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22 Abstract 

23 The nervous system is endowed with predictive capabilities, updating neural activity to 

24 reflect recent stimulus statistics in a manner which optimises processing of expected future 

25 states. This process has previously been formulated within a predictive coding framework, 

26 where sensory input is either “explained away” by accurate top-down predictions, or leads to 

27 a salient prediction error which triggers an update to the existing prediction when inaccurate. 

28 However, exactly how the brain optimises predictive processes in the stochastic and multi-

29 faceted real-world environment remains unclear. Auditory evoked potentials have proven a 

30 useful measure of monitoring unsupervised learning of patterning in sound sequences through 

31 modulations of the mismatch negativity component which is associated with “change 

32 detection” and widely used as a proxy for indexing learnt regularities. Here we used dynamic 

33 causal modelling to analyse scalp-recorded auditory evoked potentials collected during 

34 presentation of sound sequences consisting of multiple, nested regularities and extend on 

35 previous observations of pattern learning restricted to the scalp level or based on single-

36 outcome events. Patterns included the regular characteristics of the two tones presented, 

37 consistency in their relative probabilities as either common standard (p = .875) or rare deviant 

38 (p = .125), and the regular rate at which these tone probabilities alternated. Significant 

39 changes in connectivity reflecting a drop in the precision of prediction errors based on learnt 

40 patterns were observed at three points in the sound sequence, corresponding to the three 

41 hierarchical levels of nested regularities: (1) when an unexpected “deviant” sound was 

42 encountered; (2) when the probabilities of the two tonal states altered; and (3) when there was 

43 a change in rate at which probabilities in tonal state changed. These observations provide 

44 further evidence of simultaneous pattern learning over multiple timescales, reflected through 

45 changes in neural activity below the scalp. 

46
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47 Author summary 

48 Our physical environment is comprised of regularities which give structure to our 

49 world. This consistency provides the basis for experiential learning, where we can 

50 increasingly master our interactions with our surroundings based on prior experience. This 

51 type of learning also guides how we sense and perceive the world. The sensory system is 

52 known to reduce responses to regular and predictable patterns of input, and conserve neural 

53 resources for processing input which is new and unexpected. Temporal pattern learning is 

54 particularly important for auditory processing, in disentangling overlapping sound streams 

55 and deciphering the information value of sound. For example, understanding human language 

56 requires an exquisite sensitivity to the rhythm and tempo of speech sounds. Here we elucidate 

57 the sensitivity of the auditory system to concurrent temporal patterning during a sound 

58 sequence consisting of nested patterns over three timescales. We used dynamic causal 

59 modelling to demonstrate that the auditory system monitors short, intermediate and longer-

60 timescale patterns in sound simultaneously. We also show that these timescales are each 

61 represented by distinct connections between different brain areas. These findings support 

62 complex interactions between different areas of the brain as responsible for the ability to 

63 learn sophisticated patterns in sound even without conscious attention. 

64
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65 Introduction

66 The alignment of neural activity to reflect recent stimulus statistics is a fundamental 

67 feature of the nervous system. Exponential reductions in neural firing with stimulus repetition 

68 form the physiological basis for a range of neural processes including sensory adaptation (1–

69 4), associative learning (5,6), and simple change detection (7,8). Empirical and theoretical 

70 studies also suggest that predictive properties extend beyond single neurons and are applied 

71 with greater complexity throughout neural networks to actively generate inferences about 

72 future states in a manner consistent with Bayesian learning (9–13). Learnt causal 

73 relationships between stimuli and the structure of the environment are adaptive; they permit 

74 the pre-selection of adaptive behaviour and conserve processing resources for predicted 

75 events (14). Yet, the mechanisms by which the brain can optimise these associations in a 

76 complex and ever-changing natural environment remain unclear. 

77 The natural environment comprises a multitude of regularities which constantly 

78 change and do so at different rates, with varying degrees of reliability. The brain is assumed 

79 capable of differentiating these states through a temporal hierarchy where different brain 

80 regions are sensitive to representing dynamics at different temporal scales. At the lowest 

81 level, sensory cortices encode fast-timescale dynamics underlying simple sensory processing, 

82 whilst the highest level involves the prefrontal cortex engaging the more complex functions 

83 required to represent slower-changing environmental states such as consistent variability in a 

84 given context (15,16). At the neural level, individual neurons have time constants on the scale 

85 of milliseconds, post-synaptic gain control modulates precision on the scale of tens or 

86 hundreds of milliseconds, whilst connection strengths encode causal regularities that emerge 

87 more slowly (17).  Computational models incorporating these hierarchical dependencies have 

88 been shown to predict actual neural responses and behaviour with a good degree of accuracy, 

89 and provide a suitable framework for hierarchical learning over multiple temporal scales (18–

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2019. ; https://doi.org/10.1101/768846doi: bioRxiv preprint 

https://doi.org/10.1101/768846
http://creativecommons.org/licenses/by/4.0/


5

90 20). These hierarchical generative models of predictive coding assume that each neural 

91 population must reconcile existing predictions about input from the higher/more frontal level 

92 above with sensory input from the lower/more temporal level below, resulting in current 

93 input either being “explained away”, or a “prediction error” which drives for an update to the 

94 existing prediction. At each point these prediction errors are weighted by precision, or the 

95 strength and reliability of predictions and input, which determines the rate of new learning or 

96 readiness to update predictions accordingly (21,22). Precision weighting is assumed to be 

97 implemented as neural gain modulation mediated by classical neuromodulators and N-methyl 

98 d aspartate (NMDA) dependent plasticity (23), however empirical data confirming the 

99 neurophysiology which supports this complex learning is limited.

100 Auditory evoked potentials (AEPs) provide a mode to study predictive processes 

101 within an implicit learning framework. AEPs are automatic, non-invasive and easily 

102 translated to populations including infants, clinical groups and the elderly. The N2a or 

103 mismatch negativity (MMN) is a negative deflection in AEP amplitude which emerges when 

104 comparing the response to an unexpected or low-probability sound to that of an expected, 

105 repetitive or high-probability sound (24–26). MMN increases in magnitude with the degree of 

106 deviance and is therefore considered an indicator of relative “surprise” (27). Modulations of 

107 MMN amplitude have been used as a proxy for surprise in a breadth of studies of perceptual 

108 inference and learning, including as evidence for hierarchical learning processes (e.g., 28–

109 30). However, the majority of these studies have focused on single-trial MMNs elicited 

110 following a simple deviation from a local pattern only (e.g., the traditional oddball paradigm 

111 and roving paradigms), and there is limited research into the impact of deviance occurring in 

112 a broader statistical context. More recently, growing evidence of the impact of varying 

113 degrees of uncertainty on precision weighting has been empirically shown via systematic 
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114 modulations of the MMN observed in scalp-recorded AEPs during a multiple-timescale 

115 paradigm (31–35).

