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Alpha and Beta Oscillations Index Semantic Congruency
between Speech and Gestures in Clear and

Degraded Speech

Linda Drijvers1, Asli Özyürek1,2, and Ole Jensen3

Abstract

■ Previous work revealed that visual semantic information
conveyed by gestures can enhance degraded speech compre-
hension, but the mechanisms underlying these integration pro-
cesses under adverse listening conditions remain poorly
understood. We used MEG to investigate how oscillatory dy-
namics support speech–gesture integration when integration
load is manipulated by auditory (e.g., speech degradation) and
visual semantic (e.g., gesture congruency) factors. Participants
were presented with videos of an actress uttering an action verb
in clear or degraded speech, accompanied by a matching (mix-
ing gesture + “mixing”) or mismatching (drinking gesture +
“walking”) gesture. In clear speech, alpha/beta power was more
suppressed in the left inferior frontal gyrus and motor and
visual cortices when integration load increased in response to
mismatching versus matching gestures. In degraded speech,

beta power was less suppressed over posterior STS and medial
temporal lobe for mismatching compared with matching ges-
tures, showing that integration load was lowest when speech
was degraded and mismatching gestures could not be integrated
and disambiguate the degraded signal. Our results thus provide
novel insights on how low-frequency oscillatory modulations in
different parts of the cortex support the semantic audiovisual
integration of gestures in clear and degraded speech: When
speech is clear, the left inferior frontal gyrus and motor and
visual cortices engage because higher-level semantic informa-
tion increases semantic integration load. When speech is de-
graded, posterior STS/middle temporal gyrus and medial
temporal lobe are less engaged because integration load is
lowest when visual semantic information does not aid lexical
retrieval and speech and gestures cannot be integrated. ■

INTRODUCTION

Oscillatory dynamics are thought to subserve the inte-
gration of complex information from multiple modalities
(Varela, Lachaux, Rodriguez, & Martinerie, 2001), such
as during multisensory integration (Schepers, Schneider,
Hipp, Engel, & Senkowski, 2013; Kayser & Logothetis,
2009; Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008;
Senkowski, Schneider, Foxe, & Engel, 2008). Low-frequency
oscillatory power decreases in the alpha and beta bands
are often related to the engagement of brain areas, whereas
increases are often related to disengagement or func-
tional inhibition of task-irrelevant brain regions ( Jensen
& Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr,
2007; Pfurtscheller & Lopes da Silva, 1999). In line with
this, previous research revealed that oscillatory power
increases can predict the degree of nonsemantic audio-
visual integration of an ambiguous stimulus (e.g., beeps
and flashes; Hipp, Engel, & Siegel, 2011). However, it is

poorly understood how these mechanisms translate to
semantic audiovisual integration, such as in multimodal
speech processing.
Investigating whether similar oscillatory mechanisms

also support more realistic situations is particularly relevant
when considering face-to-face communication, which inte-
grates auditory (e.g., speech) and visual (e.g., gestures)
modalities. Under adverse listening conditions, speech
comprehension can be enhanced by the visual semantic
information conveyed by iconic gestures (Drijvers &
Özyürek, 2017; Holle, Obleser, Rueschemeyer, & Gunter,
2010). These iconic gestures can illustrate object attri-
butes, actions, and space (McNeill, 1992) and are known
to affect clear and degraded speech comprehension
(e.g., Drijvers&Özyürek, 2018; Drijvers, Özyürek, & Jensen,
2018; Zhao, Riggs, Schindler, & Holle, 2018; Drijvers &
Özyürek, 2017; Dick, Mok, Raja Beharelle, Goldin-Meadow,
& Small, 2014; Straube, Green, Weis, & Kircher, 2012;
Holle et al., 2010; Green et al., 2009; Willems, Özyürek,
& Hagoort, 2007, 2009; see Özyürek, 2014, for a review).
For example, when the semantic information that is con-
veyed by these gestures mismatches clear speech, previous
studies have demonstrated that semantic integration load
increases and audiovisual integration might be hindered.
For example, previous fMRI studies have demonstrated
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more BOLD activation in the left inferior frontal gyrus
(LIFG) when semantic integration load increased and
gestures mismatched rather than matched clear speech
(Willems et al., 2007, 2009). Similar effects have been dem-
onstrated in EEG studies, where the N400, an ERP compo-
nent that is sensitive to semantic unification operations,
was more negative when gestures mismatched than
matched clear speech (e.g., Kelly, Kravitz, & Hopkins,
2004). Extending on this, recent work demonstrated that
the difference in N400 amplitude (i.e., the N400 effect) in
response to mismatching compared with matching ges-
tures is larger in clear than in degraded speech, which in-
dicated that listeners are more hindered when integrating
gestures with degraded speech (Drijvers & Özyürek, 2018).
These results suggest that, when speech is degraded, the
mismatching gesture cannot aid to disambiguate the re-
maining auditory cues to facilitate speech comprehension
and integration load is lowest as it is not possible. However,
it is unknown what neural mechanisms underlie speech–
gesture integration in clear and adverse listening condi-
tions, and it is unknown how semantic integration occurs
when the integration load is manipulated by auditory fac-
tors (e.g., speech degradation) and visual semantic factors
(e.g., congruency of gestures). Therefore, the current
study aims to get insight in what oscillatory mechanisms
support the semantic integration of speech and gestures
in both clear and degraded speech.
Studies on unimodal degraded speech processing have

