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Abstract 

Socioeconomic inequities shape physical health and emotional well-being. As such, recent work 

has examined the neural mechanisms through which socioeconomic position (SEP) may 

influence health. However, there remain critical gaps in knowledge regarding the relationships 

between SEP and brain function. These gaps include a lack of research on: (1) the association 

between SEP and brain functioning in later life, (2) relationships between SEP and functioning 

of the whole brain beyond specific regions of interest, and (3) how neural responses to positive 

affective stimuli differ by SEP. The current study addressed these gaps by examining the 

association between SEP (i.e., education, income) and neural responses to affective stimuli 

among 122 mid- to late-life adults. During MRI scanning, participants viewed 30 positive, 30 

negative, and 30 neutral images; activation and network connectivity analyses explored 

associations between SEP and neural responses to these affective stimuli. Analyses revealed that 

those with lower SEP showed greater neural activity to both positive and negative images in 

regions within the allostatic-interoceptive network (AIN), a system of regions implicated in 

representing and regulating physiological states of the body and the external environment. There 

were no positive associations between SEP and neural responses to negative or positive images. 

Additionally, graph-theory network analyses showed that individuals with lower SEP 

demonstrated greater global efficiency within the AIN and executive control network, across all 

task conditions. The findings suggest that lower SEP is associated with enhanced neural 

sensitivity to affective cues that may be metabolically costly to maintain over time and suggest a 

mechanism by which SEP might get "under the skull" to influence mental and physical well-

being.  
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Lower Socioeconomic Position is Associated with Greater Activity in and Integration 

within an Allostatic-Interoceptive Brain Network in Response to Affective Stimuli 

One’s socioeconomic position (SEP) (i.e., income, educational achievement) can 

profoundly shape an individual’s life (Krieger et al., 1997; Krieger et al., 2005). Specifically, 

SEP has been consistently tied to physical and mental health such that individuals with lower 

SEP have higher rates of cardiovascular disease (Kaplan & Keil, 1993; Galobardes et al., 2006) 

and depression (Lund et al., 2010), worse cancer prognosis (Zheng et al., 2021), and have shorter 

lifespans (Seeman et al., 2004). Given these well-established links between SEP and important 

life outcomes, recent work has begun to investigate the association between SEP and neural 

functioning to understand how SEP “gets under the skull” to influence health and well-being 

(Farah, 2017; Hackman et al., 2010; McEwen & Gianaros, 2010; Muscatell, 2018; Yaple & Yu, 

2020). To date, most of this work has been conducted in children and young adults, and has 

primarily focused on examining associations between SEP and activity in a limited set of regions 

(i.e., amygdala, medial prefrontal cortex). As such, important questions remain about the 

association between SEP and neural functioning during later periods of development, such as 

midlife when diverging health trajectories due to SEP begin to emerge. Further, our 

understanding of how SEP is related to activity and connectivity within larger neural systems 

(i.e., beyond individual regions) engaged during affective processing is limited. The present 

study addresses these critical gaps in our current knowledge by examining associations between 

SEP and network-wide activity and connectivity while processing affective information among a 

sample of mid- to late-life adults. 

There are good theoretical reasons to expect that SEP might shape neural responses to 

affective information. Namely, individuals with lower SEP report greater exposure to daily 
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stressors (Almeida et al., 2005; Grzywacz & Almeida, 2008; Grzywacz et al., 2004; Surachman 

et al., 2019) and unpredictable threats (Cundiff et al., 2020). This is often accompanied by a lack 

of resources to cope with the greater stress/threat that they experience (Gallo et al., 2005; Gallo 

et al., 2009; Taylor & Seeman, 1999). These negative affective experiences are theorized to 

generate a perception of generalized unsafety for those with lower SEP, ultimately promoting a 

chronically hyperactive stress response (Brosschot et al., 2016, 2018). Thus, heightened exposure 

to negative affective experiences among individuals with lower SEP likely alters how the brain 

responds to affective information. 

Indeed, prior literature provides some evidence that SEP is related to neural responses to 

affective cues. Specifically, several studies have reported an inverse relationship between SEP 

and neural responses to negative social cues, such that children and young adults with lower SEP 

demonstrate heightened activity in regions associated with affective processing, including the 

amygdala (Gianaros et al., 2008; Muscatell et al., 2012; Javanbakht et al., 2015; Kim et al., 2017; 

Swartz et al., 2017) and medial prefrontal cortex (mPFC; Muscatell et al., 2012, Gonzalez et al., 

2015; Javanbakht et al., 2015; Muscatell et al., 2016), compared to those with higher SEP. While 

this literature provides foundational evidence relating SEP to neural responses to affective 

information, it is not without limitations. Most of this work has examined neural responses to 

facial expressions of negative emotion (e.g., fear, anger), which, while important, do not 

represent the full breadth of stimuli and experiences that can elicit affective responses. Further, 

many studies in this area have relied on region-of-interest (ROI) analyses primarily focused on 

the amygdala and mPFC, thus limiting our understanding of associations between SEP and 

neural functioning beyond these two regions. Thirdly, this prior work has almost exclusively 

focused on children and young adults, leaving important questions about the association between 
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SEP and neural functioning during later periods of development unanswered. Given these 

methodological limitations within the prior literature, the present study focused on exploring 

associations between SEP and network-wide neural responses to negative and positive affective 

scenes in midlife and older adults. 

