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THETA, ALPHA AND SPACE-TIME CODING 2 
Abstract 11 

Judging how far something is and how long it takes to get there are critical to memory and 12 

navigation. Yet, the neural codes for spatial and temporal information remain unclear, 13 

particularly the involvement of neural oscillations in maintaining such codes. To address these 14 

issues, we designed an immersive virtual reality environment containing teleporters that 15 

displace participants to a different location after entry. Upon exiting the teleporters, participants 16 

made judgements from two given options regarding either the distance they had travelled 17 

(spatial distance condition) or the duration they had spent inside the teleporters (temporal 18 

duration condition). We wirelessly recorded scalp EEG while participants navigated in the virtual 19 

environment by physically walking on an omnidirectional treadmill and traveling through 20 

teleporters. An exploratory analysis revealed significantly higher alpha and beta power for short 21 

distance versus long distance traversals, while the contrast also revealed significantly higher 22 

frontal midline delta-theta-alpha power, and global beta power increases for short versus long 23 

temporal duration teleportation.  Analyses of occipital alpha instantaneous frequencies revealed 24 

their sensitivity for both spatial distances and temporal durations, suggesting a novel and 25 

common mechanism for both spatial and temporal coding.  We further examined the resolution 26 

of distance and temporal coding by classifying discretized distance bins and 250ms time bins 27 

based on multivariate patterns of 2-30 Hz power spectra, finding evidence that oscillations code 28 

fine-scale time and distance information.  Together, these findings support partially independent 29 

coding schemes for spatial and temporal information, suggesting that low-frequency oscillations 30 

play important roles in coding both space and time. 31 

Keywords: spatial cognition, temporal cognition, mobile EEG, virtual reality, theta 32 

oscillations, alpha frequency  33 
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THETA, ALPHA AND SPACE-TIME CODING 3 
Common and distinct roles of frontal midline theta and occipital alpha oscillations in coding 34 

temporal intervals and spatial distances 35 

 36 

Introduction 37 

Background 38 

 Tracking where we are in space and time is important for both navigation and episodic 39 

memory (Eichenbaum & Cohen, 2014; Ekstrom & Isham, 2017; Robin & Moscovitch, 2014; 40 

Tulving, 2002). However, it is not clear what neural mechanisms are recruited for spatial and 41 

temporal coding in humans and whether they share similar coding principles (Ekstrom & Isham, 42 

2017; Frassinetti et al., 2009; Walsh, 2003). Movement, either physical or imagined, is a core 43 

part of both our sense of space and time, and induces robust hippocampal low-frequency 44 

oscillations (3-12Hz) in both rats (Vanderwolf, 1969) and humans (Bohbot et al., 2017; Ekstrom 45 

et al., 2005; Goyal et al., 2020; Jacobs, 2013; Watrous et al., 2011). Because movement 46 

typically involves changes in both space and time, one possibility is that low-frequency 47 

oscillations play a role in coding both variables.   48 

Past investigations have established an important role for hippocampal theta oscillations 49 

in coding spatial distance in humans but evidence is lacking for the role of neocortical theta 50 

oscillations in distance coding. For example, hippocampal theta power increases linearly with 51 

the amount of distance travelled in virtual reality (Bush et al., 2017; Vass et al., 2016), cross-52 

regional theta connectivity plays a critical role in judgments of relative spatial distance (Kim et 53 

al., 2018), and theta network connectivity differentiates distance from temporal contextual 54 

retrieval (Watrous et al., 2013). However, it is not clear whether neocortical theta oscillations 55 

can code spatial distance in a similar fashion, and if scalp EEG can reveal such a cortical theta 56 

distance code.   57 

In addition, while past studies have established a role for low-frequency oscillations in 58 

spatial distance coding, their role in representing temporal durations remains less clear. The 59 

medial temporal lobes (MTL) of rodents are capable of internally generating representations that 60 

track time passage (Itskov et al., 2011; MacDonald et al., 2011; Pastalkova et al., 2008; Wang 61 

et al., 2015). Given the strong presence of delta and theta oscillations in MTL, it is possible that 62 

low-frequency oscillations contribute to temporal duration coding and that such a time code can 63 

manifest in neocortical low-frequency oscillations as well. Past studies have also revealed a role 64 

for cortical beta oscillations in supporting duration reproduction in humans, such as the finding 65 

that increased alpha-beta coupling strengths yield better time reproduction precision (Grabot et 66 
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THETA, ALPHA AND SPACE-TIME CODING 4 
al., 2019), and higher beta power recorded with scalp EEG predicts longer reproduced 67 

durations (Kononowicz & van Rijn, 2015).  Therefore, both delta-theta and beta band 68 

oscillations are strong potential candidates specifically dedicated to temporal duration coding, or 69 

both spatiotemporal coding, an issue we seek to resolve here.  Beside low-frequency power 70 

changes, another possible oscillatory timing mechanism is alpha frequency modulation. Alpha 71 

frequency variations manifest independently of changes in alpha power (Samuel et al., 2018), 72 

and alpha frequency modulation has been implicated in the temporal resolution of visual 73 

perception (Cecere et al., 2015; Samaha & Postle, 2015). Nonetheless, how alpha frequency 74 

fluctuations relate to duration timing remains unclear and unresolved. 75 

Objectives 76 

In this current study, we aim at experimentally dissociating the spatial distance and 77 

temporal duration information available to participants.  Then, we examine whether and how 78 

low-frequency oscillations support spatial distance and temporal duration coding, and whether 79 

such spatiotemporal processing shares similar coding schemes. To address these research 80 

questions, we developed a teleportation task in an immersive and ecologically enriched virtual 81 

environment (Figure 1), largely similar to the experimental design in Vass et al. (2016) and 82 

capable of disentangling spatial and temporal information. In this task, participants entered a 83 

virtual teleporter, were presented with a black screen for a couple of seconds, and then exited at 84 

a different location in the virtual environment. After exiting, participants were prompted to make 85 

a binary-choice judgment regarding the distance they were transported inside the teleporter (the 86 

spatial distance task) or how long the duration was they spent inside the teleporter. By 87 

manipulating the distance and duration information independently, we disentangled participants’ 88 

memory for spatial distance from that of temporal duration. This in turn allowed us to examine 89 

their neural correlates separately. In addition, participants navigated around the virtual reality by 90 

physically walking on an omnidirectional treadmill while wearing a head mounted display, 91 

allowing us to study the relationship between cortical oscillations and spatiotemporal processing 92 

under more ecologically enriched conditions. 93 

Hypotheses 94 

We tested two primary hypotheses. First, for the within-task difference hypothesis, we 95 

tested whether cortical oscillatory power (2-30Hz) and occipital alpha frequencies responded 96 

differently within tasks, i.e., judging short vs. long spatial distance, or short vs. long temporal 97 

durations. Second, for the between-task difference hypothesis, we tested whether such 98 

oscillatory codes differed between tasks, i.e. for spatial distance vs. temporal duration 99 
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THETA, ALPHA AND SPACE-TIME CODING 5 
judgments, which might further support the ideas of independent codes (Watrous et al., 2013) 100 

vs. a common magnitude estimation mechanism (Walsh, 2003) for spatiotemporal coding. 101 

Together, these analyses allowed us to address to what extent the coding for spatial distance 102 

and temporal durations involves common vs. distinct neural mechanisms. 103 

   104 

 105 

Figure 1. Spatial and temporal teleportation tasks, and virtual reality (VR) setup. (A) Layout of 106 

the VR and the possible entry locations of teleporters. (B) A view of the virtual environment, and 107 

the VR-scalp EEG setup. (C) Task flow in the spatial task. Participants were either teleported a 108 

short or long distance inside teleporters. (D) Task flow in the temporal task. Participants either 109 

experienced a short (4 seconds) or long (8 seconds) duration inside teleporters while standing 110 

still. 111 

 112 

 113 
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THETA, ALPHA AND SPACE-TIME CODING 6 
Materials and Methods 114 

This study was approved by the Institutional Review Board at the University of Arizona, 115 

and all participants provided informed consent.  The data analyzed in this study are available at 116 

https://osf.io/3vxkn/. 117 

Participants 118 

We tested 19 adults (7 females, 12 males) from the Tucson community. Because this is 119 

the first investigation of its type (scalp-recorded oscillatory correlates of spatiotemporal 120 

processing), it is difficult to estimate exact effects sizes needed to determine the sample size.  121 