consistently demonstrated less suppressed alpha power
as a function of speech intelligibility (i.e., enhanced alpha
power in response to degraded speech), which has been
interpreted as possibly reflecting the allocation of re-
sources and the functional inhibition of task-irrelevant
neural activity during speech comprehension in chal-
lenging listening situations. This might be due to a higher
auditory cognitive load when language processing is in-
hibited because of speech degradation (Drijvers, Mulder,
& Ernestus, 2016; Wilsch, Henry, Herrmann, Maess, &
Obleser, 2015; Strauß, Wöstmann, & Obleser, 2014; Weisz
& Obleser, 2014; Becker, Pefkou, Michel, & Hervais-
Adelman, 2013;Obleser&Weisz, 2012;Obleser,Wöstmann,
Hellbernd, Wilsch, & Maess, 2012). During audiovisual
processing of speech in noise, other work has revealed
that beta power localized in the STS was less suppressed
in high noise compared with no or low noise, possibly
reflecting disturbed or altered audiovisual speech pro-
cessing (Schepers et al., 2013). The abovementioned
studies, however, do not include a visual semantic com-
ponent, such as iconic co-speech gestures. In the visual
domain, previous research on speech–gesture integra-
tion has identified that, during gestural enhancement of
degraded speech comprehension, low- and high-frequency
oscillatory power modulations in the LIFG and left tem-
poral, motor, and visual regions predicted a listener’s
benefit from gestures during degraded speech compre-
hension (Drijvers et al., 2018). However, it is unknown
how oscillatory activity supports speech–gesture inte-

gration when this integration is modulated by auditory
(speech degradation) and visual semantic (gesture
congruency) factors. The spatiotemporal characteristics
of this integration process are needed to reveal which
brain areas are engaged and disengaged in this process
over time, such as when integration load is increased and
a gesture mismatches rather than matches clear speech
and also when integration load is lowest as it is not
possible to integrate the two inputs, such as when a
gesture mismatches rather than matches degraded speech.

Using MEG, we investigated the spatiotemporal oscil-
latory neuronal dynamics underlying audiovisual integra-
tion in a multimodal semantic context. Participants were
presented with videos of an actress uttering an action
verb in clear or degraded speech, accompanied by a
matching or mismatching gesture, following the design
of Drijvers and Özyürek (2018). On the basis of the oscil-
latory modulations that we observed in Drijvers et al.
(2018), we expected that the neural integration of speech
and gesture relies on an extended network, involving the
language network (including LIFG/posterior STS [pSTS]/
middle temporal gyrus [MTG]), the motor cortex, and
the visual cortex. In line with the functional inhibition
notion, our general hypothesis was that a relative decrease
of alpha and beta power would reflect engagement of
task-relevant brain regions, whereas enhanced alpha and
beta power would reflect areas that do not need to be
engaged for the task at hand or are less engaged in one
condition compared with another condition (Jensen &
Mazaheri, 2010; Klimesch et al., 2007). In clear speech,
we thus expected that, when visual semantic congruency
would increase integration load (i.e., when a gesture
would mismatch rather than match the clear speech;
see Drijvers & Özyürek, 2018), alpha and beta power
would be more suppressed for mismatching compared
with matching gestures. We expect that this larger sup-
pression would occur in the language network, as well
as the visual and motor cortices, reflecting increased visual
attention to mismatching compared with matching ges-
tures (Drijvers et al., 2018; Stothart & Kazanina, 2013 [for
nonsemantic input]), a larger engagement of the motor
system during observation of mismatching compared
with matching gestures (Kilner, Marchant, & Frith, 2009;
Koelewijn, van Schie, Bekkering, Oostenveld, & Jensen,
2008; Caetano, Jousmäki, & Hari, 2007), and a higher
semantic unification load (Drijvers & Özyürek, 2018;
Drijvers et al., 2018). This higher semantic unification load
then occurs because the mismatching semantic infor-
mation of the gesture is harder to integrate with clear
speech than matching semantic information (Drijvers &
Özyürek, 2018; Wang et al., 2012). Although we thus expect
that mismatching gestures increase integration load in
clear speech, we expect that, in degraded speech, mis-
matching gestures result in the lowest integration. In
degraded speech, the gestural information cannot be
coupled to the remaining auditory cues in the degraded
speech signal, which would hinder integration (Drijvers
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& Özyürek, 2018). This is opposed to matching gestures
in degraded speech, which can enhance recognition of
degraded speech (as, e.g., in Drijvers & Özyürek, 2017;
Holle et al., 2010). Therefore, in degraded speech, we
expect that alpha and beta power will be less suppressed
when a gesture mismatches rather than matches degraded
speech, reflecting less engagement of task-relevant brain
regions during speech–gesture integration.

METHODS

Participants

Thirty-two right-handed Dutch native participants, re-
cruited from Radboud University (mean age = 23.2 years,
14 men) participated in this experiment. All participants
had normal hearing, normal or corrected-to-normal vi-
sion, no language, motor, or neurological disabilities,
and gave written consent before participating in this
experiment. Three participants (two women) were ex-
cluded because of technical failure (two) and excessive
(head) motion artifacts (movement > 1 cm or >60%
of the trials affected). The final data set included the
data of 29 participants.