In addition to the literature on SEP and neural responses to negative affective stimuli, 

there is some limited evidence regarding the association between SEP and neural responses to 

positive affective stimuli. Reactivity to positive stimuli is important to study, as evidence 

suggests that positive affect is associated with lower morbidity and increased longevity among 

elderly adults (Cohen & Pressman, 2006) and lower mortality risk among individuals reporting 

higher levels of stress (Okely et al., 2017). However, few studies have explored associations 

between SEP and neural activity to positive affective stimuli despite the relevance of positive 

affect for health. Among the prior studies that have investigated this, two found a positive 

association between SEP and neural responses to positive stimuli, such individuals with lower 

SEP showed blunted activity in the amygdala and insula to happy infant faces (Kim et al., 2017) 

and blunted activity in several subcortical regions (e.g., caudate, hippocampus) to positive scenes 

(Silverman et al., 2009). Thus, some initial work suggests that individuals with lower SEP may 

show diminished activity in regions that encode the salience and value of stimuli in response to 

positive affective cues like happy babies and pleasant scenes.  

Other work on the association between SEP and neural responses to positive affective 

stimuli has utilized reward processing paradigms, such as the Monetary Incentive Delay (MID) 

task, wherein participants can earn a monetary reward for responding quickly to stimuli. 

Research in this area has produced mixed results, such that both positive and negative 

associations between SEP and neural responses to rewarding stimuli have been reported. For 
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example, one study found that lower SEP is associated with blunted activity in a variety of 

regions, including the mPFC, during monetary reward processing (Gianaros et al., 2011), while 

two other studies found that lower SEP is associated with heightened mPFC activity during 

monetary reward processing (Gonzalez et al., 2016; Romens et al., 2015). Thus, while the 

evidence is equivocal regarding the directionality of the relationship between mPFC activity and 

SEP during the processing of monetary rewards, findings generally suggest that SEP does indeed 

modulate neural activity to positive and rewarding stimuli. Additional research is needed, 

however, to help clarify the discrepancies in directionality that have been observed in this area. 

 Finally, there is currently a paucity of knowledge regarding associations between SEP 

and neural network configuration during affective processing. This work is needed given 

growing consensus that brain regions do not act independently and instead communicate via 

large-scale networks to produce cognitive and affective states (McMenamin et al., 2014; Pessoa 

& McMenamin, 2017; Bassett & Sporns, 2017). As such, it is critical to examine if there are 

SEP-related differences in task-based network configuration during affective processing. Thus, 

another aim of the current study was to provide initial evidence linking SEP to network 

connectivity while processing positive and negative stimuli.  

Two brain networks whose properties may be particularly likely to be modulated by SEP 

are the “allostatic-interoceptive network” [AIN; (Kleckner et al., 2017; Wei et al., 2020; Kraft & 

Kraft, 2021; MacCormack & Muscatell, 2019)] and the “executive control network” [ECN; 

(Rosen et al., 2018; Yaple & Yu, 2020; Rakesh et al., 2021)]. The AIN is composed of the 

salience and default mode intrinsic networks and a set of subcortical regions (i.e., central nucleus 

of the amygdala and regions within the ventral and dorsal striatum, such as the periaqueductal 

gray, parabrachial nucleus, and nucleus of the solitary tract) and has been shown to subserve 
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energy metabolism and visceromotor regulation (Kleckner et al., 2017). The AIN is theorized to 

jointly observe and anticipate sensations from within the body (i.e., interoception) and the 

external environment, and manage energy balance across peripheral systems in the body (i.e., 

allostasis) to prepare to mount the resources needed for a given situation. Connectivity within 

this network guides perception and action by forming representations of affective cues and 

regulating physiological states of the body (Craig, 2009; Khalsa et al., 2009; Kleckner et al., 

2017). Specifically, the AIN has been linked to responding to threats, HPA axis activity, and 

sympathetic nervous system mobilization (Gianaros et al., 2008; Xia et al., 2017; Kleckner et al., 

2017). Thus, differences in AIN configuration may be a mechanism linking SEP to enhanced 

reactivity across physiological systems, ultimately leading to poorer health outcomes. 

Additionally, connectivity of the executive control network (ECN), which interfaces with the 

AIN (Kleckner et al., 2017) and has been linked to SEP in prior work using resting-state fMRI 

(Nusslock et al., 2019; Miller et al., 2018), may also be modulated by SEP in response to 

affective stimuli. Given the potential relevance of these networks to affective processing, the 

current analyses examined whether SEP was associated with topological properties of the AIN 

and AIN+ECN in response to affective stimuli, to establish links between SEP and differences in 

network configuration. 

To address the association between SEP and network configuration of the AIN and ECN, 

we used graph theory. This technique is a powerful tool for identifying how network 

organization changes across conditions or individuals (e.g., Park & Friston, 2013; Cohen & 

D’Esposito, 2016; Shine & Poldrack, 2018). The ability to derive metrics of integration (i.e., the 

tendency for regions to become highly interconnected) and hubness (i.e., the tendency for a 

region to be central to information processing) within a network are major advantages to this 
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computational approach, given that integration and hubness have been shown to predict 

important outcomes (e.g., Sanz-Arigita et al., 2010; Krukow et al., 2019). In the current study, 

we selected three well-validated metrics commonly used to assess different aspects of network 

integration. Specifically, we calculated global efficiency to assess network integration in the 

form of efficient information transfer across the entire graph, participation coefficient to assess 

across-network connectivity, and betweenness centrality to assess the importance of specific 

nodes in driving efficient communication within a network. Given past research showing that the 

amygdala and mPFC are particularly relevant regions for processing affective stimuli and are 

likely modulated by SEP, we also assessed whether SEP modulated the centrality of these 

regions while an individual was viewing affective images. Additionally, we explored the 

betweenness centrality of the insula given its role in dynamically switching between different 

networks (Sridharan, Levitin, & Menon, 2008). 

 In sum, while some research suggests that SEP is associated with differential neural 

activity and connectivity in response to affective stimuli, numerous gaps in our knowledge 

remain. The current study sought to provide additional insight into the relationship between SEP 

and neural functioning by: 1) examining neural responses to both negative and positive affective 

images, extending prior work that has largely focused on negative facial expressions and 

monetary reward; 2) exploring associations between SEP and neural activity across the entire 

brain, thus moving beyond ROI approaches; 3) determining if associations between SEP and the 

topology of the AIN and ECN brain networks exist, to establish relationships between SEP and 

neural network configuration in response to affective stimuli; and 4) including a sample of mid- 

and late-life adults, given that most work in this area to-date has been conducted in youth. To 
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accomplish these objectives, we analyzed differences in neural activity and connectivity to 

affective images as a function of SEP in a sample of 122 mid- to late-life adults. 

