theoretical	questions	about	why	and	how	prefrontal	cortical	coding	differs	 in	 its	
type	and	organization	from	other	parts	of	the	brain	with	higher	base	rates.		
	
A	low	base	rate	would	also	have	implications	for	experimental	design	and	inference.	First,	while	
a	low	base	rate	does	not	necessarily	imply	a	small	effect	size	(i.e.	a	low	decoding	accuracy	may	
nevertheless	be	reliably	different	from	chance),	detecting	a	small	difference	would	require	that	
prefrontal	MVPA	 studies	 be	well	 powered.	 Second,	 a	 systematically	 lower	 base	 rate	 in	 PFC	
would	 complicate	 the	 interpretation	of	 comparisons	with	other	brain	 regions,	which	would	
require	a	consideration	of	the	underlying	base	rates	of	each	region.		
	
In	this	paper,	we	empirically	test	the	assumption	that	the	base	rate	of	decoding	information	
from	 PFC	 is	 similar	 to	 other	 brain	 regions.	 To	 this	 end,	we	 carried	 out	 a	 systematic	meta-
analysis	of	published	fMRI	studies	of	prefrontal	cortex	that	employed	MVPA.	From	this	analysis,	
we	estimate	the	base	rate	of	decoding	information	from	prefrontal	cortex	BOLD	patterns	and	
compare	 it	 to	 base	 rates	 obtained	 from	 visual	 cortex	 and	 mid-temporal	 regions.	 We	 also	
determine	the	distribution	of	classification	accuracies	obtained	for	‘significant’	and	‘null’	effects	
in	 PFC	 and	 ask	 to	 what	 extent	 they	 overlap.	 Based	 on	 estimates	 of	 typical	 classification	
accuracies	 from	 these	 distributions,	 we	 also	 consider	 whether	 published	 studies	 typically	
collect	 sufficient	 data	 in	 order	 to	 detect	 small	 differences	 in	 decoding	 accuracy.	 Finally,	we	
identify	studies	that	have	achieved	considerably	better-than-average	classification	accuracies	
and	ask	whether	they	are	associated	with	particular	sub-regions	of	prefrontal	cortex,	particular	
task	features	or	particular	analysis	methods.		
	
Collectively,	our	results	show	that	the	base	rate	of	decoding	information	from	PFC	is	just	above	
chance	levels,	is	systematically	lower	than	other	regions,	and	appears	to	be	largely	consistent	
across	various	methodological	approaches.	We	conclude	by	considering	the	potential	reasons	
for	this	low	base	rate	of	prefrontal	classification.		
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Results	

Typical	decoding	performance	in	prefrontal	cortex	is	low	
We	leveraged	our	meta-analysis	of	published	studies	to	approximately	estimate	the	base	rate	
of	decoding	information	from	PFC	cortical	BOLD	patterns.	To	this	end,	we	compiled	all	two-
way,	group-level	mean	classification	accuracies	reported	across	the	76	studies	in	our	database.	
The	 resulting	distribution	 is	 an	 estimate	of	 the	 sampling	distribution	of	mean	 classification	
accuracies	 for	decoding	 information	 from	PFC	BOLD	patterns.	The	mean	of	 this	distribution	
was	57.7%	(95-CI:	56.3-59.2%),	though	we	observed	a	skew,	so	that	more	than	63.1%	of	the	
accuracies	were	 below	 the	mean.	 Therefore,	we	 employed	 the	median	 as	 a	measure	 of	 the	
central	tendency,	arriving	at	a	base	rate	of	55.7%	(95-CI:	55.0-57.0%).	For	comparison,	we	also	
derived	base	rates	for	decoding	visual	information	from	occipital	and	temporal	cortex	BOLD	
patterns.	These	were	computed	from	meta-analytic	data	previously	compiled	by	Coutanche	and	
colleagues47.	Compared	to	prefrontal	cortex	base	rates,	both	the	occipital	and	temporal	cortex	
(median)	base	rates	were	significantly	higher	at	66.6%	(95-CI:	61.5-72%)	and	71.0%	(95-CI:	
68.0-75.0%)	respectively.		
	
MVPA	 studies	 of	 occipital	 and	 ventral	 temporal	 cortex	 focus	 exclusively	 on	 decoding	
information	about	visual	stimulus	attributes.	This	is	because	overwhelming	evidence	supports	
a	strong	prior	for	the	hypothesis	that	the	human	occipital	and	ventral	temporal	cortices	code	
for	 visual	 information.	 On	 the	 other	 hand,	 prefrontal	 MVPA	 analyses	 spanned	 attempts	 to	
decode	a	wide	variety	of	information,	reflecting	a	much	less	constrained	hypothesis	space	for	
what	information	is	represented	in	PFC.	To	control	for	this	difference,	we	focused	on	a	subset	
of	311	analyses	 in	our	database	of	prefrontal	MVPA	studies	 that	 attempted	 to	decode	 “rule	
information”.	Well-established	deficits	in	rule-guided	behavior	have	been	linked	to	prefrontal	
dysfunction	48-52	and	have	been	attributed	to	a	loss	of	the	ability	to	represent	rules	in	working	
memory	 7.	 Moreover,	 there	 is	 strong	 evidence	 from	 macaque	 electrophysiology	 that	 the	
prefrontal	neurons	code	for	task	rules	20,22,23,43-46,53.	Therefore,	it	is	reasonable	to	place	a	strong	
prior	on	the	hypothesis	that	task	rule	information	is	coded	in	the	activity	of	human	prefrontal	
neurons.	A	base	rate	obtained	from	rule	decoding	studies	should,	thus,	be	more	comparable	to	
the	 studies	 in	 Coutanche	 et	 al’s	 database.	 The	 median	 of	 the	 distribution	 of	 classification	
accuracies	from	rule	decoding	analyses	was	57.5%	(56.0-60.0%),	again	significantly	lower	than	
both	the	occipital	and	ventral	temporal	base	rates.		
	
These	 comparisons	 of	 base	 rates	 between	 visual	 and	 prefrontal	 cortex	 were	 made	 across	
different	studies,	likely	employing	different	scanning	methods,	analysis	pipelines,	sample	sizes,	
etc.,	which	may	all	 affect	decoding	accuracies.	To	address	 this,	we	examined	prefrontal	 and	
visual	cortex	decoding	accuracies	obtained	in	a	single	fMRI	dataset	collected	in	our	laboratory.	
fMRI	data	was	collected	while	participants	completed	a	cognitive	control	 task	 that	required	
encoding	of	both	visual	stimulus	identity	and	visually-cued	rules.	This	enabled	us	to	compare	
decoding	 accuracies	 across	 regions	while	 controlling	 for	 all	 other	 variables.	We	 obtained	 a	
decoding	accuracy	of	55.4%	for	a	two-way	classification	of	rule	in	frontal	cortex,	and	72.3%	for	
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a	two-way	classification	of	stimulus-identity	in	visual	cortex	(Supplementary	Figure	S6,	panel	
4).		
	
	

	
Finally,	we	 leveraged	our	 in-house	dataset	 to	determine	whether	differences	signal-to-noise	
and	pattern	reliability	mirrored	these	differences	mirrored	differences	in	decoding	accuracies.	
While	we	found	that	raw	SNR	was	actually	higher	in	frontal	cortex	compared	to	visual	cortex	in	
our	scanner	(t=9.22,	p<0.001),	both	functional	SNR	and	pattern	reliability	were	lower	(t=3.99,	
p<0.001;	t=11.91,	p<0.001;	Supplementary	Figure	S6,	panels	1-3).		
	

	
	
Figure	1.	Decoding	accuracy	distributions	for	frontal,	occipital	and	ventral	temporal	cortex.	
Cumulative	distribution	functions	(a	&	c)	and	probability	density	functions	(b	&	d)	for	visual	
decoding	accuracies	in	occipital	(red)	and	ventral	temporal	(orange)	cortex	compared	with	
frontal	 decoding	 accuracies	 from	 all	 analyses	 (top	 panels,	 purple)	 and	 rule	 decoding	
analyses	(bottom	panels,	aqua).	Vertical	lines	indicate	median	values.	Shaded	areas	reflect	
95%	 confidence	 intervals	 obtained	 from	 a	 hierarchical	 bootstrapping	 procedure.	 Raw	
decoding	accuracies	are	shown	in	Supplementary	Figure	S1,	panels	A	&	B.	
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Collectively,	these	results	demonstrate	that	the	base	rate	for	decoding	information	from	human	
prefrontal	 cortex	BOLD	patterns	 is	 low	 in	 comparison	 to	 two	 sensory	 regions	 of	 the	 brain,	
consistent	with	the	impression	that	MVPA	in	human	prefrontal	cortex	is	particularly	difficult.			

