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Abstract

■ An unresolved question in cognitive neuroscience is how
representations of object categories at different levels (basic
and superordinate) develop during the course of the neural re-
sponse within an area. To address this, we decoded categories
of different levels from the spiking responses of populations of
neurons recorded in two fMRI-defined body patches in the
macaque STS. Recordings of the two patches were made in
the same animals with the same stimuli. Support vector ma-
chine classifiers were trained at brief response epochs and
tested at the same or different epochs, thus assessing whether
category representations change during the course of the re-
sponse. In agreement with hierarchical processing within the
body patch network, the posterior body patch mid STS body
(MSB) showed an earlier onset of categorization compared with

the anterior body patch anterior STS body (ASB), irrespective of
the categorization level. Decoding of the superordinate body
versus nonbody categories was less dynamic in MSB than in
ASB, with ASB showing a biphasic temporal pattern. Decod-
ing of the ordinate-level category human versus monkey bodies
showed similar temporal patterns in both patches. The decod-
ing onset of superordinate categorizations involving bodies was
as early as for basic-level categorization, suggesting that pre-
viously reported differences between the onset of basic and
superordinate categorizations may depend on the area. The
qualitative difference between areas in their dynamics of cate-
gory representation may hinder the interpretation of decoding
dynamics based on EEG or MEG, methods that may mix signals
of different areas. ■

INTRODUCTION

An important question in current visual neuroscience is
how objects are processed over the course of their
presentation: Does the object representation change
over the course of the neural response? Recent EEG
and MEG studies in humans examined the dynamics of
the encoding of stimuli of various visual categories (re-
viewed by Contini, Wardle, & Carlson, 2017). A common
finding in these studies was the poor decoding of a visual
category by a classifier when training and test epochs
differed in time compared with identical training and test
epochs. This suggested that the encoding of visual
categories is highly dynamic, with markedly different ob-
ject representations over the course of the response.
However, because of the low spatial resolution of MEG,
it is unclear whether this apparent dynamic encoding re-
flects different category representations of a population
of neurons over the temporal course of the response
and/or the various contributions of different areas with
different stimulus representations to the MEG signal at
successive time epochs. Answering this question requires
high-spatial-resolution recordings in a visual area, as

offered by single-unit recording. Previous studies using
spiking activity recordings in the inferior temporal (IT)
cortex of macaque monkeys provided discrepant answers
to this question: One study showed dynamic encoding of
learned artificial visual categories (Meyers, Freedman,
Kreiman, Miller, & Poggio, 2008), whereas others showed
a more static encoding of individual objects (Kumar,
Kaposvari, & Vogels, 2017; Zhang et al., 2011). Whether
this discrepancy was because the recordings were made
from different subregions of the IT cortex, different tasks,
or the level of categorization is unclear.

Here, we address these gaps in our understanding of
the moment-by-moment representation of visual catego-
ries in the IT cortex. We systematically examined the dy-
namics of the encoding of visual categories by employing
a decoding approach similar to those of the above human
MEG and monkey IT single-unit studies. We compared
decoding dynamics between different levels of cate-
gorization (superordinate and basic [ordinate]) and
between two category-selective patches within IT. The
time courses of basic level versus superordinate class-
ification have been controversial, with some studies
reporting an early basic level and a later superordinate
categorization in macaque IT (Dehaqani et al., 2016)
and human MEG (reviewed by Contini et al., 2017),
whereas other, behavioral, studies have suggested the
opposite (Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2015).
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Furthermore, the presence of faces in the employed cat-
egories may hasten categorization (e.g., MEG: Cichy,
Pantazis, & Oliva, 2014; monkey IT: Dehaqani et al.,
2016), and thus the speed of categorization may depend
on stimulus category. Furthermore, the speed of catego-
rization may depend on whether the category is one pre-
ferred by the brain area where the signal originates, for
example, faster for faces in face-selective areas than in
object-selective regions. To have a handle on the category
preference, we recorded from cortical regions that are ac-
tivated more strongly and selectively by a particular cate-
gory, that is, bodies (Sliwa & Freiwald, 2017; Premereur,
Taubert, Janssen, Vogels, & Vanduffel, 2016; Lafer-Sousa
& Conway, 2013; Popivanov, Jastorff, Vanduffel, &
Vogels, 2012; Bell, Hadj-Bouziane, Frihauf, Tootell, &
Ungerleider, 2009; Pinsk et al., 2009; Pinsk, DeSimone,
Moore, Gross, & Kastner, 2005; Tsao, Freiwald, Knutsen,
Mandeville, & Tootell, 2003; Downing, Jiang, Shuman, &
Kanwisher, 2001). This departs from the previously cited
studies of categorization dynamics, which recorded ran-
domly within IT or had relatively poor spatial resolution
(MEG).