Therefore, we based our sample size on a previous study in which we observed movement-122 

related changes in low-frequency oscillations during navigation (Liang et al., 2018).  Participants 123 

received monetary ($20/hour) and/or class credit for compensation. Prior to testing, participants 124 

received a virtual reality training session, which involved 30 minutes of walking on the 125 

omnidirectional treadmill with a head mounted display on. We implemented the training to 126 

screen out participants with potential susceptibility to cybersickness. 127 

 128 

Stimuli, Apparatus and Virtual Reality 129 

The virtual environment was constructed with the Unity Engine and rendered with an HTC 130 

Vive headset.  Immersive walking experiences were simulated with an omnidirectional treadmill 131 

(KAT VR Gaming Pro, KAT VR, Hangzhou China). Physical walking motions on the 132 

omnidirectional treadmill were translated into movements in the virtual reality. 133 

 The size of the virtual environment was 560 x 560 virtual square meters.  The layout of 134 

the virtual environment was a plus (+) sign (Figure 1A), with four arms extending from the center. 135 

Four target stores were placed at the end of each arm (Cookie Shop, Dream Laundry, Antique 136 

Store, and Travel Shop).  Identical filler buildings were placed along each arm.  137 

The entry point to the teleporters was rendered as a purple circle.  When participants 138 

“collided” with teleporters in the virtual reality, they initiated a teleportation event.  During 139 

teleportation, they stood still for a few seconds while viewing a black screen on the head-140 

mounted display, and eventually exited at the center of the plus maze.   141 

 142 

Behavioral Tasks 143 

Participants completed two tasks: a spatial distance task and a temporal duration task. 144 

In the spatial task, the teleporters displaced the participants with one of the two possible 145 

spatial distances while the teleportation duration was kept constant. In the temporal task, the 146 
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THETA, ALPHA AND SPACE-TIME CODING 7 
teleportation process could last a short (4 seconds) or long (8 seconds) duration, while the 147 

teleporters transported the participants a fixed distance.  Each task involved 48 trials.   148 

Navigation phase.  At the beginning of a trial, participants started at the center of the plus 149 

maze and navigated to a target store. The target store was either specified for the first trial, or it 150 

needed to be determined for the following trials. When arriving at the target store, participants 151 

entered a dummy teleporter in front of the target store.  This involved showing a black screen for 152 

4 seconds and rotating participant’s camera angle by 180 degrees.  This dummy teleporter was 153 

set up to timestamp participants’ arrival times on the EEG and was not used in any subsequent 154 

analyses.  If participants arrived at the wrong store, the dummy teleporters sent participants 155 

back to the center of the plus maze and they searched for the store again. During the navigation 156 

phase, no teleporters were visible except for four dummy teleporters in front of four target stores 157 

to detect arrivals at the correct store.  158 

Teleportation phase.  After navigating to the target store, participants then walked up to 159 

and entered a new teleporter spawned in front of the target store. In the spatial distance task, 160 

for long distance trials, the teleporters spawned 200 virtual meters away from the center of the 161 

plus maze, and for short distance trials, the teleporters spawned 100 virtual meters away from 162 

the center. In the temporal duration task, the teleporters spawned 144 meters away from the 163 

center.  Upon entering the teleporter, participants stood still, with the camera fading to a 164 

completely black screen in 200 milliseconds.  They viewed the black screen for a specific 165 

duration (spatial task: 5.656 seconds, and temporal task: 4 or 8 seconds).  Then participants 166 

reemerged at the center of the plus maze, with their camera fading from pure black to the view 167 

standing at the center of plus maze, in 200 milliseconds. 168 

Judgment phase.  After exiting the teleporter, written instructions were provided to the 169 

participants by showing a billboard message overlaid on top of the virtual reality view.  The 170 

instructions were used to decide which target store to visit for the current trial. For the spatial 171 

task, instructions were: "If far distance, go find store A. If short distance, go find store B." For the 172 

temporal task, instructions were: "If long time, go find store A. If short time, go find store B."  173 

The instructions in the virtual reality disappeared when participants walked further than 55 174 

meters away from the center of the plus maze. By asking participants to judge spatial distance 175 

and temporal durations, we ensured that they maintained these two task-relevant variables. 176 

Parameters for the behavioral tasks.  For the spatial task, the duration of viewing the 177 

black screen was 5.656 seconds for both long distance and short distance trials.  Short 178 

distance was defined as teleporting 100 meters and long distance was defined as teleporting 179 

200 meters and (Figure 1C). For the temporal task, the distance teleported was kept constant, 180 
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THETA, ALPHA AND SPACE-TIME CODING 8 
at 141.4 meters. For short duration trials, participants viewed 4 seconds of a black screen 181 

during teleportation, while for long duration trials, they viewed 8 seconds of a black screen 182 

(Figure 1D). We selected these parameters for our spatial and temporal tasks to ensure the 183 

average teleportation speeds were the same between spatial and temporal tasks: the average 184 

teleportation speed for the spatial task was 
�

�
 � (200 meters/5.656s + 100 meters /5.656s) ≈ 185 

26.52 m/s while the average speed for the temporal task was 
�

�
 � (141.4 meters/8s + 141.4 186 

meters/4s) ≈ 26.51 m/s).  This is because movement speed has been shown to affect low-187 

frequency oscillations (Caplan et al., 2003) and thus we attempted to control for movement 188 

speed during teleportation. 189 

The order of short/long trials were pseudorandomized across the 48 trials. Short and 190 

long teleportation each had 24 trials, with each target store visited 12 times. Two sets of 191 

short/long orders were generated so that spatial and temporal tasks did not use the same set 192 

of long/short sequences. The order of task types, and the short/long sequence sets, were 193 

counterbalanced across participants.  Before starting the main experiment, participants were 194 

shown three examples each: long distance teleportation, short distance teleportation, short 195 

temporal duration teleportation, and long temporal duration teleportation.  Some participants 196 

repeated this practice procedure until they reported understanding the differences between 197 

short/long trials. 198 

After each block of 12 trials, participants had the option to take a short break of 3 199 

minutes.  When participants took a break, we first asked participants to stand still and relax for 200 

90 seconds on the omnidirectional treadmill while wearing the head-mounted display and 201 

viewing a black screen.  Then we recorded the 90 second EEG data as the baseline.  Pooling 202 

across the spatial and temporal tasks, we recorded, on average, 364.74 seconds (SD: 183.64 203 

seconds) of EEG baseline data. 204 

 205 

EEG Acquisition and Preprocessing  206 

The continuous EEG was recorded with a 64-channel BrainVision ActiCAP system, which 207 

included a wireless transmission MOVE module, and two BrainAmp amplifiers (BrainVision LLC, 208 

Morrisville, NC).  We recorded from 64 active electrodes, placed on the scalp according to the 209 

international 10-20 system.  The reference electrode was located at FCz, and no online filter 210 

was applied to the recordings.  Before the experimenter proceeded to start the recordings, 211 

impedances of all 64 electrodes were confirmed below 5kΩ.  212 
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THETA, ALPHA AND SPACE-TIME CODING 9 
Preprocessing and analyses were performed with EEGLAB (Makeig et al., 2004), and 213 

customized codes in MATLAB. No offline re-referencing or interpolation of electrodes was 214 

performed on the continuous data.  A 1650th order Hamming windowed sinc finite impulse 215 

response (FIR) filter was performed for 1-50Hz bandpass filtering on the continuous data using 216 

the EEGLAB pop_newfilt() function, with a transition bandwidth of 1 Hz, the passband edges of 217 

1 and 50 Hz, and cut-off frequencies (-6dB) of 0.5 and 50.5 Hz. Artifact subspace reconstruction 218 

(ASR) was then applied to the filtered continuous data, with the EEGLAB clean_asr() function, 219 

to repair large amplitude spikes that were 5 standard deviations away from the clean segments 220 

of the continuous data. 221 

 222 

EEG Epoching and Segmentation 223 

The continuous EEG data were segmented using a time window aligned with the start 224 

and ends of teleportation (not including the fade-to-black or fade-to-clear 200ms windows).   225 