116 The multiple-timescale paradigm has used AEPs to reveal hierarchical learning during 

117 sound sequences consisting of multiple nested temporal regularities to create varying degrees 

118 of surprise. Early studies of this kind employed two tones which were presented with either 

119 standard (p = .875) or deviant probability (p = .125; local surprise), and alternated in these 

120 roles at a regular rate of every 0.8 minutes in “unstable” sequences or every 2.4 mins in 

121 “stable” sequences to create an additional, intermediate level of surprise when the relative 

122 probabilities of the two tones suddenly change (31,32,36,37). Despite local equivalence in 

123 sound probability ratios between standard and deviant across the two block types overall, 

124 sequences designed in this way have demonstrated AEP data consistent with a primacy effect, 

125 seen as higher precision in the prediction models for blocks consistent with how the sequence 

126 begins (large MMN throughout for the original block) relative to the blocks that represent the 

127 alternate probabilities (small MMN initially that increases with local stability within reversed 

128 blocks; (35,36,38). This differential precision is likened to lower and higher levels of 

129 expected uncertainty respectively, derived from an estimate of the volatility (conditional 

130 variance) of the current environment (39). In the absence of any existing priors, the model for 

131 the original block type is thought to be formed with high learning rates and high precision as 

132 the probabilities are rapidly used to predict the sound environment. The level of uncertainty 

133 drops rapidly and significantly over time as the model proves effective in predicting this 

134 context. In contrast, the model associated with the reversed block type develops in response 

135 to a gross violation in the existing high-precision model (which by then is associated with 

136 low expected uncertainty) when the initial deviant begins to repeat triggering a series of 

137 prediction errors. In this respect, this second context may be associated with a higher level of 

138 estimated volatility in the environment, as the transition to this context represents a 
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139 substantial contextual change and learning rates are elevated accordingly. This error 

140 frequency is associated with a high level of surprise triggering a drop in model precision and 

141 an elevation in uncertainty whilst the internal model is updated. 

142 The most recent iteration of the multiple-timescale paradigm introduced a third level 

143 of patterning within the sound sequences to investigate the sensitivity of the perceptual-

144 cognitive system to regularities which unfold over even longer timescales, and the impact on 

145 learning when these higher order patterns are violated (34; see also 35). In this study, the 

146 previously mentioned “stable” and “unstable” sequences were concatenated in order to 

147 introduce a third level of “superordinate” surprise when the regular rate of alternation in tone 

148 tendency changes during a sequence by transitioning from “stable” sequence components 

149 comprised of 2.4-minute blocks to relatively more unstable sequence components comprised 

150 of 0.8-minute blocks, or vice versa. This modification resulted in the presentation of an 

151 “increasing-stability” sequence followed by a “decreasing-stability” sequence as represented 

152 in Figure 4 (see Materials and Methods). 

153 Specific patterns of AEP modulation observed in this study showed that block type 

154 (intermediate-level predictability) remained influential until block length regularity was 

155 broken. When the original block type violated block length predictions (i.e., either by 

156 changing sooner or later than expected), MMN amplitude to this “first deviant” decreased, 

157 likely explained by a significant drop in precision due to superordinate surprise (34; see also 

158 35). In contrast, MMN amplitude to deviants in the alternate block type (i.e., “second 

159 deviants”) were unaffected by the block length violation.

160 Whilst multiple-timescale studies have been informative in revealing the sensitivity to 

161 hierarchical patterning in sound through distinct modulations of scalp-recorded MMN, it 

162 remains unclear exactly where in the temporal hierarchy of the brain these changes occur due 
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163 to the poor spatial acuity of sensor-level analyses and their limited focus on select electrodes, 

164 latencies and components. Here we used dynamic causal modelling (DCM) as an alternative 

165 method which explains the entire time-course and scalp topography of these data in terms of 

166 neurobiologically plausible mechanisms at the source level (i.e., arising from interactions 

167 between neural populations within and between sources; 40,41). This method provides a 

168 plausible mechanistic explanation of the observed data which cannot be offered by AEP 

169 alone, and therefore has greater sensitivity to test assumptions about underlying 

170 neurophysiology. DCM is also shown to have a greater sensitivity than neural data to 

171 variance in the population which is useful in the investigation of clinical groups (42). 

172 The present study will apply DCM to data from the most recent multiple-timescale 

173 study by Fitzgerald and Todd (34) with the expectation that we will see evidence of 

174 differential modulation of connectivity and precision associated with different levels of 

175 surprise (local, intermediate, and superordinate). Timescale effects will be modelled using a 

176 DCM of a six-source hierarchical network consisting of sources in bilateral primary auditory 

177 cortex (A1), superior temportal gyri (STG) and inferior frontal gyri (IFG) given their best 

178 model evidence in previous DCM studies of the MMN (43–46). We expect to see the impact 

179 of pattern violations expressed differently in the network in a hierarchical manner dependent 

180 on the relative timescale of violation. More specifically we hypothesize that 

181 predictions/prediction errors will lead to connectivity change at hierarchically lower levels 

182 for violations of short timescales, and at higher levels for violations of long timescales. In 

183 doing so we seek to further establish the ability of the sensory system to perform sensory 

184 learning within unstable and oft-changing environments, and the underlying neural network 

185 which is employed in service of this aim. 

186
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187 Results

188 Sensor space results

189 The sensor space results derived from the common-average referenced AEPs 

190 replicated those observed by Fitzgerald and Todd (34), and a detailed outline is provided in 

191 S1 Appendix. Pertinent to the current DCM analysis is the observation that MMN to the first 

192 deviant (60 ms) showed clear modulation across the sequence where it was consistently 

193 smaller after a change in block length for decreasing stability (t(18) = -2.52, p < .05, 

194 corrected) and increasing stability (t(18) = 2.72, p < .05, corrected), with no significant 

195 change in MMN amplitude to the second deviant (30 ms) for either conditions. Given that 

196 DCM captures the entire epoch, analysis of mean amplitude of the P3 component was also 

197 conducted and revealed that P3 was significantly larger (more positive) for the 60 ms tone 

198 after a superordinate structure violation for the decreasing stability sequence only t(18) = -

199 2.50, p < .05, corrected).

200 Two-tailed t-tests of standard and deviant AEPs (per (62); p < .05, corrected) also 

201 replicated the finding that order-driven effects on MMN amplitude were evident in the 

202 deviant AEP, and significant differences in the deviant AEP between the two sequences were 

203 observed for the 60 ms tone only (i.e, the tone that was heard first as a local deviant), 

204 confirming the apparent insensitivity of the 30 ms deviant (i.e., the tone that was heard first 

205 as a local standard) AEP to order effects. The confinement of this differential sensitivity in 

206 responses to the two tones to the first-deviant AEP specifically emphasises order-driven 

207 effects in difference waveforms as related to a difference specifically in how these two 

208 contexts are treated, an assertion we aimed to assess using DCM. 

209 Connectivity effects

210 The effects of local deviance (standard vs deviant), superordinate (heard-first vs heard 

211 second) deviance and their interaction were first modelled separately for the 30 ms and 60 ms 
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212 tone, whilst the effects of intermediate deviance (second/30 ms vs first/60 ms deviant) 

213 superordinate deviance (heard-first vs heard second) and their interaction were modelled on 

214 both tones together for deviant responses only in the second analysis. In both analyses, effects 

215 on connectivity were modelled within a six-source cortical network comprised of bilateral 

216 sources A1, STG and IFG. This choice was motivated by the goal of elucidating the 

217 hypothesised rostro-caudal temporal hierarchy in the brain where lower and higher levels are 

218 differentially sensitive to prediction errors at shorter and longer timescales respectively 

219 (18,28). This specific selection of nodes is also in accordance with the sources chosen in 

220 previous DCM analyses of auditory MMN paradigms (43,44). The full model permitted 

221 changes in ascending, descending, and intrinsic coupling between sources (model FBi in 

222 Figure 1), and was compared with a set of reduced models consisting of changes in each 

223 parameter alone, each combination, and a null model permitting no changes, resulting in a 

224 total of 8 x 8 models for comparison (see Figure 1 for representation of full model space). 
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225

226 BMR at the group-level was performed on all 64 models. The overall winning model 

227 was the most complex model permitting changes in ascending, descending and intrinsic 

228 connections (i.e., model FBi; see Figure 1A). This model was favoured in 100% of individual 

229 subjects in all analyses (30 ms and 60 ms tone modelled separately and modelled together), 

230 with a posterior probability exceeding 0.99 in all cases.