Previously, we reported single-unit studies in two body
patches that were identified with fMRI. One body patch is
located in the lower bank of the middle STS and was la-
beled the mid STS body (MSB) patch. MSB is close to the
face-selective patches middle lateral and middle fundus.
The second body patch is located more anteriorly in the
lower bank of the STS, close to face patch anterior lateral
(AL), and was labeled the anterior STS body (ASB) patch.
We found that, for both MSB and ASB neurons, the aver-
age response was stronger for visual images of bodies than
for images of other categories (Kumar, Popivanov, &
Vogels, 2019; Popivanov, Jastorff, Vanduffel, & Vogels,
2014). Single MSB and ASB neurons showed a marked
within-category selectivity, responding only to some im-
ages of bodies, and some neurons even responded to im-
ages of objects, including faces (Kumar et al., 2019; Kalfas,
Kumar, & Vogels, 2017; Popivanov, Schyns, & Vogels,
2016; Popivanov et al., 2014). Despite the degree of het-
erogeneity observed in the selectivity profiles at the single-
unit level, the population responses of MSB and ASB
neurons enabled a successful classification of images of
bodies versus nonbodies (Kumar et al., 2019; Popivanov
et al., 2014). Subsequent experiments showed that MSB
and ASB neurons encoded body posture, body identity,
and viewpoint, with ASB showing an encoding of the first
two body parameters that was more tolerant to viewpoint
transformations than MSB (Kumar et al., 2019). None of
these studies, however, addressed the dynamics of the
encoding of visual categories in these body patches, which
is the topic of the present article.

An electrical microstimulation fMRI study suggested that
ASB and MSB are anatomically connected (Premereur
et al., 2016). Given the more anterior location of ASB,
one would expect ASB to represent a higher process-
ing stage than MSB. However, Kumar et al. (2019)

failed to find any differences in response latencies be-
tween the two patches. Having recordings of the same
stimulus sets in both patches of the same animals
allowed us to compare the time courses and dynamics
of encoding basic and superordinate categories in MSB
and ASB.

METHODS

Participants

Two male rhesus monkeys (Macaca mulatta; 7–9 kg),
the same animals as in Popivanov et al. (2014), were
implanted with an MRI-compatible headpost and two
recording chambers that targeted MSB and ASB, respec-
tively. Animal care and experimental procedures complied
with the Flemish, European, and National Institute of
Health guidelines and were approved by the Animal
Ethics Committee of KU Leuven.

Stimuli

Because the stimuli have been described before (Popivanov
et al., 2012, 2014), we will provide only a brief descrip-
tion. We used 10 classes of achromatic images—monkey
and human bodies (excluding the head), monkey and
human faces, four-legged mammals, birds, two classes
of human-made objects, fruits/vegetables, and body-like
sculptures. Each class consisted of 10 images. The images
of bodies depicted headless bodies in different postures
and viewpoints. Similarly, the images of faces varied in
viewpoint (profile to frontal views). To control for the
difference in the aspect ratio of the monkey and human
bodies, we presented two classes of human-made
objects—one matching the aspect ratio of the monkey
bodies (objectsM) and another one matching the aspect
ratio of the human bodies (objectsH). We equalized the
mean luminance and mean contrast across classes. The
average object area per class was matched across classes,
except for that of objectsH and human bodies, but allow-
ing for some variation in area (range: 3.7° to 6.7° [square
root of the area]) within each class. The mean vertical
and horizontal extent of the images was 8.3° and 6.7°, re-
spectively. The images were embedded in pink-noise
backgrounds having the same mean luminance as the im-
ages and filled the display (height × width: 30° × 40°).
The stimuli were gamma corrected.

fMRI and Definition of MSB and ASB

Details of the fMRI procedure and analyses are provided
in Popivanov et al. (2012). Briefly, monkeys were scanned
using a block design during fixation of a small red target.
Twenty images of six classes (monkey bodies, monkey
faces, objectsM, four-legged mammals, birds, and fruits/
vegetables) were presented in blocks. The monkeys
were scanned with a 3-T Siemens Trio scanner with
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an eight-channel coil (Ekstrom, Roelfsema, Arsenault,
Bonmassar, & Vanduffel, 2008) and a gradient-echo
single-shot EPI sequence (1.25-mm isotropic voxel
size) after intravenous injection of the contrast agent
monocrystall ine iron oxide nanoparticle (MION;
Feraheme, AMAG Pharmaceuticals Inc., 8–11 mg/kg).
Activations for stimulus classes were computed with a
general linear model.
We used the same criteria as those described by Kumar