Methods 

Participants 

Data for this paper were drawn from the Midlife in the United States (MIDUS) study, a 

national study examining the biopsychosocial factors influencing health across the lifespan. For 

the current study, participants were enrolled in the overall MIDUS Refresher Neuroscience 

Project that began in 2013. Most participants were recruited via random digit dialing throughout 

the United States, and, to oversample Black Americans, a subset of participants were recruited 

via door-to-door solicitation in Milwaukee, WI. Participants were eligible if they lived in the 

Midwest and able to travel to complete an MRI scan, met MRI inclusion criteria (e.g., no metal 

implants, no claustrophobia), were right-handed, and had no prior history of a neurological 

disorder. While 127 individuals enrolled in the fMRI data collection portion of the study, four 

were excluded for missing fMRI data and one for excessive motion (see fMRI preprocessing for 

more details). Thus, the final sample included in the current analyses were 122 participants who 

were on average 47 years old (SD= 11.82; range = 26 – 72), female (N=67; 55%), and White 

(N=78, 64%); see Table 1 for complete demographic information. 

 

[Insert Table 1 Here] 

 

 

Procedures 

All participants in the study completed an initial interview, a battery of self-report 

questionnaires, and then a cognitive interview via phone. Once those interviews were completed, 

participants were eligible to participate in other projects—including the Neuroscience substudy. 
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Participants reported on their education, household income, and other demographic information 

during the initial eligibility interviews. After meeting eligibility for the Neuroscience substudy, 

participants were scheduled for an MRI Project visit.  

Socioeconomic Position Measure 

During the telephone interviews, participants reported their highest level of educational 

attainment to date. Participants selected from twelve response categories ranging from “no 

school/some grade school” (category 1) to “PhD, MD, JD, or other professional degree” 

(category 12). Household income was computed using participant responses to several financial 

questions. Participants reported on the 12-month income earned by themselves, their 

spouse/partners, and other adults in their household. Participants also reported income from 

household social security, government assistance, and any other sources of income. Responses 

on these items were summed to create a household income variable that represented an estimate 

of total dollars earned within the participant’s household in the past year. For the current 

analysis, the measures of educational attainment and household income were standardized and 

combined to form a composite index of SEP (Kraus et al., 2009; Muscatell et al., 2012). Overall, 

the median education level was category 8, or graduation from a 2-year college, vocational 

school, or associate degree, and the median household income was $71,500 per year 

(M=$81,171, SD=$59,266). There was substantial variability across the sample for both 

education (range = some high school – the attainment of a PhD or other professional degree) and 

income (range = $0-287,000). Given established associations between neural function and age 

(MacCormack et al., 2020), as well as statistically significant differences in SEP among males 

and females [t(120)= -2.259, p=0.026] and racial groups in our sample [F(4,117)=6.747, 

p<0.001], we included age, sex, and race/ethnicity as covariates in all models. This allowed us to 
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improve our ability to assess unique associations between SEP and neural activity and 

connectivity. 

Affective Reactivity Task 

During MRI scanning, participants completed a task that involved viewing 30 positive, 

30 negative, and 30 neutral images selected from the International Affective Picture System 

(IAPS; Lang et al., 2008) over the course of three runs (data from which are also published in 

Grupe et al., 2018). The IAPS images used in the task were matched across valence for 

luminosity, complexity, and degree of social content. On average, the arousal ratings for the 

negative (M= 5.46, SD=0.66) and positive images (M=5.47, SD=0.53) were greater than those for 

the neutral images (M=3.16, SD=0.42).  

At the start of each trial in the task, participants saw a fixation cross appear for 1 second, 

following which an IAPS image was presented for 4 seconds in a pseudorandomized order. No 

more than two images from the same valence category were presented sequentially. Following 

each picture was a 2-second inter-stimulus interval in which participants viewed a black screen, 

and then a neutral face appeared for 0.5 seconds. Using a button box, participants were tasked 

with indicating whether the person depicted identified as male or female. Following the face 

presentation, each trial ended with a jittered inter-trial interval between 3.5 and 27.5 seconds 

(M=7.5 seconds) in which participants viewed a black screen. Because the current project 

focused on examining neural responses to affective images, the face stimuli were coded as 

regressors of non-interest. Analyses focus on the 4-second period during which an IAPS image 

was presented. 



SEP & AIN 13 

MRI acquisition 

Neuroimaging data for the current study was acquired using a 3 Tesla scanner (MR750 

GE Healthcare, Waukesha, WI) and an 8-channel head coil. First, a T1-weighted anatomical 

image was collected using a three-dimensional magnetization-prepared rapid gradient-echo 

sequence (TR=8.2 ms, TE=3.2 ms, flip angle=12 º, field of view=256 mm, acquisition 

matrix=256 x 256, 160 axial slices, inversion time=450 ms). Next, the blood oxygen level-

dependent (BOLD) signal was measured using echo planar imaging (EPI) during the fMRI task. 

The task consisted of three runs lasting 7 minutes, 42 seconds each for a total of 23.1 minutes of 

BOLD data. Each EPI scan acquired 40 interleaved sagittal slices that used the following 

parameters: TR=2,000 ms, TE=20 ms, flip angle=60º, field of view=220 mm, acquisition 

matrix=96x64, 3 mm slice thickness with 1 mm gap, 231 volumes, and ASSET (Array coil 

Spatial Sensitivity Encoding) parallel imaging with an acceleration factor of 2.  

fMRI preprocessing 

Whole-brain neuroimaging data were preprocessed and analyzed utilizing FSL version 

6.0.0 (Jenkinson et al., 2012). The analysis pipeline first utilized the fsl_motion_outliers program 

to identify excessive motion. Task runs with framewise displacement exceeding 0.9 mm for 

greater than 25% of the volumes were excluded from analysis (N=2; Siegel et al., 2014). For all 

other runs, single-point outliers were included in each person-level general linear model (GLM). 