This segmentation procedure yielded 48 epochs with a length of 5.656 seconds for the spatial 226 

task, and 48 epochs with a length of either 4 or 8 seconds for the temporal task.  No baseline 227 

correction was applied.  To keep the number of trials constant across participants, we did not 228 

reject trials based on incorrect behavioral responses.  We did not reject trials based a voltage 229 

threshold because we mainly used independent component analysis to correct artifacts, as 230 

described below.   231 

 232 

Independent Component Analysis  233 

Independent component analysis (ICA) with the infomax algorithm was performed in 234 

EEGLAB to correct artifacts.  Note that we ran ICA on the artificial “continuous data structure” 235 

by concatenating all the data in the distance task, time task, and the resting baseline task.  236 

Our motivation was data in those three tasks should receive identical ICA correction procedure.  237 

We used an automatic component selection procedure, ICLabel (Pion-Tonachini et al., 2019) 238 

to avoid experimenter bias in identifying noisy components.  Components were rejected 239 

automatically if they had labels of “Muscle”, “Eye”, “Heart”, “Line Noise”, or “Channel Noise” if 240 

their probability was higher than 90% for being one of those labels. On average, 8.84 (13.81% 241 

of all components, SD: 3.91) components were rejected. 242 

 243 

Time Frequency Analysis 244 
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Power measures for delta, theta, alpha, and beta bands.  We estimated the 245 

instantaneous power during the teleportation windows with 6-cycle Morlet Wavelets using code 246 

from Hughes, Whitten, Caplan, and Dickson (2012). We sampled frequencies from 2 to 30 Hz in 247 

20 logarithmic frequency steps, i.e., 2 Hz, 2.31 Hz, 2.66 Hz, 3.07 Hz, and 3.54 Hz for delta band, 248 

4.08 Hz, 4.70 Hz, 5.42 Hz, 6.25 Hz and 7.21 Hz for theta band, 8.32 Hz, 9.59 Hz, and 11.06 Hz 249 

for alpha band, 12.76 Hz, 14.71 Hz, 16.96 Hz, 19.56 Hz, 22.56 Hz, 26.01 Hz, and 30 Hz for 250 

beta band.  Zero paddings were added to both ends of the signal to alleviate edge artifacts.  No 251 

baseline correction was applied to the power estimates.  Logarithmic transform with a base of 252 

10 was applied to the obtain power values before averaging.  Mean power for each band was 253 

measured as log power averaged across timepoints within the teleportation window, across 254 

frequencies within a band, and across trials of interest.  255 

Cluster-based permutation tests for multiple comparison correction.  Cluster-based 256 

permutation tests (Maris & Oostenveld, 2007) were used to determine the statistical significance 257 

between the mean power values for short vs. long trials. Correction for multiple comparisons 258 

was implemented in Fieldtrip. First, to identify uncorrected significant samples, 259 

64(electrodes)*4(frequency bands) = 256 Wilcoxon signed rank two-tailed tests were performed 260 

for the power contrasts, alpha = 0.05. Clusters were found by connecting significant sample 261 

pairs (electrode x frequency bands) with spatiospectral adjacency (minimum neighbor of 262 

channels was set to 0), and cluster-level statistics were computed using a weighted-sum 263 

(Hayasaka & Nichols, 2004) of all the z values returned by Wilcoxon signed rank tests within a 264 

cluster.  Second, a surrogate distribution of cluster-level statistics was generated by randomly 265 

shuffling condition labels 1000 times on the subject level and retrieving the maximum cluster-266 

level test statistic for each permutation. Third, p values of the observed cluster statistics were 267 

obtained by benchmarking to the surrogate distribution. Empirical clusters with a p value smaller 268 

than 0.025 (either left tail or right tail) were be reported.   269 

We chose the nonparametric Wilcoxon signed rank tests over the parametric paired t tests 270 

because the normality assumption for t tests was violated. For all the power spectra contrast we 271 

conducted, all the power spectra differences showed a distribution different from normal 272 

distributions (one sample Kolmogorov-Smirnov test, alpha = 0.05, all p’s < 0.01). In the results 273 

reported in which we employed the Wilcoxon signed rank tests, medians instead of means were 274 

reported. 275 
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Effect sizes calculation. Cohen’s d was used as an estimate for effect sizes. For a 276 

within-participant paired comparisons between condition 1 and condition 2, we estimated the 277 

effect sizes using the following formula:  278 

 d �   
����	
������1� � ����	
������2�

���	
������1 � 
������2�
 

 279 

Frequency measures for alpha (8-12 Hz) band.  To estimate alpha frequency, we used 280 

a frequency sliding technique (Cohen, 2014) to estimate the alpha frequency fluctuations. We 281 

first used a 125th order finite impulse response (FIR) 8-12 Hz bandpass filter (using MATLAB 282 

firls() function) on the segmented EEG data, with a transition bandwidth of 1.2 and 1.8 Hz, the 283 

passband edges of 8 and 12 Hz, and cut-off frequencies (-6dB) of 7.12 and 12.98 Hz. We then 284 

employed the Hilbert Transform on the filtered segmented EEG data to obtain the instantaneous 285 

phase estimates of alpha oscillations during teleportation windows. Instantaneous frequencies 286 

at timepoint t were estimated as   287 

 �� �  
��� ����

�� 
� � (1) 288 

 289 

where f is the estimated instantaneous alpha frequency, φ is the estimated phase, and s is the 290 

EEG sampling rate. Here, we defined and estimated the instantaneous frequencies based on 291 

how many cycles the phase of alpha oscillations could go through in 1 second.  Then, to smooth 292 

the frequency estimates, we applied a 10th order median filter. We dropped the frequency 293 

estimates for the first 100ms and last 100ms for every trial because of potential inaccurate 294 

estimates of frequencies at the edges of signal. 295 

We selected the following occipital electrodes to analyze their alpha frequency based on 296 

two criteria: visible alpha prevalence in the raw traces and an identical cluster of occipital 297 

electrodes to what we used in our past study (Liang et al, 2018).  These 18 electrodes 298 

corresponded to: Pz, P3, P7, O1, Oz, O2, P4, P8, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2, 299 

and Iz. 300 

Alpha frequency for each behavioral task is measured as alpha frequency estimates 301 

averaged across timepoints during the windows of interest, averaged across electrodes of 302 

interest, and averaged across trials of interest. To compare the alpha frequency variations 303 

between two conditions, we submitted the averaged alpha frequencies of 19 participants to two-304 

tailed Wilcoxon signed rank tests (alpha = 0.05.) Six Wilcoxon signed rank tests were conducted, 305 
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THETA, ALPHA AND SPACE-TIME CODING 12 
and the p values reported in the results section were FDR corrected (Benjamini & Yekutieli, 306 

2001; Groppe, 2021), with the false discovery rate set to 0.05. 307 

 308 

Classification Analyses 309 

Binary classification of the duration/distance types.  To further confirm the role of 310 

frontal midline delta-theta oscillations in spatial and temporal judgments, a binary support vector 311 

machine (SVM) classifier was used to decode the types of teleportation using power of delta, 312 

theta, alpha and beta band, averaged at specific electrodes. For delta power, theta power, and 313 

alpha power, 4 electrodes around frontal midline region were selected (Fz, FC1, Cz, FC2.) For 314 

beta power, all available electrodes (64 electrodes) were chosen. Binary SVM classifiers were 315 

implemented in MATLAB, with the function fitcsvm(), with the kernel function set up as linear.  316 