et al. (2019) to define the fMRI-based recording sites.
Briefly, in both patches, voxels targeted for electrophysi-
ological recordings showed significant activation for
monkey bodies contrasted with objectsM. The MSB and
ASB recording locations were verified using MRI scans
with an MR-compatible guide tube with the electrode
in the cortex during the MRI scan. In other confirmatory
MRI scans, we visualized long glass capillaries, filled with
copper sulfate or an electrode, that were inserted into
the recording grid at selected positions. The recording
locations were extrapolated from the trajectories of the
imaged capillaries. The recording locations of the MSB
and ASB recordings are described in Popivanov et al.
(2014) and Kumar et al. (2019), respectively.

Electrophysiological Recordings

The electrophysiological procedures are described in
Popivanov et al. (2014). In brief, single-unit recordings
were performed with epoxylite-insulated tungsten micro-
electrodes (Frederik Haer Company). The electrode was
lowered with a Narishige microdrive into the brain using
a guide tube fixed in a Crist grid. After amplification and
filtering, single units were isolated online using a custom
amplitude- and time-based window discriminator. Eye
position was measured with a video-based tracking
system (SR Research EyeLink; sampling rate = 1 KHz).
Stimuli were displayed on a CRT display (75-Hz vertical
refresh rate) at a distance of 57 cm from the monkey’s
eyes. A digital-signal-processing-based computer system
controlled stimulus presentation, event timing and juice
delivery, and sampled eye position, spikes, behavioral
events, and a photodiode-generated signal that indicated
stimulus onset and end.
The stimuli were presented during passive fixation

(fixation window size = 2° × 2°), as described in
Popivanov et al. (2014). Stimuli were presented for
200 msec each with an ISI of approximately 400 msec.
Fixation was required in a period from 100 msec presti-
mulus to 200 msec poststimulus to obtain a juice re-
ward. In the pseudorandomization procedure, the 100
stimuli were presented randomly interleaved in blocks
of 100 unaborted trials. Aborted presentations were
not analyzed further. In the present analysis of the data
of Popivanov et al. (2014) and Kumar et al. (2019), we
included only neurons for which at least five unaborted
presentations per stimulus were collected (MSB = 214

neurons [Monkey E = 134], ASB = 146 neurons
[Monkey E = 78]).

Data Analysis and Decoding

To select responsive neurons, we computed the firing
rate for each unaborted stimulus presentation in a
baseline window ranging from 100 to 0 msec before
stimulus onset and a response window ranging from 50
to 250 msec after stimulus onset. Responsiveness was
tested using a split-plot ANOVA with Baseline versus re-
sponse window firing rates as the repeated-measure
factor and Stimulus as the between-trial factor. Only re-
sponsive neurons, defined by either a significant main
effect of the repeated factor or a significant interaction
between the two factors, were included in the decoding
analyses.

The population decoding analyses were performed
using the Neural Decoding Toolbox (Meyers, 2013). We
used a support vector machine classifier with a linear
kernel and the regularization parameter C equal to 1.
Fivefold cross-validation was used where 80% of the trials
were used for training and 20% were used for testing.
Reported classification performances are for the inde-
pendent test data. We used an “all-pairs” multiclass clas-
sification scheme (Meyers, 2013). The neural responses
for each neuron were z score normalized using the
mean and standard deviations of the training data per
time bin.

We performed a set of decoding analyses, contrasting
different category or stimulus labels. For each decoding
analysis, we randomly sampled 68 neurons from MSB or
ASB of each monkey and took the first five unaborted
presentations of each stimulus to create pseudopopula-
tion response vectors. We performed decoding for the
data of each monkey separately and for the data pooled
across the two monkeys. For each stimulus label, the
responses for the five stimulus presentations were ran-
domly concatenated to produce five pseudopopulation
vectors (length = n neurons with a component being
the response of neuron i on a given trial for the stimu-
lus). We employed two types of decoding analyses. In
the first type, same-stimulus classification (SSC), training
and test vectors consisted of presentations of the same
stimulus. For instance, for body versus nonbody SSC,
we trained with four presentations of each of the body
and nonbody stimuli and tested with the remaining
presentation of each stimulus. Thus, during training,
the classifier was exposed to responses to all exemplars
(images) of a category. The performance of SSC is deter-
mined by (1) how well the classifier can separate the trial-
wise responses of the different categories and (2) the
across-trial response variability of the responses to a
stimulus. It examines the linear separability of the cate-
gory representations of a body patch. The second type
of classifier, different-stimulus classification (DSC), di-
rectly tested the generalization across stimuli of the same