Overlaps	between	decoding	accuracy	distributions	for	null	and	significant	effects		
Our	database	of	PFC	decoding	analyses	included	group	mean	classification	accuracies	of	both	
significant	 (greater	 than	 chance)	 and	 null	 effects.	 This	 allowed	 us	 to	 separately	 compile	
literature-derived	 distributions	 of	 classification	 accuracies	 for	 (a)	 when	 information	 is	
successfully	 decoded	 from	 frontal	 BOLD	 activity	 patterns	 and	 (b)	 when	 no	 information	 is	
detected.	 These	 distributions	 should	 overlap	 minimally	 if	 the	 studies	 that	 produced	 the	
classification	accuracies	had	high	power	and	low	false	positive	rates.		
	
The	median	of	the	classification	accuracy	distribution	of	significant	effects	was	58.7%	(57.0-
60.0%).	Note	that	the	values	in	our	‘significant’	distribution	sample	from	an	underlying	‘true’	
distribution	 of	 decoding	 accuracies	 truncated	 at	 the	 left	 tail	 by	 the	 different	 significance	
thresholds	 used	 by	 specific	 studies.	 In	 other	 words,	 we	 are	 likely	 (conservatively)	
overestimating	the	center	of	this	‘true’	distribution.	The	distribution	for	the	null	effects	had	a	
median	of	51.6%	 (CI:	 51.0-52.0%).	We	 computed	 the	95th	percentile	 of	 this	 empirical	 ‘null	
distribution’	 analogous	 to	 the	 typical	 ‘critical	 value’	 used	 for	 null-hypothesis	 testing	 and	
obtained	a	value	of	57.4%	(CI:	56.0-62.0%).	Note	that	these	values	sample	a	putative	‘true	null’	
distribution	truncated	at	the	right	tail	by	the	significant	thresholds	used	in	each	analysis.	Such	
truncating	 would	 normally	 bias	 our	 estimates	 of	 central	 tendency	 and	 the	 critical	 value	
downwards.	On	the	other	hand,	the	studies	in	our	database	employed	different	sample	sizes	
and	 a	 variety	 of	 procedures	 for	 testing	 significance.	 If	 a	 proportion	 of	 these	 studies	 were	
underpowered,	 this	would	bias	 our	 estimates	upwards.	 In	 addition,	we	have	only	 relied	on	
published	 studies	 in	 this	meta-analysis.	 Thus,	 it	 is	 also	 likely	 that	 our	 estimates	 are	 biased	
upward	due	to	the	so-called	file	drawer	effect	or	systematic	non-reporting	of	null	findings.	In	
order	 to	 obtain	 a	 more	 conservative	 estimate	 of	 the	 critical	 value,	 we	 recentered	 the	 null	
distribution	to	50%.	With	this	approach,	we	obtained	an	estimate	of	55.4	(CI:	53.5-60.1)	for	the	
95th	percentile.		
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Despite	 these	 conservative	 adjustments,	 as	 shown	 in	 Fig	 2,	 there	was	 considerable	 overlap	
between	the	estimated	‘significant’	and	‘null’	distributions.	Indeed,	36.0%	(CI:	15.5-66.4%)	of	
the	accuracies	in	the	‘significant’	distribution	fell	below	the	95th	percentile	of	the	uncentered	
null	distribution	of	57.5%	while	23.5%	fell	below	the	centered	null	distribution	of	55.4%.	This	
overlap	 suggests	 that	a	number	of	previous	 studies	were	either	not	 sufficiently	powered	 to	
detect	information	coded	in	PFC	BOLD	patterns,	or	had	inflated	false	positive	rates	(over	the	
usual	5%).		
	
However,	 as	 has	 been	 recently	 pointed	 out,	 the	 results	 of	 such	 tests	 of	 group-level	 mean	
accuracies	against	chance	levels	do	not,	in	fact,	support	the	population-level	inference	that	the	
effect	 is	 typically	 present	 in	 the	 population	 54.	 Instead,	 these	 tests	 assess	 the	 global	 null	
hypothesis	55	that	no	participants	show	the	effect.	As	an	example,	in	our	lab’s	fMRI	dataset,	the	
group-mean	decoding	accuracy	of	55.4%	was	‘significantly’	above	chance	in	a	parametric	test	
against	 chance.	 However,	 only	 5	 out	 of	 21	 subjects	 showed	 a	 decoding	 accuracy	 that	 was	
significantly	different	from	chance	as	determined	by	a	non-parametric	permutation	test.	Given	
this,	 it	 is	 critical	 to	evaluate	 the	prevalence	of	 the	effect.	 Indeed,	 it	has	been	suggested	 that	
population	inferences	can	be	made	based	on	the	prevalence	of	an	effect	 in	a	sample	54.	As	a	
consequence,	 the	power	to	detect	an	effect	at	 the	 level	of	an	 individual	participant	becomes	
particularly	important.		

	
Figure	 2.	 ‘Significant’	 v/s	 ‘Non-significant’	 decoding	 accuracy	 distributions.	 Cumulative	
distribution	 function	 (a)	 and	 probability	 density	 function	 (b)	 for	 frontal	 decoding	
accuracies	 reported	 as	 significant	 (blue)	 and	 non-significant	 (green).	 Dotted	 line	 in	 (b)	
reflects	chance-level	(50%)	and	solid	green	line	indicates	95th	percentile	of	the	(centered)	
non-significant	distribution.	23.5%	of	decoding	accuracies	in	the	significant	distribution	fell	
below	this	 ‘critical’	value.	Shaded	areas	reflect	95%	confidence	intervals	obtained	from	a	
hierarchical	 bootstrapping	 procedure.	 Raw	 decoding	 accuracies	 are	 shown	 in	
Supplementary	Figure	S1,	panel	C. 
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It	 has	 not	 been	 common	 practice	 to	 report	 individual	 participant	 data,	 and	 therefore	 it	 is	
difficult	to	get	estimates	of	within-subject	variance	needed	for	power	analysis.	Nevertheless,	it	
is	possible	to	make	some	general	points	about	power	at	the	individual	level.	The	empirical	‘null’	
distribution	 described	 above	 gives	 us	 an	 estimate	 of	 the	 typical	 decoding	 accuracy	 for	 a	
participant	who	does	not	show	an	effect	(given	that	in	these	analyses	the	global	null	hypothesis	
cannot	be	rejected),	and	the	95th	percentile	of	the	null	distribution	(55.4%)	can	serve	as	a	rough	
estimate	of	a	critical	threshold	which	must	be	crossed	for	significance.	On	the	other	hand,	an	
estimate	of	 the	typical	 individual’s	decoding	accuracy	when	they	do	show	the	effect	may	be	
derived	from	the	‘significant’	distribution.	Comparing	these	two	values	will	allow	to	estimate	
the	magnitude	of	the	difference	in	decoding	accuracies	that	a	typical	study	is	trying	to	detect.		
	