231 Local deviance – Deviant relative to standard

232 Bayesian parameter averages for each connection type demonstrated similar 

233 directions of changes in connectivity for both the 30 ms and 60 ms tones when encountered 
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234 as a local deviant relative to when encountered as a local standard. The direction and 

235 magnitude of these significant connectivity changes are displayed in Figure 2, and a full 

236 summary of parameter averages is provided in Table S1 and Table S2. Local deviance was 

237 associated with an increase in connection strength in all ascending connections for both tones, 

238 consistent with increased prediction error signalling. Local deviance was similarly associated 

239 with an asymmetrical change in intrinsic connectivity at A1 characterised by decreased 

240 intrinsic feedback at left A1 and increased intrinsic feedback at right A1 reflecting changes in 

241 the inhibitory self-suppression of prediction error at each of these sources when encountered 

242 as a deviant relative to standard. The significant (p < .005) changes in intrinsic connectivity 

243 were more widespread across the hierarchy for the second deviant (30 ms) than first deviant 

244 (60 ms) tone, with a decreased self-inhibition at bilateral STG and increased self-inhibition at 

245 rIFG for the 30 ms tone only reflecting increased and decreased gain of prediction error 

246 signalling at each of these sources, respectively. There was a specific unilateral increase in 

247 the strength of descending connections from STG to A1 which differed in location for the 

248 two tones, occurring from left STG to A1 for a 30 ms deviant, and right STG to A1 for a 60 

249 ms deviant. 

250
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251

252 Higher-order effects – First vs Second deviant; Before versus after a block length change

253 Given that sensor space analyses revealed the differences in MMN to be driven by 

254 modulation of evoked responses to the tones as deviants as in previous multiple timescale 

255 MMN studies (e.g., 32,34–36,38), the impact of higher-order changes on the inferential 

256 network was assessed in a separate DCM analysis comprised of deviant AEPs only. Planned 

257 contrasts between deviant responses to the 30 ms and 60 ms tones, the two sequence 

258 components (before and after a change in superordinate structure) and their interaction were 

259 conducted to test for significant differences in connectivity associated with an order-driven 

260 modulation based on initial tone roles and with a superordinate pattern violation. This 

261 analysis revealed significant (p < .005) interactions throughout the network whereby changes 

262 related to superordinate sequence structure had differential impacts on network connectivity 

263 dependent on whether the deviant was a 60 ms or 30 ms tone. This differential effect is 

264 visually apparent in the plots of estimated parameter changes for the two tones over the entire 

265 sound sequence and specifically after a superordinate change, as displayed in Figure 3. A full 

266 summary of parameter averages is provided in Table S3 and Table S4. 

267  

268
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269 First, significant differences in connectivity dynamics were observed when comparing 

270 the coupling changes associated with the deviant in the second block context (30 ms tone) 

271 compared to the deviant in the first block context (60 ms tone) across the overall sequence 

272 (Figure 3, left). The 30 ms tone, which was always the second deviant and therefore the 

273 initially repetitive standard, was associated with a significantly higher level of increased 

274 ascending error signalling, and a significantly higher level of increased inhibitory gain 

275 throughout most of the hierarchy (with the exception of lA1 and rIFG) compared to the 60 ms 

276 tone. The 30 ms tone was also associated with a higher level of increased descending 

277 message passing from higher levels (IFG), and comparatively lower descending message 

278 passing from lower levels (rSTG to rA1) relative to the 60 ms tone as deviant. In general, the 

279 lower precision of 30 ms prediction errors was therefore associated with higher forward 

280 coupling change and higher model revisions after errors (backward coupling changes) 

281 relative to the 60 ms tone consistent with models undergoing more revision in the second 

282 block than first block context.  

283 Next, the difference in change in connectivity modulation associated with the deviant 

284 in the second block context (30 ms tone) was compared to that of the deviant in the first block 

285 context (60 ms tone) as a function of superordinate surprise or before versus after the change 

286 in block length. The right panel of Figure 3 therefore reflects the connections that were 

287 differentially affected by the interaction between local and superordinate surprise for a 

288 deviant in the second block context relative to first block context. As expected, violation of 

289 superordinate patterning was associated with significant differences in the changes in 

290 connectivity for the two tones which were marked by increased ascending connectivity at 

291 lower levels (A1-STG), decreased ascending connectivity at higher levels (STG-IFG) and 

292 greater descending connectivity generally for the second deviant when compared to the first 

293 deviant after the change in block length. Relative to the first-deviant (60 ms) tone, the 
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294 second-deviant (30 ms) tone was additionally associated with reduced self-inhibition 

295 (increased gain) at bilateral A1 and decreased gain at bilateral STG after the superordinate 

296 change. These differences in connectivity change are consistent with greater influence of 

297 low-level prediction errors (A1 to STG) for the second deviant compared to the first deviant 

298 after superordinate patterning is violated, but a comparatively lower level of impact of 

299 higher-level prediction errors (STG to IFG) for the second deviant relative to the first deviant 

300 following this change. The observed connectivity changes could be considered consistent 

301 with the patterns of MMN amplitude modulation observed here (see Figure S1) and in 

302 previous AEP studies (34,35), where the conflict between greater gain at lower levels (PE for 

303 local deviations) and greater PE suppression (descending predictions) throughout the 

304 hierarchy for the second-deviant tone might explain the smaller net MMN modulation for this 

305 tone than the first-deviant tone after the block length change. It is also consistent with the 

306 notion that after superordinate change, the occurrences of the first deviant have a more 

307 prominent influence over the remodelling of longer-term predictions reflected in the 

308 comparatively higher connectivity in forward connections between STG and IFG for the 60 

309 ms tones.

310

311 Discussion

312 The present study involved the novel application of DCM to examine brain responses 

313 elicited by the violation of hierarchical regularities in sound. This analysis revealed 

314 differential changes in connectivity in underlying brain networks before and after violations 

315 of local, intermediate and superordinate patterns during the sound sequence, and differed for 

316 the two tones based on their relative probability at sequence onset. These results provide 

317 further evidence that the brain is capable of unsupervised learning over multiple timescales 

318 simultaneously, and that prediction models are not a veridical representation of the local 
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319 context but are modulated by higher-order representations. These findings are in concert with 

320 order effects previously observed in AEPs from scalp recordings, and give validity to the use 

321 of AEPs to study hierarchical inference and learning. Furthermore, the DCM supports a 

322 structural and functional architecture that is consistent with hierarchical predictive coding 

323 (18), and its neurobiological implementation within the canonical microcircuit model (55). In 

324 previous studies of the multiple-timescale paradigm, differential patterns of MMN 

325 modulation to the two tones were assumed to reflect how the updating of predictions in 

326 response to surprise at a given level will be constrained by internal models held at multiple 

327 levels of hierarchical inference. Here we will consider how each of these levels of surprise 

328 are substantiated within the hierarchical levels of the DCM, and more specifically how 

329 changes in predictions, prediction error and precision are reflected in changes in ascending, 

330 descending, and intrinsic connectivity respectively. 