Kumar and Vogels 1701



category. DSC was trained using all presentations (five tri-
als per stimulus) of 80% of the stimuli of a category and
tested with all presentations (five trials per stimulus) of
the remaining 20% of the stimuli of the category. Thus,
test and training vectors consisted of responses to differ-
ent stimuli of a category. For instance, in the case of body
versus nonbody DSC, responses to 80% of the body and
nonbody images were used for training, and responses
to the other images were used for testing. The perfor-
mance of DSC depends on how well it generalizes to
novel exemplars of the same category, a hallmark of
categorization.

Each classifier was trained and tested using 20-msec
bins that started 100 msec before stimulus onset and
ended at 440 msec after stimulus onset, in steps of
20 msec. We ran the classifier for each bin 50 times with
different resamplings of trials and neurons for con-
struction of the pseudopopulation response vectors.
The performance scores are the averages across re-
samplings. We trained and tested across all pairwise
combinations of time bins, resulting in a temporal cross-
training (TCT; Meyers, 2013) matrix of classification per-
formance scores.

The following category decodings were tested: (1)
body (human and monkey bodies, four-legged mammals,
and birds) versus nonbody (human and monkey faces,
objectsM, and objectsH), (2) body (human and monkey)
versus face (human and monkey), (3) body (human and
monkey) versus object (objectsH and objectsM), (4)
monkey body versus human body, and (5) monkey face
versus human face. In addition, we decoded (1) the 10
monkey bodies, (2) the 10 human bodies, and (3) the
100 stimuli using SSC. For these exemplar decodings,
we employed a step size of 10 msec to obtain a more
accurate estimate of differences in the onset of stimulus
encoding between MSB and ASB.

Statistical Testing

For each time bin, we randomly shuffled the (category)
labels of the stimulus presentations and reran the SSC
and DSC. This procedure was repeated 200 times, result-
ing in a null distribution of chance classification scores.
With these null distributions, we computed, for each
bin, the significance of the classification score for cor-
rectly labeled stimuli using false discovery rate correction
for multiple comparisons (q < 0.005). The decoding
onset latency was defined as the first 20-msec bin for
which the decoding performance was significant. To test
whether the decoding latencies of MSB and ASB differed,
we generated a null distribution by performing the de-
coding analysis on 136 neurons randomly sampled (with-
out replacement) 200 times from the pooled population
of MSB and ASB neurons (272 neurons; 68 neurons from
each monkey per region). We then assessed whether the
decoding latency of the MSB sample was outside this null
distribution ( p < .005).

To test the significance of the differences between the
TCT matrices of MSB and ASB, we generated 200 TCT
matrices from 200 random samples (without replace-
ment) of 136 neurons from the pooled MSB and ASB
population. Next, we computed the pairwise difference
between the classification scores for all possible pairs of
the 200 TCT matrices, resulting in 19,900 difference ma-
trices. We took the maximum and minimum values of
each difference matrix, thus generating a distribution of
maximum (positive) values and minimum (negative)
values. The significance of the difference between TCT
matrices of ASB and MSB (i.e., TCT matrix ASB − TCT
matrix of MSB [excluding prestimulus onset bins]) was
assessed by comparing each element of the difference
matrix with the distributions of minimum and maximum
values. The p values were computed as the percentage of
data points of the null distribution falling above (maxi-
mum value distribution) or below (minimum value distri-
bution) the observed difference. We plot classification
difference scores in the difference matrices only for the
matrix elements that had p < .01 (the magnitude of ele-
ments with p > .01 were set to zero).

RESULTS

We recorded the responses of 360 single units to 100
images of various categories in two fMRI-defined body
patches, MSB and ASB, of two monkeys. The responses of
these neurons, averaged across all stimuli, are shown in
Figure 1C. Although ASB lies anterior to MSB, response-
onset latencies of the population responses were simi-
lar. The population peristimulus time histogram (PSTH)
of ASB showed a bimodal profile, having a dip in the re-
sponse starting around 120 msec after stimulus onset. A
similar dip was not apparent in the MSB population
PSTH.
The population PSTHs, being averages across neurons