Following outlier detection, preprocessing included motion correction with MCFLIRT, removal 

of non-brain voxels with BET, normalization with FLIRT, removal of low-frequency drifts by 

applying a high-pass filter (100Hz), and spatial smoothing with a Gaussian kernel of 5-mm full 

width at half maximum.  
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Analysis Overview 

 We implemented several computational techniques to examine the association between 

SEP and neural activity and network configuration while processing affective images. First, we 

conducted whole-brain regression analyses to explore associations between SEP and neural 

responses while viewing affective images. Following preregistration for our graph theoretic 

network analyses (see details here: https://osf.io/5zkxp/), we assessed whether SEP was related 

to differences in global efficiency (i.e., network integration) within the allostatic-interoceptive 

network (AIN), as well as a network that combined regions of the AIN and the executive control 

network (ECN) together into one graph, during affective processing. Next, we examined whether 

SEP was related to differences in participation coefficient (i.e., between-network integration) 

between the AIN and ECN during affective processing. Then, we assessed whether SEP was 

associated with differences in amygdala, mPFC, and insula centrality within the AIN, 

AIN+ECN, and within the entire brain. Finally, we conducted exploratory (i.e., non-

preregistered) analyses to examine whether SEP was related to differences in (1) global 

efficiency within the ECN, (2) global efficiency across the whole-brain, and (3) participation 

coefficient across the whole-brain. More details about each specific analysis approach are 

provided below. 

Whole-brain regression analyses 

 Following preprocessing, a GLM was conducted for each participant and for each run. 

The individual-level GLMs included regressors that modelled each of the three trial types of 

interest (i.e., positive, negative, neutral images), and the stimuli of non-interest (i.e., face 

presentation). The GLMs also modelled motion artifacts (i.e., outliers), as well as each 

individual’s six motion parameters and their derivatives. Higher-level analyses were conducted 
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using FSL FLAME to combine BOLD activation across runs. Then, individual estimates of 

BOLD activity were included in the group-level random effects models.  

 Two whole brain regression analyses examined associations between the SEP composite 

score and neural activity to negative (versus neutral) images, as well as positive (versus neutral) 

images, while controlling for age, sex, and race/ethnicity. Cluster-level correction (z>2.3, p<0.001) 

was applied to identify regions that differentially activated to affective stimuli as a function of 

SEP. In conjunction with FSL FLAME 1 (Woolrich et al., 2004), the correction parameters used 

in this study have been found to effectively decrease type II errors (Eklund, Nichols, & Knutsson, 

2016).  

Betaseries Regressions for Connectivity Analyses & Graph Construction 

Similar post-processing steps outlined above for the whole-brain activity analyses were 

implemented for the betaseries regressions to measure connectivity. Additionally, aCompCor 

(Muschelli et al., 2014) was utilized to derive time series data from white matter and 

cerebrospinal fluid (CSF). The individual-level GLMs for betaseries regressions included 

regressors that modeled each of the three trial types of interest (i.e., positive, negative, and 

neutral images) and one trial type of non-interest (i.e., face presentation). The GLMs also 

modeled each individual’s six motion parameters and their temporal derivatives, outlier scans 

(i.e., framewise displacement above 0.9mm or global BOLD signal changes above 5 SD), and 

time series from white matter and CSF components (i.e., five potential noise components for 

white matter and CSF; Chai et al., 2012) as additional regressors of non-interest. To examine 

network topology during negative, positive, and neutral image viewing, betaseries connectivity 

matrices were extracted from the CONN functional connectivity toolbox (Whitfield-Gabrieli & 

Nieto-Castanon, 2012). Connectivity matrices were weighted, undirected, and unthresholded. 
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The matrices were then r-to-z transformed and utilized to generate network metrics via the Brain 

Connectivity Toolbox (www.brain-connectivity-toolbox.net; Rubinov & Sporns, 2010). All 

network metrics were computed using positive and negative connections. Our analyses focused 

on four distinct matrices, including an AIN-only graph, an ECN-only graph, an AIN+ECN 

graph, and a whole-brain graph to derive unique values of integration (i.e., global efficiency) 

among each set of ROIs. First, an AIN-only graph was constructed by combining 55 cortical, 

subcortical, and brainstem ROIs as in Kleckner et al., (2017; see Allostatic-Interoceptive 

Network Connectivity Matrix for greater detail regarding construction of the AIN). Second, an 

ECN-only graph included the 12 cortical ROIs from the executive control network in the 

Yeo/Schaefer 7 networks 100 parcellation (Schaefer et al., 2018). Third, the AIN+ECN network 

graph combined the 55 ROIs of the AIN and the 12 ROIs of ECN. In total, the AIN+ECN graph 

included 67 ROIs (see Figure 1 for visualization of the network graph). Fourth, a whole-brain 

graph was constructed by adding all additional cortical ROIs from the Yeo & Schaefer 7 

networks 100 parcellation (Schaefer et al., 2018) to the AIN+ECN graph for a total of 119 ROIs. 