Stimulus Materials

Participants were presented with 160 video clips that con-
tained an actress who uttered a highly frequent action
verb in clear or degraded speech, accompanied by a
matching or mismatching iconic gesture. All of these
video clips were pretested as part of the study by Drijvers
and Özyürek (2017). To ensure that the verbs would fit with
the gestures, we presented participants with the videos
without their audio file and asked them to write down
the verb they associated with the movement. We then

showed participants the verb we originally matched the
video with and asked them to indicate on a 7-point scale
how much this verb fitted with the movement in the
video. The results revealed a mean recognition rate of
59% over all gesture videos, which indicates that the
gestures are potentially ambiguous without speech and
thus might need speech for successful comprehension.
Our rating task resulted in a mean score of “iconicity”
of 6.1 (SD = 0.64), and all videos that scored under 5
on a 7-point scale were discarded.
In all videos that were used in this experiment (see

Figure 1), the actress would always appear in the middle
of the screen, where she was visible from her knees
upward. She wore neutrally colored clothing and was
standing in front of a dark blue neutral background.
The gestures that she made were not instructed but
made by her on the fly. The actress did not receive any
feedback on the gestures she made. For the mismatching
gestures, the experimenter would mention two verbs to
the actress, of which the first one had to be the spoken
verb and the second one had to be the to-be-gestured
verb (e.g., “to drive” and “to mix,” uttering “drive” while
making a mixing gesture). This method was chosen as
our stimuli show the face of the actress, and we could
therefore not replace the audio track of the video with
another verb’s audio track, as the visible speech would
be different. To determine which verbs were used as
mismatching gestures, we divided the list of verbs in
the mismatching condition in two separate lists and com-
bined the verbs on the first list with the gesture that
matched the verbs on the second list. In all videos, the
preparation of this gesture (counted as the first frame
where the actress moved her hand) was at 120 msec. At
550 msec, the stroke of the gesture would occur. Speech
onset was at 680 msec, and the retraction of the gesture
started at 1380 msec. The gesture offset was at 1780 msec

Figure 1. (A) Illustration of the different conditions and stimuli. (B) Illustration of the structure of the videos. (C) Structure of the trial.
(D) Percentage of correct answers per condition. (E) RTs in milliseconds per condition. Error bars represent SD. ***p < .01.
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(see Figure 1B). As speech onset was at 680 msec and
stroke onset was at 550 msec, the overlap between the
meaningful part of the gesture and the speech was opti-
mal for mutual enhancement for comprehension (as pre-
viously demonstrated in Habets, Kita, Shao, Özyürek, &
Hagoort, 2011).
All audio files were presented in clear speech or six-

band noise-vocoded speech. This noise-vocoding level
was chosen as previous work showed that, at a six-band
noise-vocoding level, participants are most able to use
gestural information for comprehension (Drijvers &
Özyürek, 2017). From the video files, we extracted all
audio tracks, denoised the speech, and intensity-scaled
the speech to 70 dB by using Praat (Boersma & Weenink,
2006). After degrading 80 of the 160 sound files, all
sound files were then recombined again with their cor-
responding video files, by using a custom-made script
in Praat. To degrade the speech signals, we band-pass
filtered each audio file between 50 and 8000 Hz and
divided the speech signals in logarithmically spaced fre-
quency bands with cutoff frequencies at 50, 116.5, 271.4,
632.5, 1473.6, 3433.5, and 8000 Hz. These frequencies
were used to filter white noise to obtain the six bands.
Subsequently, the amplitude envelope of these bands was
extracted using half-wave rectification. We then multiplied
this envelope with the noise bands and recombined the
bands, resulting in the degraded signal (Shannon, Zeng,
Kamath, Wygonski, & Ekelid, 1995). All sound was pre-
sented to participants through MEG-compatible air tubes.
The total experiment consisted of four conditions: a

clear speech + matching gesture condition (CM), a de-
graded speech + matching gesture condition (DM), a
clear speech + mismatching gesture condition (CMM),
and a degraded speech and mismatching gesture condi-
tion (DMM). Each condition consisted of 40 items, of
which none was repeated in any other condition (see
Figure 1A).

Procedure

Participants were placed in the 275-channel axial gradi-
ometer CTF MEG system, at 70 cm from the projection
screen on which the videos were presented. All videos
were projected full-screen onto a semitranslucent screen
by back projection using an EIKI LC-XL100L projector at a
resolution of 1650 × 1080 pixels. The experiment was
presented through Presentation software (Neurobehav-
ioral Systems, Inc.). Each trial would start with a fixation
cross (1000 msec), followed by a video (2000 msec) and a
short delay period (1000–1500 msec, jittered), and ended
with a cued-verb recall task in which participants had to
identify which verb they just heard in the videos. The
answer options in this task would always consist of a se-
mantic competitor, a phonological competitor, an unre-
lated answer, and the correct answer. Participants had to
indicate their choice by pressing a button with their right
hand on a four-button box. After the participants had en-

tered their response, a new trial would start after 1500 msec
(see Figure 1C). All participants were presented with an
individual pseudorandomization of the different videos
that ensured none of the conditions would occur more
than twice in a row (e.g., two consecutive trials that
had degraded speech and a mismatching gesture). Partic-
ipants were asked to sit as still as possible and not to
blink during the videos, but after answering the cued re-
call task. We measured brain activity with MEG through-
out the entire experiment. Participants were able to take
a self-paced break per 40 trials.