331 Local deviance – Deviant relative to standard

332 Local surprise occurred at any given point throughout the sequence and was 

333 represented by the occurrence of the relatively less probable deviant among a series of 

334 relatively more probable standard tones, as in traditional oddball paradigms. Similar patterns 

335 of connectivity change were observed for deviants in both the first and second block context 

336 (i.e., both the 60 ms and 30 ms tone as deviant). The increase in inhibitory gain at rA1 and 

337 network-wide increase in ascending connectivity are consistent with previous modelling of 

338 deviant responses (e.g., (63,64)) and are interpreted to reflect an increase in bottom-up 

339 prediction error signalling when a tone is deviant relative to standard. However, the increase 

340 in backward connectivity is surprising, and may reflect a true increase in the modulatory 

341 influence and/or remodelling of top-down predictions for a deviant relative to standard tone, 

342 or an absent decrease relative to standards. In either case it is possible that this anomalous 

343 result could reflect the impact of hierarchical learning, unique to the present study’s novel 
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344 modelling of the multiple-timescale paradigm, on how prediction errors are modulated over 

345 the course of the overall sound sequence.  

346 The deviant in the second block context (30 ms tone) was further associated with 

347 reduced self-inhibition (i.e., increased gain) at bilateral STG, consistent with increased 

348 prediction error signalling at higher levels required to increase new learning and override the 

349 suppression of PE associated with this tone having previously been redundant, with this 

350 reflected in the AEPs as MMN amplitude gradually increasing over time for the second 

351 deviant (34). These changes are consistent with a theoretical predictive coding treatment 

352 where deviance is assumed to trigger increased ascending error signalling and changes in the 

353 self-suppression of prediction errors in order to drive new learning and revise descending 

354 predictions, and are in keeping with previous DCM analyses of deviant versus standard tones 

355 in auditory oddball and roving standard paradigms (43,44).

356 Intermediate deviance – First vs Second deviant

357 The impact of higher-order surprise was investigated at two levels: intermediate 

358 surprise represented by changes in the specific tendencies of each tone between the original 

359 to reversed block type, and superordinate surprise represented by the change in block length 

360 defined by regular alternation in tone tendencies. Having established the connectivity changes 

361 associated with a deviant versus standard tone in general, we looked for distinct patterns of 

362 connectivity change in deviant responses before and after these specific points in the 

363 sequence, which might reflect how responses to local deviance are weighted by changes in 

364 the precision of higher order predictions when violated. The impact of intermediate surprise 

365 was investigated by comparing connectivity underlying the response to second deviants (30 

366 ms tone), relative to first deviants (60 ms tone). Relative to the first deviant, second deviant 

367 responses were associated with increased descending coupling from bilateral IFG to STG, 

368 increased self-inhibition (decreased gain) at higher levels (STG and lIFG) and gain changes 
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369 at A1 resembling that seen for a local deviant (decreased self-inhibition at lA1 and increased 

370 at rA1). 

371 These patterns of difference in the connectivity changes are largely consistent with the 

372 theory that the precision of prediction errors, and subsequently the rate of new learning, were 

373 lower in the second block context where the 30 ms tone is deviant. Lower precision is evident 

374 in the increased strength of descending connections and decreased gain on superficial 

375 pyramidal cells at higher levels reflecting the greater influence of descending predictions (i.e. 

376 deviant occurrence leading to model updating) and stronger suppression of ascending 

377 prediction errors for this initially redundant tone compared to the 60 ms tone which was 

378 initially deviant. Meanwhile, the gain changes at bilateral A1 and increased ascending 

379 connections resembling that seen for a local deviant are consistent with the idea that this tone 

380 is still recognised as a new deviant, however is likely associated with a slower learning rate 

381 within this block due to lower precision. This interpretation is consistent with previous AEP 

382 studies of the multiple-timescale sequence demonstrating a gradual increase in MMN 

383 amplitude within blocks to the second deviant only, presumably due to a reduced rate of 

384 learning about this previously redundant tone as deviant (e.g., 38).

385

386 Superordinate deviance – Before versus after a block length change     

387 The final, superordinate level of surprise inherent in the sound sequence involved 

388 violation of the regular rate at which tone probabilities change (i.e., every 0.8 min in unstable 

389 components and every 2.4 min in stable components). Learning about this regularity occurred 

390 over the longest timescale and was violated only twice within the paradigm– once in the 

391 transition from unstable to stable components (increasing-stability sequence), and once in the 

392 transition from stable to unstable components (decreasing-stability sequence). When 
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393 comparing the connectivity associated with each tone as deviant after this superordinate 

394 violation, the second context deviant (30 ms tone) was associated with lower ascending 

395 connectivity to IFG, greater descending connections, increased gain at A1 and decreased gain 

396 at STG relative to the first context deviant (60 ms tone). These differences are consistent with 

397 first deviant errors being treated as more informative and the first-deviant context being 

398 assigned high model precision, leading to a more significant impact on precision weightings 

399 for this tone when higher order patterning is violated. When the block length is violated, the 

400 assumptions underlying the block length predictions must be revisited (the model must be 

401 updated) and these are purported to be represented in higher levels of the network (18). The 

402 comparatively lower level of model precision (less descending influence) for the first context 

403 deviant after higher order patterning is broken, alongside the increase in gain and forward 

404 error signalling to higher levels (STG-IFG) and lower gain of PE associated with local 

405 deviations for the first context deviant tone after the superordinate change are all consistent 

406 with remodelling of higher order predictions based on this tone. This result supports the 

407 hypothesised role of higher hierarchical levels in longer term pattern learning and an 

408 adjustment to the weighting of this influence when these more global patterns are violated.

409 The Bayesian brain hypothesis purports that learning rates are dynamically adjusted to 

410 best minimise surprise by differentially weighting prediction errors at various levels to 

411 distinguish reliable changes from random fluctuations in the world. We propose that this 

412 accounts for the differential patterns of AEP amplitude and associated connectivity changes 

413 observed to the two tones throughout the sequence. Namely, that in the absence of any 

414 existing priors, high precision is afforded to the binary categorisation of the two tones as 

415 more or less probable at sequence onset (local surprise), leading to a lower accumulation of 

416 precision in the new tendency of these tones (intermediate surprise) after tone probabilities 

417 change. This is observed as a lower precision of prediction errors associated with the 
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418 previously redundant tone in the second context through decreased gain on deviant response 

419 relative to the first context. Similarly, a more distributed pattern of disinhibition of superficial 

420 pyramidal cells is seen for a second context deviant following local surprise compared to a 

421 first context deviant, likely reflecting the increased learning rate required to override prior 

422 learning of the 30 ms tone as uninformative in the first context. Meanwhile, superordinate 

423 surprise requires the revision of beliefs about the general volatility of tone probabilities, 

424 which similarly shows lower precision associated with the second context deviant through 

425 less marked gain modulation, and higher influence of descending connectivity compared to 

426 the initial deviant (60 ms) tone specifically after the superordinate change.