Allostatic-Interoceptive Network Connectivity Matrix. Regions of interest comprising 

the AIN were selected a-priori based on past theoretical work outlining the regions that make up 

this network (Kleckner et al., 2017, Barett & Simmons, 2015). Because most common 

parcellations do not encompass subcortical and brainstem regions that are critical to the AIN, we 

supplemented the existing parcellations by importing masks for the missing ROIs. See Appendix 

A for the full list and source of regions in the AIN. We combined ROIs from several sources to 

create the entire hypothesized AIN, which includes the default mode and salience networks, 

subcortical regions, and several “connector” regions (i.e., regions that are functionally connected 

to both the default mode and salience networks). Specifically, the ROI masks used to construct 
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the AIN were drawn from all 12 ROIs in the salience/ventral attention network and 24 ROIs in 

the default mode network from the Yeo/Schaefer 7 networks 100 parcellation (Schaefer et al., 

2018); the thalamus, amygdala, and hippocampus from the Melbourne Subcortex atlas (Tian et 

al., 2020); the periaqueductal gray (PAG) and parabrachial nucleus (PBN) from the Harvard 

Ascending Arousal Network atlas (Edlow et al., 2012); one ROI of the entire cerebellum from 

the MNI structural atlas (Collins et al., 1995); the ventral striatum from the Oxford-Imanova 

Striatal atlas (Tziortzi et al., 2011, 2014); the hypothalamus from the California Institute of 

Technology subcortical atlas (Pauli, Nili, & Tyszka, 2018); and the nucleus of the solitary tract 

(NTS) from a 7T in vivo parcellation mask (Priovoulos et al., 2019). Together, the AIN graph 

included 55 ROIs, or nodes.  

[Insert Figure 1 Here] 

 

 

Network Topology Metrics to Assess Network Configuration 

To assess associations between SEP and network topology during affective image 

processing, we computed three primary graph metrics of interest: global efficiency, participation 

coefficient, and betweenness centrality. Global efficiency is a summary measure of integration 

amongst all nodes within a network. It is a measure of the average inverse distance (e.g., shortest 

paths) between all nodes in a given graph (Latora & Marchiori, 2001). A graph with high global 

efficiency is characterized by short path lengths between nodes that support parallel or 

distributed processing within a system. Participation coefficient and betweenness centrality are 

node-level metrics that quantify how individual regions are interconnected and influence 

information transfer across networks of interest. Participation coefficient measures the diversity 

of between-network connections and quantifies the level of cross-network communication 

(Guimerà & Nunes Amaral, 2005). A high participation coefficient suggests that a node 
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facilitates inter-network communication. When averaged across nodes within a network, a higher 

network participation coefficient signifies greater integration between networks defined in a 

graph. Betweenness centrality calculates the shortest paths between all pairs of regions in a graph 

(Brandes, 2001). High betweenness centrality indicates nodes that participate in the largest 

number of shortest paths. Thus, nodes with high betweenness centrality are characterized as 

central hubs that influence the flow of information within and between networks. The process for 

deriving each metric with the current data are discussed below. 

Network Integration.  Network integration was measured by computing global 

efficiency separately for the AIN, ECN, AIN+ECN, and whole brain graphs. Participation 

coefficient was computed between the AIN and ECN to assess how widespread and varied the 

connections were across our primary networks of interest. Each node was assigned to one of two 

networks, the AIN (55 ROIs) or the ECN (12 ROIs). Because the participation coefficient 

measures the strength of a node’s connections across networks, each node had a single value 

denoting integration with the network it was not assigned to. Thus, as a measure of cross-

network integration between the AIN and ECN, participation coefficient values for each node 

were averaged together to provide a measure of average network participation coefficient for the 

combined AIN+ECN graph.  An exploratory analysis also computed participation coefficient for 

the whole-brain graph across 6 distinct modules (i.e., AIN, ECN, Dorsal Attention, Visual, 

Somatosensory Motor, and Limbic networks). Measures of global efficiency and participation 

coefficient were computed on graphs for each of the three affective conditions separately (i.e., 

positive, negative, neutral). 

Nodal Centrality. We calculated betweenness centrality on graphs for each affective 

condition for the amygdala, mPFC, and insula a) within the AIN graph, b) within the AIN+ECN 
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graph, and c) across the entire brain. When there was more than one ROI for a specific structure 

(e.g., bilateral amygdala, multiple sub-ROIs for mPFC), the values for each ROI were averaged 

together to form a single metric for that region. 

Quality Control  

Once network metrics were derived for a condition (i.e., positive, negative, and neutral) 

for each participant, the values were averaged across conditions in order to assess the correlation 

between connectivity values and mean motion. Importantly, there were no differences in 

framewise displacement across conditions (Mneu= 0.217, Mneg=0.221, Mpos=0.215; F(2, 121) = 

1.066, p=0.346). Condition-specific values were entered into repeated measures ANCOVA 

models (rm-ANCOVA) to assess the effect of SEP (between-subjects) and condition (within 

subjects) on each network property, while controlling for age, sex, racial/ethnic identity. 

Additionally, mean head motion across conditions (framewise displacement; M=0.218) was 

added into rm-ANCOVAs for the metrics that were significantly associated with motion (i.e., 

participation coefficient: r(122) = 0.528, p<.001; betweenness centrality: r(122) = -0.353, 

p<.001). To control for the false discovery rate (FDR) due to multiple comparisons testing, the 

Benjamini-Hochberg procedure was applied (Benjamini & Hochberg, 1995) when comparing 

results with the same graph metric of interest. Finally, although we outlined a data-driven 

approach to identify top nodes for exploratory centrality analyses in our preregistration, further 

reading revealed that this approach was not warranted. To avoid the possibility of spurious 

results and issues related to circularity (Kriegeskorte et al., 2009), we omit those analyses here. 
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Results 

Association Between SEP and Neural Activity to Negative Images  

To examine the relationship between SEP and neural activity to negative images, we ran 

regression analyses to identify clusters of activity that were significantly associated with the 

composite measure of SEP while participants viewed negative (vs. neutral) images, controlling 

for age, sex, and race/ethnicity. This analysis showed a negative association between SEP and 

activation in three clusters (see Table 2 for full details). Specifically, lower levels of SEP were 

associated with greater activity in clusters encompassing voxels in the lateral occipital cortex, as 

well as clusters within midline cortical structures of the AIN (e.g., anterior-, dorsal- and ventral-

mPFC, posterior parietal cortex), subcortical structures within the AIN (e.g., thalamus, anterior 

insula, hippocampus, amygdala, anterior midcingulate cortex) and lateral PFC regions within the 

ECN (e.g., inferior frontal gyrus [IFG], parietal cortex, middle temporal gyrus); see Figure 2 for 

visualization. There were no significant clusters of activity positively associated with SEP. 