Three decoding tasks on a within-subject level were implemented: 1) decoding whether the trial 317 

was from the teleportation trials that travelled short or long distance, 2) decoding whether the 318 

trial was from short duration trials, or the 4-8second portions of long durations trials in the time 319 

task, and 3) decoding whether the trial was from short duration trials or the 0-4 second portions 320 

of long durations trials.  The ratio of train-test split for each iteration was 67%-33%. The training-321 

testing sampling procedure was reiterated 1000 times for each participant, and for each 322 

decoding task.  An accuracy percentage score was calculated using the predicted and actual 323 

labels of the testing data.  The final decoding accuracy scores for 19 participants were 324 

submitted to two-tailed Wilcoxon signed rank tests, against the null hypothesis that the decoding 325 

accuracy was 50%.  In total, 12 tests were conducted in the binary classification analysis, and 326 

the p values were FDR corrected (Benjamini & Yekutieli, 2001; Groppe, 2021), with the false 327 

discovery rate set to 0.05. 328 

Additionally, we implemented a between-task classifier (space vs. time tasks) on an 329 

intersubject level. We combined trials from the space task and the time task across 19 330 

participants, resulting in a dataset of 912 trials. Then, we tested whether we could successfully 331 

decode the task labels using the 912-trial dataset. By performing the classification on an 332 

intersubject level (with the task orders were counterbalanced), we avoided the possible 333 

confound of systematic drift over the course of experiment, which could have affected our 334 

decoding accuracy due to the blocked nature of the spatial vs. temporal judgments in our design 335 

(Benwell et al., 2019). For features used for training classifiers, we employed the 2-30 Hz power 336 

spectra from 64 electrodes averaged within each trial, resulting in 20*64 = 1280 features. The 337 

ratio of train-test split for each iteration was 67%-33%. The train-test split was repeated 100 338 
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THETA, ALPHA AND SPACE-TIME CODING 13 
times. To determine the statistical significance of decoding accuracy, we submitted the 339 

accuracies from 100 iterations to a two-tailed Wilcoxon signed-rank test against the null 340 

hypothesis of 50%.  341 

Fine-scale time decoding analyses.  To examine whether continuous time codes were 342 

present in the scalp EEG signal, SVM classifier was trained to decode times beginning at the 343 

onset of teleportation using the 2-30 Hz power spectra from 64 electrodes.  The SVM algorithm 344 

was implemented in MATLAB using the fitcecoc() function, with coding style as ‘onevsall’, and 345 

other parameters as default. 346 

250-millisecond timebins were extracted by discretizing 2-30 Hz power estimates.  The 347 

size of timebins was chosen as the same one used by Bright et al. (Bright et al., 2020).  348 

Therefore, short/long distance teleportation trials (5.656 seconds) yielded 22 bins (22 * 250ms = 349 

5.5 seconds, the last 156ms of data were dropped), short temporal duration trials (4 seconds) 350 

yielded 16 bins, and long temporal duration trials (8 seconds) yielded 32 bins.  For the resting 351 

baseline data (90 seconds long for each resting session), we broke 90 seconds into continuous 352 

segments of 4 seconds, and from there, each 4s of baseline data were segmented into 16 bins. 353 

Power estimates within each time bin were averaged over time, and the resulting power 354 

spectra within each bin were used to trained classifiers. The number of features were 20 355 

frequencies x 64 electrodes = 1280 features. For each classification iteration, train-test split 356 

ratio was 75%-25%.  To increase the independence between training sets and testing sets, a 357 

consecutive block of trials was reserved as the testing data, and the rest of data was used for 358 

training. Given our way of splitting the data, we were able to reiterate the classification 359 

procedure limited number of times: for the distance task, the procedure was repeated 37 times; 360 

for the short interval and long interval trials, 19 times; and for the baseline task, 16 times. 361 

We calculated the accuracy score by summing how many correct predictions were made 362 

in 100 iterations for each timebin label.  The accuracy scores were then averaged across all 363 

iterations yielding a final accuracy score for each participant.  Given that number of timebins 364 

were different across the distance task, time task and baseline task, comparisons between 365 

them would be difficult. We standardized the accuracy scores as the accuracy ratios by dividing 366 

them against the chance level performance (ratios = 
�	
�����
���� 
����
��

��
��� 	���	
).  For the distance task 367 

time decoder, the chance level was 1/22 = ~4.55%; for decoding time in short temporal duration 368 

trials, the chancel level was 1/16 = 6.25%; for decoding time in long duration trials, the chance 369 

level was 1/32 = 3.125%, and for decoding time in the baseline data, the chance level was 1/16 370 

= 6.25%.  371 
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To test whether we successfully decoded fine-scaled temporal information above chance, 372 

we submitted the standardized accuracy ratios for 19 participants to a two-tailed Wilcoxon 373 

signed rank tests against the null hypothesis that the accuracy ratios were different from 1.  Ten 374 

signed rank tests were performed for this hypothesis, and the p values were FDR corrected 375 

(Benjamini & Yekutieli, 2001; Groppe, 2021), with the false discovery rate set to 0.05. 376 

To visualize the time decoder performance and the posterior probability distribution, we 377 

calculated a N x N (N = the number of time bins) matrix to summarize the time decoder 378 

prediction outputs.  For element (i,j) in the matrix, the value represented the probability of a time 379 

bin #i was predicted as time bin #j.   380 

Calculation of Absolute Decoding Errors in the Fine-scale Time Analysis. After 381 

retrieving the posterior probability distribution of decoding responses (the NxN matrix, where N 382 

is the number of bins), we calculated the absolute decoding errors for each time bin, using the 383 

following equation: ������ �  ∑ �� � | � �| � ������
� , where � is the number of bins,  are the 384 

possible decoder responses, �� is the posterior probability for response ,  the ground truth bin 385 

index is �, and ����� is the size of time bin.  After obtaining the decoding error curve (as a 386 

function of the ground truth bin labels), we fitted the error curve with linear regression. The p 387 

values of the slope were reported in the results section. 388 

Fine-scale distance decoding analyses.  To examine whether continuous distance 389 

codes were also present in the scalp EEG power, we discretized data from spatial distance 390 

teleportation trials into multiple small “distance” bins and trained SVM classifiers with 2-30Hz 391 

power spectra averaged within each distance bin.  392 

To avoid the confounded decoding of fine-scale distance and time, we selected data with 393 

only maximal overlap in conceptual distance updating but with zero overlap in the temporal 394 

dimension. We selected the 0-2.828s portions of short distance trials, and 2.828s- 4.242s 395 

portions of long distance trials. While they did not overlap in time ranges, they conceptually 396 

covered the same range of spatial distance (see Figure 6A). After the data selection, the 2-397 

30Hz power series of both short and long distance trials were discretized into 11 distance bins, 398 

with each distance bin covering 4.42m of distance. For short distance trials, each distance bin 399 

occupied 248ms (with a sample rate of 500Hz, 248ms = 124 sampling points), and for long 400 

distance trials, each distance bin occupied 248/2 = 124ms (124ms = 62 sampling points).  401 

Power estimates within each time bin were averaged.  We trained multiclass SVM classifiers 402 

with 1280 power spectra features (64 electrodes x 20 frequency). For each classification 403 

iteration, 75% of the trials were selected as the training data and 25% of the trials were 404 
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reserved as the testing data.  To increase the independence between training sets and testing 405 

sets, a consecutive block of trials was reserved as the testing data, and the rest of data was 406 

used for training. We were able to reiterate the classification procedure 37 times.   The resulting 407 

classification accuracy ratios were averaged across the 37 iterations for each participant, and 408 

the 19 participant scores were submitted two-tailed Wilcoxon signed rank tests testing whether 409 

they were significantly different than 1.  410 

 411 

Results 412 

 413 

Participants correctly judged spatial and temporal teleportation durations with high 414 

accuracy 415 

  Participants performed well above chance in both the spatial and temporal teleportation 416 

tasks.  For the spatial task, out of 48 trials, participants on average made 0.68 errors (SD = 0.89) 417 

in judging how far the distance they travelled at the first attempt.  For the temporal task, out of 418 

48 trials, participants on average made 1.79 errors (SD = 2.51) in judging how long they spent 419 

inside teleporters. On average, participants finished the spatial task within 53.46 (SD = 12.73) 420 

minutes and the temporal teleportation task within 52.35 (SD = 9.24) minutes.     421 

 422 

Within-task comparisons: Longer distances traveled associated with decreases in alpha 423 

and beta power compared to shorter distance traversals 424 

  We first tested the within-task difference hypothesis in the spatial distance task. We 425 

compared delta, theta, alpha and beta power between short distance and long distance 426 

teleportation trials, and used a cluster-based permutation test for multiple comparison correction. 427 