427 In previous studies, differential modulations of MMN amplitude to the first and 

428 second deviant tone have persisted across as many as four repetitions of the same sound 

429 sequences (36), and are shown only to be altered when superordinate patterning is abolished 

430 or violated (35,65) or if the participant has prior experience with the sounds (48) or prior 

431 knowledge of the sequence structure (66). The apparent failure to override a first-impression, 

432 even after four repetitions of the same sound sequence, implies that the system maintains 

433 differential precision weightings for the two deviants unless a substantive level of surprise is 

434 encountered (36). In the present data, these assumptions are reflected in a higher backward 

435 coupling strength for the second-deviant 30 ms tone compared to the first-deviant 60 ms tone 

436 overall, generally lower precision of the 30 ms than 60 ms deviant, and the precision of 

437 prediction errors becoming more precise for 30 ms than 60 ms deviants at lower levels after 

438 the superordinate change (at A1), but comparatively less precise than 60 ms deviants at the 

439 higher levels (STG) after the higher-order pattern violation when block lengths change. 

440 The results also lend further support to the assertion that perceptual inference engages 

441 a hierarchical network architecture where more rostral projections such as those to the 

442 prefrontal cortex should be responsible for generating and updating beliefs about longer-term 
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443 patterns whilst more caudal regions are sensitive to short-timescale change (18). The DCM 

444 demonstrated that selective deviant-specific disruptions in these more rostral projections from 

445 STG to PFC were primarily seen when the superordinate pattern was violated. These data are 

446 consistent with the notion that superordinate patterns must be present and learned for the 

447 effect to be seen given previous observation that order-effects are abolished when no 

448 superordinate patterning is available (65) or the participant (and therefore the prefrontal 

449 cortex and selective attention) is otherwise engaged by a cognitively demanding visual task 

450 (66).

451 In the present study we have drawn exclusively on AEPs as a vehicle through which 

452 to study perceptual inference and learning, with extension to underlying network connectivity 

453 through the application of DCM. The auditory MMN and AEPs more generally are an ideal 

454 candidate for tracking this type of statistical learning given the importance of temporal 

455 regularity in audition (e.g., to decipher grammar and semantics in human language), the ease 

456 at which the statistics of sound sequences can be manipulated, and the established sensitivity 

457 of the AEP to changes in these statistics. AEPs further confer an ease of measurement 

458 through their accessibility, automaticity and simplicity of the paradigms through which they 

459 are elicited, and are suited to the study of more difficult populations such as clinical groups, 

460 infants and the elderly. Traditional analyses of the AEP are often restricted to chosen 

461 electrodes and latencies based on the component of interest and draw interpretations about 

462 neural activity as observed at the scalp. DCM, in contrast, is applied to the entire time-course 

463 and sensor space of the epoch and is more sensitive in generating a biologically informed 

464 mathematical models of neural activity below the scalp. Whilst DCM has previously proven 

465 useful in elucidating the auditory MMN in an oddball sequence, this study is the first to our 

466 knowledge to implement DCM of AEPs within a nested hierarchical sequence. Our results 

467 confirmed hypotheses about underlying neural mechanisms derived from scalp-level AEP 
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468 data (32,34,35,38,48,65,66), and demonstrate the utility of DCM to extend on the use of 

469 AEPs as a proxy for learning processes within multiple timescale paradigms.  

470 The two methods are different in that DCM analysis captures the entire epoch where 

471 previous AEP analyses of the multiple timescale paradigms have restricted analysis to the 90-

472 210 ms window surrounding the MMN. DCM is not limited to a priori components, but 

473 rather is sensitive to the contribution of any number of different AEP components occurring 

474 up to 300 ms post-stimulus (e.g., P3a) to the observed connectivity change. The changes 

475 presented, despite reflecting activity across the entire epoch, remain consistent with 

476 interpretations offered for the patterns shown previously in AEPs extracted from a smaller 

477 sampling window representative of the MMN, suggesting that the impact of additional 

478 components to the observed order effects are minimal, or are subject to the same patterns of 

479 order-driven modulation as seen for the MMN.    

480 A limitation of the DCM is in model selection, where relative evidence is calculated 

481 only for the model space which is pre-defined. This entails the possibility that the data could 

482 be more accurately explained by an alternative model which is not captured in the model 

483 space. The chosen model space represents that which is to our knowledge best supported by 

484 the literature pertaining to auditory change detection and MMN generation (43–45). We are 

485 confident it represents the best estimate of a plausible model for generation of the observed 

486 responses based on current knowledge and also, how connectivity changes within a 

487 commonly accepted inferential network structure can account for our data. Additional 

488 assumptions were made in the process of source selection and again represent best-practice 

489 estimation through the use of MNI coordinates consistent with previous DCM studies 

490 (43,44,46). A further complication of DCM is that interpreting the complex and nonlinear 

491 dynamics of the brain it is designed to capture is not straightforward, as a number of 

492 interactions between underlying subpopulations could give rise to the observed connectivity 
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493 change (e.g., see (43,67) for discussion). There could therefore be many causes of the 

494 observed connectivity changes, however we have suggested the most likely interpretation that 

495 could be drawn based on previous studies in concert with the present data.   

496 Whilst the present study is also limited in its focus on applying DCM to AEPs, recent 

497 trial-by-trial analyses have supported Bayesian learning across multiple levels of volatility 

498 during a multi-feature visual roving standard paradigm (68), and similar models of 

499 hierarchical Bayesian belief updating have also been successfully applied in DCM studies of 

500 visuospatial attention (69). The current findings could therefore be interpreted as supporting 

501 hierarchical Bayesian inference as a general framework for multi-modal inference and 

502 learning in the brain, rather than merely a specific feature of auditory processing. The current 

503 results lend support to hierarchical models of Bayesian learning, however may also have 

504 parallels to the Hierarchical Gaussian Filter (HGF), a recently formulated generative model 

505 of perceptual learning which employs Bayesian principles to trial-by-trial data (20,39,68). 

506 The HGF estimates hidden states from limited sensory input using hierarchical belief 

507 updating over multiple levels which are representative of the varying degrees of volatility in 

508 the environment. For example, the first level represents overall beliefs about possible states, 

509 the second level represents the current belief in the relative probability of encountering each 

510 state, and a third level represents the likelihood that these probabilities will change – levels 

511 which could be considered analogous to the various degrees of patterning in the present 

512 study’s sound sequence (see (65) for further discussion). Future studies may therefore look to 

513 directly embed the HGF model within DCM in order to provide conclusive empirical support 

514 for this form of learning within neural circuitry. Further, applications of DCM can contribute 

515 to more specific predictions about functional architecture and neurobiology given their 

516 increased sensitivity to mechanisms underlying the responses observed at the sensor level 

517 (42).  Elucidating the neurophysiological basis for perceptual inference and learning in the 
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518 healthy brain has further been considered to have important implications for understanding 

519 the etiology of disorders such as schizophrenia where these inference processes differ 

520 significantly (e.g., 66,67).

521 Materials and Methods

522 Participants

523 Participants were 19 healthy adults (15 female; aged 18-53 years, M = 25.26 years, 

524 SD = 11.44 years) recruited from undergraduate psychology students at the University of 

525 Newcastle and community volunteers. Exclusion criteria included current diagnosis of, or 

526 treatment for, a mental disorder per Diagnostic and Statistical Manual of Mental Disorders – 

527 Fifth Edition (47) criteria, history of head injury or neurological disorder, hearing loss, 

528 regular recreational drug use, heavy alcohol use or a first-degree relative with schizophrenia. 

529 Ethics Statement

530 All participants provided written informed consent to participate in the study protocol 

531 as approved by the University of Newcastle Human Research Ethics Committee prior to 

532 participating (approval number H-2012-0270). Reimbursement was provided in the form of 

533 course credit for students or gift vouchers for volunteers as compensation for time and 

534 expenses incurred. 