and stimuli, cannot tell us whether differences exist in
the evolution of object category encoding for the two
patches. The selectivity, and not the response per se, is
the critical factor relating the activity of body patch
activity to perceptual behavior. To assess the temporal
evolution of category selectivity for the MSB and ASB
neuronal populations, we employed a decoding ap-
proach. We decoded categories at different levels,
ranging from superordinate-level categorization (e.g.,
body vs. nonbody) to basic-level categorizations (e.g., hu-
man vs. monkey bodies). This allowed us to determine
whether differences exist in the time courses of categori-
zation at different levels. In addition, we compared clas-
sification performance for preferred and nonpreferred
categories (e.g., human vs. monkey bodies compared
with human vs. monkey faces). We employed two types
of decoding, one (SSC) in which images of a category
were identical for training and testing and a second one
(DSC) in which the classifier was trained and tested with
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different images within a category, which required gener-
alization. Below, we will present the result of the decod-
ing for the pooled data from both animals and briefly
discuss the outcome of the decoding performed using
the data of each monkey separately.
Both MSB and ASB neurons demonstrated excellent

classification scores for the superordinate, body versus non-
body, classification (Figure 2A and B). As expected because
of the more difficult generalization task, DSC performed
less well than SSC in both patches. Although the peak ac-
curacy occurred within the same time bin in both patches,
MSB demonstrated a significantly (20 msec) faster categori-
zation onset than ASB for both SSC and DSC. This same
difference in categorization onset latencies was also present
when decoding the data of each monkey separately. As for
the mean responses (Figure 1C), the time course of the
ASB performance accuracy was bimodal, with a dip be-
tween approximately 120 and 250 msec after stimulus onset
(Figure 2A and B). This bimodal classification pattern was
present in the data of each animal (data not shown), in con-
trast to that in MSB, which decreased monotonically after
the peak.
The presence of the temporally bimodal classification pat-

tern of ASB, absent in MSB, suggests a time-varying en-
coding of the category information in ASB. To examine
the dynamics of these category encodings, we computed
TCT matrices. The diagonal of the TCT matrix corresponds
to the performance scores when training and testing time

bins were identical (as in the first column of Figure 2A–F).
The presence of high-performance scores concentrated
along the diagonal would indicate a dynamic encoding;
that is, the neural code is continuously evolving over time.
Although the classification performance decreased mov-
ing away from the diagonal, the body–nonbody encoding
was, to a large extent, consistent in MSB. Overall, MSB
classification scores were well above chance when train-
ing and testing times differed. Note, however, that train-
ing at later bins generalized to the early test bins to a
greater extent than training at an early bin generalized
to later test bins. This asymmetry suggests differences be-
tween early and late category representations in MSB (see
Discussion). The ASB neuronal population showed dif-
ferent encoding patterns at the beginning and in the later
part of the response: The TCT plots showed two distinct
squares. The second part of the response generalized only
slightly to the first part of the response. The differences
between the TCT matrices for MSB and ASB were statisti-
cally significant (difference matrices in Figure 2A and B)
and were present for both DSC and SSC. The dynamic
body versus nonbody categorization, with distinct encod-
ing patterns for the first and second phases of the re-
sponse, was present in ASB of each monkey.

Next, we asked whether similar differences between
MSB and ASB might be present if the number of basic-
level categories entered into the decoding was restricted,
thus decreasing the variability among exemplars of