We	consider	 two	boundary	conditions	 to	derive	 the	 typical	subject-level	decoding	accuracy.	
Consider	the	boundary	condition	where	we	assume	that	every	significant	effect	reported	in	our	
database	was	maximally	 prevalent	 in	 that	 study’s	 sample	 (i.e.	 every	 participant	 shows	 the	
effect).	In	that	condition,	the	median	of	the	‘significant’	distribution	is	a	good	estimate	of	the	
typical	participant-level	decoding	accuracy.	Given	a	median	of	58.7%,	we	are,	therefore,	looking	
to	detect	a	difference	of	only	3.3%	points	in	order	to	reject	the	null	hypothesis	of	chance-level	
coding	 for	a	 typical	participant.	 If	a	study	 included	test	50	trials	 (which	 is	 typical	 for	MVPA	
designs)	 for	 each	 condition,	 this	would	 imply	 a	 difference	 of	 less	 than	 4	 trials	 successfully	
classified.	 Consider	 another	 boundary	 condition	where	 every	 significant	 effect	 reported	 by	
studies	 in	our	database	 shows	a	prevalence	of	only	50%	(given	 that	a	population	 inference	
requires	 that	 at	 least	 a	majority	 of	 the	 participants	 show	 the	 effect).	 Assuming	 this	 liberal	
boundary	 condition	 for	 the	 studies	 in	 our	 database,	 we	 can	 estimate	 the	 typical	 decoding	
accuracy	of	an	individual	who	showed	the	effect	from	the	median	of	our	significant	distribution	
to	be	approximately	67.4%	(assuming	that	half	of	the	subjects	in	the	study	showed	no	effect	
and	thus	had	a	decoding	accuracy	of	50%).	In	that	case,	we	would	be	looking	to	detect	a	12%	
points	 difference	 –	 a	 difference	 of	 12	 trials	 successfully	 classified	 under	 the	 most	 liberal	
assumptions.	These	rough	calculations	suggest	that	the	typical	PFC	MVPA	effect	is	very	small	
and	given	high	 levels	of	noise	 in	 fMRI	measurements,	one	would	require	considerably	more	
data	per	participant	to	detect	such	an	effect	reliably.	
	
We	emphasize	again	that	we	do	not	formally	estimate	effect	sizes,	which	requires	additional	
information	of	within-subject	variance	in	decoding	accuracies.	Therefore,	this	analysis	is	not	
intended	as	a	recommendation	of	trial	numbers	for	future	MVPA	studies	of	the	PFC	and	should	
not	 be	 cited	 as	 such.	 Nor	 do	 we	 recommend	 that	 the	 ‘critical’	 value	 estimated	 above	 be	
generalized	 beyond	 this	 analysis	 to	 assess	 the	 significance	 of	 decoding	 accuracies	 in	 other	
studies.	Rather,	 this	 analysis	merely	makes	 concrete	 the	point	 that	 given	 the	 low	base	 rate	
decoding	 accuracy	 in	 PFC	 and	 given	 the	 importance	 of	 assessing	 prevalence,	 sufficiently	
powered	studies	at	the	individual	participant	level	are	essential.	Power	calculations	should	be	
based	 on	 estimates	 of	 effect	 sizes	 from	 decoding	 of	 PFC	 BOLD	 patterns	 and	 not	 based	 on	
samples	or	effect	sizes	observed	in	other	regions	of	the	brain,	given	the	differences	between	
regions.		
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Analysis	of	outliers	

Our	estimate	of	a	literature-derived	decoding	accuracy	distribution	provides	a	means	of	placing	
the	results	of	any	given	prefrontal	decoding	analysis	within	the	context	of	the	wider	literature.	
Studies	with	 very	high	 accuracies,	 for	 instance,	merit	 attention	 as	 they	may	have	 identified	
classes	of	information	that	are	particularly	well	represented	in	prefrontal	cortex,	or	may	have	
employed	a	particularly	effectively	analysis	approach.	At	the	same	time,	given	prior	findings,	
these	effects	are	surprising	and,	therefore,	also	merit	closer	scrutiny	and	replication	to	ensure	
that	these	results	are	not	caused	by	other	confounding	factors.	For	these	reasons,	we	examined	
the	top	5%	of	reported	classification	accuracies	in	our	database	(Table	1)	to	identify	factors	
that	might	explain	the	high	values.		
	
First,	as	many	as	18	of	the	41	analyses	in	the	top	5%	decoded	some	form	of	motor	response	
(reaching,	 grasping,	 saccades	 etc.).	 Five	 additional	 analyses	 involved	 classifying	 the	
anticipation	or	experience	of	electric	shocks	on	very	different	parts	of	the	body	(arm	v/s	leg).	
Six	other	analyses	classified	ordered	stimuli	like	speech	or	music	versus	unordered	versions	of	
the	 same	 stimuli.	 All	 of	 these	 studies	manipulate	 conditions	 that	 likely	 produce	 univariate	
differences,	 either	 as	 a	 small	 mean-response	 difference	 across	 a	 majority	 of	 the	 voxels	 or	
differential	activation	of	adjacent	subregions.	For	example,	univariate	analyses	of	ordered	vs	
unordered	stimuli	contrasts	are	often	used	to	localize	language	specific	regions	in	prefrontal	
cortex	 56,57.	Univariate	contributions	 to	decoding	analyses	do	not	 invalidate	 the	 inference	of	
information	 coding.	 But,	 they	 do	 not	 require	 the	 use	 of	 pattern	 classifiers	 to	 detect,	 and	
therefore,	should	not	inform	an	assessment	of	the	method	as	it	is	used	in	more	typical	MVPA	
analyses.	
	
Two	 studies	 employed	 unusual	 measurement	 or	 analysis	 methods.	 Study	 39	 (5	 analyses)	
deployed	 non-linear	 classifiers	 which	 produced	 significantly	 higher	 accuracies	 than	 linear	
classifiers	on	the	same	data.	The	classification	accuracies	obtained	from	the	linear	classifiers	
are	much	closer	to	the	median	of	our	distribution.	Study	31	uniquely	employed	high-resolution	
scanning	with	a	7T	magnet.	
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Table	1:	Analyses	in	the	top	5th	percentile	of	the	‘significant’	distribution	

Study	
ID	

No.	of	
analyses	
in	top	5%	
(total	41)	

Decoding	
accuracy	
range	

ROI	or	
Searchlight	 Region(s)1	 Description	

48	 13	 76%	-	93%	 ROI	

Right	precentral	gyrus;	Left	precentral	
gyrus;	Left	middle	frontal	gyrus;	Right	
supplementary	motor	area;	Left	
supplementary	motor	area	

Classified	hand	v/s	saccade	
response	

66	 5	 79%	-	90%	 ROI	
Right	middle	frontal	gyrus;	Left	middle	
frontal	gyrus;	Bilateral	anterior	
cingulate	gyrus	

Classified	
anticipation/experience	of	
electric	shock	on	arm	v/s	leg	

39	 5	 76%	-	82%	 Searchlight	
Right	superior	frontal	gyrus;	Right	
anterior	cingulate	gyrus;	Bilateral	
medial	frontal	gyrus	

Classified	to-be-purchases	
objects	v/s	neutral	objects	when	
attended/unattended.	

52	 5	 76%	-	87%	 Searchlight	

Bilateral	inferior	frontal	gyrus,	pars	
orbitalis;	Bilateral	inferior	frontal	
gyrus,	pars	triangularis;	Bilateral	
inferior	frontal	gyrus,	pars	opercularis	

Classified	speech/music	v/s	re-
ordered	speech/music	

70	 4	 78%	-	88%	 ROI	
Left	middle	frontal	gyrus;	Right	middle	
frontal	gyrus;	Left	precentral	gyrus;	
Right	precentral	gyrus	

Classified	tasks	that	involved	
different	rules	&	stimuli	

71	 2	 84%	-	86%	 ROI	

Bilateral	superior	frontal	&2	gyrus	&	
bilateral	middle	frontal	gyrus	&	
bilateral	medial	frontal	gyrus	&	
bilateral	supplementary	motor	area;	
	
Bilateral	superior	frontal	gyrus	&	
bilateral	middle	frontal	gyrus	&	
bilateral	medial	frontal	gyrus		

Classified	reactive	v/s	predictive	
eye-movement	pursuit	of	stimuli	

69	 2	 80%	-	85%	 ROI	 Bilateral	anterior	cingulate	gyrus	&	
bilateral	midcingulate	area	

Classified	near	v/s	far	semantic	
similarity	of	presented	words	

54	 2	 81%	-	83%	 ROI	 Bilateral	precentral	gyrus	
Classified	execution	v/s	
imagining/observing	reaching	
movements	

50	 1	 85%	 Searchlight	 Left	inferior	frontal	gyrus,	pars	triangularis	
Classified	speech	v/s	spectrally-
rotated	speech	

31	 1	 77%	 ROI	 Left	middle	frontal	gyrus	
Classified	prospective	Yes	v/s	No	
decisions	across	intentions	
(honest/dishonest)	

78	 1	 79%	 ROI	 Bilateral	precentral	gyrus	 Classified	whole	hand	grasping	
v/s	reaching	movement	

1. Regions	were	registered	to	corresponding	AAL	region.		
2. &	refers	to	the	union	of	AAL	regions	for	constructing	a	larger	ROI	used	in	the	corresponding	study.		
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Importantly,	only	4	of	these	analyses,	all	from	a	single	paper	(Study	70),	involved	decoding	
task	or	rule	information	as	posited	by	models	of	cognitive	control	and	observed	in	macaque	
studies.	However,	even	in	these	analyses,	task/rule	was	confounded	with	visual	information	
as	the	contrasted	task	conditions	involved	different	classes	of	stimuli.	Indeed,	when	task/rule	
was	decoded	after	controlling	stimulus	differences,	classification	accuracies	were	in	the	mid	
50s,	close	to	the	median	of	our	distribution.	Therefore,	the	high	classification	accuracies	may	
have	been	driven	by	the	additive	effects	of	multiple	sources	of	information.			
	