535 Stimuli and Sequences

536 Sound sequences were arranged as outlined by Fitzgerald and Todd (34), and 

537 consisted of 1000 Hz pure tones, presented over binaural Sennheiser HD280pro headphones 

538 at 75 dB with a 300 ms stimulus onset asynchrony. Sounds were a 30 ms and 60 ms tone 

539 created with a 5ms rise/fall time and a 20 ms and 50 ms pedestal respectively. Sound 

540 sequences consisted of the two tones alternating in the role of repetitive standard (p = .875) 

541 and rare deviant (p = .125) across blocks at two different regular rates to form a stable and 
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542 relatively unstable sequence component, which were further arranged to create one 

543 increasing-stability and one decreasing-stability sequence. The general arrangement of sound 

544 sequences was used in a number of previous studies of auditory processing across multiple 

545 timescales (32,35–38,48), with the specific variation used by Fitzgerald and Todd (34) 

546 depicted in Figure 4.  

547

548

549 Within these sound sequences, local, intermediate and superordinate regularity 

550 violations were represented by low-probability deviants, change in tone probabilities between 

551 the first and second block contexts (solid vs spotted blocks in Figure 1), and change in block 

552 lengths (black vs grey blocks in Figure 1) respectively. Importantly, each stable component 

553 consisted of 4 blocks of 480 tones and each unstable component consisted of 12 blocks of 

554 180 tones – each adding to a total of 9.6 mins duration, 1960 tones in total and an equivalent 

555 number of standard and deviant tones overall. The only difference between sequence 

556 components was the maximum period of time over which tone roles remained stable.  All 

557 participants heard the two sequences in the same order as depicted in Figure 1 – an 

558 “increasing-stability” arrangement consisting of the unstable followed by stable component, 
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559 before a “decreasing-stability” arrangement consisting of the stable followed by unstable 

560 component. The two sequences were separated by a 5 minute silent break where participants 

561 were permitted to move to minimise discomfort and for the predictive system to “reset”.  

562 Previous multiple-timescale sequences have demonstrated no differences in order-driven 

563 effects between counterbalanced sequences when separated by a 2-5 minute break (31). 

564

565 EEG data collection and pre-processing

566 Fitzgerald and Todd (34) obtained a continuous electroencephalography (EEG) 

567 recording during presentation of the sound sequences via a SynAmps2 Neuroscience© 

568 system using a 1000 Hz sampling rate, high-pass 0.1 Hz, low-pass 70 Hz, notch filter 50 Hz 

569 and fixed gain of 2010. The EEG setup consisted of 64 electrodes in accordance with the 

570 International 10 ± 10 system with Modified Combinatorial Nomenclature (49) and included 

571 one electrode at the nose and each of the bilateral mastoids for use as reference. Additional 

572 electro-oculogram electrodes were placed 1cm from the outer canthi of each eye, and directly 

573 above and below the left eye to monitor eye movements. Impedances were reduced to below 

574 5kΩ prior to recording.

575 The continuous EEG recordings from Fitzgerald and Todd (34) were re-processed 

576 using Neuroscan Edit© software for suitability to the current DCM analysis. Adjustments 

577 involved band-pass filtering to a range of 0.5 to 40 Hz with 12dB drop-off and zero phase. 

578 Manual artefact rejection and bad channel exclusions were carried over from the previous 

579 analysis. Eye blink corrections were also completed in the previous analysis using a EEG-

580 VEOG covariance analysis, linear regression and point-by-point subtraction procedure (50). 

581 Data was epoched from 50 ms pre-stimulus to 300 ms post-stimulus, and any epochs 

582 containing frequencies exceeding ±70 V discarded prior to averaging. 
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583 All subsequent processing steps were undertaken using Statistical Parametric 

584 Mapping (SPM) software (version 12, revision 6906). SPM is a freely available academic 

585 software package specialised for the spatially extended statistical analysis of brain imaging 

586 data and which is suitable for DCM analyses (51). 

587 Data were common average referenced as recommended for the application of DCM 

588 of EEG data (52) and a revised baseline correction from 25 ms pre-stimulus to 25 ms post-

589 stimulus was applied to improve the existing baseline for present purposes. Single-subject 

590 and grand averages were subsequently generated for the response to each tone (60 ms, 30 ms) 

591 as standard and deviant in each sequence component (stable, unstable) and structure 

592 (increasing-stability, decreasing-stability) resulting in 16 grand averages in total. 

593 Data was re-organised for analysis to specifically test the effects of local, intermediate 

594 and superordinate pattern violations by comparing the same tone as standard versus deviant 

595 (local violation), the first-context versus second-context deviant (i.e., 60 ms vs 30 ms tone; 

596 intermediate violation), and the two tones as deviants before versus after a change in block 

597 length (superordinate violation) respectively.  Block length (stable, unstable) was not a factor 

598 in the current analysis, given that a change in block length from stable to unstable sequence 

599 components produced the same MMN modulation patterns to a change from unstable to 

600 stable (i.e., the changes were tied to a change in block length rather than specifically related 

601 to block length, (34). Since we focused only on robust effects in the data for subsequent 

602 DCM analysis, order was therefore collapsed over block length, with first-heard components 

603 (unstable in increasing and stable in decreasing) compared to second-heard (stable in 

604 increasing and unstable in decreasing) components (i.e., the sequence components 

605 differentiated by black vs grey colouring in Figure 1). The remaining sections will refer 

606 exclusively to factors of role (standard, deviant), tone (30 ms, 60 ms) and order (heard-first, 

607 heard-second) accordingly. Analysis by role represents local violations by comparing 
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608 standard vs deviant, analysis by tone represents intermediate violations by comparing the two 

609 deviant types, and analysis by order represents superordinate violations by comparing the two 

610 global sequence structures. 

611 Sensor space analyses  

612 The common-average referenced ERP waveforms were analysed to confirm the 

613 presence of the same characteristic patterns previously observed in the mastoid-referenced 

614 data by Fitzgerald and Todd (34). To assess for sensitivity to deviant tones and changes in the 

615 tendency of these tones we compared ERPs to standards and deviants separately for each tone 

616 (30 ms vs. 60 ms), using family-wise-error corrected paired t-tests to test for significant (p < 

617 .05) differences in these responses at each sampling point within the epoch (corrected over 

618 sampling points). For statistical analyses of ERP time-series, data were extracted from the F4 

619 channel given that both MMN and previous observations of order-driven effects have been 

620 shown to be frontal and right-hemisphere maximal (e.g., 34,53,54). Sensitivity to higher-

621 order pattern violations was investigated by family-wise-error corrected t-tests investigating 

622 for significant (p < .05) differences in the ERP to each tone as deviant before and after a 

623 change in block length in each condition over the entire epoch at F4. 

624 Dynamic causal modelling

625 Further analysis was undertaken using DCM to estimate population output and 

626 connectivity parameters associated with the three key patterns observed in AEP data: 

627 sensitivity to tone probabilities (local violation), changes in the probabilities of the two tones 

628 (intermediate violation), and changes in the volatility of these probabilities (superordinate 

629 block-length violation). DCM allows for a mapping from data measured at the sensor level to 

630 source-level activity, in a sparse network of interconnected sources, each consisting of a set 

631 of neural populations based on a canonical microcircuit architecture (55). The activity in each 

632 source evolves as described using coupled differential equations which model the dynamics 
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633 of postsynaptic voltage and current in each neural population. These populations (spiny 

634 stellate cells, superficial and deep pyramidal cells, and inhibitory interneurons) have distinct 

635 connectivity profiles of ascending and descending projections linking different sources 

636 (extrinsic connectivity) and coupling neural populations within each source (intrinsic 

637 connectivity). DCM based on canonical microcircuits has been used in several other studies 

638 of mismatch responses (e.g., 56,57), and validated using invasive recordings in humans (58). 