When comparing short distance vs. long distance trials, the permutation test returned a cluster 428 

with a p value of 0.015. For short distance trials, we found higher alpha power at central 429 

electrodes (Figure 2A, Pz, CP2, Cz, CPz, Cohen's d: 0.55, averaged log10 alpha power for 430 

short distance: [median±SD] = 4.99±0.34, long distance: 4.91±0.32) and higher beta power over 431 

central-posterior electrodes (Cohen's d: 0.91, averaged beta power for short distance: 432 

[median±SD] = 4.51±0.26, long distance: 4.50±0.26.)  These findings support a possible role for 433 

alpha and beta power changes in spatial distance coding. 434 

  435 
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Within-task comparisons: Longer temporal durations were associated with frontal delta-436 

theta-alpha power and global beta power decreases compared to shorter temporal 437 

durations 438 

We then tested the within-task difference hypothesis for temporal duration teleportation by 439 

comparing the power spectra between short duration and long duration trials (Figure 2B). The 440 

cluster-based permutation test returned a positive cluster (p < 0.001). This effect was most 441 

pronounced over frontal midline electrodes for delta power (Cohen's d: 1.03, short duration: 442 

[median±SD] = 4.47±0.22, long duration: 4.42±0.23), over frontal electrodes for theta power 443 

(Cohen's d: 0.97, short duration: [median±SD] = 4.86±0.19, long duration: 4.83±0.20), and over 444 

frontal electrodes for alpha power (Cohen's d: 0.98, short duration: [median±SD] = 4.35±0.24, 445 

long duration: 4.32±0.25).  We also found global beta power changes (Cohen's d: 1.63, short 446 

duration: [median±SD] = 4.59±0.25, long duration: 4.55±0.26.)  447 

To further confirm the role of frontal midline theta oscillations in duration timing, we trained 448 

a binary classifier to decode types of temporal durations in the teleporter (Figure 3). We 449 

successfully decoded whether a trial was a short duration trial or the 4-8 s portion of a long 450 

duration trial (Figure 3A, classifiers trained with frontal-midline delta power: [median±SD] = 451 

64.40±9.89%, frontal-midline theta: 65.42±11.68%, frontal-midline alpha: 69.34±10.89%, global 452 

beta: 88.76±7.51%, all pcorrected = 0.002). However, we could not decode the distance travelled in 453 

the teleporter significantly above chance (Figure 3B, classifiers trained with frontal-midline delta 454 

power: 52.93±5.09%, pcorrected = 0.06, theta: 52.26±6.77%, pcorrected = 1, alpha: 50.88±4.47%, 455 

pcorrected = 1, beta: 52.94±5.95%, pcorrected = 1), suggesting frontal midline delta-theta-alpha power, 456 

and global beta power alone contained sufficient information regarding the temporal duration 457 

being coded but not the distance traveled. 458 

As an additional control analysis, we trained the same classifier with frontal-midline delta-459 

theta-alpha power and global beta power to discriminate the 0-4s portion of the long duration 460 

trials from the short duration trials. This served as a control because participants could not have 461 

known what types of durations they experienced until they crossed the 4s threshold within the 462 

teleporter. Indeed, the classifier was not able to decode whether the trials were short duration 463 

trials (4s) or the 0-4s portion of long duration trials (Figure 3C, delta: 50.33±5.88%, theta: 464 

49.16±5.33%, alpha: 50.34±7.25%, beta: 48.04±5.94%, all pcorrected > 0.05). Together, these 465 

findings support a general role for global beta power changes in spatiotemporal processing, and 466 

a unique role of frontal midline delta-theta-alpha oscillations, in coding temporal durations.   467 
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 468 

Between task comparisons: Spatial and temporal teleportation did not induce focal 469 

differences in delta, theta, alpha, or beta power 470 

To test our between-task hypothesis regarding differences in oscillatory codes between 471 

spatial and temporal tasks, we compared the power spectra among spatial, temporal and 472 

baseline tasks (Figure 2C, 2D.)   473 

For both contrasts (distance task > baseline; time task > baseline), the cluster-based 474 

permutation tests returned a significant positive cluster with p values < 0.001. The effect was 475 

most pronounced over frontal midline electrodes for delta power (Cohen's d for distance vs 476 

baseline: 0.60, distance-baseline: [median±SD] = 0.12±0.27, Cohen's d for time vs baseline: 477 

0.77, time-baseline: [median±SD] = 0.12±0.15), over frontal electrodes for theta power (Cohen's 478 

d for distance vs baseline: 1.04, distance-baseline: [median±SD] = 0.07±0.07, Cohen's d for 479 

time vs baseline: 1.01, time-baseline: [median±SD] = 0.05±0.08), and over frontal and occipital 480 

electrodes for alpha power (Cohen's d for distance vs baseline: 0.82, distance-baseline: 481 

[median±SD] = 0.20±0.18, Cohen's d for time vs baseline: 0.76, time-baseline: [median±SD] = 482 

0.10±0.21).  We also found widespread increases in beta power (Cohen's d for distance vs 483 

baseline: 1.81, distance-baseline: [median±SD] = 0.16±0.08, Cohen's d for time vs baseline: 484 

1.80, time-baseline: [median±SD] = 0.14±0.07).  The findings suggest that compared to a 485 

passive baseline, participants showed distinct oscillatory profiles while maintaining 486 

spatiotemporal information during the teleportation tasks, which was consistent with their high 487 

performance in the behavioral tasks. 488 

Next, we asked whether the power spectra profiles differed between the spatial distance 489 

and temporal duration task (Figure 2E). The cluster-based permutation test did not reveal any 490 

clusters with a p-value lower than threshold. This suggests that the spatial and temporal 491 

teleportation tasks did not differ in overall power when compared within each of the canonical 492 

frequency bands (delta, theta, alpha and beta bands). 493 
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 494 

 495 

Figure 2. Oscillatory fluctuations present during spatial distance and temporal duration 496 

teleportation. (A) Short distance teleportation trials resulted in increased alpha and beta power 497 

compared to long distance trials. (B) Short duration teleportation trials resulted in increased 498 

frontal midline delta-theta-alpha power increases, and global beta power increases compared to 499 

long duration trials.  (C,D) Spatiotemporal coding was associated with frontal delta-theta, frontal 500 

and posterior alpha, and global beta power increases compared to resting baseline. (E) No 501 

power differences were observed within the canonical frequency bands between the distance 502 

task and the time task.  Notes: Black dots are electrodes considered significant after multiple 503 

comparison correction. Colors represent the Wilcoxon signed rank tests z statistics. 504 

 505 

Between task comparison: Successful decoding of spatial and temporal trials based on 506 

single-trial multivariate patterns of power  507 

It could be possible that spatial and temporal coding did not differ in terms of power 508 

changes in focal frequency bands; instead, spatiotemporal coding might differ in the multivariate 509 

patterns across electrodes and frequencies in a manner that generalizes across participants.  510 

To test this possibility, we used multivariate power features to classify whether trials were from 511 

the spatial or temporal task. The classifier revealed above chance classification of task labels 512 

(Figure 3D, median = 61.46%, SD over 100 iterations = 1.97%, Wilcoxon signed-rank test, z = 513 

8.68, p < 0.001.)  These findings suggest the single-trial multivariate patterns significantly 514 

differed between spatial and temporal tasks in a manner that generalized across participants. 515 

The findings together support a notion of a partially independent space-time code. 516 

 517 
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 518 

Figure 3. Successful within-task (A-C) and between-task (D) decoding using power as features. 519 

(A) Different durations (short vs. long) could be decoded from frontal delta, theta, alpha and 520 

global beta power separately. (B) Different distances (short vs. long) could not be decoded from 521 

frontal midline delta-theta, alpha or global beta power.  (C) As a control analysis, decoders were 522 

not able to differentiate whether a trial was from short duration trials, or from the 0-4s segments 523 

of long duration trials. (D) When aggregating trials across participants, we were able to decode 524 

whether a trial was in the space or time condition based on the single-trial multivariate patterns 525 

of power. The histogram of classification accuracies based on 100 iterations is shown. Notes: **, 526 

all  ���� = 0.002. Each circle represents a participant in A-C.  527 

 528 

Alpha frequency modulation: A common mechanism for spatial and temporal judgments 529 

We hypothesized that occipital alpha frequency modulation could be an additional form of 530 

distance and duration coding in our teleportation task, as suggested by (Cao & Händel, 2019; 531 