MEG Data Acquisition

Whole-head MEG was recorded at a sampling rate of
1200 Hz by using a 275-channel axial gradiometer MEG
system. Participants wore recording markers on the
nasion and left and right ear canal to monitor their head
position in real time, using a MATLAB toolbox (Stolk,
Todorovic, Schoffelen, & Oostenveld, 2013). During
the breaks, this allowed us to readjust the participants’
head position relative to the original position at the start
of the experiment if the deviation was larger than 5 mm.
We recorded electrocardiogram as well as horizontal and
vertical EOGs for artifact rejection purposes. After the
experiment, we invited the participants to record a struc-
tural MRI of their brain, using a 1.5-T Siemens Magnetom
Avanto system with markers attached in the same posi-
tion as the head coils, to allow us to align the structural
anatomy of the participants with the MEG coordinate sys-
tem. We collected structural MRIs for 22 of 32 participants.

MEG Data Analysis

All data in this experiment were analyzed by using Field-
Trip (Oostenveld, Fries, Maris, & Schoffelen, 2011), an
open-source MATLAB toolbox, and custom MATLAB
scripts. We preprocessed the data by dividing the data
in epochs from−1 sec before video onset until 3 sec after
video onset. All data were demeaned and detrended, and
line noise was attenuated by using a discrete Fourier
transform approach at 50 Hz and its subsequent har-
monics. In total, we rejected, on average, ∼3 trials per
condition, which were contaminated by SQUID jump
artifacts and muscle artifacts by using a semiautomatic
routine. We then applied independent component analy-
sis to remove all remaining eye movements and cardiac-
related activity (Jung et al., 2000; Bell & Sejnowski, 1995).
Finally, we went through all single trials and removed any
artifacts that were not identified by using independent
component analysis or other rejection procedures. We
then resampled the data to 300 Hz to speed up analyses.

We computed an approximation of the planar gradient
by converting the axial gradiometer data to orthogonal pla-
nar gradiometer pairs and computed and summed the
power of the pairs. This approach might facilitate the inter-
pretation of the MEG data, as planar gradient maxima are
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known to be located above the neural sources that might
underlie an effect (Bastiaansen & Knösche, 2000).

Time–frequency Analyses

Our frequencies of interest ranged from 2 to 30 Hz, in
frequency steps of 1 Hz. We applied a 500-msec Hanning
window in 50-msec time steps (Mitra & Pesaran, 1999).
To calculate the differences between conditions, we
compared oscillatory power by averaging the four condi-
tions separately for each participant. Time–frequency
representations (TFRs) were log10 transformed, and the
difference between the conditions was calculated by sub-
tracting the log10 transformed power [= “log ratio,” e.g.,
log10(A) − log10(B) or log10(CMM) − log10(CM) and
log10(DMM) − log10(DM)]. The time window of analysis
was always between 0.7 and 2.0 sec, which corresponds
to speech onset until video offset.

Source Analyses

To estimate the sources of our observed effects, we used
dynamic imaging of coherent sources (Gross et al., 2001)
as a beamforming spatial filtering technique. For this part
of the analysis, the axial gradiometer data were used.
First, the algorithm computed a common spatial filter
from the cross-spectral density (CSD) matrix of the data
and a lead field. For all frequency ranges of interest, we
used a single Hanning taper. All lead fields of the partic-
ipants were constructed by using a realistically shaped
single-shell head model based on the participants’ own
individual anatomical data and by identifying the anatom-
ical markers at the nasion and the two ear canals. Each
volume was then divided into a 10-mm spaced grid of
points and warped to the Montreal Neurological Institute
brain template, where the lead field was calculated for
each grid point.

The time windows that were used as input for the
source analysis were based on the results from the sensor
analysis. For the alpha band, we calculated the cross-
spectral density between 1.3 and 2.0 sec at 10 Hz, with
2-Hz frequency smoothing. For the beta band, we com-
puted the cross-spectral density between 1.3 and 2.0 sec,
centered at 18 Hz with 4-Hz frequency smoothing. We
used a common spatial filter containing all of the condi-
tions to project the data through, separately per condi-
tion. We then averaged over trials, log10-transformed
the data, and calculated the difference between condi-
tions by subtracting the log power for the single con-
trasts. Finally, the grand-average grid of all participants
was interpolated onto the Montreal Neurological Insti-
tute template for visualization purposes. Note that we
included all trials in our sensor and source level analyses
and did not differentiate between correct and incorrect
trials, as the cued recall task might have masked the actual
comprehension participants might have had when they
were watching and listening to the video.

Cluster-based Permutation Statistics

We performed nonparametric cluster-based permutation
tests (Maris & Oostenveld, 2007) across participants to
statistically quantify differences between the different
conditions in power on source and sensor levels. We
used the sensor level statistics to create statistical thresh-
old masks to localize the observed effects on source
level. We computed the mean difference between two
conditions (e.g., CMM vs. CM, or DMM vs. DM) for each
x/y/z/ sample of our data set in the frequency ranges
(alpha: 8–12 Hz, beta: 15–20 Hz) and time window (0.7–
2.0 sec, i.e., from speech onset until the end of the video)
we defined a priori and on the basis of a grand-average
TFR of all conditions combined. After collecting all of the
difference values of these comparisons (e.g., CMM vs. CM,
or DMM vs. DM), all values where thresholded with the
95th percentile of the entire distribution. The remaining
values formed the cluster candidates. All conditions and
their corresponding values were randomly reassigned
5,000 times to form the permutation distribution. Out of
this distribution, the cluster candidate who had the highest
sum of the difference values was added to the permutation
distribution. Finally, the actual observed cluster-level
summed values were compared against this distribution,
and all clusters that fell in the highest or lowest 2.5% were
considered significant.