Figure 1. The MSB and ASB
patches: fMRI mapping and
population spiking activity. (A)
One example image from each
of the 10 stimulus classes used
to record the responses of the
neurons in MSB and ASB. (B)
Activations of the contrast
“monkey bodies”–“objectsM”
(t > 5). The images of Monkey
B show an electrode targeting
ASB. The figure is adapted from
Kumar et al. (2019). (C)
Population PSTHs of mean
normalized firing rate averaged
across the 10 stimulus classes
for MSB (red; n = 214) and ASB
(blue; n = 146) neurons. Data
of the two animals were pooled.
Shaded bands: ± 1 SEM.
Normalization was performed
for each neuron by dividing the
response by the maximum
mean firing rate (across the
10-msec bins). The gray-shaded
region corresponds to the
stimulus presentation
(0 = stimulus onset).
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Figure 2. Temporal patterns of body category decoding in MSB and ASB. (A, B) Left column: Time course of decoding accuracy for body versus
nonbody for MSB (red) and ASB (blue) neurons for SSC (A, top) and DSC (B, bottom). Dashed lines indicate chance levels, and error bars
correspond to standard deviations (n = 50 resamplings). The gray-shaded region corresponds to the stimulus presentation (0 = stimulus onset).
The horizontal filled bars at the bottom indicate significant decoding accuracy for MSB (red) and ASB (blue). Second and third columns: TCT
matrices describing the decoding performance (in color code; see the vertical bar on the right side of each panel) as a function of the training and
testing time bins (width = 20 msec). Each row corresponds to the time bin that was used to train the classifier. The columns correspond to the
time bins that were used to test the classifier that was trained using the data corresponding to the time bin indicated by a row. The diagonal
corresponds to the decoding performance obtained when training and testing bins were identical. (A, top) TCT matrix for SSC for MSB (second
column) and ASB (third column). (B, bottom) TCT matrix for DSC, same convention as in A (top). Right column: Differences between TCT matrices
of ASB and MSB for SSC (A, top) and DSC (B, bottom). Only the significant classification difference scores in the difference matrices are shown,
whereas the magnitude of difference matrix elements with p > .01 is set to zero. (C, D) The temporal patterns of body versus face category
decoding in MSB and ASB for SSC (C) and DSC (D), organized as in A. (E, F) The temporal course of body versus object category decoding for SSC
(E) and DSC (F), organized as in A.
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the decoded category. Decoding of body versus face
(Figure 2C and D) produced results largely similar to
those of body versus nonbody. First, decoding was about
20 msec faster in MSB than ASB for DSC. Second, the de-
coding profile was bimodal in ASB but not MSB. Third,
the TCT plots showed dynamic decoding with two differ-
ent decoding patterns in ASB but a greater consistency in
MSB. Fourth, the decoding persisted for a longer period
after stimulus exposure for ASB than for MSB. The gen-
eralization after 150 msec was stronger in ASB than that
observed for the body versus nonbody categorization,
which likely resulted from the overall higher categoriza-
tion accuracy in this late part of the response for body
versus face compared with body versus nonbody catego-
rization. Similar trends were present for body versus ob-
ject decoding (Figure 2E and F), although the bimodal

course of the decoding was less clear for ASB than for
body versus face decoding, and the latency difference be-
tween MSB and ASB did not reach significance for DSC.

Next, we decoded basic-level categories from ASB and
MSB data. We examined whether these patches differ
with regard to the strength and time course of the encod-
ing of basic-level categories and whether decoding onset
latencies differ for superordinate and basic-level decod-
ing. The first pair of basic-level categories we decoded
was human versus monkey bodies. We were able to de-
code human versus monkey body with high performance
scores from both patches, with little difference between
the patches. The decoding was significantly faster in MSB
compared with ASB, but the earlier onset proved to be
significant only for the SSC. Interestingly, for both DSC
and SSC, the classification persisted beyond stimulus

Figure 3. Temporal patterns of basic-level category decoding in MSB and ASB. (A, B) Human versus monkey body category decoding: (A) SSC and
(B) DSC. (C, D) Human versus monkey face category decoding in MSB and ASB: (C) SSC and (D) DSC. Same conventions as in Figure 2.
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exposure longer in ASB than in MSB (Figure 3A and B).
The temporal course of the human versus monkey body
categorization appeared to differ from that of the super-
ordinate categorizations (e.g., body vs. nonbody) with a
less clear bimodal time course in ASB. In fact, the TCT
plots of the two patches were similar, except for a shift
to longer latencies in ASB compared with MSB. The onset
latencies of the categorization were the same for this
basic-level classification and for superordinate classifica-
tion in ASB. For MSB, the SSC onset latencies were iden-
tical for the different levels of categorization but tended
to be 20 msec slower for DSC in the case of basic-level
categorization.

As another basic-level categorization, we decoded hu-
man versus monkey faces, both of which are nonpreferred
categories for these body patches. Not unexpectedly for
such body patches, classification scores for faces were
rather low, especially for the DSC (Figure 3C and D).

The decoding onset appeared significantly later in ASB
than in MSB, for both DSC and SSC, although the latency
estimates were rather noisy because of the low classifica-
tion scores. Furthermore, decoding was higher in ASB at
later phases of the response, especially for DSC.
Finally, we decoded individual images, that is, decod-

ing at the exemplar level. Figure 4A shows that individual
stimulus decoding (100 images) was more accurate and
faster in MSB compared with ASB. In addition, the TCT
plots showed a strong decrease in the classification per-
formance when training and test bins differed, although
some generalization across time was present. Thus, the
representation of individual images was rather dynamic
in either ASB or MSB. There was also a tendency for a
bimodal temporal profile in ASB but not in MSB. The
decoding described above included exemplars from non-
preferred categories (objects and faces), which may have
affected the decoding patterns. To address this, we also