Samaha & Postle, 2015). To test this idea, we first assayed whether there were differences in 532 

occipital alpha frequencies during the teleportation tasks compared to the task-irrelevant resting 533 

baseline.  Both spatial and temporal teleportation tasks showed faster occipital alpha 534 

frequencies than the baseline (Figure 4A, spatial task: [median±SD] = 10.23±0.30Hz, temporal 535 

task: 10.13±0.25Hz, baseline: 10.00±0.26Hz; spatial task vs. baseline: Wilcoxon signed rank 536 

test, z = 3.74, pcorrected = 0.001; temporal task vs. baseline: z = 3.78, pcorrected = 0.001.)  These 537 

findings suggest that occipital alpha frequencies were significantly altered during spatiotemporal 538 

coding compared to a resting baseline. 539 
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Second, we asked whether occipital alpha frequency differed between the spatial and 540 

temporal tasks. Comparing across all participants, the spatial distance task showed significantly 541 

faster occipital alpha compared to the temporal teleportation task (Figure 4A, z = 2.62, pcorrected = 542 

0.026) The findings of differences in alpha frequencies between spatial and temporal 543 

teleportation tasks might reflect another distinction in oscillatory codes for spatiotemporal 544 

information. 545 

Therefore, we asked whether the observed occipital alpha frequencies were sensitive to 546 

distance and duration information. We first compared the averaged alpha frequency at occipital 547 

electrode sites for short vs. long distance trials. When comparing across participants, results 548 

revealed that occipital alpha oscillations were of higher frequency for short distance trials 549 

compared to long distance trials (Figure 4B, short distance: [median±SD] = 10.26±0.29Hz, long 550 

distance: 10.20±0.30Hz, z = 3.38, pcorrected = 0.003). Occipital alpha frequency also varied 551 

between short and long temporal duration trials. Occipital alpha frequency was faster for short 552 

duration trials than the 4-8s portion of long duration trials (Figure 4C, short temporal duration: 553 

[median±SD] = 10.28±0.24Hz, long temporal duration(4-8s): 10.00±0.31Hz, z = 3.58, pcorrected = 554 

0.002.)   555 

As a control analysis, we tested whether there were differences in occipital alpha 556 

frequencies for short duration trials vs. the 0-4s portion of long duration trials. The alpha 557 

frequencies did not differ (Figure 4D, short temporal duration: [median±SD] = 10.28±0.24Hz, 558 

long temporal duration (0-4s): 10.24±0.23Hz, z = 0.76, pcorrected = 1.) Together, these findings 559 

support alpha frequency modulation as a shared mechanism for coding spatial distance and 560 

temporal durations. 561 

 562 
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 563 

 564 

Figure 4. Occipital alpha frequency modulation as a shared mechanism for both spatial and 565 

temporal coding. Medians across participants are shown under the box plots.  (A) The spatial 566 

and temporal tasks showed faster alpha frequency than baseline, and the distance task showed 567 

faster alpha frequency than the time task. (B) In the distance task, traveling a short distance 568 

resulted in faster alpha than traveling a long distance. (C) In the time task, short duration trials 569 

resulted in faster alpha than long duration trials. (D) No differences were found between short 570 

duration trials and the 0-4s portion of long duration trials. (E) Histograms of alpha frequencies at 571 

18 occipital electrodes during the distance task. Data from three example participants were 572 

shown.  Notes: **: ���� < 0.01. *: ���� < 0.05. NS: not significant. 573 

 574 

 575 

Fine-scale temporal information was decoded from multivariate patterns of 2-30Hz power 576 

spectra  577 

We next tested whether temporal duration codes might be present in the EEG data at a 578 

finer scale, inspired by Bright et al. (2020), for example, at the level of 250 milliseconds. 579 

Therefore, we trained classifiers on 2-30Hz power to decode times since onset of teleportation.  580 

We were able to decode fine-scale temporal information from distance teleportation trials 581 

significantly above chance (Figure 5A, accuracy: [median±SD] = 10.34±1.32%, accuracy ratios: 582 

[median±SD] = 2.27±0.29%, Wilcoxon signed rank test, z = 3.82, pcorrected < 0.001), from short 583 

duration trials (Figure 5B, accuracy: [median±SD] = 13.87±1.67%, accuracy ratios: [median±SD] 584 

= 2.22±0.27, z = 3.82, pcorrected < 0.001), and from the long duration trials as well (Figure5C, 585 

accuracy: [median±SD] = 6.99±0.95%, accuracy ratios: [median±SD] = 2.24±0.30, z = 3.82, 586 

pcorrected < 0.001).   As a control analysis, we applied the fine-scale time decoder for data 587 

obtained in the baseline task. The decoder was able to decode time from the baseline data 588 
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marginally better than chance after multiple comparison correction (accuracy: [median±SD] = 589 

7.50±1.87%, accuracy ratios: [median±SD] = 1.20±0.30, z = 2.37, pcorrected = 0.052). However, 590 

time decoding performance for the baseline task was significantly worse than those in the 591 

temporal and distance tasks (baseline < distance task, baseline < short duration trials, baseline 592 

< long duration trials: all z = -3.82, p < 0.001.) These findings suggest the intriguing possibility 593 

that fine-scaled temporal codes are embedded in low-frequency oscillations. 594 

We note that following entry into the teleporter, participants exhibited a P300-like ERP 595 

response (Polich, 2007) at Cz electrode. Therefore, we repeated the fine-scaled time 596 

classification analyses, with the grand averaged EEG traces subtracted from every trial. After 597 

removing the grand ERP responses, we were still able to successfully decode continuous-like 598 

temporal information from the distance teleportation trials (accuracy: [median±SD] = 599 

11.08±1.29%, accuracy ratios: [median±SD] = 2.44±0.28, Wilcoxon signed rank test, z = 3.82, 600 

pcorrected < 0.001), from the short duration trials (accuracy: [median±SD] = 15.52±1.93%, 601 

accuracy ratios: [median±SD] = 2.48±0.31, z = 3.82, pcorrected < 0.001), and from the long 602 

duration trials (accuracy: [median±SD] = 8.22±1.08%, accuracy ratios: [median±SD] = 603 

2.63±0.35, z = 3.82, pcorrected < 0.001.)  604 

Further, to exclude the possible contribution of movement-related in early onsets of a trial, 605 

we removed the first second of teleportation epochs and repeated the fine-scale time decoding 606 

analyses. We were again able to successfully decode fine-scale time information from distance 607 

teleportation trials above chance (accuracy: [median±SD] = 8.80±1.05%, accuracy ratios: 608 

[median±SD] = 1.58±0.19, z = 3.82, pcorrected < 0.001), from short duration trials (accuracy: 609 

[median±SD] = 12.65±1.97%, accuracy ratios: [median±SD] = 1.52±0.24, z = 3.82, pcorrected < 610 

0.001), and from long duration trials above chance as well (accuracy: [median±SD] = 611 

5.67±0.89%, accuracy ratios: [median±SD] = 1.59±0.25, z = 3.82, pcorrected < 0.001.) 612 

 613 

Decoding errors linearly increased as time progressed forward 614 

  We noticed a qualitative pattern that the decoding responses were less precise as time 615 

progressed forward in the posterior probability distribution of time decoding responses. To 616 

quantitatively test this, we calculated the absolute decoding errors for each timebin and fitted 617 

the error curves with a linear regression model (Figure 5F). Results of the linear regression 618 

fitting indicated that the decoding errors were significantly larger for later time bins; this effect 619 

was found in the distance trials, short duration trials, long duration trials, but not in the baseline 620 

task (for distance trials: slope [estimate, standard error (SE)] = [0.02, 0.01], t = 3.03, p = 0.007; 621 

for short duration trials: slope [estimate, SE] = [0.01, 0.003], t = 2.70, p = 0.017; for long 622 
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duration trials: slope [estimate, SE] = [0.01, 0.003], t = 2.56, p = 0.016; for the baseline task: 623 

slope [estimate, SE] = [-0.0004, 0.01], t = -0.04, p = 0.97.)  The results suggest that the fine-624 

scale temporal information revealed by the decoders are aligned with the human behavioral 625 

findings of increased variability for longer reproduced durations (Ivry & Hazeltine, 1995; Rakitin 626 

et al., 1998).  We discuss the implications in discussion. 627 

  628 

 629 

Figure 5. Fine-scale temporal information during the teleportation can be decoded from scalp 630 