RESULTS

We presented participants with videos that showed an
actress uttering a Dutch action verb, while she simul-
taneously made a matching or mismatching gesture. Sub-
sequently, participants had to indicate which verb they
heard by a button press. Brain activity was recorded by
MEG throughout the whole trial, but we focused on the
time window from speech onset (0.7 sec) until the end
of the video.

Behavioral Results

A repeated-measures ANOVA with the factors Gesture
(matching/mismatching) and Noise (clear/degraded) re-
vealed that, when speech was clear, participants were more
able to identify a correct answer on the cued-verb recall
task than when speech was degraded, F(1, 28) = 94.97,
p < .001, η2 = .77. Similarly, participants found it easier
to identify a word when a gesture matched rather than mis-
matched the speech signal, F(1, 28) = 72.77, p< .001, η2=
.72 (see Figure 1D). An interaction effect between Gesture
and Noise confirmed that the difference in correct an-
swers when comparing mismatching with matching ges-
tures was larger in degraded speech than in clear speech,
F(1, 28) = 58.45. p < .001, η2 = .68 (CM: M = 97.2%,
SD = 1.6%; CMM: M = 92.8%, SD = 2.1%; DM: M =
85.6%, SD = 12.1%; DMM: M = 61.4%, SD = 11.2%).
Post hoc t tests on the relevant contrasts confirmed that
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participants were more able to correctly identify the verb
when the verb was accompanied by a matching compared
with a mismatching gesture (clear speech: t(28) = −3.09,
p < .01; degraded speech: t(28) = −8.42, p < .001). We
did not observe any reliable differences in the amount of
semantic or phonological competitors.
A second repeated-measures ANOVA using the same

factors revealed a similar pattern for the RTs as for the
correct answers: Participants were quicker to answer when
speech was clear compared with degraded, F(1, 28) =
143.63, p < .001, η2 = .84, and when a gesture matched
rather than mismatched the speech signal, F(1, 28) =
59.90, p < .001, η2 = .68 (see Figure 1E). The difference
in RTs when comparing mismatching with matching ges-
tures was larger in degraded speech than in clear speech,
F(1, 28) = 46.40, p< .001, η2 = .62 (CM:M= 1269.1, SD=
360.3; CMM: M = 1299.8, SD = 378.0; DM: M = 1849.9,
SD = 578.5; DMM: M = 2492.4, SD = 673.5). Post hoc
t tests on the relevant contrasts confirmed that partici-
pants were not quicker to identify the verb when the verb
was accompanied by a matching compared with a mis-
matching gesture in clear speech, t(28) = 0.82, p = .41,
but were quicker to identify the verb when the verb was
accompanied by a matching compared with a mismatch-
ing gesture in degraded speech, t(28) = 8.02, p < .001.
These behavioral results reveal that gesture facilitates

comprehension of degraded speech when the actress
made a matching gesture but hindered comprehension
when she performed a mismatching gesture.

Semantic Congruency Effects in Clear Speech

Alpha and Beta Power Are More Suppressed When a
Gesture Mismatches than Matches Clear Speech

We first conducted a sensor level analysis over the full
time window (0.7–2.0 sec, from speech onset until video
offset) to identify differences in oscillatory power be-
tween the conditions. We calculated the TFRs of power
for the individual trials and averaged them per condition.
For TFRs of the single conditions, please see Figure S1A.
Figure 2A represents the TFRs of power in response to
the contrast CMM versus CM between 2 and 30 Hz, at
representative left temporal sensors, based on the topo-
graphical plots that visualize this effect in time and space
(see Figure 2B). Sensor level analyses confirmed a larger
alpha and beta power suppression over left temporal,
motor, and occipital areas when speech was clear and a
gesture mismatched rather than matched the speech sig-
nal (alpha: one negative cluster, p = .04, 1.3–2.0 sec;
beta: one negative cluster, p < .01, 1.3–2.0 sec), suggest-
ing engagement of these areas in response to the mis-
matching gesture.

Figure 2. (A) TFRs of power of the contrast between CMM versus CM. (B) Topographical distribution of alpha (top) and beta (bottom) power of
the contrast CMM versus CM in 200-msec time bins. Orange bars denote significant clusters in the sensor level analyses. (C) Estimated source
results of the contrast in the alpha (left) and beta (right) bands, masked by statistically significant clusters.
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Alpha Power Is More Suppressed in LIFG, Left Insula,
and Visual Cortex When a Gesture Mismatches
than Matches Clear Speech

We used the time window of the significant clusters from
the sensor analyses as input for our source analyses to
estimate the sources of the alpha power modulation.
Note that the statistical assessment was based on the
sensor analysis, not the source level analysis.

Nevertheless, we applied a cluster randomization ap-
proach to the source data to find a threshold for when
to consider the source estimates reliable. To investigate
these underlying sources, we used a frequency-domain
spatial beamformer technique (dynamic imaging of co-
herent sources; Gross et al., 2001). This analysis revealed
that the source of the larger alpha power suppression in
response to mismatching compared with matching ges-
tures was localized in a widespread cluster including
the LIFG, left insula, and visual cortex (one negative
cluster, p = .04). These results thus suggest engagement
of the extended language network when a gesture mis-
matches clear speech.