In	summary,	we	did	not	find	a	particular	factor	or	approach	that	consistently	explained	these	
outlying	decoding	accuracies	beyond	what	basic	univariate	analysis	could	provide.		

Factors	affecting	decoding	performance	
We	next	 sought	 to	 systematically	 examine	whether	particular	 sub-regions	of	 frontal	 cortex,	
particular	types	of	information,	or	particular	methods	were	correlated	with	decoding	accuracy	
levels.	To	do	this,	we	assessed	the	partial	influence	of	these	factors	in	our	full	database	using	
mixed-effects	 linear	 regression.	We	 fit	 a	 single	mixed-effects	 regression	model	with	 all	 the	
characteristics	-	region,	information	type,	analysis	procedure.	All	these	regressors	were	dummy	
coded	 with	 one	 category	 omitted	 from	 the	 model.	 To	 account	 for	 covariance	 between	
observations	 from	the	same	study,	we	also	 included	random	study	 intercepts.	Classification	
accuracies	reported	as	non-significant	were	excluded	as	they	are	more	likely	to	have	small	or	
no	effects.	
	
To	assess	the	significance	of	each	characteristic,	regressors	were	dropped	one	at	a	time	from	
the	model	and	tested	against	the	full	model	using	the	likelihood	ratio	test.	Results	are	shown	in	
Fig.	S2.	Only	the	inclusion	of	classifier	significantly	improved	model	fit	(Supplementary	Table	
S4;	L=17.3	p=0.004).	Post-hoc	pair-wise	tests	applied	to	classifier	showed	that	non-linear	SVM	
had	a	significantly	higher	accuracy	than	linear	SVM	(p=0.02	Tukey-HSD).	This	effect	was	driven	
by	3	out	 of	 4	 studies	using	non-linear	 SVM,	 each	with	 accuracies	 above	70%,	 and	was	 also	
significant	in	a	regression	using	only	a	single	mean	accuracy	per	study	(Supplementary	Table	
S5,	F=4.14,	p=0.003).	One	of	these	studies	were	also	identified	by	our	outlier	analysis.	However,	
given	 the	non-normal	distribution	of	 group	accuracies,	 this	 result	 should	be	evaluated	with	
caution.	 	 The	 effects	 on	 accuracy	 for	 all	 other	 analysis	 characteristics	 can	 be	 seen	 in	
Supplemental	Figure	S2	and	Supplemental	Table	S4.		
	
The	full	regression	model	did	not	reveal	differences	in	accuracy	across	regions.	Our	regression	
analyses	 may	 have	 been	 underpowered	 due	 to	 the	 large	 number	 of	 regions	 tested	
simultaneously	and	the	few	number	of	observations	associated	with	each	region.	Given	that	we	
found	no	effect	of	ROI	laterality	in	the	main	model,	we	combined	the	left,	right	and	bi-lateral	
portions	of	each	ROI	for	a	more	powerful,	exploratory	follow	up	analysis,	and	observed	that	
superior	&	middle	frontal	gyrus,	orbital	part	(58.2%),	and	middle	frontal	gyrus	(59.7%)	were	
marginally	lower	than	the	grand	mean	(61.3%)	(Supplemental	Figure	3;	t=-2.01,	p=0.044;	t=-
2.21,	p=0.027).	Next,	we	tested	whether	accuracy	differed	across	regions	based	on	the	type	of	
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information	decoded.	Not	surprisingly	response	decoding	was	associated	with	higher	accuracy	
in	superior	frontal	gyrus	(66%,	p=0.03)	and	marginally	so	in	precentral	gyrus	&	supplementary	
motor	area	(64.3%,	p=0.09),	and	perceptual	decoding	was	associated	with	higher	accuracy	in	
cingulate	cortex	(68.5%,	p=0.004;	Supplemental	Figure	S4).	There	were	no	other	differences	in	
accuracy	across	the	rest	of	the	regions.	Finally,	we	carried	out	a	second	regression	that	focused	
only	on	frontal	regions	within	the	multiple-demand	(MD)	network58	that	response	robustly	to	
manipulations	of	various	cognitive	demands.	These	ROIs	are	more	 representative	of	 typical	
functional	 clusters	 observed	 in	 fMRI	 studies	 of	 frontal	 cortex	 (as	 opposed	 to	 the	 large	AAL	
ROIs),	 and	 may	 better	 reflect	 frontal	 decoding	 properties.	 However,	 we	 again	 found	 no	
differences	within	MD	regions,	or	between	MD	and	other	regions	(Supplementary	Figure	S5).	
In	 summary,	 although	 these	 different	 analyses	 of	 our	 data	 suggest	 small	 differences	 across	
regions	-	OFC,	motor,	cingulate	–	exist,	the	distribution	of	classification	accuracies	is	broadly	
similar	and	low	across	prefrontal	cortex.	

Discussion	
Over	 the	 past	 decade,	 MVPA	 has	 emerged	 as	 a	 powerful	 method	 for	 studying	 information	
coding	in	the	human	brain	with	fMRI	29-34.	MVPA	is	a	more	sensitive	method	than	traditional	
univariate	 analyses	 because	 it	 combines	 evidence	 across	 voxels	 to	 detect	 subtly	 encoded	
information	in	distributed	patterns	of	activity.	Given	the	many	open	and	important	questions	
regarding	 nature	 and	 form	 of	 prefrontal	 cortex	 representations,	 MVPA	 has	 also	 been	
enthusiastically	applied	to	this	brain	region.	Previous	studies	have	implicitly	assumed	that	the	
base	 rate	of	decoding	 information	 from	PFC	BOLD	patterns	 is	 similar	 to	 that	of	other	brain	
regions,	 or	 at	 the	 very	 least,	 does	 not	 vary	 systematically.	 This	 assumption	 underlies	 the	
comparison	of	decoding	accuracies	from	PFC	with	other	regions	of	the	brain,	the	use	of	whole-
brain	searchlights	to	discover	regions	of	coding,	as	well	as	choices	about	sample	size,	analysis	
methods,	 etc.	 This	 assumption	 has	 not	 been	 tested	 before	 and	 contrasts	 with	 a	 prevailing	
impression	amongst	practitioners	(often	heard	at	conferences)	that	decoding	information	from	
PFC	BOLD	patterns	is	uniquely	challenging.	We	estimated	the	base	rate	decoding	accuracy	for	
PFC	and	show	that	it	is	indeed	lower	than	sensory	(visual)	cortex.	
	
Our	meta-analysis	 of	 prefrontal	MVPA	 studies	 identified	over	800	MVPA	decoding	 analyses	
across	 76	 studies,	 each	 reporting	 a	 group-level	 mean	 classification	 accuracy.	 This	 dataset	
includes	attempts	to	decode	a	wide	range	of	information	from	BOLD	patterns	in	various	sub-
regions	of	prefrontal	cortex,	while	employing	a	similarly	wide	range	of	MVPA	methods.	In	this	
sense,	our	meta-analysis	samples	a	space	of	possible	approaches	to	classification	in	PFC	and	so	
permits	not	only	an	estimate	of	a	base	rate,	but	also	determine	which	particular	approaches	are	
systematically	more	or	less	successful.		
	