[Insert Table 2 and Figure 2 Here] 

Association Between SEP and Neural Activity to Positive Images  

To examine the relationship between SEP and neural activity to positive images, we ran 

regression analyses to identify clusters that were significantly associated with the composite 

measure of SEP while participants viewed positive (vs. neutral) images, controlling for age, sex, 

and race/ethnicity. This analysis showed a negative association between SEP and activation in 

three clusters (see Table 3 for full details). Lower levels of SEP were associated with greater 

activity in clusters encompassing voxels in posterior regions of the AIN (e.g., precuneus, angular 

gyrus, posterior cingulate cortex), lateral regions within the ECN (e.g., midfrontal gyrus, IFG), 

and corticostriatal reward-related regions (e.g., caudate, nucleus accumbens, ventral-mPFC); see 
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Figure 3 for visualization. There were no significant clusters of activity positively associated 

with SEP. 

[Insert Table 3 and Figure 3 Here] 

 

Association between SEP and Global Efficiency of the AIN, ECN, and AIN+ECN 

 

Next, we assessed whether SEP was related to global efficiency of the AIN, a measure of 

network integration, during affective processing. A rm-ANCOVA found a main effect of SEP on 

AIN global efficiency during the task, F(1, 117) = 7.387, p=0.008. Specifically, as SEP 

decreased, integration of the AIN increased; see Figure 4A for a scatterplot of the association. 

There was no significant main effect of image valence on AIN global efficiency (i.e., no 

significant differences in AIN global efficiency across affective image types), nor was there a 

significant interaction between SEP and image valence in predicting AIN global efficiency (see 

Table 4 for full reporting of results). 

We also assessed if SEP was related to global efficiency of the combined AIN and ECN 

graph during affective processing. A rm-ANCOVA found a main effect of SEP for AIN+ECN 

global efficiency during the task, F(1, 117) = 6.332, p=0.013. Specifically, as SEP decreased, 

integration across the entire graph consisting of both the AIN and ECN networks increased (i.e., 

similar to the result above showing greater integration of the AIN with lower SEP; see Figure 4B 

for scatterplot of the association). There was no significant main effect of image valence on 

AIN+ECN global efficiency, nor was there a significant interaction between SEP and valence in 

predicting AIN+ECN global efficiency (see Table 4 for full reporting of values). 

Exploratory analyses also assessed whether SEP was related to global efficiency of the 

ECN alone during affective processing. A rm-ANCOVA found that there was no significant 

main effect of SEP or valence on ECN global efficiency, nor was there a significant interaction 
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between SEP and valence in predicting ECN global efficiency (see Table 4 for full reporting of 

values). 

[Insert Table 4 Here] 

Association between SEP and Participation Coefficient of the AIN+ECN  

Next, a rm-ANCOVA was performed to assess the association between SEP and 

between-network connectivity, or the participation coefficient, of the AIN and ECN. This 

analysis showed there was no main effect of SEP for the participation coefficient of the AIN and 

ECN during the task. There was no significant main effect of image valence on participation 

coefficient, nor was there a significant interaction between SEP and valence in predicting 

AIN+ECN participation coefficient (see Table 4 for full reporting of values). 

Association between SEP and Betweenness Centrality of the Amygdala, mPFC, and Insula 

Next, to assess if SEP was related to differences in nodal centrality during affective 

processing, we calculated betweenness centrality for several regions defined a priori. Measures 

of betweenness centrality for the amygdala, mPFC, and insula within the AIN, AIN+ECN, and 

whole brain connectivity matrices during each condition were extracted. A rm-ANCOVA 

analyses showed no statistically significant associations between SEP and centrality of these 

regions within any of the three graphs (see Table 5 for full reporting of values).  

[Insert Table 5 Here] 

Association between SEP and Network Integration across the Whole Brain 

Finally, we conducted exploratory rm-ANCOVA analyses to examine whether there were 

associations between SEP and network integration across the whole brain during affective 

processing. This analysis showed a significant SEP by valence interaction, F(2, 117) = 3.429, 

p=0.034, such that as SEP decreased, global efficiency across the whole-brain graph increased in 



SEP & AIN 23 

response to the positive, but not negative or neutral, image conditions. There were no significant 

main effects of SEP or valence on whole brain global efficiency (see Table 6 for full reporting of 

values). 

To assess whether SEP was related to participation coefficient (i.e., between-network 

integration) across the whole-brain during affective processing, a rm-ANCOVA was conducted. 

There was a significant SEP by valence interaction, F(2, 117) = 3.142, p=0.045, such that as SEP 

decreased, the participation coefficient across the whole-brain graph increased in response to the 

neutral, but not positive or negative, images. There were no significant main effects of SEP or 

valence on whole brain participation coefficient (see Table 6 for full reporting of values).” 

[Insert Table 6 Here] 

Discussion 

The current study examined whether SEP was related to differences in neural activity and 

brain network connectivity during affective processing in a sample of mid- to late-life adults. 

There are three key findings from the present research. First, we found that lower SEP was 

related to greater neural activity to negative (vs. neutral) images in regions within the allostatic-

interoceptive network (AIN; e.g., mPFC, precuneus, posterior cingulate cortex, anterior insula, 

anterior cingulate cortex, amygdala, hippocampus), as well as regions within the executive 

control network (ECN; e.g., IFG), among other regions. Second, we found that lower SEP was 

related to greater neural activity to positive (vs. neutral) images in corticostriatal regions such as 

the caudate, nucleus accumbens and ventral-mPFC, as well as posterior regions in the AIN (e.g., 

precuneus, posterior cingulate) and regions within the ECN (e.g., IFG, middle frontal gyrus). 