Beta Power Is More Suppressed in Motor and Visual
Regions and LIFG When a Gesture Mismatches
Rather than Matches Clear Speech

We then localized the sources of the sensor-level power dif-
ference in the beta band.We localized the beta power differ-
ence in the left precentral and postcentral gyrus, the left
frontal midline/SMA, LIFG, and the visual cortex (two nega-

tive clusters:p≤ .01 andp≤ .04). In linewith our hypotheses
and earlier work (Drijvers et al., 2018), this larger beta power
suppression over the motor cortex shows that listeners
might engage their motor cortex more when a gesture
mismatches rather than matches the clear speech signal.

Semantic Congruency Effects in Degraded Speech

Beta Power Is More Enhanced When a Gesture
Mismatches than Matches Degraded Speech

Next, we investigated whether a similar pattern of oscilla-
tory power modulations would emerge when we com-
pared the same conditions in degraded instead of clear
speech. For TFRs of the single conditions, please see
Figure S1B. The TFR in Figure 3A suggests enhanced beta
power but no differences in alpha power. We plotted the
topographical distribution of the contrast between mis-
matching and matching gestures in both frequency bands
(see Figure 3B). We found no difference in alpha band
power when comparing matching and mismatching ges-
tures in degraded speech (no significant clusters, p= .06;
see Figure 3) but found a larger beta power over left tem-
poroparietal areas when a gesture mismatched degraded
speech (one positive cluster, p < .001; Figure 3B and C).
Because of the lack of an alpha power difference in DMM
versus DM, the difference in CMM versus CM was greater
than the difference in alpha power in DMM versus DM
(one positive cluster, p = .012). The difference in beta
power in CMM versus CM was larger than in DMM versus
DM (one positive cluster, p = .004).

Figure 3. (A) TFRs of power of the contrast between CMM versus CM gesture. (B) Topographical distribution of alpha (top) and beta (bottom)
power of the contrast DMM versus DM in 200-msec time bins in our time window of interest. Orange bars denote significant clusters in sensor level
analyses. (C) Estimated source of the contrast in the alpha (left) and beta (right) bands, masked by statistically significant clusters. Note that,
in the beta band, this effect was not statistically significant, but the estimated sources of the difference are included for visualization purposes.
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Enhanced Beta Power Inhibits STS and Medial
Temporal Lobe When a Gesture Mismatches
Degraded Speech

We localized the enhanced beta power in response to mis-
matching compared with matching gestures in degraded
speech in the left auditory cortex, STS, MTG, and medial
temporal lobe (MTL; one positive cluster, p < .01).

DISCUSSION

We investigated how oscillatory dynamics support the se-
mantic integration of speech and gestures in clear and
degraded speech and what the spatiotemporal dynamics
are that are associated with speech–gesture integration.
We manipulated semantic integration load by presenting
participants with videos of an actress who uttered an
action verb in clear or degraded speech, accompanied
by a matching or mismatching gesture. Our behavioral re-
sults demonstrated a semantic congruency effect and a
speech degradation effect on performance; participants
were slower and less able to correctly identify the verb
when gestures mismatched speech and when speech
was degraded. These results replicate previous findings
and underline the additive effect of speech degradation
(e.g., Holle et al., 2010) and semantic congruency be-
tween speech and gestures (e.g., Drijvers & Özyürek,
2018; Özyürek, Willems, Kita, & Hagoort, 2007; Willems
et al., 2007, 2009; Kelly et al., 2004) on integration load
and, subsequently, behavioral performance.
Our neurophysiological results demonstrate that se-

mantic congruency and speech degradation modulated
oscillatory activity in the alpha and beta bands. When
speech was clear, we observed a larger alpha power
suppression over the LIFG and visual cortex and a beta
suppression over the LIFG, (pre)motor cortex, and visual
cortex when a gesture mismatched rather than matched
speech. When speech was degraded, we observed no
difference in alpha power when comparing degraded
speech and a mismatching gesture with a matching ges-
ture. However, we did observe enhanced beta power
over pSTS when a gesture mismatched rather than
matched degraded speech. In both the alpha and beta
bands, we observed a larger difference between mis-
matching and matching gestures in clear than degraded
speech, suggesting that integration load was lowest in
degraded speech (in line with Drijvers & Özyürek, 2018).

Alpha/Beta Power Is More Suppressed over Visual
Cortex to Allow for Increased Visual Attention to
Mismatching Compared with Matching Gestures
during Clear Speech

Both alpha and beta power were more suppressed over
visual regions when a gesture mismatched rather than
matched clear speech. This effect occurred from when
the meaningful part of the gesture and speech were un-

folding until the end of the video (1.3–2.0 sec). The larger
alpha/beta suppression over visual regions suggests that
the visual system is more engaged when a listener ob-
serves a mismatching gesture than a matching gesture
and that more visual attention is allocated to a mismatch-
ing gesture compared with a matching gesture. We
suggest that, when all auditory cues are still intact, a
mismatching gesture will generate a larger mismatch
response, causing increased visual attention to these
mismatching gestures compared with matching gestures
as a result of the detection of mismatching semantic in-
formation. Similar results have been found by Stothart
and Kazanina (2013), who reported a poststimulus alpha
suppression for deviant visual stimuli, potentially reflect-
ing a shift in attentional resources after the detection of
change. In line with this, we suggest that this sustained
poststimulus alpha power suppression might reflect a
shift in visual attentional resources to the gesture after
the detection of mismatching information. Note that the
loci of the clusters in the alpha and beta bands slightly
seem to differ: The maximum of the cluster in the beta
band can be localized to BA 18, whereas the maximum
of the alpha cluster is estimated in BA 19. This suggests
that the observed beta effect is not simply a harmonic
of the observed alpha activity.