639 Model inversion in DCM is susceptible to local maxima issues due to the inherently 

640 non-linear nature. To overcome this potential issue we implemented Parametric Empirical 

641 Bayes (PEB), an iterative hierarchical implementation of the empirical Bayesian inversion 

642 method (59) where group-level effects are inferred by fitting the same model to each 

643 participant’s data under group constraints (e.g., the assumption that model parameters are 

644 normally distributed in the participant sample) updating the posterior distribution of the 

645 individual DCMs and re-inverting the model over several iterations. This process was applied 

646 using the built-in SPM 12 function spm_dcm_peb_fit.m.

647 The DCM adopted a standard electromagnetic forward model based on the Boundary 

648 Elements Model (BEM) in Montreal Neurological Institute space as the default SPM 12 

649 template (52). Lead-fields specified by the forward model were used to reconstruct AEP 

650 responses at all electrodes and latencies (0-300 ms) from six cortical sources considered for 

651 inclusion in the DCM: bilateral primary auditory cortex (A1), bilateral superior temporal 

652 gyrus (STG) and bilateral inferior frontal gyrus (IFG), using the following MNI coordinates 

653 (43,46): left A1 [-42, -22,7], right A1 [46, -14, 8], left STG [-61, -32, 8], right STG [59, -25, 

654 8], left IFG [-46, 20, 8], right IFG [46, 20, 8]. Changes in extrinsic (between cortical sources) 

655 or intrinsic (within cortical sources) connections were quantified as model parameters giving 

656 rise to differences between AEPs. The free-energy approximation to model evidence was 

657 used as a metric of model fit to the data, penalised by model complexity. 
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658 DCM analyses were conducted in two steps. The first analysis modelled changes in 

659 standard and deviant responses to assess for the expected effects of deviance on connectivity 

660 parameters (e.g., ascending connections) and confirm the validity of this application of DCM 

661 to data extracted from the multiple-timescale paradigm, whilst also modelling the effect of 

662 local violation represented by a deviant relative to standard tone. The second analysis 

663 modelled changes in the deviant AEP only given that order-driven effects on MMN 

664 amplitude modulations are driven primarily by the deviant AEP (see Results), and focused on 

665 differential changes in connectivity associated with intermediate violations (second/30 ms vs 

666 first/60 ms deviant) and superordinate violations (before vs after a change in block length). 

667 Given that the modulations of interest are based on order rather than tone properties, in the 

668 first analysis responses to the second deviant (30 ms) and first deviant (60 ms) tone were 

669 modelled separately to give a pure measure of network changes to a deviant which were not 

670 conflated with the task of explaining variance due to order effects. 

671 Individual model inversion was conducted fitting separate models to the two levels of 

672 intermediate deviance (30 ms as deviant vs. 60 ms as deviant) over two factors - local 

673 deviance (standard versus deviant), superordinate deviance (before and after a change in 

674 block length) - and their interaction. In the second analysis tone type was included as a factor 

675 within a single DCM to permit the direct contrast of how order driven effects differentially 

676 impact connectivity underlying responses to the two tones after a superordinate change. Here 

677 individual model inversion was conducted fitting the single DCM over the two factors of 

678 intermediate deviance (second deviant/30 ms tone vs.first deviant/60 ms tone) and 

679 superordinate deviance (heard-first versus heard-second), and their interaction. In both 

680 analyses individual model inversion was applied using empirical priors over the six-source 

681 network permitting changes in ascending, descending and intrinsic gain parameters. 
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682 Bayesian model reduction (BMR) was used to identify the parameter changes that 

683 best explained the observed AEP data and estimate the variation in these parameters caused 

684 by local, intermediate and superordinate deviations in the respective analyses. BMR uses 

685 inversion of the “full” model incorporating changes in all identified parameters to estimate 

686 model evidence for a range of “reduced” models where some parameters are not permitted to 

687 vary (60). The chosen model space in both analyses examined each combination of changes 

688 in ascending connections, descending connections and modulatory gain parameters for each 

689 factor, resulting in 8x8 factorial models (ascending, descending, ascending/descending and 

690 null, each with and without modulatory gain changes). 

691 The winning models were next entered into PEB to hierarchically estimate the 

692 variation in parameters which explained systematic changes in response to each factor, 

693 comparing a standard relative to deviant in the first analysis, second deviant (30 ms) relative 

694 to first deviant (60 ms) tone in the second analysis, and first-heard relative to second-heard 

695 sequence component in both analyses. This approach permits estimation of a general linear 

696 model for model parameters across individually inverted (first-level) DCMs. Regressors in 

697 the second level model included the group mean for each factor (local and superordinate 

698 deviance in the first analysis, intermediate and superordinate deviance in the second analysis) 

699 and random subject effects. In the first analysis intermediate deviance formed an additional 

700 second-level regressor given that the 30 ms and 60 ms tone were modelled separately for 

701 each participant. BMR was subsequently applied to identify significant changes in parameters 

702 due to these second level factors. Parameters at the second level were derived from the 

703 canonical microcircuit model for DCM and included baseline estimates describing extrinsic 

704 connections (between sources; A), intrinsic connections (between neural populations within 

705 cortical sources; G), and activity-dependent effects on intrinsic connections (modelled as 

706 activity-dependent superficial pyramidal cell self-inhibition; M), as well as modulatory 
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707 parameters describing the effects of the experimental manipulations on extrinsic and intrinsic 

708 connections (B) and the activity-dependent effects on intrinsic connections (N). The BMR 

709 generated outputs of estimated free-energy approximation to the log-evidence for each 

710 second level model (used to compare models and select the winning model), the parameter 

711 changes associated with local and superordinate violations, and a Bayesian 95% confidence 

712 interval for each as a measure of uncertainty in the estimates. Significance testing followed a 

713 recently developed procedure for empirical Bayes that is considered more robust to repeated 

714 testing than t-tests and involves estimating the proportion of the probability distribution that 

715 falls either side of zero for each parameter against a statistical threshold of 0.995 (61). 
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893 Figure Legends
894

895 Figure 1. Representation of model space. Effects of local, intermediate and superordinate 

896 deviance were modelled within a six-source coupled network comprised of bilateral A1, STG 

897 and IFG, and permitting changes in ascending, descending and intrinsic connectivity.  The 

898 same subset of parameters was allowed to vary for all factors resulting in a total of 8 discrete 

899 models shown in Figure 2A. Winning model FBi is indicated by a square outline. Each 

900 source within the model space was represented according to the canonical microcircuit neural 

901 mass model shown in Figure 2B, where intrinsic coupling parameters estimate the 

902 connectivity between superficial pyramidal cells, spiny stellate interneurons, inhibitory 

903 interneurons and deep pyramidal cells which contribute to condition-specific changes in 

904 extrinsic connectivity between sources. 