From	this	dataset,	we	estimate	the	base	rate	for	decoding	information	from	prefrontal	BOLD	
patterns	at	the	low	value	of	55.7%	for	two-way	classifications	where	chance	performance	is	
50%.	 Further,	 we	 observed	 that	 the	 PFC	 base	 rate	 is	 markedly	 lower	 than	 base	 rates	 for	
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decoding	 visual	 stimulus	 information	 occipital	 and	 ventral	 temporal	 cortex	 BOLD	 patterns	
which	 were	 at	 66.6%	 and	 71.0%	 respectively.	 These	 differences	 are	 not	 due	 to	 the	 larger	
hypothesis	space	of	PFC	decoding	studies.	The	differences	remain	stark	even	when	we	derive	
the	PFC	base	rate	estimates	solely	from	analyses	that	decode	rule	or	task	information,	which	
we	 believe	 is	 very	 likely	 to	 be	 coded	 by	 PFC	 neurons	 given	 evidence	 from	 primate	
electrophysiology	and	human	neuropsychology.	Indeed,	we	may	have	underestimated	the	PFC	
base	rate	given	that	we	only	included	studies	that	mentioned	prefrontal	cortex	in	the	abstract.	
Other	studies	that	ran	whole	brain	searchlights	and	found	chance-level	coding	in	PFC	may	have	
been	excluded	as	a	result.	In	practical	terms,	this	low	base	rate	means	that	it	is	likely	that	the	
difference	between	studies	reporting	successful	versus	unsuccessful	classification	may	hinge	
on	 only	 a	 few	 trials	 classified	 better	 than	 chance.	 This	 has	 significant	 implications	 for	
experimental	design	and	inference	that	we	discuss	further	below.		
	
Further,	 this	base	 rate	provides	an	empirically	derived	prior	against	which	 future	decoding	
paradigms	or	methods	can	be	compared.	For	example,	studies	that	propose	a	new	feature	of	
the	 fMRI	signal	 (for	e.g.	Waskom	and	Wagner	41	 recently	decoded	context	 information	 from	
local	connectivity	measures),	or	a	new	decoding	method	as	capturing	a	special	aspect	of	coding	
in	the	PFC,	can	be	evaluated	against	this	base	rate	prior.	In	other	words,	we	can	ask	whether	
incremental	 gains	 in	 decoding	 accuracy,	 beyond	 those	 expected	 given	 the	 base	 rate,	 are	
achieved	 from	applying	 the	new	 feature	or	method.	We	emphasize,	however,	 that	 any	 such	
comparisons	 of	 decoding	 accuracies	 must	 take	 into	 account	 the	 underlying	 variance	 in	
decoding	accuracies	(as	estimated	by	appropriate	non-parametric	methods).		
	
Similarly,	our	base	rate	provides	a	principled	basis	on	which	to	highlight	past	studies	that	were	
unusually	successful	at	decoding	information	for	further	scrutiny.	We	probed	several	outlier	
analyses	 in	 our	data	 set	 that	 showed	 large	 classification	 accuracies	 to	 look	 for	 a	 consistent	
feature	that	explained	their	success.	Most	of	these	cases	could	be	attributed	to	the	influence	of	
univariate	 effects.	 Beyond	 these	 effects,	 the	 few	 remaining	 outlier	 studies	 did	 not	 share	 a	
consistent	 approach	 or	 classification	 type	 that	 resulted	 in	 a	 marked	 shift	 in	 criterion.	
Nevertheless,	our	analysis	places	the	likelihood	of	these	outcomes	in	context	given	the	broader	
literature.	As	such,	these	individual	studies	might	merit	further	follow	up	and	replication.		
	
Beyond	consideration	of	the	outliers,	we	leveraged	the	meta-analysis	dataset	to	ask	whether	
particular	 information-types	 or	 methodological	 choices	 were	 consistently	 associated	 with	
higher	 decoding	 performance	 using	 regression.	 We	 found	 some	 evidence	 that	 motor	
information	 in	 some	 regions	 of	 posterior	 prefrontal	 cortex	 and	 perceptual	 information	 in	
cingulate	cortex	are	associated	with	slightly	higher	decoding	performance.	Conversely,	regions	
of	mid-lateral	PFC	closely	tied	to	cognitive	control	were	associated	with,	if	anything,	even	lower	
classification	success	than	other	areas	of	the	frontal	lobe.	We	also	found	a	benefit	of	using	non-
linear	classifiers	in	the	small	number	of	studies	that	use	them.	However,	this	benefit	may	be	
offset	by	known	complications	associated	with	the	use	of	non-linear	classifiers.	While	they	are	
indeed	 able	 to	 be	 able	 to	 read-out	 a	 wider	 variety	 of	 representational	 formats,	 non-linear	
classifiers	 are	 more	 susceptible	 to	 over-fitting.	 Moreover,	 a	 ‘linear	 readout’	 (that	 a	 linear	
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classifier	implements)	is	often	considered	a	hallmark	of	an	explicit	representation	59,60	under	
the	assumption	that	downstream	neurons	usually	implement	a	linear	readout.	Therefore,	the	
results	of	a	linear	classifier	can	support	stronger	claims	about	representations	that	those	of	a	
non-linear	classifier	cannot.	Nonetheless,	the	non-linear	SVM	approach	may	merit	further	study	
and	 replication	of	 its	 advantage	 for	PFC	 classification.	Beyond	 this,	we	 found	 that	decoding	
performance	was	robust	to	variations	in	methods,	with	the	one	caveat	that	our	power	to	detect	
these	effects	was	not	high.	Collectively,	these	results	suggest	that	the	low	base	rate	of	decoding	
information	from	PFC	BOLD	patterns	is	a	very	general	finding.	
	
What	makes	 decoding	 information	 from	 PFC	 BOLD	 patterns	 so	 difficult?	 Electrophysiology	
studies	in	the	non-human	primate	have	provided	consistent	evidence	for	ubiquitous	coding	of	
task-relevant	information	in	prefrontal	firing	rates	17-21.	Indeed,	recent	evidence	suggests	that	
macaque	PFC	representations	of	 task	variables	are	high-dimensional,	and	that	 this	property	
enables	these	task	variables	and	their	conjunctions	to	be	read	out	by	a	linear	classifier.24	Thus,	
the	finding	of	a	low	base	rate	of	decoding	such	information	from	prefrontal	BOLD	patterns	is	
surprising.	 Furthermore,	 the	 differences	 in	 base	 rates	 between	 prefrontal	 and	
occipital/ventral-temporal	cortex	suggest	that	the	function	relating	the	information	content	of	
spiking	activity	and	that	of	BOLD	patterns	across	voxels	varies	across	regions.	Of	course,	it	is	
conceivable	that	human	PFC	representations	have	different	properties	than	those	of	macaques	
and	that	prior	research	has	simply	not	identified	the	appropriate	contrasts	or	type	of	classifier	
to	probe	them.	However,	we	deem	this	unlikely	as	a	general	account	and	suggest	that	PFC	BOLD	
patterns	across	voxels	may	only	weakly	reflect	the	 information	encoded	in	the	firing	rate	of	
populations	of	prefrontal	neurons.	
	
The	 base	 rate	 of	 decoding	 information	 is	 no	 doubt	 influenced	 by	 the	 properties	 of	 PFC	
representations.	For	example,	an	oft-cited	feature	of	PFC	neurons	is	that	they	display	‘mixed	
selectivity’24	or	‘adaptive	coding’6	–	i.e.	their	selectivity	for	particular	task-variables	is	highly	
context	and	task	dependent.	Such	a	feature	of	coding	may	render	population	activity	patterns	
more	 susceptible	 to	 noise	 contributed	 by	 uncontrolled	 features	 of	 the	 environment	 like	
temporal	context,	thus	making	decoding	more	difficult.	Similarly,	the	activity	of	PFC	neurons	is	
known	 to	 show	 a	 greater	 degree	 of	 temporal	 autocorrelation61,	 which	 may	 heighten	 the	
similarity	between	condition-specific	activity	patterns.	Finally,	population	representations	of	
the	contents	of	working	memory	 in	PFC	are	known	to	be	highly	dynamic23	with	each	to-be-
remembered	item	producing	a	complex	trajectory	through	neural	state	space,	suggesting	that	
information	may	be	 stored	 in	 the	 temporal	profile	 of	 these	 trajectories,	 rather	 than	only	 in	
overall	activity.	All	of	these	properties	likely	affect	the	decoding	of	information,	though	note	
that	they	would	affect	decoding	from	electrophysiologically	measured	firing	rate	patterns	as	
well,	 not	 just	 BOLD	 patterns.	 Therefore,	 they	 are	 not	 sufficient	 to	 explain	 the	 particular	
difficulty	with	decoding	from	BOLD	patterns.								
	