Alpha/Beta Power Is More Suppressed over LIFG
Due to Increased Semantic Unification Load in
Clear Speech

We observed a larger suppression of alpha and beta
power when a gesture mismatched rather than matched
clear speech. This larger suppression in response to a
mismatching gesture was localized in the LIFG. Previous
studies have proposed that the LIFG is sensitive to uni-
fication operations from units that are retrieved from
memory, the unification of information from different
modalities, and lexical access operations (Hagoort,
2013). For example, in a study on unimodal speech com-
prehension, sentences with incongruent sentence end-
ings yielded larger beta power over the LIFG. This was
interpreted as reflective of a higher semantic unification
load that was evoked by the incongruent sentence end-
ings, which required a stronger engagement of the task-
relevant brain network (Wang et al., 2012). Similarly, we
demonstrated in a previous study that alpha/beta power
is more suppressed in the LIFG when integration load
increases (Drijvers et al., 2018). In line with this work,
we suggest that the larger alpha and beta power suppres-
sion over the LIFG is reflective of the larger engagement
that is required from the LIFG when a mismatching ges-
ture increases semantic unification load to resolve the
mismatch between the auditory information and the
visual semantic information.

Note that previous studies (e.g., He et al., 2015; Dick
et al., 2014; Straube, Green, Bromberger, & Kircher,
2011; Holle et al., 2010; Green et al., 2009; Willems
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et al., 2009) have discussed the role of the LIFG in
speech–gesture integration and that earlier work has
argued that the LIFG is sensitive to the semantic rela-
tionship of speech–gesture pairs when a new and unified
representation of the gestural input and speech needs to
be constructed (Willems et al., 2009), which is the case
for incongruent gestures. This interpretation was later
extended by Holle et al. (2010) who argued that LIFG
activity reflects a modulation or revision of the integrated
speech–gesture information. This interpretation partially
fits our findings. When post hoc visualizing the oscillatory
modulations in the single conditions, we observed that
the LIFG revealed suppressed activity compared with
baseline in all conditions. The contrast between the mis-
matching and matching gestures thus shows that this
suppression is larger when a mismatching gesture is
paired with clear speech than when a matching gesture
is paired with clear speech. However, the unification of
these movements with the speech signal involved engage-
ment of the LIFG in all single conditions (i.e., degraded
speech + matching gesture, degraded speech + mis-
matching gesture, clear speech + matching gesture, and
clear speech + mismatching gesture). This suggests that
the observed larger alpha/beta suppression over the LIFG
might reflect the increased semantic processing load that
is imposed by the mismatching gesture but that the LIFG
is engaged in all single conditions to unify the gesture
with the speech signal, in line with the results we ob-
served in Drijvers et al. (2018), where we studied gestural
enhancement of degraded speech comprehension and
where semantic congruency was not manipulated. This
suggests that the LIFG possibly has a unifying function
of the different inputs irrespective of congruency but that
an increased integration load also increases engagement
of the LIFG to unify the inputs.

Motor Beta Suppression Reveals Stronger Simulation
of Mismatching Gesture in Clear Speech

Beta power was more suppressed over the precentral
cortex and SMA when a gesture mismatched rather than
matched clear speech. This effect occurred in a similar
time window as the alpha modulation (1.3–2.0 sec) and
lasted from when the speech and gesture were unfolding
until the end of the video. The larger suppression for
mismatching compared with matching gestures suggests
that engagement of the motor system is modulated by
the semantic fit of the information that is conveyed by
the gestures, which is in line with previous studies on ac-
tion observation (e.g., Schaller, Weiss, & Müller, 2017;
Klepp, Niccolai, Buccino, Schnitzler, & Biermann-Ruben,
2015; Weiss & Mueller, 2012; van Elk, van Schie, Zwaan,
& Bekkering, 2010). We interpret this effect as show-
ing that listeners more strongly engage their motor sys-
tem to “simulate” the mismatching gesture to reevaluate
whether it fits with the processed speech signal. Note
that we did not observe a similar effect when speech

was degraded. This suggests that, when speech is
degraded, matching and mismatching gestures are
simulated equally when auditory cues are not reliable
and a reevaluation of the fit of the gesture is hindered.
This would be in line with current and previous works
that suggest that integration load is lowest when
speech is degraded (Drijvers & Özyürek, 2017).