Figure 4. Temporal patterns of exemplar decoding in MSB and ASB. Decoding of all individual images (A, N = 100) and the exemplars of the
human body (B, N = 10) and the monkey body (C, N = 10) categories. Same conventions as in Figure 2. Only the SSC-type classification was
possible for the exemplar decoding. No difference matrix between ASB and MSB is shown as there was a marked difference between the peak
performances of MSB and ASB.
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decoded individual images from the human and monkey
body classes (10 exemplars each), both of which are pre-
ferred stimulus categories for the body patches. Overall,
qualitatively similar results were obtained when indi-
vidual stimuli from the human body (Figure 4B) and
monkey body (Figure 4C) categories were decoded, al-
though there was a trend toward higher generalization
between early and later parts of the representations.
Unlike decoding at the category level (see above), the de-
coding at the exemplar level is purely image based and
may have resulted from differences in image size, body
posture, viewpoint, or body identity (see Kumar et al.,
2019). Because the interpretation of image-based exem-
plar decoding is difficult in the context of this study, we
did not pursue this further and we refer the reader to
Kumar et al. (2019), who systematically examined the de-
coding of viewpoint, posture, and identity of monkey
bodies in body patches.

DISCUSSION

We examined the dynamics of category encoding in two
cortical body patches using single-unit recordings exam-
ining both regions in each animal and using identical
stimuli. For superordinate categorizations (body vs. non-
body, body vs. face, body vs. objects), the anterior body
patch ASB showed a biphasic response pattern with dif-
ferent category representations in the early compared
with the late response phase. The posterior body patch
MSB showed earlier categorization onset and less dy-
namic encoding than ASB. The biphasic, dynamic encod-
ing was less clear for the ordinate categorization of
monkey versus human bodies, with ASB and MSB show-
ing similar dynamics, except for a difference in average
latency. We observed no consistent difference in the
onset of ordinate (basic) level and superordinate level
categorization where bodies were involved. The ordinate
categorization of the nonpreferred categories of human
versus monkey faces was relatively poor in both body
patches. Qualitatively similar results were obtained
whether training and test stimuli of the decoded catego-
ries were identical or not.
Previous human MEG studies (Grootswagers, Wardle,

& Carlson, 2017; Cichy et al., 2014; Isik, Meyers, Leibo,
& Poggio, 2014; Carlson, Tovar, Alink, & Kriegeskorte,
2013) and some macaque single-unit IT studies (Meyers
et al., 2008) showed highly dynamic encoding of visual
categories, with classification accuracy decreasing sharply
at greater distances from the diagonals of the TCT plots.
Here, we show less dynamic encoding than was observed
in these studies, in agreement with other IT studies
(Kumar et al., 2017; Zhang et al., 2011). The highly dy-
namic encoding observed in human MEG studies may
result from the poor spatial resolution of this method,
mixing signals of multiple areas that differ in both the
nature and time courses of their category representa-
tions. This study shows that two patches in IT can already

show different dynamics for category decoding. Signals in
MEG originate from a wider set of areas, which can result
in considerable overestimation of the dynamic aspect of
encoding in a particular area.

Using a linear decoder, we found that a small sample of
MSB and ASB neurons can classify the superordinate
body versus nonbody category with high accuracy.
These results are consistent with our previous studies,
which showed that the average MSB and ASB neural re-
sponses could distinguish between body and nonbody
stimuli (Kumar et al., 2019; Popivanov et al., 2014). We
observed a significant difference in decoding latency
between the body patches, with MSB showing a catego-
rization onset 20 msec earlier than ASB. This latency dif-
ference accords with the hierarchical organization of the
IT cortex: Because of the more posterior location of MSB
compared with ASB, one would expect that the relevant
preferred-visual-category signals first appear in MSB.
Kumar et al. (2019) reported no differences in response
latency between ASB and MSB (see also Figure 1C). This
apparent discrepancy between the present decoding
results and those averaged population responses could
be attributed to the higher sensitivity of the decoding
analysis with regard to the timing of category representa-
tions in a population of neurons.

Our results provide evidence that body versus non-
body encoding was, to a considerable degree, static in
MSB (but see below), whereas ASB showed two distinct
neural activity signatures confined to the initial and late
phases of the response. Similar biphasic dynamic de-
coding patterns were observed in ASB (but not MSB)
for body versus face and body versus object categoriza-
tion, indicating the robustness of these patterns. The
origin of the biphasic decoding pattern in ASB is unclear.
One possibility is that the dynamic encoding in ASB re-
sults from asynchronous inputs that carry information
about different components of the stimulus at different
times (Brincat & Connor, 2006). A second possibility is
that local recurrent processing gives rise to the dynamic
encoding observed in ASB. If true, this would imply that
recurrent processing in MSB and ASB produces different
representations at different periods during the response.
Third, the distinct temporal encoding seen in the later
phase of the response in ASB may represent feedback
from other brain regions.