Finally, we showed that SEP is related to neural network topology during affective processing; 

specifically, that individuals with lower SEP showed greater global efficiency (i.e., stronger 
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network integration) of the AIN and AIN+ECN across all affective conditions. The results of the 

present study add to the growing literature showing that SEP modulates neural responses to 

affective information in regions implicated in integrating information from the external and 

internal environment to regulate the energy and resources needed to respond appropriately. 

These findings also shed light on a possible neural pathway by which SEP may influence mental 

and physical health. 

 First, we found that lower SEP was associated with greater activity in medial and lateral 

PFC, parietal lobe, and limbic regions in response to viewing negative (vs. neutral) images. 

These findings are consistent with past research showing that lower SEP is associated with 

greater amygdala and mPFC activity during the processing of negative facial expressions and 

other types of negative social feedback (Gianaros et al., 2008; Muscatell et al., 2012; Javanbakht 

et al., 2015; Gonzalez et al., 2015; Muscatell et al., 2016; Kim et al., 2017; Swartz et al., 2017), 

and extend this prior literature to show that SEP is additionally related to activity in other regions 

that have been linked to social-affective processing (e.g., anterior insula, posterior and anterior 

cingulate, IFG). The combination of cortical and subcortical regions seen here and in prior work 

converge to suggest that SEP is related to neural activity in regions within the AIN, a network 

thought to integrate information from the environment together with physiological signals within 

an individual to prepare and mount resources to respond to a situation (Craig, 2009; Khalsa et al., 

2009; Kleckner et al., 2017). The increased activity within the AIN in response to negative 

affective stimuli may reflect an increased tendency for individuals with lower SES to make 

predictions that negative information is highly salient, and that there is greater need to mount 

physiological responses to meet the demands of the salient negative situation. Over time, this 
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enhanced activation can disrupt physiological systems (i.e., allostatic load) and lead to poorer 

health (McEwen & Gianaros, 2010). 

Second, we found that lower SEP was associated with greater activity in regions within 

the middle frontal gyrus, cingulate cortex, and caudate in response to positive (vs. neutral) 

images. These findings are consistent with a recent meta-analysis which found that across a 

variety of tasks (e.g., executive function, reward, social, affective), lower SEP was associated 

with increased activity in reward-related regions (e.g. caudate; Yaple & Yu, 2020). Given that 

regions within the caudate nucleus are linked to associative learning (Delgado et al., 2004) and 

shifts in behavior to maximize potential gains (Haruno et al., 2004), this enhanced activity to 

positive stimuli among individuals with lower-SES may suggest greater attention and preparation 

for gain. Life history theory contends that individuals may become more vigilant and prepared to 

secure potential gains in environments with fewer resources and greater uncertainty (Gonzalez et 

al., 2016; Ellis et al., 2009). Together, these results suggest that individuals with lower SES are 

sensitive to positive stimuli and the enhanced activity in the AIN may reflect an increased 

tendency to prepare to mount the resources needed to secure a potential gain. Generally, the 

association between SEP and representations of positive stimuli observed in the current study, 

coupled with the findings for the negative images, converge to suggest that individuals with 

lower SEP may be more “neurally sensitive” to affective cues specifically in regions that support 

shifting behavior to manage metabolic resources.  

Third, we found that lower SEP was related to higher global efficiency of the AIN, and 

the AIN together with the ECN. These results are the first demonstration that SEP is associated 

with network configuration while processing affective images and suggest that individuals with 

lower SEP show stronger integration among networks associated with affective responding and 
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cognitive control. In other words, among individuals with lower SEP, affective information is 

more efficiently transferred among regions within the AIN and between the AIN and ECN 

(Achard & Bullmore, 2007; Berroir et al., 2016; Laughlin & Sejnowski, 2003). This is 

interesting given that greater global efficiency may confer some potential advantages in 

cognitive function (Li et al., 2009; Kesler et al., 2018), suggesting that lower SEP may shape the 

efficiency of brain networks that specifically help identify salient information in the environemt 

and respond accordingly. However, enhanced efficiency among AIN and ECN nodes may be 

useful for individuals lower in SEP, who may experience greater chronic unpredictable threats 

(Baum et al., 1999; Crielaard et al., 2021). Greater efficiency between these two networks may 

be adaptive in helping individuals lower in SEP to quickly detect salient information in the 

environment and make decisions about how to regulate responses to such information. In the 

longer term, however, this enhanced efficiency between AIN and ECN may come with costs. 

Global workspace theory argues that the neural architecture underlying effortful processing 

engaged during complex cognitive tasks is characterized by more integrated processing (i.e., 

increased global efficiency) over longer connections, which takes energy to maintain (Dehaene, 

Kerszberg, & Changeux, 1998; Kitzbichler et al., 2011). As such, it is possible that the global 

workspace is activated or enhanced when individuals attend and respond to salient (i.e., novel, 

unpredicted, emotional) stimuli. Therefore, prolonged increases in global network efficiency 

may be associated with higher metabolic cost (Bullmore & Sporns, 2012), which is detrimental 

in the long term and could be deleterious to overall health and mental functioning (Colich et al., 

2020). Future longitudinal work is needed to examine if SEP-related modulation of global 

efficiency is related to the emergence of SEP-based health inequities over time. 
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These findings of greater global efficiency of the AIN and the AIN together with ECN 

parallel a recent theory of generalized unsafety that is posited as one pathway by which lower-

SEP may be linked to poorer health outcomes (Brosschot et al., 2016; Brosschot, Verkuil, & 

Thayer, 2017; Brosschot et al., 2018). The generalized unsafety theory argues that constant 

activation due to a sense of uncertainty and preparation for threat among those lower in SEP may 

be physiologically costly. Indeed, prior work shows that individuals demonstrate greater global 

efficiency in highly attentive and vigilant states (Yang et al., 2019). Thus, increased integration 

within the AIN, which also underlies physiological activation, may be a pivotal process for 

maintaining and regulating the consequences of generalized unsafety. This interpretation is 

speculative at this stage and future research is needed to examine if greater integration of the 

AIN is a mechanism linking lower SEP to greater physiological activation, and perhaps poorer 

health. 