Low	 decoding	 based	 rates	 in	 PFC	 may	 be	 caused	 by	 MR-induced	 or	 physiological	 noise	
contributions	 to	 the	 BOLD	 signal	 that	 may	 influence	 the	 trial-by-trial	 variability	 of	 BOLD	
patterns	 in	 a	 region-specific	manner.	 In	 our	 own	 fMRI	 dataset,	 empirical	 estimates	 of	 raw	
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signal-to-noise	ratios	were	not	lower	in	PFC	compared	to	visual	cortex.	Therefore,	the	lower	
decoding	 accuracies	we	 found	 in	PFC	 could	not	have	been	driven	by	 raw	noise	differences.	
However,	both,	the	univariate	functional	SNR,	and	the	reliability	of	BOLD	patterns	were	lower	
in	prefrontal	cortex	than	in	visual	cortex	(Supplementary	Figure	S6).	A	lower	reliability	of	BOLD	
patterns	in	PFC	would	certainly	make	decoding	more	difficult.	However,	this	lower	reliability	
also	demands	explanation,	and	would	be	affected	by	the	other	factors	we	discuss.				
	
Another	possibility	we	find	more	likely	is	that	the	particular,	local	functional	organization	and	
distribution	 of	 neural	 populations	 in	 prefrontal	 cortex	 may	 reduce	 differences	 between	
conditions	 at	 the	 voxel	 scale	measured	with	 fMRI.62	 In	 a	 recent	 study,	Dubois	 et	 al.	 (2015)	
examined	 the	 coding	 of	 face	 viewpoint	 and	 identity	 information	using	 both	MVPA	of	BOLD	
patterns	 and	 single-unit	 recordings	 in	 macaques.	 While	 both	 viewpoint	 and	 identity	 were	
strongly	 coded	 in	 single-unit	 firing	 rates,	MVPA	 of	 BOLD	 patterns	 only	 revealed	 viewpoint	
information.	The	authors	 concluded	 that	 identity	decoding	suffered	because	 identity	 coding	
neurons	 were	 only	 weakly	 clustered	 spatially	 as	 compared	 to	 viewpoint-coding	 neurons.	
Clustering	may	enable	nearby	blood	vessels	to	be	strongly	driven	by	neurons	selective	to	one	
condition,	thus	enabling	inhomogeneities	in	the	sampling	of	the	activity	of	selective	neurons	by	
voxels	 63.	 Most	 single-unit	 studies	 in	 primate	 prefrontal	 cortex,	 however,	 show	 very	 little	
evidence	 of	 clustering	 64,	 with	 neurons	 coding	 different	 task-relevant	 information	 being	
heterogeneously	intermixed	at	a	fine	scale	e.g.	21,65,66-69	By	contrast,	in	the	visual	cortex	MVPA	
effects	may	depend	on	clustering	both	at	the	fine-scale	in	the	form	of	columnar	structure	63,	and	
also	at	 the	coarse-scale	 in	 the	 form	of	asymmetric	 spatial	distribution	of	 columns	 70-72.	This	
interpretation	suggests	that	higher	resolution	fMRI	might	ultimately	help	this	base	rate	issue,	
though	 this	might	 require	 still	 higher	 resolution	 than	 is	 currently	 feasible.	 Alternately,	 PFC	
representations	may	perhaps	be	better	 studied	by	 leveraging	 repetition	suppression	effects	
73,74,	which	are	not	affected	by	the	local	distribution	of	neural	populations.		
	
Regardless	 of	 the	 source	 of	 these	 differences,	 a	 base	 rate	 decoding	 difference	 between	
prefrontal	and	visual	cortex	has	important	implications	for	the	interpretation	of	studies	which	
rely	 on	 comparisons	 of	 classification	 accuracies	 across	 regions.	 Consider,	 for	 example,	 the	
debate	surrounding	the	locus	(prefrontal	or	sensory	cortex)	of	detailed	sensory	information	
during	working	memory	delays,	which	has	been	informed	by	the	finding	that,	while	classifiers	
readily	decode	sensory	information	from	the	BOLD	signal	recorded	from	visual	cortex,	they	are	
much	less	successful	in	the	frontal	cortex	reviewed	in	75.	If	the	base	rate	for	decoding	is	lower	
in	prefrontal	cortex,	such	a	finding,	on	its	own,	would	provide	limited	support	for	an	exclusive	
sensory	cortex	locus	of	working	memory	representations.	In	order	for	such	comparisons	to	be	
interpreted,	it	would	be	critical	to	first	consider	the	base	rate	for	decoding	information	for	the	
regions	in	question.	Indeed,	while	we	have	focused	on	the	PFC	in	this	study,	our	results	also	
highlight	 the	more	general	point	 that	knowing	such	base	rates	 is	critical	 to	 interpreting	 the	
findings	of	 any	MVPA	 study,	 including	 those	 employing	other	measurement	modalities	 that	
span	the	brain	like	MEG	or	EEG		
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The	empirical	distribution	of	PFC	classification	accuracies	that	we	have	compiled	allows	any	
new	 result	 to	 be	 placed	 within	 the	 context	 of	 prior	 findings	 and	 for	 its	 likelihood	 to	 be	
computed.	As	also	noted	above,	analyses	that	report	unusually	high	classification	accuracies	
should	 draw	 attention	 for	 the	 possibility	 that	 they	may	 be	 false	 positives	 or	 be	 driven	 by	
confounding	factors.	Employing	this	logic,	we	compiled	separate	distributions	of	classification	
accuracies	for	significant	and	null	effects	from	our	dataset	and	observed	considerable	overlap	
between	 these	 empirical	 distributions.	 This	 overlap	 suggests	 the	 presence	 of	 a	 number	 of	
analyses	 that	either	did	not	appropriately	control	 false	positive	rates,	or	were	 insufficiently	
powered	to	reject	null	hypothesis	of	chance-level	coding.	Indeed,	we	noted	the	widespread	use	
of	parametric	statistics,	which	have	been	shown	to	inflate	false	positive	rates	for	classification	
accuracies.	 We	 agree	 with	 recommendations	 that	 MVPA	 studies	 should	 rely	 primarily	 on	
appropriately	conducted	permutation	testing	at	the	individual	level	76	and	the	assessment	of	
the	prevalence	of	effects	at	the	group	level	54.		
	
Indeed,	 given	 the	 importance	of	 the	prevalence	of	MVPA	effects	 in	making	population-level	
inferences	54,	it	is	important	to	consider	the	power	of	an	experimental	design	to	detect	an	effect	
at	 the	 individual-subject	 level.	Based	on	our	 rough	estimates	of	 typical	decoding	accuracies	
from	 the	 ‘null’	 and	 ‘significant’	 distributions,	 we	 expect	 that	 significantly	 more	 data	 per	
participant	will	need	to	be	collected	to	detect	small	differences	in	decoding	accuracies	more	
consistently.	 This	 is	 particularly	 important	 as	 future	 studies	 move	 beyond	 demonstrating	
information	coding	to	examining	the	factors	that	may	influence	the	properties	of	underlying	
representations.	With	classification	accuracies	typically	hovering	in	the	50%-60%	range,	there	
is	little	room	to	detect	their	modulation	with	experimental	manipulation	or	by	incorporating	
covariates	without	many	more	measurements.	Similarly,	improved	statistical	power	will	also	
be	necessary	in	order	to	regress	out	the	potentially	confounding	effects	of	small,	idiosyncratic	
differences	between	task	conditions	on	nuisance	variables	like	difficulty	or	time-on-task	77.	The	
prefrontal	BOLD	signal	is	known	to	be	sensitive	to	such	variables	56,78	and	regressing	out	their	
effects	post-hoc	is	critical	to	unbiased	inference.		
	