In the superordinate categorizations, MSB, in particu-
lar, demonstrated an asymmetry in decoding generaliza-
tion over the course of the response: Training of the
classifier at later bins generalized to the early test bins
to a greater extent than training at earlier bins general-
ized to the later test bins. The existence of such temporal
asymmetry in the generalization suggests that later cate-
gory representations do differ from the early represen-
tations. This could be because of recurrent processing
inside the body patch or input from other IT patches
or from regions outside IT. However, because superordi-
nate training at late-stage bins generalized well to early
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bins in MSB, there should still be considerable overlap
between the early and late representations. Also note-
worthy is that, for some categorizations (e.g., body vs.
nonbody), decoding of the first 20 msec of the response
generalized poorly to later bins, suggesting recurrent
processing already present at the very early phase of
the response. These interpretations and their implica-
tions for the neural encoding and temporal generaliza-
tion require further investigation in future experimental
and computational modeling studies.

MSB and ASB encoded the basic-level categories of
monkey versus human bodies no earlier than the super-
ordinate body versus nonbody category. This appears to
conflict with the earlier decoding of basic-level categories
compared with the superordinate animate–inanimate cat-
egory reported for macaque IT by Dehaqani et al. (2016).
The latter study performed random recordings within IT
of neurons responding to various stimuli, whereas our
data are from body patches that typically respond poorly
to nonbody stimuli. We believe this to be a crucial differ-
ence: Our data show that superordinate categorization of
body versus nonbody can be performed as rapidly as
basic-level categorization of human versus monkey bod-
ies by reading out a population of body patch neurons.
The latency of categorization most likely depends on
the category-selective properties of the neuronal pop-
ulation that is read out by the decoder. The longer
latencies that we observed for basic-level categorization
of the nonpreferred face stimuli are consistent with this
idea. Another difference between our work and that of
Dehaqani et al. is that their superordinate category of
animate exemplars contained both faces and bodies,
which differs from the overall category selectivity of
IT, in which faces and bodies form distinct categories
(viz., face and body patches). Indeed, the classification accu-
racy for the animate–inanimate category in the Dehaqani
et al. study was poor compared with the faster body versus
face or primate versus nonprimate face categorization, and
thus it might not be surprising that the highly abstract
animate–inanimate distinction was decoded relatively late
by the IT neurons they recorded. Note that other IT
recording studies did not observe an animate–inanimate
distinction (Yamins et al., 2014; Baldassi et al., 2013).

The main difference between ASB and MSB for the
basic-level decoding was the later and longer-sustained
decoding in ASB compared with MSB, but the overall
dynamics were similar. The presence of a biphasic dy-
namic pattern in ASB for superordinate but less so for
basic-level categories may suggest that the biphasic
pattern is present for categories that require highly in-
variant processing. In this context, it is noteworthy that
viewpoint-tolerant facial identity selectivity in the anterior
face patch AM increases during the course of the re-
sponse, reaching its peak relatively late in time (Freiwald
& Tsao, 2010). Furthermore, further analysis of the face-
patch data (Meyers, Borzello, Freiwald, & Tsao, 2015),
using a decoding approach similar to this study, showed

a bimodal evolution of the classification of identity-
invariant head poses in AL and AM, but not the posterior
face patch, ML. These findings imply that stimulus repre-
sentations of the anterior face patches change during the
course of the response, perhaps similarly to what we have
observed here for body categorization in ASB.
Our observation of differences in the category encod-

ing dynamics of the two IT body patches suggests that
caution is necessary when interpreting decoding data
derived from IT neurons that have been recorded from
dispersed, random locations within the extensive IT cor-
tex (Majaj, Hong, Solomon, & DiCarlo, 2015). Decoding
performance depends on which neurons are read out by
the decoder, and efferent projections can differ between
IT regions (Kravitz, Saleem, Baker, Ungerleider, &
Mishkin, 2013). This anatomy suggests that a single de-
coder that weights inputs arising from the whole of IT,
as is assumed when decoding from a collection of ran-
domly located regions spread across IT, is biologically
unrealistic. Understanding how the rich stimulus selectiv-
ity observed in IT patches is translated into behavior
requires knowing how the outputs of IT neurons are
combined in areas that control behavior. This will need
refined causal perturbation methods ( Jazayeri & Afraz,
2017) and combined registrations in IT and its output re-
gions. A recent study of V1–V2 connectivity (Semedo,
Zandvakili, Machens, Yu, & Kohn, 2019), which sug-
gested that only particular V1 population activity patterns
(“communication subspace”) affect V2 responses, hints at
the complexity of this sort of readout.
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