Finally, exploratory analyses across the whole brain revealed intriguing associations 

between SEP and network topology during affective processing. We found that there was a 

negative association between SEP and global efficiency across the whole-brain graph 

specifically during the positive condition, perhaps suggesting that positive affective states 

depend on increases in global efficiency of the entire brain among individuals with lower SEP. A 

similar SEP by valence interaction was found for whole-brain participation coefficient. 

Specifically, individuals with lower SEP demonstrated an increased participation coefficient 

while viewing neutral images. These analyses were exploratory and will need to be replicated.  

There were also several null findings in the present study worth noting, particularly with 

regard to the network metrics. First, we did not find an interaction of SEP and image valence for 

measures of network integration or hub centrality. In other words, while SEP was related to AIN 
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and AIN+ECN integration broadly across all trial types in the task, the association between SEP 

and network integration did not vary as a function of affective image condition. A possible 

reason for this lack of SEP by image valence interaction might be because static measures of 

network organization such as those studied here are more strongly linked to individual traits, 

such as SEP, than dynamic changes across task conditions, such as differences in valence 

(Eichenbaum et al., 2021; Liégeois et al., 2019). Second, we found that there were no differences 

in global efficiency within the ECN-only graph as a function of SEP. Because regions within the 

ECN are hypothesized to underlie cognitive regulation processes and the task used here did not 

explicitly instruct individuals to regulate their emotions, this null result is not entirely surprising.  

Third, there was also no main effect of valence on metrics of participation coefficient and 

betweenness centrality. These results are consistent with recent work showing that networks 

critical for processing emotional content are not differentially responsive to valence (Lindquist et 

al., 2016; Lindquist et al., 2012). That is, networks such as the AIN are valence-general (Barrett 

& Simmons, 2015; Satpute & Lindquist, 2019). More research is needed to fully understand the 

extent to which neural systems such as the AIN dynamically configure in response to different 

stimuli and task demands. 

Several limitations need to be considered. First, we measured SEP by creating a 

composite score of education and income, and there are several other ways to conceptualize SEP 

given that it is a multifaceted construct (Braveman et al., 2005). Results may be different if other 

measures of SEP are examined (e.g., occupational prestige, change in socioeconomic mobility 

from childhood). Second, the cross-sectional design precludes drawing any causal conclusions 

regarding neural alterations due to SEP. Future longitudinal work that examines the influence of 

SEP on brain activation and network dynamics in response to affective stimuli over time is 
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needed to gain clarity on the directionality of effects. Additionally, although we controlled for 

effects of age, sex, and racial/ethnic identity, these covariates are factors that are importantly 

associated with SEP (e.g., Backholer et al., 2017; Poulton et al., 2002; Williams et al., 2010). 

While limitations in sample size precluded our ability to meaningfully examine intersections 

between SEP and these other demographic factors, future work with larger sample sizes and 

greater variability in demographic characteristics ought to explore the effects of intersectionality 

of SEP and age, sex, and racial/ethnic identity on neural functioning. Third, although the network 

metrics we selected are commonly used to measure integration and centrality in the literature, 

future work can explore links between SEP and network configuration utilizing other metrics to 

assess reproducibility and compare results across metric selection. Finally, it is important to note 

that node selection is an ongoing limitation in network neuroscience such that network metrics 

may vary depending on the parcellation or specific nodes selected (see Stanley et al., 2013 or 

Hallquist & Hillary, 2019 for discussion). 

Overall, our data suggests that SEP is associated with hyperactivity in and integration 

among regions comprising an allostatic-interoceptive brain system while processing affective 

information. This study establishes for the very first time that broader features of an individual’s 

context, like SEP, may influence the activity and topology of an allostatic-interoceptive system. 

These findings suggest that lower SEP is associated enhanced neural sensitivity to affective cues, 

and that this heightened activity and connectivity in response to such cues may be metabolically 

costly to maintain. This generalized hypervigilance and metabolically expensive integration of 

the AIN and ECN during responses to affective information may be one pathway linking SEP, 

affective processing, and detrimental health outcomes.  
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Figure Captions 

 

Figure 1. Visualization of regions of interest, or nodes, that make up the allostatic-interoceptive 

network (AIN; pictured in red) and executive control network (ECN; pictured in blue). Spheres 

depict the general location of each ROI mask used in analyses. 

 

Figure 2. Depiction of voxels showing a significant negative association between SEP and 

neural activity during negative (versus neutral) image viewing, while controlling for age, sex, 

and racial/ethnic identity (z>2.3, p<0.001). 

 

Figure 3. Depiction of voxels showing a significant negative association between socioeconomic 

position (SEP) and neural activity during positive (versus neutral) image viewing, while 

controlling for age, sex, and racial/ethnic identity (z>2.3, p<0.001). 

 

Figure 4. Panel A depicts the negative association between SEP and global efficiency of the AIN 

across the entire task, regardless of valence type. Panel B depicts the negative association 

between SEP and global efficiency of the AIN+ECN across the entire task, regardless of valence 

type. Analyses controlled for age, sex, and racial/ethnic identity. 

 


	One’s socioeconomic position (SEP) (i.e., income, educational achievement) can profoundly shape an individual’s life (Krieger et al., 1997; Krieger et al., 2005). Specifically, SEP has been consistently tied to physical and mental health such that ind...