905

906 Figure 2. Connectivity changes associated with local deviance. Coloured arrows indicate 

907 significant increases (red) and decreases (blue) in ascending (upward arrows), descending 

908 (downward arrows) and intrinsic (curved arrows) connectivity strength associated with a 30 

909 ms (left panel) and 60 ms (right panel) tone when encountered with deviant probability (p = 

910 .125) as relative to the same tone encountered with standard probability (p = .875). Values 

911 represent magnitude of difference in Bayesian parameter estimates relating to the significant 

912 modulation of extrinsic connections (B parameters; ascending/descending) and activity-

913 dependent effects on intrinsic connectivity (N; within-source). Significance was assessed 

914 against a critical value of p < 0.005 using the procedure outlined in the Method.

915
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916 Figure 3. Connectivity changes associated with intermediate and superordinate deviance. 

917 Estimated changes in Bayesian connectivity parameters associated with a 30ms tone as deviant 

918 compared to a 60 ms deviant in general, reflecting intermediate deviance (left panel), and 

919 significant changes in connectivity for a 60 ms deviant as compared to a 30ms deviant 

920 specifically after a change in superordinate sequence structure (right panel). Coloured arrows 

921 indicate significant increases (red) and decreases (blue) in ascending (upward arrows), 

922 descending (downward arrows) and intrinsic (curved arrows) connectivity strength. Values 

923 represent magnitude of difference in Bayesian parameter estimates. A critical value of p < 

924 0.005 was applied for significance testing using the procedure outlined in the Method.  

925

926 Figure 4. Representation of sound sequence structure and levels of pattern violation nested 

927 within the sound sequence. Local violation occurred within all blocks by presentation of a 

928 rare deviant (p = .125; represented as X) amongst a series of repetitive standards (p = .875; 

929 represented as Y), intermediate violation occurred following the change in contexts where 

930 tone probabilities alternated from a 60 ms deviant and 30 ms standard (first-context block) to 

931 a 30 ms deviant and 60 ms standard (second-context block; spotted vs solid blocks), and 

932 superordinate violation occurred following a change in block length in each of the sound 

933 sequences (black vs grey blocks).

934

935
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936 Supporting Information Legends
937

938 Figure S1. SPM output highlighting significant spatio-temporal increases (F-test, p < .05 

939 family-wise error-corrected) in deviant relative to standard responses across 2D sensor space 

940 and time (left panels) and at peak (right panel) for the 30 ms and 60 ms tone. 

941

942 Figure S2. Grand average difference waveforms at F4 (where the MMN is maximal) for the 

943 second deviant/30 ms (black lines) and first deviant/60 ms tone (grey lines) when heard 

944 before (solid lines) and after (broken lines) a change in block length in unstable (left panel) 

945 and stable (right panel) sequence components. Shaded bars indicate the latency windows over 

946 which mean amplitudes were extracted for quantification of the MMN (160-180 ms) and P3 

947 (240-260 ms) components, based on a 20ms window capturing the common peak for a 

948 majority of individual averages across conditions. Significant differences in mean amplitude 

949 are indicated by an asterisk (p < .05). 

950

951 Figure S3. Grand average AEPs to the 30 ms (black lines) and 60 ms (grey lines) tone as 

952 deviant (A; top panel) and standard (B; bottom panel) when heard before (solid lines) and 

953 after (dashed lines) a change in block length for unstable and stable sequence components. 

954 Horizontal bars in (B) indicate periods of significant difference between standard and deviant 

955 waveforms elicited to the 30 ms (black) and 60 ms (grey) tones across orders, and periods of 

956 significant difference between heard-first and heard-second components in the deviant 

957 response for the 60 ms tone (blue; one-tailed t-test, p < .05, using the procedure outlined by 

958 (62) for statistical analysis of EEG waveforms). There were no periods of significant 

959 difference in the deviant waveforms for a 30 ms tone when heard first versus heard second. 
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960 Tables (Supplementary)
961

962 30ms, deviant vs standard (local deviance)

Forward Backward Intrinsic

lA1-lSTG 0.282*

rA1-rSTG 0.880*

lSTG-lIFG 0.865*

rSTG-rIFG 0.852*

lSTG-lA1 1.211*

rSTG-rA1 0.061

lIFG-lSTG -0.075

rIFG-rSTG 0.176

lA1 -0.371*

rA1 0.586*

lSTG -0.402*

rSTG -0.745*

lIFG 0.081

rIFG 0.653*

963 Table S1. Estimated changes in forward, backward and intrinsic connections within/between 

964 sources associated with a 30 ms tone when encountered with deviant probability as compared 

965 to when encountered as a standard.  Significant changes are marked by an asterisk, and were 

966 assessed as 99.95% of the estimated probability distribution demonstrating a change greater 

967 or less than zero.   

968
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969 60 ms, standard vs deviant (local deviance)

Forward Backward Intrinsic

lA1-lSTG 1.135*

rA1-rSTG 2.215*

lSTG-lIFG 0.770*

rSTG-rIFG 0.671*

lSTG-lA1 -0.192

rSTG-rA1 0.314*

lIFG-lSTG 0.246

rIFG-rSTG < -0.001

rA1 -1.342*

lA1 0.462*

rSTG -0.254

lSTG 0.210

rIFG -0.064

lIFG -0.004

970 Table S2. Estimated changes in forward, backward and intrinsic connections within/between 

971 sources associated with a 60 ms tone when encountered with deviant probability as compared 

972 to when encountered as a standard.  Significant changes are marked by an asterisk, and were 

973 assessed as 99.95% of the estimated probability distribution demonstrating a change greater 

974 or less than zero.   

975

976
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978 30 ms vs 60 ms deviants (intermediate deviance)

Forward Backward Intrinsic

lA1-lSTG -0.057

rA1-rSTG 0.470*

lSTG-lIFG 0.033

rSTG-rIFG 1.11*

lSTG-lA1 0.010

rSTG-rA1 -0.216*

lIFG-lSTG 1.168*

rIFG-rSTG 0.181*

rA1 -0.686*

lA1 0.144*

rSTG 0.202*

lSTG 0.250*

rIFG 0.228

lIFG 0.147

979 Table S3. Estimated changes in forward, backward and intrinsic connections within/between 

980 sources associated with a 30 ms tone as deviant compared to a 60 ms tone as deviant.  

981 Significant changes are marked by an asterisk, and were assessed as 99.95% of the estimated 

982 probability distribution demonstrating a change greater or less than zero.   

983

984

985

986

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2019. ; https://doi.org/10.1101/768846doi: bioRxiv preprint 

https://doi.org/10.1101/768846
http://creativecommons.org/licenses/by/4.0/


47

987 30 ms vs 60 ms deviants after block change (superordinate deviance)

Forward Backward Intrinsic

lA1-lSTG -0.018

rA1-rSTG 0.486*

lSTG-lIFG -0.368*

rSTG-rIFG -0.225*

lSTG-lA1 0.437*

rSTG-rA1 0.244*

lIFG-lSTG 0.316*

rIFG-rSTG -0.039

rA1 -0.702*

lA1 -0.228*

rSTG 0.186*

lSTG 0.337*

rIFG -0.303*

lIFG 0.147

988 Table S4. Estimated changes in forward, backward and intrinsic connections within/between 

989 sources associated with a 30 ms tone as deviant compared to a 60 ms tone as deviant before 

990 versus after the change in block length. Significant changes are marked by an asterisk, and 

991 were assessed as 99.95% of the estimated probability distribution demonstrating a change 

992 greater or less than zero.   

993
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