EEG 2-30 Hz power spectra. Heat maps visualize the posterior probability distribution of the 631 

decoder responses. High classification accuracy is indicated by dark colors on the diagonal. 632 

(A,B,C,D) Fine-scale timing information can be decoded from 2-30 Hz power in the distance 633 

task and time task, with accuracies significantly higher than chance level and higher than the 634 

baseline task. Medians of accuracy ratios across 19 participants were reported. (E) Decoder 635 

response probability distributions from 19 participants. Each sub square displays the time 636 

decoding heatmap from one participant. (F) Decoding errors linearly increased as time 637 

progressed in the spatial and temporal tasks, but not in the baseline task.  Dashed lines indicate 638 

the linear regression fitting models of the decoding errors. Notes: Units of the colorbar are 639 

accuracy ratios. Red dots mark the highest posterior probability in decoder responses. 640 

 641 

Fine-scale distance information was also present in multivariate patterns of 2-30Hz power 642 
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Given our findings with fine-scale temporal information, we also tested whether fine-643 

scale distances could be decoded using the same approach. Indeed, we found that the 644 

classifiers were able to decode fine-scale distance information from the spatial task (Figure 6A, 645 

accuracy: [median±SD] = 11.45±1.60%, accuracy ratios: [median±SD] = 1.26±0.18, Wilcoxon 646 

signed rank test, z = 3.70, p < 0.001).  The findings of the fine-scale distance code support the 647 

possibility that participants linearly updated their spatial position inside teleporters. The 648 

demonstrations of both fine-scale distance and temporal codes in the multivariate power spectra 649 

patterns reveal another common aspect that exists in spatiotemporal coding.  650 

 651 

 652 

Figure 6. Fine-scale distance information during teleportation can be decoded from multivariate 653 

power patterns. Heat maps visualize the posterior probability distribution of the decoder 654 

responses. (A) Decoding fine-scale distance information while taking care of the temporal 655 

confound. To minimize the dependence between temporal and distance information, we 656 

selected data (the shaded portions) from both short distance trials and long distance trials that 657 

had zero overlaps in the temporal dimension. (B) Fine-scale distance information could be 658 

decoded in the distance task. (C) Posterior probability distributions plotted for each participant.  659 

Each sub square displays the distance decoding heatmap from a participant. Notes: Red dots 660 

mark the highest posterior probability in decoder responses. 661 

 662 

Discussion 663 

 664 

In the current study, we tested whether neural oscillations recorded at the scalp supported 665 

maintenance of spatial distance and temporal duration information. Decades of research 666 

support a role for low-frequency oscillations, both in cortex and hippocampus, in coding spatial 667 

information during navigation (McFarland et al., 1975; Vanderwolf, 1969; Kropff et al., 2021; for 668 

reviews, see Jacobs, 2013; Watrous et al., 2011). To attempt to disentangle space and time, 669 
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whose changes are strongly intertwined in movement speed, participants experienced 670 

teleportation of different spatial distance and temporal durations in the absence of any optic flow 671 

or other sensory input to provide cues about speed, similar to the design in Vass et al. (2016). 672 

Results from power spectra analyses suggested the sensitivity of central-posterior alpha power 673 

and global beta power for spatial distances, and a role of frontal theta and global beta power 674 

changes for temporal duration.  Furthermore, the analysis of instantaneous alpha frequencies 675 

revealed a robust association between alpha frequency and magnitudes of distances and 676 

durations, suggesting alpha frequency modulation as a potential common mechanism for spatial 677 

and temporal coding. Classifiers trained on power spectra further support the hypothesis that 678 

both distance and temporal information could be decoded from scalp EEG signals at a fine-679 

scale resolution. 680 

Given that hippocampal delta-theta power display a distance code (Bush et al., 2017; 681 

Vass et al., 2016), and a connectivity between rodent’s prefrontal and hippocampal theta during 682 

mobility (Siapas et al., 2005; Young & McNaughton, 2009), we are surprised to find that the 683 

cortical delta-theta power did not exhibit significant differences between short distance and long 684 

distance trials. This null finding cannot be explained by the failure of task design, or the absence 685 

of spatial coding during the teleportation period. This is because participants demonstrated high 686 

accuracy in identifying distances travelled upon exiting the teleporters, and power spectra 687 

analyses revealed significantly different oscillatory profiles for the distance task compared to 688 

baseline (Figure 2C).  What could lead to such a disconnect?  Here, we offer three speculations 689 

on the null findings linking cortical theta and spatial distance coding. One possibility is that 690 

prefrontal theta oscillations are phase locked but not amplitude locked to hippocampal theta 691 

(Young & McNaughton, 2009), and therefore phase information in frontal theta but not power 692 

changes code spatial distance duration (see Watrous et al., 2013, for an example of this). This 693 

is an issue we cannot address in the current study because scalp EEG does not give reliable 694 

access to hippocampal signals. A second possibility is that frontal midline theta may be locked 695 

to the temporal-processing or memory-related components, but not the movement-related 696 

components, of hippocampal (HPC) theta oscillations (Goyal et al., 2020; Watrous et al., 2013). 697 

A third possibility is that hippocampal movement-related theta oscillations manifest in the cortex 698 

within the traditional alpha band (8-12Hz) consistent with the alpha frequency modulation we 699 

observed for both spatial and temporal judgments. The third interpretation is consistent with 700 

recent reports (Aghajan et al., 2017; Bohbot et al., 2017; Goyal et al., 2020) that hippocampal 701 

movement-related theta oscillations, particularly during real-world movements, manifest most 702 
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prominently above 8Hz, which would align with the frequency range of traditional alpha band (8-703 

12 Hz) rather than theta band (4-8 Hz). 704 

Our results supporting a role for frontal delta-theta power but not distance coding have 705 

important implications. In the power spectra analysis, we found frontal midline delta-theta and 706 

frontal alpha power sensitive to the temporal durations, while central-posterior alpha power was 707 

sensitive to the distance information. The results provide further evidence for partially 708 

independent codes for space and time in the human brain. Our findings demonstrating cortical 709 

beta oscillations sensitive to temporal duration align with previous reports of timing-related beta 710 

power in time production domain (Grabot et al., 2019; Kononowicz & van Rijn, 2015), and 711 

movement-related frontal midline delta-theta increases (Liang et al., 2018). On the other hand, 712 

our findings regarding central-occipital alpha oscillations related to distance are consistent with 713 

notions that human navigation is enriched with regarding to visual input (Ekstrom, 2015), with 714 

occipital alpha oscillations particularly sensitive to visual-related changes (such as optic flow, 715 

Cao & Händel, 2019). As proposed by Goyal et al. (2020), a theoretical link might therefore exist 716 

between HPC movement-related theta and occipital alpha oscillations. For example, eye closure 717 

induces alpha power increases both at occipital sites and in hippocampus (Geller et al., 2014). 718 

Our current results would suggest differing roles in navigation for frontal midline theta (4-8 Hz) 719 

and occipital alpha (8-12 Hz), which were both found relevant to movement (Liang et al., 2018), 720 

and frontal midline theta and occipital alpha oscillations could possibly cooperate to support 721 

task-dependent spatial or temporal processing. Therefore, a helpful next step would be to 722 

determine how these signals coordinate between hippocampus and cortex in our task using 723 

ECoG. 724 

We note that when we compared the power spectra of the spatial and temporal 725 

teleportation task, we did not find significant differences. Yet, we were able to classify whether a 726 

trial was from the spatial or temporal task with an accuracy better than chance in a manner that 727 

was generalizable across participants. This suggests the classifiers captured higher-order 728 

differences (perhaps the underlying connectivity patterns) between the oscillatory coding of 729 

space and time, other than the mean of power fluctuations. One future direction is to examine 730 

the affinity of connectivity patterns for spatial coding and temporal coding, using a similar 731 

behavioral task used in this study.  We predict that the networks for spatiotemporal coding 732 

should diverge, both measured using scalp EEG data, and using intracranial EEG data (as 733 

proven by Watrous et al., 2013).   734 

In addition to our findings that spatial distance and temporal duration involve differences in 735 

oscillatory codes, both for short vs. long teleportation durations and in their multivariate patterns, 736 
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we also found a common role for alpha frequency modulation in supporting spatiotemporal 737 

coding. Specifically, we found faster occipital alpha for smaller magnitudes of 738 

durations/distances. What roles could endogenous alpha frequency modulation possibly play 739 

here? One explanation is the processing-speed theory, whereby occipital alpha frequency 740 

indexes the processing speed of incoming sensory information (Klimesch et al., 1996). We 741 

speculate that the sensory processing speed differed between short and long duration trials 742 

because of their different cognitive demands. To complete the temporal task, participants only 743 

needed to track time passage in the teleporter up to 4s, and not beyond 4s, and therefore the 744 

cognitive demands differed between 0-4s and 4-8s portions of the temporal task.   745 