In	conclusion,	we	provide	an	estimate	of	the	base	rate	of	decoding	information	from	PFC	BOLD	
patterns	and	show	that	it	is	markedly	lower	than	two	brain	regions	in	visual	cortex.	Our	low	
estimate	supports	the	prevailing	impression	that	using	MVPA	to	decode	information	in	PFC	is	
particularly	challenging.	The	reasons	for	this	difficulty	remain	open,	and	we	suspect	may	reflect	
an	 important	 property	 of	 neural	 coding	 in	 the	 PFC,	 such	 as	 their	 spatial	 organization	 and	
distribution.	Though	we	cannot	pinpoint	the	specific	factor	driving	this	difference,	our	results	
have	concrete	implications	for	the	design	and	interpretation	of	future	studies	–	we	recommend	
more	data	per	participant,	the	use	of	permutation	tests,	reporting	of	prevalence	at	the	group-
level,	and	a	consideration	of	base	rate	when	making	comparisons	across	regions.	Finally,	this	
study	provides	an	example	of	how	meta-analyses	of	MVPA	data	can	provide	unique	insights	
that	are	not	available	in	single	studies.	To	facilitate	future	investigations,	we	are	sharing	our	
database	and	code	publicly	via	the	Open	Science	Framework	(OSF)	(https://osf.io/8dvzr/).	 
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Methods	

Literature	Search	and	Study	Inclusion		
We	 conducted	 a	 comprehensive	 search	 of	 the	 literature	 to	 identify	 all	 published	 studies	
between	 the	 years	 of	 2001	 and	 2016	 that	 employed	 multivariate	 methods	 to	 decode	
information	 from	fMRI	BOLD	patterns	 in	 the	prefrontal	cortex.	 In	summary,	we	queried	 the	
PubMed	 database	 for	 articles	 whose	 abstracts	 contained	 at	 least	 one	 term	 related	 to	 (i1)	
functional	 imaging,	 (i2)	 multivoxel	 pattern	 analysis,	 (i3)	 frontal	 cortex.	 In	 addition,	 we	
explicitly	 excluded	articles	whose	abstracts	 contained	 terms	 related	 to	patient	 samples	and	
non-human	primates.	A	full	list	of	terms	employed	for	the	search	are	shown	in	Fig	3.		
	

This	search	resulted	in	a	set	of	462	studies	that	employed	multivariate	fMRI	analysis,	including	
classification	analysis	and	representational	similarity	analysis.	Across	approaches,	there	was	
further	variability	in	the	metrics	used	to	report	the	strength	of	decoding,	including	significance	
statistics,	 correlation	 coefficients,	 single-subject	 mean	 classification	 accuracies,	 group-level	
mean	classification	accuracies,	etc.	To	allow	for	comparison	and	aggregation	across	studies,	we	
focused	on	the	largest	subset	of	studies,	those	that	employed	a	cross-validated	classification	

 
 
Figure	 3.	 Search	 terms	 employed	 for	 literature	 search.	 The	 final	 literature	 search	 was	
conducted	on	09/03/2016.	The	search	string	above	was	entered	into	Pubmed’s	advanced	
search	 (https://www.ncbi.nlm.nih.gov/pubmed/advanced),	 additionally	 restricting	 the	
year	of	publication	to	be	between	2001	and	2016.	 	
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approach	for	decoding	and	reported	group-level	summary	classification	accuracies.	We	define	
the	 cross-validated	 classification	 approach	 as	 one	 in	 which	 unseen	 and	 unlabeled	 BOLD	
patterns	are	assigned	labels	by	a	‘classifier’	trained	on	independent	data,	and	the	success	of	this	
classification	is	reported	in	terms	of	classification	accuracies.	We	further	restricted	our	dataset	
to	 the	 studies	 that	 reported	decoding	analyses	with	 two	classes	 (i.e.	 those	 that	had	50%	as	
chance	level).	This	left	us	with	76	studies,	the	list	of	which	can	be	found	in	Supplementary	Table	
S1.		

Within	Study	Extraction	
Studies	reported	a	variable	number	of	decoding	analyses,	ranging	from	1-96	per	study	Some	
studies	decoded	the	same	information	from	different	PFC	regions,	while	other	studies	decoded	
different	 types	 of	 information	 from	 the	 same	 region.	 A	 few	 studies	 also	 applied	 the	 same	
analysis	to	data	from	different	time	points	within	a	single	trial.	As	a	rule,	we	separately	recorded	
all	 reported	 group-level	 summary	 classification	 accuracies.	 However,	 there	 were	 some	
exceptional	cases	 in	which	 it	was	either	 infeasible	or	undesirable	 to	record	all	 the	reported	
classification	accuracies.	For	example,	analyses	that	attempt	to	classify	stimulus	information	at	
each	 TR	 over	 a	 window	 of	 time	 would	 be	 likely	 to	 yield	 highly	 correlated	 classification	
accuracies,	due	to	the	autocorrelation	in	fMRI	BOLD	signal.	Therefore,	in	such	cases,	we	only	
recorded	 the	maximum	decoding	 accuracy	 from	 the	 entire	window.	 Another	 case	 concerns	
analyses	conducted	in	both	a	single	region	and	its	constituent	sub-regions,	such	as	right,	left,	
and	bilateral	dorsolateral	PFC.	We	recorded	only	the	sub-regions	to	reduce	redundancy	in	our	
dataset.	 Finally,	 in	 cases	where	 the	 goal	 of	 an	 analysis	was	 to	 test	whether	 the	 number	 of	
included	voxels	influenced	the	result,	we	again	only	recorded	the	maximum	accuracy	achieved.	
Thus,	in	general,	we	sought	to	include	independent	classification	attempts	in	prefrontal	cortex,	
and	where	classifications	were	non-independent,	to	favor	inclusion	of	the	one	with	the	highest	
classification	accuracy.	Note	that	 this	 latter	 inclusion	criterion	biases	against	 the	hypothesis	
that	it	is	difficult	to	classify	prefrontal	cortex	BOLD.	
	
Another	concern	regarding	 the	 independence	of	observations	 relates	 to	 the	 intrinsic	 spatial	
smoothness	of	 fMRI	datasets.	 If	decoding	accuracies	are	obtained	 from	two	regions	that	are	
close	 enough	 to	 each	 other	 to	 show	 spatial	 correlation,	 the	 observations	 would	 not	 be	
independent.	 Given	 that	 papers	 do	 not	 report	 intrinsic	 spatial	 smoothness,	we	 employed	 a	
threshold	 of	 10mm	 as	 the	 minimum	 separation	 required	 for	 decoding	 accuracies	 to	 be	
considered	separate.	We	 found	no	cases	of	 two	analyses	 from	the	same	study,	decoding	 the	
same	 information,	 focused	 on	 regions	 that	 were	 less	 that	 10mm	 apart.	 In	 addition,	 we	
conducted	 a	 second	 analysis	 where	 we	 averaged	 all	 accuracies	 from	 a	 study	 if	 they	 were	
associated	with	the	same	AAL	region.	This	did	not	affect	our	results.		
	
To	 ensure	 that	 classification	 accuracy	 values	 were	 reliably	 recorded	 from	 each	 paper	 we	
conducted	a	validation	procedure	in	which	an	independent	investigator	(blinded	to	the	initially	
coded	value	and	without	authorship	incentive)	re-coded	the	accuracy	values	from	each	paper.	
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In	each	case	where	the	two	values	were	different,	the	values	were	re-checked	and	corrected	in	
the	record.		

Estimating	Distributions	
To	 compare	 decoding	 accuracy	 across	 regions	 (frontal	 v/s	 occipital	 or	 mid-temporal)	 and	
between	significant	and	non-significant	data	we	estimated	distributions	 for	 the	group	mean	
data.	First,	the	accuracies	were	pooled	across	studies	and	kernel	density	estimates	were	applied	
(using	 Scott’s	 rule	 for	 bandwidth).	 To	 obtain	 confidence	 intervals,	 we	 applied	 hierarchical	
bootstrapping	 which	 accounts	 for	 the	 dependence	 among	 analyses	 from	 the	 same	 study.	
Analyses	from	the	same	study	share	features	that	may	influence	classification	accuracy	such	as	
sample	 size,	 data	quality,	 preprocessing	methods,	 etc.	 Studies	were	 first	 randomly	 sampled	
with	 replacement	 and	 then	group-level	 analyses	were	 randomly	 sampled	with	 replacement	
from	 these	 selected	 studies.	 Similar	 credible	 intervals	 were	 obtained	 by	 fitting	 Bayesian	
hierarchical	Gaussian	models	to	the	data,	though	these	models	had	to	additionally	assume	a	
parametric	family	for	the	data.		
	