EnhancedBeta Power over STS/MTGandMTLReveals
Hindered Semantic Integration and Lexical Retrieval
When Gestures Mismatch Degraded Speech

When speech was degraded, we did not observe reliable
differences in alpha power when comparing mismatch-
ing and matching gestures. However, beta power was
less suppressed in response to mismatching compared
with matching gestures (1.3–2.0 sec) when speech was
degraded. This is in line with previous work on non-
semantic audiovisual speech processing, which demon-
strated a similar smaller beta suppression in noisy speech
when comparing audiovisual with audio-only conditions.
This effect was localized to the STS (Schepers et al.,
2013). This underlines that modulations of oscillatory
activity in the STS play a role in audiovisual speech pro-
cessing under clear and adverse listening conditions. Pre-
vious studies have shown that suppressed beta band
activity plays a role in tasks where information from dif-
ferent modalities needs to be integrated (Kopell, Kramer,
Malerba, & Whittington, 2010) and in naturalistic audio-
visual processing (Kayser & Logothetis, 2009). When
speech is degraded and the semantic information that is
conveyed by the gesture cannot be matched to the de-
graded auditory cues, pSTS/MTG might be less engaged
because of the hindered audiovisual integration. Similarly,
as the meaningful information from a mismatching ges-
ture will not aid in resolving the degraded speech signal,
lexical retrieval might be hindered (Hannemann, Obleser,
& Eulitz, 2007), which is demonstrated by less involve-
ment of the MTL when listeners process mismatching as
compared with matching gestures.
Our current results also contribute to recent discus-

sions over the role and involvement of pSTS/MTG and
LIFG in speech–gesture integration. Although the role
of pSTS and LIFG has been discussed, MTG has often
been found to be involved in speech–gesture integration.
Some studies have shown that MTG is modulated by se-
mantic congruency (Dick, Goldin-Meadow, Solodkin, &
Small, 2012; Green et al., 2009, see Özyürek, 2014) and
activity in the MTG has been linked to coupling sound
and meaning. However, the role of (p)STS has been de-
bated. Some studies have argued that STS is sensitive to
semantic aspects of speech–gesture integration. For
example, in an fMRI study, stronger activation for ambig-
uous words that were paired with iconic (i.e., semantic)
compared with grooming (nonsemantic) gestures was
observed (Holle, Gunter, Rüschemeyer, Hennenlotter,
& Iacoboni, 2008). Moreover, a larger involvement of
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the (p)STS has been reported in response to congruent
iconic gestures coupled with degraded speech compared
with clear speech (Holle et al., 2010), but not when com-
paring complementary versus redundant gestures (Dick
et al., 2012). Other studies have argued that pSTS is
mostly involved in the mapping and coupling of lower-
level audiovisual information, which might already have
a stable common object representation, but not to se-
mantic congruency in speech–gesture integration (e.g.,
Dick et al., 2012; Willems et al., 2007, 2009). Similarly,
studies on audiovisual integration (e.g., lips and speech)
have suggested that the STS might be related to asso-
ciating the auditory and visual modalities at a lower-
level stage of multimodal matching (e.g., Beauchamp,
2005; Beauchamp, Argall, Bodurka, Duyn, & Martin,
2004; Beauchamp, Lee, Argall, & Martin, 2004; Callan
et al., 2004; Calvert, 2001). Our current results suggest
that indeed pSTS is sensitive to hindered audiovisual
integration but that this is not solely caused by semantic
congruency. Note that, although we observed a differ-
ence in oscillatory power in pSTS/MTG in degraded
speech when comparing mismatching with matching
gestures, we did not observe a modulation of oscillatory
activity in pSTS/MTG when speech was clear. This sug-
gests that pSTS/MTG is less engaged when speech is de-
graded. This might occur because integration processes
are hindered when the visual semantic information can-
not help to retrieve or disambiguate the degraded lexical
item, which increases integration load. We thus tenta-
tively propose that the LIFG and pSTS indeed work
together to integrate speech and gestures (cf. Willems
et al., 2009) but that the role of LIFG is not solely mod-
ulatory or revising in nature (see, e.g., Holle et al., 2010;
Willems et al., 2009). Instead, the LIFG unifies higher-
level semantic information from multiple inputs, irre-
spective of whether a stable common representation
exists on which the input streams can be mapped (see
Holle et al., 2010; Willems et al., 2009). However, when
speech is degraded and a gesture mismatched speech,
integration load was lowest when the gesture could not
be integrated and disambiguate the degraded signal, re-
sulting in less engagement from MTL and lower-level
areas such as the pSTS/MTG.

Conclusion

The present work is the first study that investigated how
oscillatory modulations can inform us about the pro-
cesses underlying speech–gesture integration in clear
and degraded speech as well as what the spatiotemporal
dynamics are that are associated with this process. We
set out to investigate how the semantic integration of
speech and gestures is supported when integration load
is manipulated by auditory (e.g., degraded speech) and
visual (e.g., gesture congruency) factors. Our results pro-
vide novel insight by revealing how low-frequency oscil-
lations support semantic audiovisual integration in clear

and degraded speech: When gestures mismatch clear
speech, listeners engage the LIFG and motor and visual
regions when semantic unification load increases be-
cause of the gesture. When speech is degraded, pSTS/
MTG and MTL are less engaged, possibly reflecting the
hindered integration of gestures and the degraded signal
when the gesture does not disambiguate the degraded
speech or aid lexical retrieval. Our results thus reveal that
low-frequency oscillatory modulations can index congru-
ency between speech and gestures in a semantic context
and demonstrate that low-frequency power modulations
do support not only nonsemantic audiovisual integration
but also semantic integration. This suggests a domain-
general mechanistic role of brain oscillations in enabling
integration of different modalities and engaging/inhibit-
ing brain areas that do not contribute to this integration
process.
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