In contrast to the processing-speed account, another possibility however, relates to a 746 

perceptual resolution account.  For example, it could be that occipital alpha frequency is linked 747 

to the perceptual resolution of duration timing.  For example, individuals with 10 Hz resting 748 

occipital alpha oscillations might discriminate two temporal durations with a minimum of 100ms 749 

(1/10) differences, and those with 12 Hz resting alpha could discriminate two durations with 750 

83.33ms minimal differences (1/12). This perceptual resolution account is also supported by 751 

Samaha and Postle (2015) showing that occipital alpha frequency reflects the "refresh rate” of 752 

visual perception and occipital alpha represents the perceptual unit of temporal processing 753 

(Cecere et al., 2015). Future studies should investigate the potential causal links between 754 

occipital alpha frequency and spatiotemporal processing, given recent findings that tACS-755 

induced alpha frequency shifts led to shifts in subjective time experiences (Mioni et al., 2020) 756 

and that clinical Alzheimer populations show irregularities in parietal alpha oscillations (Montez 757 

et al., 2009). 758 

Given that we found alpha frequency modulation and beta power fluctuations related to 759 

both spatial and temporal judgments, our results also provide evidence for a common 760 

mechanism for spatial and temporal coding involving magnitude estimation. Although distance-761 

related beta power has rarely been studied in a scalp EEG setting, the timing-related beta 762 

power we observed has been noted in predicting the accuracy and precision of time production 763 

(Grabot et al., 2019; Kononowicz & van Rijn, 2015). Our findings suggest that beta oscillations 764 

may reflect a common magnitude representation underlying both spatial and temporal 765 

processing, and that such distance and fine-scale temporal information could be widely 766 

accessible in neocortical regions, including early sensory and motor cortices. Future studies can 767 

bridge the gap of research between spatial and temporal processing, and further elaborate the 768 

roles of beta oscillations in spatial coding vs. temporal coding, with a variety of tasks such as 769 
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estimating and reproducing spatial distance with a path integration task (Harootonian et al., 770 

2020). 771 

Another important finding from our study is the ability to decode fine-scale distance and 772 

temporal information from cortical low-frequency power spectra. Interestingly, when attempting 773 

to decode temporal information, we showed that the decoding error linearly increased as the 774 

time bins progressed forward. These findings are closely aligned with the behavioral findings in 775 

which humans show larger variability in time reproduction responses for longer intervals (Ivry & 776 

Hazeltine, 1995; Rakitin et al., 1998).  One intriguing possibility is that the cortical low-frequency 777 

oscillations support a fine-scale representation of temporal intervals. Future studies can test this 778 

possibility by linking the decodability of fine-scale time information and the accuracy/precision of 779 

time reproduction in human participants.  780 

Notably, our findings of decodable fine-scale temporal information are qualitatively similar 781 

to the findings done with entorhinal temporal context cells (Bright et al., 2020). The tenet of a 782 

unified math model of space and time (Howard et al., 2014) is that the neural representations 783 

are the Laplace transform of space and time, coded through the exponentially decayed firing 784 

rates of neurons. However, the theory does not directly predict or rule out the involvement of 785 

neural oscillations in coding space and time. Here we demonstrated that neural oscillations 786 

could yield a similar time representation possibly with scale invariance, and we suggest that 787 

neural oscillations could be a synergistic component on top of single neuron firing rates for 788 

spatiotemporal coding.  Another question that should be clarified through future studies is 789 

whether the neural representations of spatial distance also possess scale invariance like the 790 

representations of time (i.e., reproducing longer distances are associated with greater variability 791 

in responses.) Behavioral findings suggest path integration errors systematically scaled with 792 

path lengths (Harootonian et al., 2020), which will predict linearly increases in decoding errors 793 

as distances increase. Future studies should further test the links between oscillatory 794 

representations of fine-scale space and time, and the behavioral phenomena of spatiotemporal 795 

reproduction, using a reproduction paradigm, such as reproducing space and time in virtual 796 

reality (E. M. Robinson & Wiener, 2020). 797 

 798 

Limitations 799 

It is worth considering some potential limitations with our paradigm which we 800 

nonetheless believe do not undermine or challenge our findings.  One concern could be that 801 

because participants knew how far they would travel before entering the teleporter, distance 802 

coding was therefore transient and completed before entering the teleporters, thus nullifying the 803 
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existence of distance coding during the teleportation. We note, however, that maintenance of 804 

distance information during the teleportation was still necessary for accurate performance in the 805 

spatial teleportation task.  When participants entered the teleporter, while they knew beforehand 806 

whether it was a short or long distance, they had to maintain this information during teleportation 807 

to make the correct decision upon exiting the teleporter. Our interpretation of perceiving spatial 808 

distance prior to decisions about movement is consistent with a rich literature in human spatial 809 

navigation, suggesting that humans first estimate distance based on perceptual cues and then 810 

attempt to maintain this in working memory as they actively navigate to different goals (Knapp & 811 

Loomis, 2004; Philbeck et al., 1997; Philbeck & Loomis, 1997).  Using a similar spatial distance 812 

teleportation design, Vass et al. (2016) showed that the spatial distance teleportation task 813 

resulted in different oscillatory profiles from those during the resting state (viewing a laptop 814 

black screen outside the experimental context). We similarly found a clear difference between 815 

teleportation and a resting baseline task.  These findings suggest that the spatial teleportation 816 

task triggered distance information processing absent in a resting state condition.  817 

Another concern could be that movement-related noise from the navigation phase 818 

permeated into the EEG data during the teleportation, thus confounding the findings we 819 

presented here.  Note that the amount of noise, if any, should be identical between short and 820 

long trials, and between the spatial and temporal tasks, given that participants stood still after 821 

they entered the teleporter.  Therefore, noise should not confound the findings regarding the 822 

contrasts of EEG responses between short and long trials, or between the spatial and 823 

temporal tasks. 824 

 825 

Conclusions 826 

 827 

Our study addressed an important issue regarding whether spatial and temporal 828 

processing share common or distinct mechanisms (Eichenbaum & Cohen, 2014; Ekstrom et al., 829 

2011; Frassinetti et al., 2009; Gauthier et al., 2019, 2020; Watrous et al., 2013). Our findings 830 

suggest that spatial and temporal judgments during navigation differ as a function of power 831 

changes within specific frequency bands: while spatial judgments resulted in changes in cortical 832 

alpha and beta power, while different temporal durations were linked to changes in frontal 833 

midline delta-theta, frontal and posterior alpha, and global beta power.  Consistent with the idea 834 

of separable representations for space and time, spatial and temporal discounting are 835 

behaviorally distinctive from each other (E. Robinson et al., 2019), estimating spatial distance 836 

are subject to large errors (Zhao, 2018) while estimating suprasecond durations can be 837 
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performed with high accuracy (Grabot et al., 2019), and spatial and temporal estimation errors 838 

distort in opposing manners (Brunec et al., 2017). Previous reports have also hinted at a 839 

dissociation between space and time at the neural level although using different paradigms in 840 

which temporal information, in particular, involved order and not duration (Ekstrom et al., 2011; 841 

Watrous et al., 2013). More generally, evidence exists for and against the notion that space and 842 

time processing are of the same nature, and we also found evidence for alpha frequency 843 

modulation as a common mechanism for spatial and temporal coding. Thus, one implication of 844 

our study is that there are both distinct and common mechanisms related to how we process 845 

spatial distance and temporal durations. 846 
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