In	Study	70,	mean	decoding	accuracies	were	reported	in	a	bar	graph	and	it	was	unclear	whether	
decoding	 accuracies	 not	 significantly	 different	 from	 chance	 were	 excluded.	 Therefore,	 we	
excluded	 data	 from	 Study	 70	 from	 the	 estimation	 of	 the	 significant	 and	 non-significant	
distributions.	Study	31	used	99.99%	confidence	intervals,	reporting	two	accuracies	at	63%	and	
64%	 within	 this	 interval.	 To	 be	 conservative,	 we	 did	 not	 count	 these	 accuracies	 in	 the	
estimation	of	the	non-significant	distribution.		

Regression	Analysis	
A	regression	analysis	was	employed	to	examine	how	decoding	accuracy	across	the	studies	in	
our	database	depended	on	brain	region	within	frontal	cortex,	the	type	of	information	decoded,	
and	 the	 analysis	methods	 used.	 The	 coding	 of	 these	 factors	 for	 the	 regression	 is	 described	
below.		
	
Region:	 We	 examined	 classification	 performance	 as	 a	 function	 of	 brain	 region.	 Individual	
analyses	reported	location	using	a	number	of	different	atlases.	Therefore,	to	compare	accuracy	
in	 a	 single	 space,	 we	 mapped	 all	 reported	 locations	 to	 the	 AAL	 atlas.	 Analyses	 that	 were	
reported	with	centroid	coordinates,	from	either	an	ROI	or	a	roaming	searchlight	were	assigned	
to	AAL	regions	by	coordinate-lookup	in	SPM12’s	AAL	template	image.	 	Analyses	that	did	not	
report	coordinates	used	ROIs	coming	from	one	of	several	common	brain	atlases:	Brodmann	79,	
Destrieux	80,	Desikan-Kellaney	81,	Oxford-Harvard	(FSL).	These	analyses	were	assigned	within	
AAL	by	a	region-to-region	correspondence	table	constructed	by	visually	comparing	the	non-
AAL	atlases	to	the	AAL	atlas	in	MRICRON	(Supplemental	Table	2)	
	
Within	 this	 region	 coding	 scheme,	 analyses	 with	 small	 ROIs	 or	 those	 that	 reported	 peak	
coordinates	were	each	assigned	to	one	AAL	region,	whereas	analyses	with	larger	ROIs	were	
assigned	to	two	or	more	AAL	regions.	53%,	32%,	15%	of	the	analyses	were	assigned	to	one,	
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two,	and	three	or	more	regions	respectively.	In	most	cases	where	accuracies	were	assigned	to	
two	AAL	regions,	these	were	the	left	and	right	hemisphere	counterparts	of	the	same	AAL	region.	
Therefore,	for	the	main	regression,	analyses	that	had	been	assigned	to	two	AAL	regions	were	
assigned	 to	 a	 bilateral	 region	 regressor.	 The	 accuracies	 not	 assigned	 to	 a	 bilateral	 ROI	 or	
assigned	 to	more	 than	 2	 regions	were	 omitted	 from	 the	main	 analysis	 to	maintain	mutual	
exclusivity,	 leaving	 82%	 of	 the	 original	 data.	 These	 accuracies	 were	 included	 in	 follow-up	
analyses	described	in	the	results	and	in	the	supplements.		
	
Information	Type:	The	type	of	information	decoded	in	each	analysis	can	be	broadly	categorized	
as	either	perceptual,	response,	rule,	or	value.	We	categorized	an	analysis	as	perceptual	if	trials	
were	separated	into	classes	so	that	they	shared	either	a	low-level	perceptual	feature	such	as	
color,	or	a	high-level	feature	such	as	object	category.	Importantly,	trials	or	patterns	from	the	
same	class	would	be	associated	with	different	actions.	In	contrast,	we	categorized	an	analysis	
as	response	 if	 trials	 from	 the	 same	class	 contained	 the	 same	action	but	different	perceptual	
features.	We	 categorized	 an	 analysis	 as	 rule	 if	 trials	 from	 the	 same	 class	 shared	 the	 same	
abstract	goal,	task	or	set	of	stimulus-response	mappings.	For	example,	one	class	of	trials	might	
require	objects	to	be	judged	on	their	size,	while	the	other	class	of	trials	might	require	judgments	
of	shape.	We	considered	an	analysis	as	value	if	different	classes	of	trials	were	associated	with	
different	levels	of	subjective	value.	For	example,	classes	of	trials	might	be	distinguished	based	
on	 a	 participant’s	 desire	 to	 purchase	 an	 object,	 or	whether	 they	 experienced	 a	win	 or	 loss	
outcome.	Examples	of	each	type	of	analysis	can	be	seen	in	Supplementary	Table	3.	
	
Analysis	Procedure:	MVPA	analyses	varied	along	several	dimensions	at	each	step	in	the	analysis	
pipeline	 from	data	collection	and	preprocessing	 to	classification	 that	 could	ultimately	affect	
outcome.		We	recorded	the	following	for	each	analysis	at	each	step	of	the	procedure:	scanner	
strength,	 number	 of	 subjects,	 coregistration,	 smoothing,	 temporal	 averaging,	 response	
normalization,	 and	 classifier	 used.	 Specific	 codes	 used	 and	 their	 definitions	 are	 elaborated	
below.	
	
Coregistration.	Coded	as	0-1	and	refers	to	whether	the	decoding	analysis	was	conducted	in	native-
subject	space	or	a	standard	space	such	as	MNI.		
	
Smoothing.	Coded	as	0-1	and	refers	to	whether	or	not	any	smoothing	kernel	was	applied	to	the	fMRI	
data	prior	to	the	decoding	analysis.		
	
Temporal	 Averaging.	 Coded	 as	 one	 of	 four	 types,	 referring	 to	 how	 multiple	 fMRI	 images	 are	
combined	into	a	single	pattern	corresponding	to	an	experimental	event.	The	four	levels	were:		

1. no	temporal	averaging:	uses	every	TR	(repetition	time)	on	every	trial	as	a	pattern	
2. averaging	across	trials:	averages	data	across	trials,	but	maintains	a	separate	pattern	for	

each	TR;		
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3. averaging	across	TRs:	averages	data	across	TRs	but	maintains	a	separate	pattern	for	trial	
(or	event)	

4. averaging	across	TRs	and	trials:	averages	data	across	both	trials	and	across	TRs.	This	last	
category	has	the	largest	degree	of	temporal	compression,	often	leading	to	only	a	few	
training	examples	per	class.		

	
Response	normalization.	Coded	into	3	levels:	no	normalization,	temporal	normalization,	and	spatial	
normalization.	 Temporal	 normalization	 de-means	 each	 voxel	 across	 time	 and	 divides	 by	 the	
standard	deviation	either	within	class	or	across	all	classes.	Examples	using	this	method	are	Studies	
36,	25,	4.	Spatial	normalization	de-means	each	voxel	using	the	average	response	of	the	surrounding	
voxels.	An	example	using	this	method	is	Study	3.		
	
Classifiers.	Coded	as	one	of	6	types:	Gaussian	naive	Bayes	(gnb),	logistic	regression	(logreg),	linear	
discriminant	 analysis	 (lda),	 linear	 support	 vector	 machines	 (svm-lin),	 nonlinear	 support	 vector	
machines	 (svm-nonlin),	 and	 correlation	 (correlation).	 Correlation	 accuracy	 is	 determined	 by	
assessing	 whether	 the	 within	 class	 correlation	 is	 higher	 than	 the	 between	 class	 correlation	 in	
random	splits	of	the	data.		

In-house	fMRI	dataset	
In	order	to	complement	our	meta-analysis,	we	also	analyzed	previously	collected	fMRI	data	from	
our	laboratory	on	a	cognitive	control	task	requiring	coding	of	rule	and	visual	stimulus	information.	
Rule	information	was	indicated	by	a	visual	feature,	so	both	types	of	information	could	be	decoded	
from	the	same	set	of	 trials.	This	allowed	us	 to	compare	decoding	accuracy	between	 frontal	and	
visual	 cortex,	 while	 controlling	 for	 differences	 in	 methods.	 We	 also	 employed	 this	 dataset	 to	
compare	the	signal-to-noise	ratios	and	pattern	reliability	between	frontal	and	visual	cortex	within	
this	dataset.	The	details	of	the	task	and	analyses	can	be	found	in	the	Supplementary	Materials.	
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